INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY

ANALYTICAL CHEMISTRY DIVISION COMMISSION ON SOLUBILITY DATA

SOLUBILITY DATA SERIES

Volume 10

NITROGEN AND AIR

•

1_

1

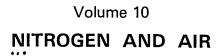
SOLUBILITY DATA SERIES

Volume 1	H. L. Clever, Helium and Neon
Volume 2	H. L. Clever, Krypton, Xenon and Radon
Volume 3	M. Salomon, Silver Azide, Cyanide, Cyanamides, Cyanate, Selenocyanate and Thiocyanate
Volume 4	H. L. Clever, Argon
Volume 5/6	C. L. Young, Hydrogen and Deuterium
Volume 7	R. Battino, Oxygen and Ozone
Volume 8	C. L. Young, Oxides of Nitrogen
Volume 9	W. Hayduk, <i>Ethane</i>
Volume 10	R. Battino, Nitrogen and Air
Volume 11	B. Scrosati and C. A. Vincent, <i>Alkali Metal, Alkaline-Earth Metal and Ammonium</i> Halides. Amide Solvents
Volume 18	O. Popovych, Tetraphenylborates

Volumes in preparation

C. L. Young, Oxides of Sulfur

- H. L. Clever and W. Gerrard, Hydrogen Halides in Non-Aqueous Solvents
- H. Miyamoto and M. Salomon, Copper and Silver Halates
- S. Siekierski and J. K. Navratil, Actinide Nitrates
- E. M. Woolley, Silver Halides
- Z. Galus and C. Guminski, Metals and Intermetallic Compounds in Mercury
- J. W. Lorimer, Alkaline-Earth Metal Sulfates
- A. L. Horvath and F. W. Getzen, Halogenated Benzenes, Toluenes, Xylenes and Phenols with Water
- H. L. Clever, D. M. Mason and C. L. Young, Carbon Dioxide
- H. L. Clever and C. L. Young, Methane


NOTICE TO READERS

Dear Reader

If your library is not already a standing-order customer or subscriber to the Solubility Data Series, may we recommend that you place a standing order or subscription order to receive immediately upon publication all new volumes published in this valuable series. Should you find that these volumes no longer serve your needs, your order can be cancelled at any time without notice.

Robert Maxwell Publisher at Pergamon Press

SOLUBILITY DATA SERIES

Volume Editor

RUBINO BATTINO Wright State University Dayton, Ohio, USA

RUBIN BATTINO Wright State University Dayton, Ohio, USA

ARDIS L. CRAMER Emory University Atlanta, Georgia, USA

SUSAN A. JOHNSON Emory University Atlanta, Georgia, USA

PATRICK L. LONG Emory University Atlanta, Georgia, USA CHEN-TUNG A. CHEN Oregon State University Corvallis, Oregon, USA

Evaluators

COLIN L. YOUNG University of Melbourne Parkville, Victoria, Australia

Compilers

M. ELIZABETH DERRICK Valdosta State University Valdosta, Georgia, USA

VLADIMIR KATOVIC Wright State University Dayton, Ohio, USA

E. S. THOMSEN Royal Danish School of Pharmacy Copenhagen, Denmark H. LAWRENCE CLEVER Emory University Atlanta, Georgia, USA

J. CHR. GJALDBAEK Royal Danish School of Pharmacy Copenhagen, Denmark

> TRINA D. KITTREDGE Emory University Atlanta, Georgia, USA

D. G. T. THORNHILL Leicester Polytechnic Leicester, UK

PERGAMON PRESS

OXFORD · NEW YORK · TORONTO · SYDNEY · PARIS · FRANKFURT

υ.к.	Pergamon Press Ltd., Headington Hill Hall, Oxford OX3 0BW, England
U.S.A.	Pergamon Press Inc., Maxwell House, Fairview Park, Elmsford, New York 10523, U.S.A.
CANADA	Pergamon Press Canada Ltd., Suite 104, 150 Consumers Rd., Willowdale, Ontario M2J 1P9, Canada
AUSTRALIA	Pergamon Press (Aust.) Pty. Ltd., P.O. Box 544, Potts Point, N.S.W. 2011, Australia
FRANCE	Pergamon Press SARL, 24 rue des Ecoles, 75240 Paris, Cedex 05, France
FEDERAL REPUBLIC OF GERMANY	Pergamon Press GmbH, 6242 Kronberg-Taunus, Hammerweg 6, Federal Republic of Germany

Copyright © 1982 International Union of Pure and Applied Chemistry

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means: electronic, electrostatic, magnetic tape, mechanical, photocopying, recording or otherwise, without permission in writing from the copyright holders.

First edition 1982

Library of Congress Cataloging in Publication Data

Main entry under title: Nitrogen and air. (Solubility data series ; v. 10) Includes bibliographical references and indexes. 1. Nitrogen – Solubility – Tables. 2. Air – Solubility – Tables. I. Battino, Rubin. II. Series. QD181.N1N57 1982 546'.711542'0212 82-15046

British Library Cataloguing in Publication Data

Nitrogen and air. – (Solubility data series, ISSN 0191-5622; v. 10) 1. Nitrogen – Solubility – Tables I. Battino, Rubin II. International Union of Pure and Applied Chemistry. *Commission on Solubility Data* III. Series 546'.711'0212 QD181.N1 ISBN 0-08-023922-6

In order to make this volume available as economically and as rapidly as possible the authors' typescripts have been reproduced in their original forms. This method unfortunately has its typographical limitations but it is hoped that they in no way distract the reader.

Printed in Great Britain by A. Wheaton & Co. Ltd., Exeter

CON	ΤE	NT	S
-----	----	----	---

Fore Pref	eword ace		vii xi	
The		oility of Gases in Liquids ductory Information	xiii	
		nodynamic Considerations	xx	
The		enov Salt Effect Parameter	xxix	
		tative Values of Factors Needed to Convert		
		enov Salt Effect Parameter Forms	xxxviii	
Con	versio	n Factors	xliv	
1.	Nitro	gen solubilities up to 200 kPa		
		Water	1	
		Deuterium oxide	30	
		Seawater	31	
		Salt solutions (aqueous)	45	
		Organic solvents plus water	83	
		Mixed organic solvents	104	
	1.7	Hydrocarbons		
		Saturated and unsaturated	119	
		Cyclic	148	
		Aromatic	162	
		Organic compounds containing oxygen	174	
		Organic compounds containing halogen	232	
	1.10	Organic compounds containing sulfur	253	
	1.11	Organic compounds containing nitrogen	260	
		Organic compounds containing silicon	275	
		Biological fluids	276	
	1.14	Miscellaneous fluids	315	
2.	Nitro	gen solubilities above 200 kPa	332	
		Water	333	
	2.2	Salt solutions (aqueous)	345	
		Mixed solvents	352	
	2.4	Hydrocarbons		
		Saturated and unsaturated	361	
		Cyclic	439	
		Aromatic	443	
	2.5	Organic compounds containing oxygen	446	
	2.6	Organic compounds containing halogen	455	
	2.7	Organic compounds containing nitrogen	462	
	2.8	Biological fluids	464	
	2.9	Miscellaneous fluids	466	
3.	Air s	olubilities	509	
Sys	stem I	ndex	551	
		Number Index	561	
	hor Ir		565	

SOLUBILITY DATA SERIES

Editor-in-Chief

A. S. KERTES The Hebrew University Jerusalem, Israel

EDITORIAL BOARD

H. Akaiwa (Japan)
A. F. M. Barton (Australia)
R. Battino (USA)
K. R. Bullock (USA)
H. L. Clever (USA)
W. Gerrard (UK)
L. H. Gevantman (USA)
W. Hayduk (Canada)
A. L. Horvath (UK)

J. W. Lorimer (Canada) A. N. Paruta (USA) M. Salomon (USA) P. W. Schindler (Switzerland) D. G. Shaw (USA) R. P. T. Tomkins (USA) E. M. Woolley (USA) G. A. Yagodin (USSR)

C. L. Young (Australia)

** ***

, . .

- - -

2 2 4

1 64

ŝ,

17-14-19 2 1

2 8.04

.

1

ŝ

ŗ

INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY

IUPAC Secretariat: Bank Court Chambers, 2-3 Pound Way, Cowley Centre, Oxford OX4 3YF, UK

FOREWORD

If the knowledge is undigested or simply wrong, more is not better.

How to communicate and disseminate numerical data effectively in chemical science and technology has been a problem of serious and growing concern to IUPAC, the International Union of Pure and Applied Chemistry, for the last two decades. The steadily expanding volume of numerical information, the formulation of new interdisciplinary areas in which chemistry is a partner, and the links between these and existing traditional subdisciplines in chemistry, along with an increasing number of users, have been considered as urgent aspects of the information problem in general, and of the numerical data problem in particular.

Among the several numerical data projects initiated and operated by various IUPAC commissions, the *Solubility Data Project* is probably one of the most ambitious ones. It is concerned with preparing a comprehensive critical compilation of data on solubilities in all physical systems, of gases, liquids and solids. Both the basic and applied branches of almost all scientific disciplines require a knowledge of solubilities as a function of solvent, temperature and pressure. Solubility data are basic to the fundamental understanding of processes relevant to agronomy, biology, chemistry, geology and oceanography, medicine and pharmacology, and metallurgy and materials science. Knowledge of solubility is very frequently of great importance to such diverse practical applications as drug dosage and drug solubility in biological fluids, anesthesiology, corrosion by dissolution of metals, properties of glasses, ceramics, concretes and coatings, phase relations in the formation of minerals and alloys, the deposits of minerals and radioactive fission products from ocean waters, the composition of ground waters, and the requirements of oxygen and other gases in life .

The widespread relevance of solubility data to many branches and disciplines of science, medicine, technology and engineering, and the difficulty of recovering solubility data from the literature, lead to the proliferation of published data in an ever increasing number of scientific and technical primary sources. The sheer volume of data has overcome the capacity of the classical secondary and tertiary services to respond effectively.

While the proportion of secondary services of the review article type is generally increasing due to the rapid growth of all forms of primary literature, the review articles become more limited in scope, more specialized. The disturbing phenomenon is that in some disciplines, certainly in chemistry, authors are reluctant to treat even those limited-inscope reviews exhaustively. There is a trend to preselect the literature, sometimes under the pretext of reducing it to manageable size. The crucial problem with such preselection - as far as numerical data are concerned - is that there is no indication as to whether the material was excluded by design or by a less than thorough literature search. We are equally concerned that most current secondary sources, critical in character as they may be, give scant attention to numerical data.

On the other hand, tertiary sources - handbooks, reference books, and other tabulated and graphical compilations - as they exist today, are comprehensive but, as a rule, uncritical. They usually attempt to cover whole disciplines, thus obviously are superficial in treatment. Since they command a wide market, we believe that their service to advancement of science is at least questionable. Additionally, the change which is taking place in the generation of new and diversified numerical data, and the rate at which this is done, is not reflected in an increased third-level service. The emergence of new tertiary literature sources does not parallel the shift that has occurred in the primary literature.

With the status of current secondary and tertiary services being as briefly stated above, the innovative approach of the *Solubility Data Project* is that its compilation and critical evaluation work involve consolidation and reprocessing services when both activities are based on intellectual and scholarly reworking of information from primary sources. It comprises compact compilation, rationalization and simplification, and the fitting of isolated numerical data into a critically evaluated general framework. The *Solubility Data Project* has developed a mechanism which involves a number of innovations in exploiting the literature fully, and which contains new elements of a more imaginative approach for transfer of reliable information from primary to secondary/tertiary sources. The fundamental trend of the Solubility Data Project is toward integration of secondary and tertiary services with the objective of producing in-depth critical analysis and evaluation which are characteristic to secondary services, in a scope as broad as conventional tertiary services.

Fundamental to the philosophy of the project is the recognition that the basic element of strength is the active participation of career scientists in it. Consolidating primary data, producing a truly critically-evaluated set of numerical data, and synthesizing data in a meaningful relationship are demands considered worthy of the efforts of top scientists. Career scientists, who themselves contribute to science by their involvement in active scientific research, are the backbone of the project. The scholarly work is commissioned to recognized authorities, involving a process of careful selection in the best tradition of IUPAC. This selection in turn is the key to the quality of the output. These top experts are expected to view their specific topics dispassionately, paying equal attention to their own contributions and to those of their peers. They digest literature data into a coherent story by weeding out what is wrong from what is believed to be right. To fulfill this task, the evaluator must cover all relevant open literature. No reference is excluded by design and every effort is made to detect every bit of relevant primary source. Poor quality or wrong data are mentioned and explicitly disqualified as such. In fact, it is only wi the reliable data are presented alongside the unreliable data that proper In fact, it is only when justice can be done. The user is bound to have incomparably more confidence in a succinct evaluative commentary and a comprehensive review with a complete bibliography to both good and poor data.

It is the standard practice that any given solute-solvent system consists of two essential parts: I. Critical Evaluation and Recommended Values, and II. Compiled Data Sheets.

The Critical Evaluation part gives the following information:

(i) a verbal text of evaluation which discusses the numerical solubility information appearing in the primary sources located in the literature. The evaluation text concerns primarily the quality of data after consideration of the purity of the materials and their characterization, the experimental method employed and the uncertainties in control of physical parameters, the reproducibility of the data, the agreement of the worker's results on accepted test systems with standard values, and finally, the fitting of data, with suitable statistical tests, to mathematical functions;

(ii) a set of recommended numerical data. Whenever possible, the set of recommended data includes weighted average and standard deviations, and a set of smoothing equations derived from the experimental data endorsed by the evaluator;

(iii) a graphical plot of recommended data.

The compilation part consists of data sheets of the best experimental data in the primary literature. Generally speaking, such independent data sheets are given only to the best and endorsed data covering the known range of experimental parameters. Data sheets based on primary sources where the data are of a lower precision are given only when no better data are available. Experimental data with a precision poorer than considered acceptable are reproduced in the form of data sheets when they are the only known data for a particular system. Such data are considered to be still suitable for some applications, and their presence in the compilation should alert researchers to areas that need more work.

The typical data sheet carries the following information: (i) components - definition of the system - their names, formulas and Chemical Abstracts registry numbers;

(ii) reference to the primary source where the numerical information is reported. In cases when the primary source is a less common periodical or a report document, published though of limited availability, abstract references are also given;

;

;

(iii) experimental variables; (iv) identification of the compiler;

(v) experimental values as they appear in the primary source. Whenever available, the data may be given both in tabular and graphical form. If auxiliary information is available, the experimental data are converted also to SI units by the compiler.

Under the general heading of Auxiliary Information, the essential experimental details are summarized:

(vi) experimental method used for the generation of data;

(vii) type of apparatus and procedure employed; (viii) source and purity of materials;

(ix) estimated error;

(x) references relevant to the generation of experimental data as cited in the primary source.

This new approach to numerical data presentation, developed during our four years of existence, has been strongly influenced by the diversity of background of those whom we are supposed to serve. We thus deemed it right to preface the evaluation/compilation sheets in each volume with a detailed discussion of the principles of the accurate determination of relevant solubility data and related thermodynamic information.

Finally, the role of education is more than corollary to the efforts we are seeking. The scientific standards advocated here are necessary to strengthen science and technology, and should be regarded as a major effort in the training and formation of the next generation of scientists and engineers. Specifically, we believe that there is going to be an impact of our project on scientific-communication practices. The quality of consoli-dation adopted by this program offers down-to-earth guidelines, concrete examples which are bound to make primary publication services more responsive than ever before to the needs of users. The self-regulatory message to scientists of 15 years ago to refrain from unnecessary publication has not achieved much. The literature is still, in 1982, cluttered with poor-quality articles. The Weinberg report (in "Reader in Science Information", Eds. J. Sherrod and A. Hodina, Microcard Editions Books, Indian Head, Inc., 1973, p.292) states that "admonition to authors to restrain themselves from premature, unnecessary publication can have little effect unless the climate of the entire technical and scholarly community encourages restraint... We think that projects of this kind translate the climate into operational terms by exerting pressure on authors to avoid submitting low-grade material. The type of our output, we hope, will encourage attention to quality as authors will increasingly realize that their work will not be suited for permanent retrievability unless it meets the standards adopted in this project. It should help to dispel confusion in the minds of many authors of what represents a permanently useful bit of information of an archival value, and what does not.

If we succeed in that aim, even partially, we have then done our share in protecting the scientific community from unwanted and irrelevant, wrong numerical information.

A. S. Kertes

• * * * * * **** * ;

: . . .

. . •

.

PREFACE

The discovery of nitrogen is usually attributed to Daniel Rutherford in 1772. Priestly, Scheele, and Cavendish also did important experiments on this "phlogisticated" air (in contrast to "dephlogisticated" air or oxygen). Lavoisier named the gas <u>azote</u> from the Greek, meaning without life since it did not support life. Because of its presence in <u>niter</u> or <u>nitre</u> (KNO₃) the English name is nitrogen. Nitrogen forms 78.09 per cent of the atmosphere by volume and 75.51 per cent by weight. Despite this great abundance in the atmosphere nitrogen is only present to the extent of 0.0046 weight per cent in the igneous rocks of the crust of the earth. It is not even listed in a table I have on the amounts of elements in the ocean. The great importance of nitrogen is due to its prevalence in air and its "fixed" form as various nitrates.

This particular volume is concerned with the solubility of nitrogen and air in pure liquids, liquid mixtures, aqueous and organic solutions, biological fluids, and miscellaneous fluids and fluid mixtures. High and low pressures are covered in separate sections, the dividing line being a gas partial pressure of about 200 kPa (2 bar). With the higher pressure data there is always a problem of attempting to distinguish between gas solubilities and vapor-liquid equilibria. We have striven to be reasonable in making this distinction. Certain fluids such as molten salts, slags, glasses, metals, and alloys have been excluded from this volume, as well as polymeric materials. The literature, including specialty tabulations and compilations, has been searched through the middle of 1981, although a few more recent papers are included. (The editor would appreciate hearing about articles which were missed.)

The individual data sheets in this volume were prepared using the solubility units presented in the original papers. In general, where a given system was studied by several groups a critical evaluation was prepared. These critical evaluations are meant to be comprehensive, i.e., citing all papers with measurements on that system even though data sheets are not prepared from papers containing data of poor or questionable quality. In these critical evaluations, recommended or tentative smoothed data are usually presented. All cited papers are discussed, albeit briefly in many instances. Related systems are also discussed.

To our knowledge the solubilities of nitrogen and air have been determined only by physical means (if we leave out difference methods in which oxygen and carbon dioxide are analyzed for via chemical methods). The data sheets contain concise descriptions of the methods used. Information is also provided on the source and purity of the components, although we are surprised at how many papers omit this information.

Gas solubilities are presented in the original papers in an almost bewildering number of units. In the data sheets we present the units given in the original papers with explanatory material where necessary. Where it is feasible the compilers have converted these solubilities into the Ostwald coefficient and/or the mole fraction solubility at 101.325 kPa (1 atm) partial pressure of gas. These conversions were carried out for the convenience of the user, and such compiler-generated conversions are noted on the data sheets. Unless otherwise specified the units for the Bunsen coefficients reported herein are cm³ (STP) cm⁻³ atm⁻¹.

We are indebted to Dr. William Gerrard for two instances illuminating the necessity of caution in the choice of units to represent gas solubilities. At 295 K if we take the ratio of the solubility of nitrogen in olive oil in units of the Bunsen coefficient to that in water it is 3.5. However, in terms of the mole ratio (number of moles of gas/number of moles of solvent at a specified temperature and pressure) this ratio is 188. Similar ratios at 293 K for nitrogen in several solvents are (solvent, ratio of Bunsen coefficients, ratio of mole ratios): benzene, 7.10, 35.0; methanol, 8.66, 19.4; ethanol, 8.77, 28.4; 1-pentanol, 7.50, 41.7; acetone, 8.94, 36.4; and $CH_3CO_2C_5H_{11}$, 9.44, 83.6. One last example involves the solubility of nitrogen in some biological fluids at 298.5 K. The solvent is given first, the the Bunsen coefficient, then the mole ratio solubility: olive oil, 0.0686, 0.00273; tetralin, 0.0638, 0.000357; oleic acid, 0.085, 0.00111; and ethyl palmitate 0.109, 0.00144. The question of which solvent is "best" for a given gas thus depends on the solubility unit you are using. Caution is obviously required in talking about "solvent power." Solubility units need to be matched to a given model for rational use.

On the data sheets data are reported in the units presented in the original paper. The data are also converted to SI in the tables where this is conveniently feasible, and always in SI in the "VARIABLES" box. With respect to naming components, we have attempted to use IUPAC nomenclature throughout. The Hill system is used for the formulas and the unique Chemical Abstracts Service Registry Numbers are used for all identifiable substances. The Standard Order of Arrangement is used for the sequencing of systems in a given section. Sorting of systems using the table of contents worked unambiguously for most systems. However, some systems had to be assigned arbitrarily by the editor. Common names of substances are used in addition to the systematic names as an aid to the reader.

Error estimates are given where the author(s) give this information. They are also estimated by the compilers in many cases.

Real gas corrections are not necessary for the data on nitrogen solubilities reported in this volume since we found no data of a precision to require the corrections. At STP the molar volume of nitrogen is 22,403.8 cm³ which corresponds to a correction of 0.05 per cent. Recommended second virial coefficients taken from the second edition of Dymond and Smith are shown below along with the per cent error for not applying the correction. Around room temperature the corrections are negligible.

т/к	B ₂₂ /cm ³ mol ⁻¹	Per cent Error	т/к	B ₂₂ /cm ³ mol ⁻¹	Per cent Error
100	-160	1.9	300	-4.2	0.02
150	- 71.5	0.58	400	9.0	0.03
200	- 35.2	0.21	500	16.9	0.04
250	- 16.2	0.08			

One of the surprising results of the literature search for this work was the discovery of the relatively small number of measurements for the solubility of air in liquids. Of course, reasonably good values of air solubilities may be calculated from nitrogen and oxygen solubilities since these are additive within at least one per cent. Our literature search unearthed only one paper on nitrogen in heavy water, D₂O. This system should be studied further.

In the interest of helping the reader we have included two special papers written specifically for this volume by Drs. H. L. Clever and E. Wilhelm. The paper by Dr. Clever expands on the salt-effect parameters pioneered by Sechenov. Useful equations and interconversions are developed along with a recommended systematic notation. An appendix to this paper includes practical tables for some common salts. The paper by Dr. Wilhelm presents a rigorous thermodynamic treatment for the solubility of gases in liquids. The formalism developed is particularly important for measurements of high precision. We are pleased to include these two papers and express a special thanks to both authors.

The Editor acknowledges the advice and helpful suggestions of his colleagues in IUPAC Commission V.8, the Commission on Solubility Data. He also gratefully acknowledges the work of his research assistant, Mr. Chai-Jing Chou, and the secretaries who worked on this volume - Marty Tucker, Carolyn Dowie, and Lesley Flanagan.

Acknowledgment is made to the National Bureau of Standards for a grant which supported part of this work.

Finally, acknowledgment is made to the following scientists who critically read separate sections of this volume: Drs. R. W. Cargill, C-T. A. Chen, H. L. Clever, C. M. Criss, W. Gerrard, J. Chr. Gjaldbaek, W. Hayduk, D. J. Karl, T. R. Rettich, E. S. Thomsen, R. F. Weiss, and W.-Y. Wen.

Rubin Battino

Dayton, Ohio April, 1982

xii

THE SOLUBILITY OF GASES AND LIQUIDS

Introductory Information

C. L. Young, R. Battino, and H. L. Clever

INTRODUCTION

The Solubility Data Project aims to make a comprehensive search of the literature for data on the solubility of gases, liquids and solids in liquids. Data of suitable accuracy are compiled into data sheets set out in a uniform format. The data for each system are evaluated and where data of sufficient accuracy are available values are recommended and in some cases a smoothing equation is given to represent the variation of solubility with pressure and/or temperature. A text giving an evaluation and recommended values and the compiled data sheets are published on consecutive pages. The following paper by E. Wilhelm gives a rigorous thermodynamic treatment on the solubility of gases in liquids.

DEFINITION OF GAS SOLUBILITY

The distinction between vapor-liquid equilibria and the solubility of gases in liquids is arbitrary. It is generally accepted that the equilibrium set up at 300K between a typical gas such as argon and a liquid such as water is gas-liquid solubility whereas the equilibrium set up between hexane and cyclohexane at 350K is an example of vapor-liquid equilibrium. However, the distinction between gas-liquid solubility and vapor-liquid equilibrium is often not so clear. The equilibria set up between methane and propane above the critical temperature of methane and below the critical temperature of propane may be classed as vapor-liquid equilibrium or as gas-liquid solubility depending on the particular range of pressure considered and the particular worker concerned.

The difficulty partly stems from our inability to rigorously distinguish between a gas, a vapor, and a liquid; a subject which has been discussed in numerous textbooks. We have taken a fairly liberal view in these volumes and have included systems which may be regarded, by some workers, as vapor-liquid equilibria.

UNITS AND QUANTITIES

The solubility of gases in liquids is of interest to a wide range of scientific and technological disciplines and not solely to chemistry. Therefore a variety of ways for reporting gas solubility have been used in the primary literature. Sometimes, because of insufficient available information, it has been necessary to use several quantities in the compiled tables. Where possible, the gas solubility has been quoted as a mole fraction of the gaseous component in the liquid phase. The units of pressure used are bar, pascal, millimeters of mercury, and atmosphere. Temperatures are reported in Kelvins.

EVALUATION AND COMPILATION

The solubility of comparatively few systems is known with sufficient accuracy to enable a set of recommended values to be presented. This is true both of the measurements near atmospheric pressure and at high pressures. Although a considerable number of systems have been studied by at least two workers, the range of pressures and/or temperatures is often sufficiently different to make meaningful comparison impossible.

Occasionally, it is not clear why two groups of workers obtained very different sets of results at the same temperature and pressure, although both sets of results were obtained by reliable methods and are internally consistent. In such cases, sometimes an incorrect assessment has been given. There are several examples where two or more sets of data have been classified as tentative although the sets are mutually inconsistent.

Many high pressure solubility data have been published in a smoothed form. Such data are particularly difficult to evaluate, and unless specifically discussed by the authors, the estimated error on such values can only be regarded as an "informed guess". Many of the high pressure solubility data have been obtained in a more general study of high pressure vapor-liquid equilibrium. In such cases a note is included to indicate that additional vapor-liquid equilibrium data are given in the source. Since the evaluation is for the compiled data, it is possible that the solubility data are given a classification which is better than that which would be given for the complete vapor-liquid data (or vice versa). For example, it is difficult to determine coexisting liquid and vapor compositions near the critical point of a mixture using some widely used experimental techniques which yield accurate high pressure solubility data. As another example, conventional methods of analysis may give results with an expected error which would be regarded as sufficiently small for vapor-liquid equilibrium data but an order of magnitude too large for acceptable high pressure gas-liquid solubility.

* * *

- -

;

£

ţ

ş. \$

۰ -

•

It is occasionally possible to evaluate data on mixtures of a given substance with a member of a homologous series by considering all the available data for the given substance with other members of the homologous series. In this study the use of such a technique has been limited.

The estimated error is often omitted in the original article and sometimes the errors quoted do not cover all the variables. In order to increase the usefulness of the compiled tables *estimated* errors have been included even when absent from the original article. If the error on *any* variable has been inserted by the compiler, this has been noted.

PURITY OF MATERIALS

The purity of materials has been quoted in the compiled tables where given in the original publication. The solubility is usually more sensitive to impurities in the gaseous component than to liquid impurities in the liquid component. However, the most important impurities are traces of a gas dissolved in the liquid. Inadequate degassing of the absorbing liquid is probably the most often overlooked serious source of error in gas solubility measurements.

APPARATUS AND PROCEDURES

In the compiled tables brief mention is made of the apparatus and procedure. There are several reviews on experimental methods of determining gas solubilities and these are given in References 1-7.

METHODS OF EXPRESSING GAS SOLUBILITIES

Because gas solubilities are important for many different scientific and engineering problems, they have been expressed in a great many ways:

The Mole Fraction, x(g)

The mole fraction solubility for a binary system is given by:

$$x(g) = \frac{n(g)}{n(g) + n(1)}$$

$$\frac{W(g)/M(g)}{\{W(g)/M(g)\} + \{W(1)/M(1)\}}$$

here n is the number of moles of a substance (an *amount* of substance), W is the mass of a substance, and M is the molecular mass. To be unambiguous, the partial pressure of the gas (or the total pressure) and the temperature of measurement must be specified.

The Weight Per Cent Solubility, wt%

For a binary system this is given by

wt% = $100 W(g) / \{W(g) + W(1)\}$

where W is the weight of substance. As in the case of mole fraction, the pressure (partial or total) and the temperature must be specified. The weight per cent solubility is related to the mole fraction solubility by

$$x(g) = \frac{\{wt \}/M(g)\}}{\{wt \}/M(g)\} + \{(100 - wt \})/M(1)\}}$$

The Weight Solubility, C_w

The weight solubility is the number of moles of dissolved gas per gram of solvent when the partial pressure of gas is 1 atmosphere. The weight solubility is related to the mole fraction solubility at one atmosphere partial pressure by $C_{\rm w}M(1)$

x(g) (partial pressure 1 atm) = $1 + C_{,,M}(1)$

where M(1) is the molecular weight of the solvent.

The Moles Per Unit Volume Solubility, n

Often for multicomponent systems the density of the liquid mixture is not known and the solubility is quoted as moles of gas per unit volume of liquid mixture. This is related to the mole fraction solubility by

$$x(g) = \frac{n v^{o}(1)}{1 + n v^{o}(1)}$$

where $v^{\circ}(1)$ is the molar volume of the liquid component.

The Bunsen Coefficient, a

The Bunsen coefficient is defined as the volume of gas reduced to 273.15K and 1 atmosphere pressure which is absorbed by unit volume of solvent (at the temperature of measurement) under a partial pressure of 1 atmosphere. If ideal gas behavior and Henry's law are assumed to be obeyed, then

$$\alpha = \frac{V(g)}{V(1)} \quad \frac{273.15}{T}$$

where V(g) is the volume of gas absorbed and V(l) is the original (starting) volume of absorbing solvent. The mole fraction solubility x is related to the Bunsen coefficient by

$$x(g, 1 atm) = \frac{\alpha}{\alpha + \frac{273.15}{T} \frac{v^{\circ}(g)}{v^{\circ}(1)}}$$

where $v^{\circ}(g)$ and $v^{\circ}(1)$ are the molar volumes of gas and solvent at a pressure of one atmosphere. If the gas is ideal,

$$x(g) = \frac{\alpha}{\alpha + \frac{273.15R}{v^{\circ}(1)}}$$

Real gases do not follow the ideal gas law and it is important to establish the real gas law used for calculating α in the original publication and to make the necessary adjustments when calculating the mole fraction solubility.

The Kuenen Coefficient, S

This is the volume of gas, reduced to 273.15K and 1 atmosphere pressure, dissolved at a partial pressure of gas of 1 atmosphere by 1 gram of solvent.

TABLE 1 Interconversion of parameters used for reporting solubility

$$L = \alpha (T/273.15)$$

$$C_{w} = \alpha / v_{o} \rho$$

$$K_{H} = \frac{17.033 \times 10^{6} \rho (\text{soln})}{\alpha M(1)} + 760$$

$$L = C_{w} v_{t, \text{gas}} \rho$$

where v_o is the molal volume of the gas in cm³mol⁻¹ at 0°C, ρ the density of the solvent at the temperature of the measurement, ρ_{soln} the density of the solution at the temperature of the measurement, and $v_{t,gas}$ the molal volume of the gas (cm³mol⁻¹) at the temperature of the measurement.

SALT EFFECTS

Salt effect studies have been carried out for many years. The results are often reported as Sechenov (Setchenow) salt effect parameters. There appears to be no common agreement on the units of either the gas solubility, or the electrolyte concentration.

Many of the older papers report the salt effect parameter in a form equivalent to

$$k_{scc}/mol dm^{-3} = (1/(c_2/mol dm^{-3})) \log ((c_1^{\circ}/mol dm^{-3})/(c_1/mol dm^{-3}))$$

where the molar gas solubility ratio, c_1°/c_1 , is identical to the Bunsen coefficient ratio, α°/α , or the Ostwald coefficient ratio, L°/L . One can designate the salt effect parameters calculated from the three gas solubility ratios as $k_{\rm scc}$, $k_{\rm sca}$, $k_{\rm scl}$, respectively, but they are identical, and $k_{\rm scc}/{\rm dm}$ mol⁻¹ describes all of them. The superzero refers to the solubility in the pure solvent.

Recent statistical mechanical theories favor a molal measure of the electrolyte and gas solubility. Some of the more recent salt effects are reported in the form

$$k_{smm}/kg \text{ mol}^{-1} = (1/(m_2/mol kg^{-1}) \log ((m_1^{\circ}/mol kg^{-1})/(m_1/mol kg^{-1}))$$

In this equation the m_1°/m_1 ratio is identical to the Kuenen coefficient ratio, s_1°/s_1 , or the solvomolality ratio referenced to water, $A_{\delta m}^{\circ}/A_{\delta m}$. Thus the salt effect parameters $k_{\rm smm}$, $k_{\rm sms}$, and $k_{\rm sm}A_{\delta m}$ are well represented by the $k_{\rm smm}/kg \, {\rm mol}^{-1}$.

Some experimentalists and theoreticians prefer the gas solubility ratio as a mole fraction ratio, x_1^o/x_1 . It appears that most calculate the mole fraction on the basis of the total number of ions. The salt effect parameters

$$k_{scx}/dm^3 mol^{-1} = (1/(c_2/mol dm^{-3})) \log (x_1^o/x_1)$$

and

$$x_{gmv}/kg \text{ mol}^{-1} = (1/(m_{q}/mol kg^{-1})) \log (x_{1}^{o}/x_{1})$$

are both in the literature, but k_{scx} appears to be the more common.

The following conversions were worked out among the various forms of the salt effect parameter from standard definitions of molarity, molality, and mole fraction assuming the gas solubilities are small. $k = (c_0/m_0) k = (c_0/m_0) k + F_0$

$$K_{smc} = (c_2/m_2) K_{scc} = (c_2/m_2) K_{smc} + f_{1m}$$

$$k_{scm} = k_{scc} - F_{1c} = (m_2/c_2) k_{smc} - F_{1c} = (m_2/c_2) \kappa_{smm}$$

$$k_{scx} = (m_2/c_2) k_{smx} = (m_2/c_2) k_{smm} + F_{2c}$$

$$k_{smm} = k_{smx} - F_{2m} = (c_2/m_2) k_{scx} - F_{2m}$$

$$k_{smx} = (c_2/m_2) k_{scx} = (c_2/m_2) k_{scc} + F_{3m}$$

$$k_{scc} = k_{scx} - F_{3c} = (m_2/c_2) k_{smx} - F_{3c}$$
where
$$F_{1m} = (1/m_2) \log [(\rho^{\circ}/\rho) (1000 + m_2M_2)/1000]$$

$$F_{1c} = (m_2/c_2) F_{1m}$$

$$F_{2m} = (1/m_2) \log [(1000 + \nu m_3 M_3)/1000]$$

$$F_{2c} = (m_2/c_2) F_{2m}$$

$$F_{3m} = (1/m_2) \log [(1000\rho + (\nu M_3 - M_2) c_2)/1000\rho^{\circ})$$

$$F_{3c} = (m_2/c_2) F_{3m}$$

The factors F_{1m} , F_{1c} , F_{2m} , F_{2c} , F_{3m} , and F_{3c} can easily be calculated from aqueous electrolyte data such as weight per cent and density as found in Volume III of the International Critical Tables. The values are small and change nearly linearly with both temperature and molality. The factors normally amount to no more than 10 to 20 per cent of the value of the salt effect parameter.

The symbols in the equations above are defined below:

	Molar Concentration c/mol dm ⁻³	Molal Concentration m/mol kg ⁻¹	Mole Fraction x	Molecular Weight M/g mol ⁻¹
Nonelectrolyt	$ce c_1^{\circ}, c_1$	m [°] ₁ , m ₁	x ₁ °, x ₁	M ₁
Electrolyte	c ₂	^m 2	×2	^M 2
Solvent	c ₃	^m 3	× 3	M ₃

The superscript "°" refers to the nonelectrolyte solubility in the pure solvent. The pure solvent and solution densities are ρ°/g cm⁻³ and ρ/g cm⁻³, respectively. They should be the densities of gas saturated solvent (water) and salt solution, but the gas free densities will differ negligibly in the ρ°/ρ ratio. The number of ions per formula of electrolyte is symbolized by ν .

The following table gives estimated errors in k_{scc} for various salt concentrations and a range of random errors in the gas solubility measurement

c ₂ / Random Error in gas solubility Measurement						
möl dm	±2%	±1%	±0.5%	±0.1%	±0.05%	
1	±18%	±9%	±5%	±1.5%	±] %	
0.1	±175%	±87€	±438	±9%	±4 8	
0.05	±350%	±174%	±87	±17%	±98	
0.01	±1750%	±870%	±435%	±87%	±43%	

^a Based on a k_{scc} value of 0.100.

The term aquamolal was suggested by R. E. Kerwin (9). The unit was first used in connection with D_2O and $H_2O + D_2O$ mixtures. It has since been extended in use to other solvents. The unit represents the numbers of moles of solute per 55.51 moles of solvent. It is represented by $m_{i}^{(s)}/\text{mol kg}^{-1} = (n_1 M_2 / w_2) (w_2 / M_0) = m_{i} (M_2 / M_0)$ where an amount of n_i of solute *i* is dissolved in a mass w_2 of solvent of molar mass M_2 ; M_0 is the molar mass of a reference solvent and $m_j/mol kg^{-1}$ is the conventional molality in the reference solvent. The reference solvent is normally water. TEMPERATURE DEPENDENCE OF GAS SOLUBILITY In a few cases it has been found possible to fit the mole fraction solubility at various temperatures using an equation of the form $\ln x = A + B / (T/100K) + C \ln (T/100K) + DT/100K$ It is then possible to write the thermodynamic functions $\Delta \overline{G}_1^\circ$, $\Delta \overline{H}_1^\circ$, $\Delta \overline{S}_1^\circ$ and ΔC_{p} for the transfer of the gas from the vapor phase at Pa partial pressure to the (hypothetical) solution phase of 101,325 unit mole fraction as: $\Delta \overline{G}_{1}^{\circ} = -RAT - 100 RB - RCT ln (T/100) - RDT^{2}/100$ $\Delta \overline{S}^{\circ}_{1} = RA + RC \ln (T/100) + RC + 2 RDT/100$ $\Delta \overline{H}_1^\circ = -100 \text{ RB} + \text{RCT} + \text{RDT}^2/100$ ∆Ĉ°_= RC + 2 RDT/100 In cases where there are solubilities at only a few temperatures it is convenient to use the simpler equations $\Delta \overline{G}_1^\circ = - RT \ln x = A + BT$ in which case $A = \Delta \overline{H}_{1}^{\circ}$ and $-B = \Delta \overline{S}_{1}^{\circ}$ REFERENCES 1. Battino, R.; Clever, H. L. Chem. Rev. 1966, 66, 395. Clever, H. L.; Battino, R. in Solutions and Solubilities, Ed. M. R. J. 2. Dack, J. Wiley & Sons, New York, 1975, Chapter 7. Hildebrand, J. H.; Prausnitz, J. M.; Scott, R. L. Regular and related Solutions, Van Nostrand Reinhold, New York, <u>1970</u>, Chapter 8. з. 4. Markham, A. E.; Kobe, K. A. Chem. Rev. 1941, 63, 449. 5. Wilhelm, E.; Battino, R. Chem. Rev. 1973, 73, 1. Wilhelm, E.; Battino, R.; Wilcock, R. J. Chem. Rev. 1977, 77, 219. 6. Kertes, A. S.; Levy, O.; Markovits, G. Y. in Experimental Thermo-chemistry Vol. II, Ed. B. Vodar and B. LeNaindre, Butterworth, 7. London, 1974, Chapter 15. 8. Long, F. A.; McDevit, W. F. Chem. Rev. 1952, 51, 119. Kerwin, K. E., Ph.D. Thesis, University of Pittsburgh 1964. 9.

Revised: April 1982 (R.B., H.L.C.)

xviii

AQUAMOLAL OR SOLVOMOLAL, A_{sm} or $m_{sm}^{(s)}$

The Ostwald Coefficient, L

The Ostwald coefficient, L, is defined as the ratio of the volume of gas absorbed to the volume of the absorbing liquid, all measured at the same temperature:

$$L = \frac{V(g)}{V(1)}$$

If the gas is ideal and Henry's Law is applicable, the Ostwald coefficient is independent of the partial pressure of the gas. It is necessary, in practice, to state the temperature and total pressure for which the Ostwald coefficient is measured. The mole fraction solubility, x(g), is related to the Ostwald coefficient by

$$x(g) = \left[\frac{RT}{P(g) L v^{o}(1)} + 1\right]^{-1}$$

where P is the partial pressure of gas. The mole fraction solubility will be at a partial pressure of P(g). (See the following paper by E. Wilhelm for a more igorous definition of the Ostwald coefficient.)

The Absorption Coefficient, B

There are several "absorption coefficients", the most commonly used one being defined as the volume of gas, reduced to 273.15K and l atmosphere, absorbed per unit volume of liquid when the total pressure is l atmosphere. β is related to the Bunsen coefficient by

 $\beta = \alpha (1 - P(1))$

where P(1) is the partial pressure of the liquid in atmospheres.

The Henry's Law Constant

A generally used formulation of Henry's Law may be expressed as

 $P(g) = K_{u}x(g)$

where K_{H} is the Henry's Law constant and x(g) the mole fraction solubility. Other formulations are

 $P(g) = K_2C(1)$ or $C(g) = K_2C(1)$

where K_2 and K_c are constants, C the concentration, and (1) and (g) refer to the liquid and gas phases. Unfortunately, K_H , K_2 and K_c are all sometimes referred to as Henry's Law constants. Henry's Law is a *limiting law* but can sometimes be used for converting solubility data from the experimental pressure to a partial gas pressure of 1 atmosphere, provided the mole fraction of the gas in the liquid is small, and that the difference in pressures is small. Great caution must be exercised in using Henry's Law.

The Mole Ratio, N

The mole ratio, N, is defined by

N = n(g)/n(1)

Table 1 contains a presentation of the most commonly used inter-conversions not already discussed.

For gas solubilities greater than about 0.01 mole fraciton at a partial pressure of 1 atmosphere there are several additional factors which must be taken into account to unambiguously report gas solubilities. Solution densities or the partial molar volume of gases must be known. Corrections should be made for the possible non-ideality of the gas or the nonapplicability of Henry's Law.

THE SOLUBILITY OF GASES IN LIQUIDS

Thermodynamic Considerations

Emmerich Wilhelm, Institut für Physikalische Chemie,

Universität Wien, Währingerstraße 42, A-1090 Wien, Austria

1. INTRODUCTION

Progress on the scope and accuracy of experimental methods for measuring the solubility of gases in liquids as well as advances in the development of estimation procedures have been quite impressive during the last decade or so. Hence, reasonably frequent updating of the introductory material of a data series concerned with this topic, perhaps reflecting shifting emphasis, is indicated. Various aspects of "gas solubility in liquids" including statistical thermodynamical theory, have been treated at different levels of sophistication in several recent review articles, monographs, introductory sections to critical data compilations, and primary publications (1-19), thus documenting unabated interest. Rather than attempting to present a comprehensive state-of-the-art report, we will focus in this article on essentially classical thermodynamics associated with the evaluation of Henry coefficients from high-precision measurements of the solubility of pure gases in pure liquids (20-22), that is to say on problems encountered when experimental imprecision is reduced to about 0.05% (or less). Gas solubilities in mixed solvent systems, though of considerable theoretical and practical interest, will not be considered. For the moment, a few representative recent publications, such as refs. (23-28), should suffice to indicate some problems and trends in this area of research.

2. THERMODYNAMICS

The thermodynamic analysis is based on the rigorous criterion for vapor(V)liquid(L) phase equilibrium in PVT-systems of uniform temperature T and pressure P

that is, on the equality of the fugacities f_i for each component i in all phases. Here, x_i denotes the liquid phase mole fraction and y_i is the vapor phase mole fraction. Let component 2 be the liquid solvent, and component 1 the so-called dissolved gas (not necessarily a supercritical fluid). Introducing the auxiliary functions liquid-phase activity coefficient γ_i for which the asymmetric convention is adopted

$$\gamma_2 \Rightarrow 1 \text{ for } x_2 \Rightarrow 1$$

$$\gamma_1 \Rightarrow 1 \text{ for } x_1 \Rightarrow 0$$
(2)

and vapor-phase fugacity coefficient $\phi_{\mbox{i}}$, the equilibrium condition may be written as

$$Y_{i}P\phi_{i}(T,P,Y_{i}) = X_{i}\gamma_{i}(T,P,X_{i})f_{i}^{\circ}(T,P)$$
(3)

 $f_{i}^{O}(T,P)$ is an appropriate liquid-phase standard-state fugacity at the experimental system temperature and pressure. For the solvent, this is the Poynting-corrected *fugacity of pute solvent* at the same temperature and at orthobaric conditions (indicated by the subscript s), i.e., at saturation pressure $P_{s,2}$ of the solvent:

$$f_{2}^{\circ}(T,P) = P_{s,2}\phi_{2}^{\circ}(T,P_{s,2})\exp\{\int_{-P_{s,2}}^{P} [V_{2}^{\circ L}(T,P)/RT]dP\}$$
(4)

 $\phi_2^{O}(T,P_{s,2})$ is the fugacity coefficient of pure saturated solvent vapor, and $V_2^{OL}(T,P)$ denotes the molar volume of pure liquid solvent. Provided the pressure range $[P_{s,2},P]$ is not too large and the temperature well below the critical temperature $T_{c,2}$ of the solvent, a common useful approximation

is the assumption that $extsf{V}_2^{ extsf{OL}}$ is independent of pressure and equal to the orthobaric molar liquid volume $V_{s,2}^{OL} = V_2^{OL}(T,P_{s,2})$. However, for large $[P_{s,2},P]$ and in the critical region, where V_2^{OL} changes rapidly with pressure, this simplification will, in general, not be satisfactory. If needed, the pressure dependence of the molar volume of the pure liquid may be accounted for by any suitable equation of state, such as the modified Tait equation (29-31) $V^{OL}(T,P) = V^{OL}(T,P_{ref}) \{1 + n(P-P_{ref})\beta_T^{OL}(T,P_{ref})\}^{-1/n}$ (5)where P_{ref} is a conveniently chosen reference pressure (for instance $P_{ref} = P_{s}$), $\beta_{T}^{oL} = -(V^{oL})^{-1}(\partial V^{oL}/\partial P)_{T}$ is the corresponding isothermal compressibility and n is a pressure-independent parameter. Note, that from eq. (5) it follows that $1/\beta_{T}^{OL}$ (T,P) = $1/\beta_{T}^{OL}$ (T,P_{ref}) + n(P - P_{ref}) (6) which relation is identical with the linear tangent-modulus equation (30). The standard-state fugacity for the gaseous component is the Henry coefficient H_{1.2} for solute 1 dissolved in solvent 2, $f_1^{O}(T,P) = H_{1,2}(T,P) = H_{1,2}(T,P_{s,2}) \exp \left[\int_{1}^{P} [V_1^{\infty L}(T,P)/RT] dP\right]$ (7) where $V_1^{\infty L}$ (T,P) denotes the partial molar volume of dissolved gas at infinite dilution. As compared to the amount of experimental data available on the dependence of V_2^{OL} upon T and P, considerably less is known for $V_1^{\infty L}(T,P)$. Thus for want of a better assumption, it is common practice to assume $V_1^{\infty L}$ to be independent of pressure and equal to its value at $P = P_{s,2}$. We emphasize, however, that for similar reasons as above this simplification will not be satisfactory for large pressure ranges [P_{s,2},P] and in the critical region. The preferred experimental method for determining $V_1^{\infty L}$ is either densimetry or dilatometry (32,33) at very small x, in conjunction with a suitable extrapolation procedure (see also section 5). At the saturation pressure of the solvent, $H_{1,2}(T,P_{s,2})$ is rigorously accessible through experimentally determined ratios of fugacity over liquid phase mole fraction according to (2) (at T = const) (8) $P \rightarrow P_{s,2}$ $P \rightarrow P_{s,2}$

since by definition the limiting values of both the activity coefficient γ_1 and the Poynting correction term are 1 as $x_1 \rightarrow 0$ (or $P \rightarrow P_{s,2}$). Thus, evaluation of Henry coefficients from measured isothermal sets $\{x_1, y_1, P\}$ according to the extrapolation procedure eq. (8) requires a vapor-phase equation of state for calculating $\phi_1(T, P, y_1)$.

The majority of gas solubility measurements are in the low-pressure domain, say with P not exceeding 1 MPa. Hence for many systems (excluding, for instance, strongly associating fluids) the virial equation of state

$$Z = PV/RT = 1 + B/V + C/V^2 + \dots$$
 (9)

is convenient^{*}), and often yields entirely satisfactory results even when truncated after the term with V^{-1} . Here, Z is the compressibility factor, B and C are respectively termed the second and third virial coefficients, and V is the molar volume of the vapor phase. For conciseness, the superscript V denoting vapor phase was omitted. The virial equation has the important advantage over other equations of state of providing theoretically rigorous expressions for the dependence of the mixture virial coefficients on composition. For an n-component mixture

$$B(T,Y_{1},...,Y_{n}) = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} y_{i}Y_{j}B_{ij}(T)$$
(10a)
$$C(T,Y_{1},...,Y_{n}) = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} y_{i}Y_{j}Y_{k}C_{ijk}(T)$$
etc. (10b)

 B_{ii}, C_{iii} , etc. refer to pure substance i, and $B_{ij} = B_{ji}, C_{ijk} = C_{ikj} = C_{jik} = \dots$ etc., are the cross virial coefficients. As indicated, they are functions of temperature only.

To the order of approximation implied by using virial coefficients up to the third, we obtain for the fugacity coefficient of component i in the vapor phase (x,y)

$$\ell n \phi_{i} = \left(\frac{2}{\nabla}\right)_{j=1}^{n} Y_{j}^{B}_{ij} + \left(\frac{3}{2}\right) \left(\frac{1}{\nabla}^{2}\right)_{j=1}^{n} \sum_{k=1}^{n} Y_{j} Y_{k}^{C}_{ijk} - \ell n Z$$
(11)

where, for the sake of clarity, the superscript V has again been omitted. For the vast majority of practical applications, eq. (11) provides satisfactory results up to the critical region. Unfortunately, experimental information on third virial coefficients is rather limited (36) and one has to rely heavily on correlation methods (2). This, and the computational convenience in using {T,P} rather than {T,V} as primary variables, leads to a widely used approximation for *low* pressures:

$$z = 1 + BP/RT,$$

where the second virial coefficient of the mixture is again given by eq. (10a). The corresponding expression for the fugacity coefficient is then

$$\ell_{n\phi_{i}} = \frac{P}{RT} \begin{pmatrix} 2 & T \\ j=i \end{pmatrix} \begin{pmatrix} y_{j} & B \\ j=i \end{pmatrix}$$
(13)

(12)

For binary mixtures, eqs. (12) and (13) yield the familiar relations.

$$z = 1 + \frac{P}{RT}(y_1 B_{11} + y_2 B_{22} + y_1 y_2 \delta_{12})$$
(14)

$$ln\phi_{i} = \frac{P}{RT} (B_{ii} + y_{j}^{2}\delta_{12})$$
(15)

where the quantity δ_{12} is defined by $\delta_{12}=2B_{12}-B_{11}-B_{22}$.

A comprehensive critical compilation of virial coefficients of pure gases as well as of cross virial coefficients (including data up to early 1979) has been prepared by Dymond and Smith (36). For recent advances in correlation methods see refs. (34,35,37-40), and the reviews, refs. (2, 12,13,18,41).

xxii

^{*} Large negative deviations from vapor phase ideality, even at rather low pressures, may occur in mixtures of strongly, that is "chemically", interacting components, such as in mixtures containing carboxylic acids (association equilibria). The virial equation of state is not useful for highly associating fluids, and appropriate chemical theories have been developed (34,35) which will, however, not be considered here.

3. VARIATION OF H1 2 WITH TEMPERATURE

To date, the most useful approaches to a rational representation of the temperature dependence of Henry coefficients are those introduced by *Clarke* and *Glew* (42), and by *Benson* and *Krause* (20,21). These authors assume that $\ln(H_{1/2}/Pa)$ and the associated standard thermodynamic function changes are well-bénaved, continuous and derivable functions of either the thermodynamic temperature T, or the inverse temperature T⁻¹. Subsequently, the enthalpy of solution is expanded in a Taylor series about either (a) a suitably chosen reference temperature or (b) an inverse reference temperature. When adopting the former procedure, the experimental results are fitted by (unweighted) least-squares analysis to a Clarke-Glew-type equation (abbreviated as CG)

Frequently, for computational convenience $\tau = 10^{-2} T/K$ is used instead of T/K. When the method of Benson and Krause (BK) is used, the results are fitted by a power series in T^{-1}

$${}^{\ln [H_{1,2}(T,P_{s,2})/Pa]} = \sum_{i=0}^{n} a_{i}(T/K)^{-i}$$
(17)

CG-type equations have been used extensively by Wilhelm <u>et al</u>. (13) in their recent critical review on low-pressure gas solubilities in water. We note that the 3-term version of eq. (16) is the well known Valentinerequation (43).

The number of terms in either series eq. (16) or (17) should be based upon appropriate statistical criteria, such as the F_{χ} -test(44), in

conjunction with experience as to the precision attainable with any particular experimental method. While numerical differences between values generated from either the CG or BK equation are in general exceedingly small within the temperature range covered by experiment, care must be exercised when extrapolation to higher temperatures is desired because of increasing divergence of the smoothing functions. Closely related to this problem is Beutier and Renon's recent study (45) on the limiting behavior of $H_{1,2}(T,P_{s,2})$ for T+T_{C.2} (see also section 5 below).

Both correlating equations (CG and BK) present the temperature variation of the Henry coefficient at saturation pressure $P_{2}=P_{2}$ (T) of the solvent, that is to say, temperature and pressure variation afe coupled through the Clausius-Clapeyron equation:

$$dP_{s,2}/dT = P_{s,2}\Delta H_2^{Vap}/RT^2 \Delta Z_2$$
(18)

where ΔH_2^{vap} is the enthalpy of vaporization of pure solvent 2, and $\Delta Z_2 = Z_2^V - Z_2^L$ is the difference of the compressibility factors of pure coexisting gaseous and liquid solvent. For instance, the partial molar enthalpy of solution at $\{T, P_{s,2}\}$, that is the difference between the partial molar enthalpy $H_1^{\infty L}$ of solute 1 at infinite dilution in the liquid phase and the molar enthalpy H_1^{OV} of pure 1 in the perfect-gas reference state, is given by

$$H_{1}^{\infty L} - H_{1}^{OV} = -RT^{2} \left(\frac{\partial \ln [H_{1,2}(T,P)/Pa]}{\partial T} \right)_{P} = P_{s,2}$$
$$= -RT^{2} \left(\frac{d \ln [H_{1,2}(T,P_{s,2})/Pa]}{dT} \right) + TV_{1}^{\infty L} \left(\frac{dP_{s,2}}{dT} \right)$$
(19)

The first term on the right-hand side is obtained from either one of the smoothing equations, and the temperature dependence of $P_{s,2}$ may be calculated from any suitable vapor pressure correlation, for example the Antoine equation. For temperatures well below $T_{c,2}$, the correction term $TV_1^{\infty L}(dP_{s,2}/dT)$ will generally be rather small [see, for instance, ref. (22)];

its magnitude will usually be within the uncertainty limits resulting from experimental imprecision and thus it may be neglected. However, at elevated temperatures it will contribute substantially, predominantly because $dP_{s,2}/dT$ increases rapidly with increasing T, though $V_1^{\infty L}$ may also increase significantly. The evaluation of $TV_1^{\infty L}(dP_{s,2}/dT)$ in the temperature region where it is significant requires $V_1^{\infty L}$ data which are often not available and one has to rely upon correlation methods, such as the one advanced by Brelvi and O'Connell (46).

4. RELATION OF H_{1.2} TO THE OSTWALD COEFFICIENT

By way of example we will now apply results of preceding sections to establish a rigorous relation between the Henry coefficient $H_{1,2}(T,P_{s,2})$ and the Ostwald coefficient L, another widely used practical measure of gas solutility (22). This quantity is of importance in the theory of hydrophobic interaction [see, for example, ref. (47), and in particular ref. (48)].

Let the Ostwald coefficient be defined by

$$L(T,P) = (c_1^L/c_1^V)_{\text{equil}}$$
(20)

where $c_1 = n_1/v$ with the appropriate superscript is the amount-of-substance concentration (or simply, concentration) of solute 1 in the coexisting liquid phase solution or vapor phase solution, respectively, and $v/(n_1+n_2) = V$ is the corresponding molar volume. Its *limiting value* for vanishingly small concentration is

$$L^{\infty} = \lim_{\substack{c_{1} \to 0}} (c_{1}^{L}/c_{1}^{V})_{equil}$$
(21)

Note, that for $c_1^L \neq 0$, $x_1 \neq 0$, $y_1 \neq 0$, $P \neq P_{s,2}$ and $V \neq V_2^\circ$ $(T, P_{s,2})$. Eq. (20) in conjunction with eqs. (3) and (7) yields, after some algebraic manipulation,

$$L = \frac{RTZ^{\vee} \phi_{1}}{\gamma_{1}H_{1,2}(T,P)V_{2}^{L}} \left[1 - c_{1}^{L}(V_{1}^{L} - V_{2}^{L})\right]$$
(22)

where V_2^L and V_1^L denotes, respectively, the partial molar volume of solvent and gas at {T,P,x₁} in the liquid phase. Hence, in the limit (22) of vanishingly small concentration c_1^L

$$L^{\infty} = \frac{RTZ_{2}^{V}(T, P_{s,2}) \phi_{1}^{\infty}(T, P_{s,2})}{H_{1,2}^{(T, P_{s,2})} V_{2}^{\circ L}(T, P_{s,2})}$$
(23)

Here, $Z_2^{V}(T, P_{s,2})$ is the compressibility factor of pure solvent vapor, and $\phi_1^{\tilde{\omega}}(T, P_{s,2})$ is the fugacity coefficient of gas at infinite dilution in the vapor phase. For this limiting condition "infinitely diluted solution of solute 1 in solvent 2" we obtain through use of eq. (11)

$$L^{\infty} = \left(\frac{RT}{H_{1,2}(T,P_{s,2})V_{s,2}^{\circ L}}\right) \exp \left[2B_{12}/V_{s,2}^{\circ V} + \frac{3}{2}C_{122}/(V_{s,2}^{\circ V})^{2}\right] \quad (24)$$

At low pressures, the exponential may of course be expanded in a series and truncated after the term with B_{12} . Note, that the orthobaric molar volume $V_{s,2}^{oV}$ of pure solvent vapor has to be determined by an iterative procedure through use of the virial equation of state eq. (9).

xxiv

Alternatively, for the low-pressure region, we may use the virial equation in its volume-explicit form eq. (12), which approach leads to (22) (after series expansion of ϕ_1^{∞})

$$L^{\infty} = \left(\frac{RT}{H_{1,2}(T, P_{s,2})V_{s,2}^{oL}}\right) \left[1 + 2\left(\frac{P_{s,2}}{RT}\right)B_{12} + \left(\frac{P_{s,2}}{RT}\right)^{2}B_{22}(2B_{12} - B_{22})\right]$$
(25)

For $P_{s,2} < 0.1$ MPa, differences between results obtained by either eq. (24) (truncated after the B_{12} -term) or eq. (25) will usually be negligibly small. The above conversion formulae are exact to the order of approximation implied by the use of the virial equation, and supersede those given earlier (1,13,17). For correlating purposes, the variation of L (or L) with temperature over limited temperature ranges well below $T_{c,2}$ may either be accounted for by a CG-type or a BK-type equation.

5. CONCLUDING REMARKS

Frequently, the available experimental data do not warrant a thermodynamic treatment *in extenso* as discussed in sections 1-3. This may be due to a variety of reasons: limited experimental data, lack of auxiliary data for determining reliably the various correction terms, appreciable experimental uncertainties, or any combination thereof. Several reasonable simplifications are possible and will be presented below.

More often than not, Henry coefficients are *not* obtained through application of the thermodynamically rigorous prescription eq. (9), but through measurement (at constant temperature) of x_1 and y_1 at only one rather low pressure (and hence very small x_1). Evaluation according to $H_{1,2} =$ $y_1 \phi_1 P/x_1$ then assumes a Poynting correction equal 1, and further that under these specific experimental conditions, deviations of the activity coefficient from its limiting value $\gamma_1 = 1$ are indistinguishable from

experimental scatter. For many typical gas solubility measurements the latter approximation will be entirely reasonable, but it may lead to serious errors for systems with strong (specific) ij-interactions, for elevated pressures and/or for conditions approaching those of the critical region.

As already indicated in section 2, one may often assume that $V_1^{\infty L}$ is independent of pressure and equal to $V_1^{\infty L}(T,P_{s,2})$, whence

 $\int_{P_{s,2}}^{P} \frac{V_{1}^{\infty L}}{RT} dP \simeq V_{1}^{\infty L}(T, P_{s,2}) (P-P_{s,2})/RT$ (26)

Preferably, $V_1^{\infty L}$ should be obtained by either dilatometry or densimetry (see section 2). Some pitfalls associated with its evaluation via the Krichevsky-Kasarnovsky equation have been discussed in detail by Gibbs and Van Ness (49) for (H₂O + CO₂). The Poynting-correction corresponding to eq. (26), as a function of pressure, is tabulated below for a specific example ($V_1^{\infty L} = 5 \cdot 10^{-5} \text{m}^3 \text{ mol}^{-1}$, T = 298.15 K):

(P-P _{s,2})/kPa	$\exp[V_1^{\infty L}(P-P_{s,2})/RT]$
10	1.0002
100	1.0020
1000	1.0204
10000	1.2235

It gives an indication of the possible error associated with the approximation exp $[V_1^{\infty L} (P-P_{s,2})/RT] = 1.$

A particularly simple approximation for calculating vapor-phase fugacity coefficients at low pressures is the *Lewis rule*. It is based on the vapor phase behaving as an ideal mixture:

$$\phi_{i}(\mathbf{T},\mathbf{P},\mathbf{y}_{i}) = \phi_{i}^{2}(\mathbf{T},\mathbf{P}) \tag{27}$$

that is to say at constant temperature and pressure, ϕ_i is assumed to be independent of the mixture composition and equal to the fugacity coefficient of pure i. From eq. (15) it follows that this can only be achieved if $B_{12} = (B_{11} + B_{22})/2$, a condition which will be rarely fulfilled. Nevertheless, the Lewis fugacity rule usually yields reasonable results when component i is present in large excess and/or when the physical properties of the components are not too different (δ_{12} fairly small compared to B_{ij}).

The approximation $\phi_i = 1$ (the vapor phase behaves as a mixture of ideal gases), together with $\gamma_1=1$ and ignoring the Poynting correction, leads to the most familiar and *simplest* form of Henry's law.

 $P_1 = x_1^{H_1}.2$

(28)

(29)

which may be used to obtain a first, relatively rough approximation for the true Henry coefficient $H_{1,2}(T,P_{s,2})$. No general statements as to the magnitude of associated errors are possible.

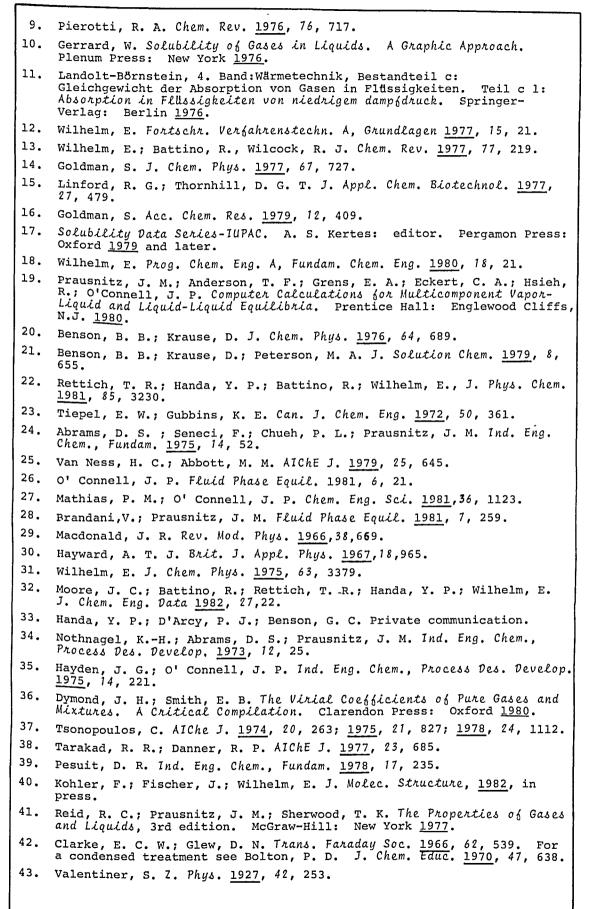
Prediction of Henry coefficients at elevated temperatures is often required in industrial applications, and when involving aqueous solutions, in the study of geochemical processes (50). Unfortunately, the majority of experimental investigations has been confined to temperatures below the normal boiling point of the solvent [see, for instance, refs. (13, 17)].

However, thermodynamics provides a rigorous expression for the *limiting* value of $H_{1,2}(T,P_{s,2})$ for $T \rightarrow T_{C,2}$ (and $P_{s,2} \rightarrow P_{C,2}$, the critical pressure of solvent 2), which should be incorporated in any rational wide-temperature range correlation extending up to the critical region. Evidently,

 $\lim_{T \to T_{c,2}} L^{\infty} = 1$

whence from eq. (23).

 $\lim_{t \to T_{c,2}} H_{1,2}(T,P_{s,2}) = P_{c,2}\phi_{1}^{\omega}(T_{c,2},P_{c,2})$ (30) $T \to T_{c,2}$


is obtained, which limiting relation is identical with that given by Beutier and Renon (45).

6. REFERENCES

- 1. Battino, R.; Clever, H. L. Chem. Rev. 1966, 66, 395.
- Prausnitz, J. M. Molecular Thermodynamics of Fluid Phase Equilibria. Prentice Hall: Englewood Cliffs, N.J. <u>1969</u>.
- 3. Hildebrand, J. H.; Prausnitz, J. M.; Scott, R. L. Regular and Related Solutions. Van Nostrand Reinhold: New York <u>1970</u>.
- 4. Neff, R. O.; McQuarrie, D. A. J. Phys. Chem. <u>1973</u>, 77, 413.
- 5. Klapper, M. H. Adv. Chem. Phys. <u>1973</u>, 23, 55.
- 6. Wilhelm, E.; Battino, R. Chem. Rev. <u>1973</u>, 73, 1.
- Kertes, A. S.; Levy, O.; Markovits, G. Y. in Experimental Thermochemistry, vol. II. B. Vodar and B. Le Naindre: editors. Butterworth: London <u>1974</u>.
- Clever, H. L.; Battino, R. in Solutions and Solubilities, vol. 8, part 1 of Weissberger: Techniques of Chemistry. M. R. J. Dack: editor. Wiley: New York <u>1975</u>.

xxvi

xxvii

44.	Bevington, P. R. Data Reduction and Error Analysis for the Physical Sciences. McGraw-Hill: New York <u>1969</u> .
45.	Beutier, D.; Renon, H. AIChE J. 1978, 24, 1122.
46.	Brelvi, S. W.; O' Connell, J. P. AIChE J. <u>1972</u> , 18, 1239.
47.	Ben-Naim, A. Water and Aqueous Solutions. Introduction to a Molecular Theory. Plenum Press: New York <u>1974</u> .
48.	Ben-Naim, A. Hydrophobic Interactions. Plenum Press: New York 1980.
49.	Gibbs, R. E.; Van Ness, H. C. Ind. Eng. Chem., Fundam. <u>1971</u> , 10, 312.
50.	Potter II, R. W.; Clynne, M. A. J. Solution Chem. 1978, 7, 837.
April	L 1982

The Sechenov Salt Effect Parameter. H. Lawred Departmeter

H. Lawrence Clever Department of Chemistry Emory University Atlanta, GA 30322 USA

1982, March

THE SECHENOV SALT EFFECT PARAMETER Forms of Expression and Interconversion

In the following discussion the components are indexed so that: the nonelectrolyte (gas) is component 1, the electrolyte is component 2, and the solvent (water) is component 3.

The symbols and units are:

Component	Molar Concentration c/mol dm ⁻³	Molal Concentration m/mol kg ⁻¹	Mole Fraction x	Molecular Mass M/g mol ⁻¹
Nonelectrolyte	°1°, °1	m ⁰ ₁ , m ₁	x ⁰ ₁ , x ₁	M ₁
Electrolyte	° 2	^m 2	x_2	M_2
Solvent	° 3	$m_{\mathcal{J}}$	x_3	M ₃

The superscript "°" refers to the nonelectrolyte solubility in the pure solvent. The pure solvent and solution densities are ρ^0/g cm⁻³ and ρ/g cm⁻³, respectively. They should be the densities of gas saturated solvent (water) and salt solution, but the gas free densities will differ negligibly in the ρ^0/ρ ratio. The number of ions per formula of electrolyte is symbolized by ν , and the electrolyte apparent molar volume is symbolized by $\phi_{\nu 2}$.

The salt effect parameter is defined in any one of several forms,

 $k_{SCC} / dm^3 mol^{-1} = (1/c_2) \log (c_1^0/c_1)$

which numerically is the same as

 $k_{sca} / dm^{3}mol^{-1} = (1/c_2) \log (\alpha_1^0/\alpha_1)$

and

 $k_{scL} / dm^3 mol^{-1} = (1/c_2) \log (L_1^0/L_1)$

where α/cm^3 (STP) cm^{-3} atm⁻¹ is the Bunsen coefficient, and L/cm^3 cm^{-3} is the Ostwald coefficient. The Sechenov parameter subscripts have the following significance: the first letter, s, refers to the Sechenov salt effect, the second letter the electrolytc measure of concentration, and the third letter the gas solubility unit of measure.

The ratios $c_1^0/c_1 = \alpha_1^0/\alpha_1 = L_1^0/L_1$ since $c_1 = 10^3 \alpha_1/RT$ with T/K = 273.15, and $c_1 = L_c$, gas phase = 10³ L p/RT with T/K the temperature of the gas solubility measurement.

Another frequently used form is

$$k_{gmm} / kg mol^{-1} = (1/m_2) \log (m_1^0/m_1)$$

which is equivalent to

$$k_{cms} / kg mol^{-1} = (1/m_2) \log (s_1^0/s_1)$$

where s/cm³(STP) g^{-1} atm⁻¹ is the Kuenen coefficient and $m_1 = 10^3 s_1/RT$ with T/K = 273.15.

A mole fraction nonelectrolyte solubility ratio is also used. It may be combined with either a molar or a molal electrolyte concentration.

$$k_{scx} / dm^3 mol^{-1} = (1/c_2) \log (x_1^0/x_1)$$

and

$$k_{smx} / kg mol^{-1} = (1/m_2) \log (x_1^0/x_1)$$

Care should be taken to define how the mole fraction is calculated. Some calculate the electrolyte contribution to the total number of moles on the basis of the electrolyte formula and others on the basis of the total number of moles of ions. Our definition shall use the ions from the electrolyte assuming 100 per cent dissociation.

Masterton and co-workers (1) have applied scaled particle theory and used the salt effect parameter in the form $k_{SCX} / dm^3 mol^{-1}$. Others (2) favor the $k_{SMM} / kg mol^{-1}$ form for statistical mechanical approaches aimed at understanding salt effects.

Friedman (3) gives convincing arguments for using a form consistent with definitions of thermodynamics. The form he uses is

 $k_{1,2} = -(\delta \ln m_1 / \delta m_2)_{\mu_1}$

However, if $k_{1,2}$ is independent of m_2 , then $k_{smm} = k_{1,2}/2.303$ since

$$k_{1,2} \int_{0}^{m_{2}} \delta m_{2} = -\int_{m_{1}^{0}}^{m_{1}} \delta \ln m_{1}$$

 $k_{1,2} m_2 = -(\ln m_1 - \ln m_1^0) = \ln (m_1^0/m_1)$

Ben-Naim (4) calculates Gibbs energy of transfer between pure water and electrolyte solution. His work implies the form k_{smc} of the salt effect parameter.

Most of the current workers in the area seem to favor either mole fraction or molality for the unit to express the nonelectrolyte solubility. However, there are arguments that suggest a volume concentration is better, especially when large pressures and/or solubilities are involved.

Some workers have reported the nonelectrolyte solubility as moles per kg of solution. We do not believe this is a satisfactory unit and it is not discussed further.

Krestov and co-workers (5) have started to use solvomolality as a unit. This is the number of moles per 55.51 mole of solvent. For water (H₂O) this is the same as molality, and for other solvents (D₂O, methanol, etc.) it is proportional to the molality. Thus its use will result in a $k_{smm}/kg \text{ mol}^{-1}$ value. (Solvomolality, $m_{i}^{(s)} = m_i (M_3/M_{H_2O})$).

I. Molarity and Molality

$$k_{scc} = \frac{1}{c_2} \log \frac{c_1^0}{c_1} = \frac{1}{c_2} \log \frac{\left(\frac{m_1^0}{(1000 + m_1^0 M_1) / 1000 \rho^0}\right)}{\left(\frac{m_1}{(1000 + m_1 M_1 + m_2 M_2) / 1000 \rho}\right)}$$

$$= \frac{1}{c_2} \log \left(\frac{m_1^0}{m_1} \right) \left(\frac{\rho^0}{\rho} \right) \left(\frac{1000 + m_1 M_1 + m_2 M_2}{1000 + m_1^0 M_1} \right)$$
$$= \frac{1}{c_2} \log \left(\frac{m_1^0}{m_1} \right) + \frac{1}{c_2} \log \left(\frac{\rho^0}{\rho} \right) \left(\frac{1000 + m_1 M_1 + m_2 M_2}{1000 + m_1^0 M_1} \right)$$

$$\begin{split} & k_{\rm SCC} = k_{\rm SCM} + \frac{1}{a_2} \log \left[\frac{p^2}{p} \right] \left[\frac{1000 + m_1 M_2 + m_2 M_2}{1000 + m_2^2 M_1} \right] \\ \text{and in addition} \\ & k_{\rm SMC} = \frac{1}{m_2} \log \frac{q_1^2}{q_1^2} \\ & = \frac{q_2}{m_2} k_{\rm SCC} = \frac{q_2}{m_2} k_{\rm SCM} + \frac{q_2}{m_2} \left[\frac{1}{q_2} \log \left[\frac{p^4}{p} \right] \left(\frac{1000 + m_1 M_1 + m_2 M_2}{1000 + m_1^2 M_1} \right) \right] \right) \\ & = k_{\rm SMM} + \frac{q_2}{m_2} \left[\frac{1}{q_2} \log \left[\frac{p^4}{p} \right] \left(\frac{1000 + m_1 M_1 + m_2 M_2}{1000 + m_1^2 M_1} \right) \right] \right) \\ \text{The terms } m_1 M_1 \text{ and } m_1^0 M_1 \text{ are negligibly small except for the very soluble gases. Thus for most cases \\ & k_{\rm SMC} = \frac{q_2}{m_2} k_{\rm SCC} = k_{\rm SMM} + \frac{q_2}{m_2} \left[\frac{1}{q_2} \log \left[\frac{p^4}{p} \right] \left(\frac{1000 + m_2 M_2}{1000 + m_2^2 M_2} \right) \right] \right) \\ & \text{II. Mole Fraction and Molality} \\ & \pi_1^2 = \frac{m_1^2}{m_2} \left[\frac{m_1^2 M_3}{1000 + m_1^2 M_3} + \frac{m_2 M_3}{1000 + m_1^2 M_3} + \frac{m_2 M_3}{1000 + m_1^2 M_3} \right] \\ & \pi_2 = \frac{m_1}{\frac{1000}{M_3} + m_1^2} = \frac{m_1^2 M_3}{1000 + m_1^2 M_3} \\ & \pi_2 = \frac{m_1}{m_1} + \frac{(1000 + m_1 M_3 + vm_2 M_3)}{(1000 + m_1^2 M_3)} \\ & \frac{1}{m_2} \log \frac{\pi_1^2}{\pi_1} = \frac{1}{m_2} \log \frac{m_1^2}{m_1} + \frac{1}{m_2} \log \left(\frac{(1000 + m_1 M_3 + vm_2 M_3)}{(1000 + m_1^2 M_3)} \right) \\ \\ \text{or} \\ & k_{\rm SMX} = k_{\rm SMM} + \frac{1}{m_2} \log \left[\frac{(1000 + m_1 M_3 + vm_2 M_3)}{(1000 + m_1^2 M_3)} \right] \end{split}$$

and

$$k_{scx} = \frac{1}{c_2} \log \frac{x_1^0}{x_1} = \frac{m_2}{c_2} k_{smx}$$
$$= \frac{m_2}{c_2} k_{smm} + \frac{m_2}{c_2} \left(\frac{1}{m_2} \log \left(\frac{(1000 + m_1 M_3 + \nu m_2 M_3)}{(1000 + m_1^0 M_3)} \right) \right)$$

where c_2 is the electrolyte molar concentration of solution molality m_2 .

For systems in which m_1^0 and m_1 are small, as is the usual case for gas solubilities, the terms $m_1^0 M_3$ and $m_1 M_3$ may be omitted from the sums in the log term.

For a 1-1 electrolyte at 1 mol kg⁻¹ in which m_I^0 and m_I are sufficiently small to ignore in the sums in the log term the equations simplify to

$$k_{scx} = \frac{1}{c_2} k_{smx} = \frac{1}{c_2} k_{smm} + \frac{1}{c_2} \log\left(\frac{(1000 + (2) (18.0152))}{1000}\right)$$
$$= \frac{1}{c_2} k_{smm} + \frac{1}{c_2} \frac{\ln (1 + 0.0360)}{2.303}$$

and using the first term of the expansion ln $(1+x) = x - (1/2) x^2 + (1/3) x^3 - (1/4) x^4 + \cdots$ (-1 < x < 1)

$$= \frac{1}{c_2} k_{smm} + \frac{1}{c_2} \cdot \frac{0.0360}{2.303}$$

which is a form given by Masterton, Bolocofsky, and Lee (1). In this equation c_2 is the electrolyte molar concentration of the 1 mol kg⁻¹ l-l electrolyte.

For any electrolyte molality, m_2 .

$$k_{\text{scx}} = \frac{1}{c_2} \log \frac{x_1^0}{x_1} = \frac{m_2}{c_2} k_{\text{smx}} = \frac{m_2}{c_2} k_{\text{smm}} + \frac{m_2}{c_2} \left[\frac{1}{m_2} \log \left(\frac{(1000 + 2m_2 \ 18.015)}{1000} \right) \right] \right]$$
$$= \frac{m_2}{c_2} k_{\text{smm}} + \frac{m_2}{c_2} \frac{1}{m_2} \frac{\ln (1 + 0.0360m_2)}{2.303}$$
$$= \frac{m_2}{c_2} k_{\text{smm}} + \frac{m_2}{c_2} \cdot \frac{0.0360}{2.303}$$

xxxiv

III. Mole Fraction and Molarity

$$x_{1}^{0} = \frac{c_{1}^{0}}{\left(\frac{1000 \ \rho^{0} - c_{1}^{0} \ M_{1}}{M_{3}}\right) + c_{1}^{0}} = \frac{c_{1}^{0} \ M_{3}}{1000 \ \rho^{0} + (M_{3} - M_{1}) \ c_{1}^{0}}$$
$$x_{1} = \frac{c_{1}}{\left(\frac{1000 \ \rho - c_{1} \ M_{1} - c_{2} \ M_{2}}{M_{3}}\right) + c_{1} + vc_{2}}$$
$$= \frac{c_{1} \ M_{3}}{1000 \ \rho + (M_{3} - M_{1}) \ c_{1} + (vM_{3} - M_{2}) \ c_{2}}$$

The densities ρ^0 and ρ should be the densities of gas saturated water and salt solution. However, use of gas-free water and gas-free salt solution densities makes a negligible difference (0.3 % in ρ for a gas mole fraction of 10^{-3}).

$$\frac{x_1^0}{x_1} = \frac{c_1^0}{c_1} \cdot \frac{(1000\rho + (M_3 - M_1) c_1 + (\nu M_3 - M_2) c_2)}{(1000\rho^0 + (M_3 - M_1) c_1^0)}$$

and

$$k_{scx} = \frac{1}{c_2} \log \frac{x_1^0}{x_1}$$
$$= \frac{1}{c_2} \log \frac{c_1^0}{c_1} + \frac{1}{c_2} \log \left(\frac{(1000\rho + (M_3 - M_1) c_1 + (\nu M_3 - M_2) c_2)}{(1000\rho^0 + (M_3 - M_1) c_1^0)} \right)$$

or

$$k_{scx} = k_{scc} + \frac{1}{c_2} \log \left(\frac{(1000\rho + (M_3 - M_1) c_1 + (\nu M_3 - M_2) c_2)}{1000\rho^0 + (M_3 - M_1) c_1^0} \right)$$

and

$$k_{smx} = \frac{1}{m_2} \log \frac{x_1^0}{x_1} = \frac{c_2}{m_2} \left(\frac{1}{c_2} \log \frac{x_1^0}{x_1} \right)$$
$$= \frac{c_2}{m_2} \left(\frac{1}{c_2} \log \frac{c_1^0}{c_1} + \frac{1}{c_2} \log \left(\frac{(1000\rho + (M_3 - M_1) c_1 + (\nu M_3 - M_2) c_2)}{(1000\rho^0 + (M_3 - M_1) c_1^0)} \right) \right)$$

or

$$k_{smx} = \frac{c_2}{m_2} k_{scx}$$
$$= \frac{c_2}{m_2} k_{scc} + \frac{c_2}{m_2} \left[\frac{1}{c_2} \log \left[\frac{(1000\rho + (M_3 - M_1) c_1 + (\nu M_3 - M_2) c_2)}{(1000\rho^0 + (M_3 - M_1) c_1^0)} \right] \right]$$

For systems in which c_1^0 and c_1 are small enough to ignore in the sums $k_{\text{SMX}} = \frac{c_2}{m_2} k_{\text{SCX}} = \frac{c_2}{m_2} k_{\text{SCC}} + \frac{c_2}{m_2} \left[\frac{1}{c_2} \log \left[\frac{(1000\rho + (\nu M_3 - M_2) c_2)}{(1000\rho^0)} \right] \right]$ and for a 1-1 electrolyte at a concentration of one mol dm⁻³ $k_{\text{SMX}} = \frac{1}{m_2} k_{\text{SCX}} = \frac{1}{m_2} k_{\text{SCC}} + \frac{1}{m_2} \log \left[\frac{(1000\rho + (2M_3 - M_2) c_2)}{(1000\rho^0)} \right]$

where m_2 is the molality of the one molar solution.

An alternate approach is to use the apparent molar volume, ϕ_{v2} , of the electrolyte. Thus

$$\begin{aligned} x_{1}^{0} &= \frac{c_{1}^{0}}{\frac{1000}{M_{3}} + c_{1}^{0}} = \frac{c_{1}^{0} M_{3}}{1000 + c_{1}^{0} M_{3}} \\ x_{1} &= \frac{c_{1}}{\frac{1000 - \phi_{v2}}{M_{3}} + c_{1} + vc_{2}} = \frac{c_{1} M_{3}}{1000 - \phi_{v2} + c_{1} M_{3} + vc_{2} M_{3}} \\ \frac{x_{1}^{0}}{x_{1}} &= \frac{c_{1}^{0}}{c_{1}} \cdot \frac{(1000 - \phi_{v2} + c_{1} M_{3} + vc_{2} M_{3})}{(1000 + c_{1}^{0} M_{3})} \\ \frac{1}{c_{2}} \log \frac{x_{1}^{0}}{x_{1}} &= \frac{1}{c_{2}} \log \frac{c_{1}^{0}}{c_{1}} + \frac{1}{c_{2}} \log \left(\frac{(1000 - \phi_{v2} + c_{1} M_{3} + vc_{2} M_{3})}{(1000 + c_{1}^{0} M_{3})} \right) \end{aligned}$$

The equation can be simplified for a one mol dm⁻³ 1-1 electrolyte solution in which the nonelectrolyte solubilities, c_1^0 and c_1 are small enough to be negligible in the sums to

$$k_{scx} = k_{scc} + \log\left(\frac{(1000 - \phi_{v2} + 2M_3)}{1000}\right)$$
$$k_{scx} = k_{scc} + \log\left(1 + \frac{(2) (18.0152)}{1000} - \frac{\phi_{v2}}{1000}\right)$$
$$= k_{scc} + \frac{\ln\left(1 + (0.0360 - \phi_{v2} / 1000)\right)}{2.303}$$

expanding the ln term as ln (l+x) \equiv x where x = (0.0360 - ϕ_{v2} / 1000)gives

$$k_{\rm scx} \approx k_{\rm scc} + \frac{(0.0360 - \phi_{v2} / 1000)}{2.303}$$

This is a form given by Masterton et al. (1).

Summary

The equations can be put in the following form for use. From Part I $k_{smc} = \frac{c_2}{m_2} k_{scc} = \frac{c_2}{m_2} k_{scm} + F_{1m} = k_{smm} + F_{1m}$

or

$$k_{scm} = k_{scc} - F_{1c} = \frac{m_2}{c_2} k_{smc} - F_{1c} = \frac{m_2}{c_2} k_{smm}$$

where

$$F_{1m} = \frac{1}{m_2} \log \left(\frac{\rho^{\circ}}{\rho} \right) \left(\frac{(1000 + m_1 M_1 + m_2 M_2)}{(1000 + m_1^{\circ} M_1)} \right)$$
$$F_{1c} = \frac{1}{c_2} \log \left(\frac{\rho^{\circ}}{\rho} \right) \left(\frac{(1000 + m_1 M_1 + m_2 M_2)}{(1000 + m_1^{\circ} M_1)} \right)$$

For all but very soluble gases the $m_1 M_1$ and $m_1^0 M_1$ terms may be neglected in the F_{1m} and F_{1c} terms.

From Part II

$$k_{scx} = \frac{m_2}{c_2} k_{smx} = \frac{m_2}{c_2} k_{smm} + F_{2c}$$

or

$$k_{smm} = k_{smx} - F_{2m} = \frac{c_2}{m_2} k_{scx} - F_{2m}$$

where

$$F_{2m} = \frac{1}{m_2} \log \left(\frac{(1000 + m_1 M_3 + \nu m_2 M_3)}{(1000 + m_1^0 M_3)} \right)$$
$$F_{2c} = \frac{1}{c_2} \log \left(\frac{(1000 + m_1 M_3 + \nu m_2 M_3)}{(1000 + m_1^0 M_3)} \right)$$

Again for all but the very soluble gases the $m_1\ M_3$ and $m_1^0\ M_3$ terms can be neglected in F_{2m} and F_{2c} .

From Part III

$$k_{smx} = \frac{\sigma_2}{m_2} k_{scx} = \frac{\sigma_2}{m_2} k_{scc} + F_{3m}$$

or

$$k_{scc} = k_{scx} - F_{3c} = \frac{m_2}{c_2} k_{smx} - F_{3c}$$

where

$$F_{3m} = \frac{1}{m_2} \log \left(\frac{(1000\rho + (M_3 - M_1) c_1 + (\nu M_3 - M_2) c_2)}{(1000\rho^0 + (M_3 - M_1) c_1^0)} \right)$$

and

$$F_{3c} = \frac{1}{c_2} \log \left(\frac{(1000\rho + (M_3 - M_1) c_1 + (\nu M_3 - M_2) c_2)}{(1000\rho^0 + (M_3 - M_1) c_1^0)} \right)$$

and again the terms in c_1 and c_1^0 in the F_{3m} and F_{3c} factors can normally be neglected.

Acknowledgement:

The author wishes to thank Professors J. E. Desnoyers, H. L. Friedman and W. L. Masterton who provided detailed comments and advice on salt effect parameters.

References:

- Masterton, W. L.; Bolocofsky, D.; Lee, T. P. J. Phys. Chem. <u>1971</u>, 75, 2809-2815.
- Perron, G.; Joly, D.; Desnoyers, J. E.; Avedikian, L.;
 Morel, J. P. Can. J. Chem. <u>1978</u>, 56, 552-559.
- (3) Krishnan, C. V.; Friedman, H. L.
 J. Solution Chem. <u>1974</u>, 3, 727-744.
- (4) Ben-Naim, A.
 J. Phys. Chem. <u>1965</u>, 69, 3240-45, 3245-50, 3250-53.
 (M. Egel-Thal is co-author of the third paper).
- (5) Abrosimov, V. K.; Badelin, V. G.; Krestov, G. A.
 Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol.
 <u>1976</u>, 19, 1381-1386; <u>1977</u>, 20, 1864-1866.

Represenative values of factors needed to convert Sechenov salt effect parameter forms. H. Lawrence Clever Department of Chemistry Emory University Atlanta, GA 30322 USA

1982, March

CONVERSION AMONG THE VARIOUS FORMS OF THE SECHENOV SALT EFFECT PARAMETER Factors for Selected Electrolytes

93¹Magnesium Sulfate; MgSO₄; [7487-88-9]

Wt <u>%</u>	$\frac{c_2}{\text{mol dm}^{-3}}$	m ₂ / mol kg ⁻¹	F _{1c}	F1m	F2c	F2m	F _{3c}	F _{3m}
	283.15 K	(10 °C)						
8 10 12 14	0.7205 0.9189 1.1251 1.3394	0.7224 0.9231 1.1329 1.3524	0.0014 0.0020 0.0025 0.0031	0.0014 0.0020 0.0025 0.0030	0.0155 0.0155 0.0154 0.0154	0.0154 0.0154 0.0153 0.0153	0.0141 0.0135 0.0129 0.0124	0.0140 0.0134 0.0128 0.0123
	303.15 K	(30 °C)						
2 4 8 10 12 14 16 18 20 22 24 26	0.1688 0.3443 0.5269 0.7166 0.9138 1.1186 1.3314 1.5524 1.7819 2.0203 2.2678 2.5246 2.7912 323.15 K	0.1695 0.3462 0.5303 0.7224 0.9231 1.1329 1.3524 1.5824 1.8236 2.0769 2.3432 2.6235 2.9189 (50 °C)	0.0004 0.0011 0.0023 0.0027 0.0032 0.0037 0.0041 0.0046 0.0050 0.0054 0.0059 0.0063	0.0004 0.0011 0.0022 0.0027 0.0032 0.0036 0.0041 0.0045 0.0049 0.0053 0.0056 0.0060	0.0157 0.0156 0.0156 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155 0.0155	0.0156 0.0155 0.0155 0.0154 0.0153 0.0153 0.0152 0.0152 0.0151 0.0150 0.0150 0.0149	0.0152 0.0145 0.0139 0.0133 0.0128 0.0123 0.0118 0.0114 0.0109 0.0105 0.0101 0.0097 0.0093	0.0152 0.0144 0.0138 0.0132 0.0127 0.0121 0.0116 0.0112 0.0107 0.0102 0.0098 0.0093 0.0089
8	0.7111	0.7224	0.0027	0.0027	0.0157	0.0154	0.0130	0.0128
10 12 14	0.9068 1.1101 1.3214	0.9231 1.1329 1.3524	0.0031 0.0035 0.0039	0.0031 0.0035 0.0038	0.0157 0.0157 0.0156	0.0154 0.0153 0.0153	0.0125 0.0121 0.0117	0.0123 0.0119 0.0114
	,							
		96 ¹ Bar	ium Chlor	ide; BaCl	1 ₂ ; [1036]	L-37-2]		
Wt 8	$\frac{c_2}{\text{mol dm}^{-3}}$	m_2/m_2 mol kg ⁻¹	F10	F _{1m}	F20	F _{2m}	F 3 c	F _{3m}
	283.15 К	(10 °C)						
14 16 18 20	0.7647 0.8911 1.0226 1.1593	0.7817 0.9147 1.0541 1.2005	0.0124 0.0125 0.0127 0.0130	0.0121 0.0122 0.0124 0.0125	0.0235 0.0235 0.0235 0.0235 0.0235	0.0230 0.0229 0.0228 0.0227	0.0111 0.0110 0.0108 0.0106	0.0109 0.0107 0.0105 0.0102
¹ Number preceding electrolyte is the standard order of arrangement number.								

xxxix

.

	96 Barıum	Chlorid	e; BaCl ₂ ;	[10361-3]	7-2] (Cont	tinued)	
Wt c ₂ / % mol dm ⁻³	$m_2/mol kg^{-1}$	Flc	Fim	F2c	F2m	F 3 c	F 3m
298.15 K	(25 °C)						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0980 0.2001 0.3065 0.4176 0.5336 0.6548 0.7817 0.9147 1.0541 1.2005 1.3544 1.5164 1.6872	0.0118 0.0122 0.0126 0.0129 0.0131 0.0132 0.0134 0.0135 0.0137 0.0139 0.0141 0.0144 0.0146	0.0118 0.0121 0.0125 0.0127 0.0128 0.0129 0.0130 0.0131 0.0132 0.0134 0.0135 0.0137 0.0138	0.0235 0.0235 0.0235 0.0236 0.0236 0.0236 0.0236 0.0236 0.0237 0.0237 0.0237 0.0237 0.0237	0.0234 0.0233 0.0233 0.0232 0.0231 0.0231 0.0230 0.0229 0.0228 0.0227 0.0227 0.0226 0.0225	0.0117 0.0113 0.0109 0.0107 0.0105 0.0103 0.0102 0.0101 0.0099 0.0097 0.0096 0.0094 0.0091	0.0116 0.0112 0.0108 0.0105 0.0103 0.0101 0.0100 0.0098 0.0096 0.0093 0.0091 0.0089 0.0086
313.15 к (40 °C)					,	
14 0.7569 16 0.8819 18 1.0117 20 1.1465	0.7817 0.9147 1.0541 1.2005	0.0140 0.0141 0.0143 0.0145	0.0136 0.0136 0.0137 0.0138	0.0237 0.0238 0.0238 0.0238	0.0230 0.0229 0.0228 0.0227	0.0097 0.0096 0.0095 0.0093	0.0094 0.0093 0.0091 0.0089
]		,					~
Wt co/			de; LiCl;			-	-
$\frac{\text{wt}}{\frac{8}{2}} = \frac{c_2}{\text{mol dm}^{-3}}$	$m_2/mol kg^{-1}$	F1c	F _{1m}	F2c	F _{2m}	F3c	F _{3m}
283.15 K	(10 °C)						
$\begin{array}{cccc} 2 & 0.4773 \\ 4 & 0.9656 \\ 6 & 1.4650 \\ 8 & 1.9752 \end{array}$	0.4814 0.9828 1.5056 2.0512	0.0075 0.0078 0.0080 0.0082	0.0075 0.0077 0.0078 0.0079	0.0156 0.0157 0.0157 0.0157	0.0155 0.0154 0.0152 0.0151	0.0081 0.0078 0.0076 0.0074	0.0080 0.0077 0.0074 0.0072
303.15 K	(30 °C)			(rec			
$\begin{array}{ccccccc} 1 & 0.2362 \\ 2 & 0.4752 \\ 4 & 0.9612 \\ 6 & 1.4579 \\ 8 & 1.9654 \\ 10 & 2.4838 \\ 12 & 3.0131 \\ 14 & 3.5536 \\ 16 & 4.1056 \\ 18 & 4.6693 \\ 20 & 5.2451 \end{array}$	0.2383 0.4814 0.9828 1.5056 2.0512 2.6209 3.2166 3.8400 4.4930 5.1779 5.8971	0.0077 0.0079 0.0081 0.0083 0.0085 0.0086 0.0088 0.0089 0.0091 0.0092 0.0093	0.0076 0.0078 0.0079 0.0080 0.0081 0.0082 0.0082 0.0083 0.0083 0.0083	0.0157 0.0157 0.0157 0.0157 0.0158 0.0158 0.0158 0.0158 0.0159 0.0159 0.0159	0.0156 0.0155 0.0154 0.0152 0.0151 0.0150 0.0148 0.0147 0.0145 0.0143 0.0142	0.0080 0.0078 0.0076 0.0074 0.0073 0.0071 0.0070 0.0069 0.0068 0.0067 0.0066	0.0079 0.0077 0.0076 0.0072 0.0070 0.0068 0.0066 0.0064 0.0062 0.0060 0.0059
323.15 K	(50 °C)						
2 0.4716 4 0.9541 6 1.4474 8 1.9516	0.4814 0.9828 1.5056 2.0512	0.0085 0.0084 0.0086 0.0086	0.0083 0.0081 0.0081 0.0082	0.0158 0.0158 0.0158 0.0159	0.0155 0.0154 0.0152 0.0151	0.0073 0.0075 0.0074 0.0073	0.0072 0.0072 0.0071 0.0069

99 (1) Sodium Chloride; NaCl; [7447-41-8]

Wt %	<i>c₂/</i> mol dm ⁻³	<i>m₂/</i> mol kg ⁻¹	Flo	F _{1m}	F _{2c}	F _{2m}	F 3 c	F _{3m}
	283.15 К	(10 °C)	<u> </u>		<u> </u>		<u></u>	<u></u>
2 4 6 8	0.3472 0.7044 1.0720 1.4498	0.3492 0.7130 1.0922 1.4880	0.0070 0.0072 0.0075 0.0077	0.0069 0.0072 0.0073 0.0075	0.0156 0.0156 0.0156 0.0156	0.0155 0.0154 0.0153 0.0152	0.0087 0.0084 0.0082 0.0079	0.0086 0.0083 0.0080 0.0077
	298.15 K	(25 °C)						
1 2 4 6 8 10 12 14 16 18 20	0.1718 0.3460 0.7018 1.0674 1.4430 1.8289 2.2252 2.6321 3.0500 3.4791 3.9197	0.1728 0.3492 0.7130 1.0922 1.4880 1.9013 2.3334 2.7856 3.2594 3.7562 4.2779	0.0076 0.0078 0.0080 0.0082 0.0083 0.0085 0.0087 0.0089 0.0090 0.0092 0.0094	0.0076 0.0077 0.0078 0.0080 0.0081 0.0082 0.0083 0.0084 0.0085 0.0085 0.0085	0.0157 0.0157 0.0157 0.0157 0.0157 0.0157 0.0158 0.0158 0.0158 0.0158 0.0159	0.0156 0.0155 0.0154 0.0153 0.0152 0.0151 0.0150 0.0149 0.0148 0.0147 0.0146	0.0081 0.0079 0.0077 0.0075 0.0074 0.0072 0.0071 0.0069 0.0068 0.0065	0.0080 0.0079 0.0076 0.0074 0.0072 0.0069 0.0067 0.0065 0.0063 0.0062 0.0060
	313.15 К	(40 °C)						
2 4 6 8	0.3443 0.6980 1.0614 1.4347	0.3492 0.7130 1.0922 1.4880	0.0082 0.0084 0.0085 0.0087	0.0081 0.0082 0.0083 0.0084	0.0158 0.0158 0.0158 0.0158 0.0158	0.0155 0.0154 0.0153 0.0152	0.0076 0.0074 0.0073 0.0071	0.0075 0.0073 0.0071 0.0069
		99 (2) So	dium Sul:	fate; Na ₂ s	50 ₄ ; [775]	7-82-6]		
Wt %	c ₂ /	$m_2/$	F	F -	77		F	7
	moi am	mõl kg ⁻¹	F _{1c}	F1m	F_{2c}	F_{2m}	F _{3c}	F _{3m}
	mõl dm ⁻³ 283.15 K	$\frac{\text{mol} \text{ kg}^{-1}}{(10 \ ^{\circ}\text{C})}$	- 10	- 1m	^F 2c	^F 2m		
10 12 14 16		mol kg ⁻¹	0.0082 0.0088 0.0095 0.0101	0.0080 0.0087 0.0092 0.0098	0.0233 0.0233 0.0233 0.0234	^F 2m 0.0230 0.0229 0.0228 0.0227	0.0152 0.0145 0.0139 0.0133	0.0149 0.0142 0.0136 0.0129
12 14	283.15 K 0.7708 0.9416 1.1182	möl kg ⁻¹ (10 °C) 0.7823 0.9600 1.1461	0.0082 0.0088 0.0095	0.0080 0.0087 0.0092	0.0233 0.0233 0.0233	0.0230 0.0229 0.0228	0.0152 0.0145 0.0139	0.0149 0.0142 0.0136
12 14	283.15 K 0.7708 0.9416 1.1182 1.3008	mol kg ⁻¹ (10 °C) 0.7823 0.9600 1.1461 1.3410	0.0082 0.0088 0.0095	0.0080 0.0087 0.0092	0.0233 0.0233 0.0233	0.0230 0.0229 0.0228	0.0152 0.0145 0.0139	0.0149 0.0142 0.0136

		99 (2) So	dium Sul	fate; Na ₂ S	0 ₄ ; [775]	7-82-6] ((Continued))
Wt 8	c ₂ / mol dm ⁻	m9/	Fa.	F _{1m}	F2c	F _{2m}	F _{3c}	F _{3m}
	323.15 K	(50 °C)						
10 12 14 16	0.7591 0.9269 1.1001 1.2792	0.7823 0.9600 1.1461 1.3410	0.0107 0.0112 0.0117 0.0122	0.0104 0.0108 0.0112 0.0116	0.0237 0.0237 0.0237 0.0238	0.0230 0.0229 0.0228 0.0227	0.0130 0.0125 0.0120 0.0116	0.0126 0.0121 0.0115 0.0110
	:	100 (l) Po	tassium	Hydroxide;	кон; [13	310-58-3]		
Wt <u>*</u>	c ₂ / mol dm ⁻	^m 2/ mol kg ⁻¹	F1c	F _{1m}	F2c	F _{2m}	F 3 c	F _{3m}
	288.15 K	(15 °C)						
1 2 3 4 5 6 8 10 12 14 16 20 24 28 32 36 40 44 8	0.1797 0.3627 0.5489 0.7385 0.9314 1.1275 1.5299 1.9458 2.3756 2.8192 3.2773 4.2360 5.2547 6.3351 7.4808 8.6931 9.9741 11.3259 12.7525	0.1800 0.3637 0.5512 0.7426 0.9380 1.1376 1.5498 1.9803 2.4303 2.9013 3.3947 4.4556 5.6281 6.9309 8.3870 10.0251 11.8815 14.0033 16.4514	0.0021 0.0023 0.0025 0.0027 0.0029 0.0031 0.0034 0.0040 0.0043 0.0045 0.0051 0.0056 0.0051 0.0056 0.0061 0.0066 0.0071 0.0076 0.0081 0.0086	0.0021 0.0023 0.0025 0.0027 0.0029 0.0031 0.0034 0.0036 0.0039 0.0042 0.0044 0.0048 0.0052 0.0056 0.0059 0.0056 0.0059 0.0061 0.0064 0.0066 0.0067 Chloride;	0.0156 0.0156 0.0155 0.0155 0.0155 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0153 0.0155 0.0155 0.0157 0.0159	0.0156 0.0155 0.0155 0.0154 0.0153 0.0152 0.0151 0.0150 0.0149 0.0148 0.0145 0.0145 0.0142 0.0142 0.0142 0.0142 0.0137 0.0134 0.0130 0.0127 0.0123	0.0135 0.0132 0.0130 0.0128 0.0126 0.0124 0.0120 0.0117 0.0114 0.0107 0.0102 0.0097 0.0092 0.0083 0.0079 0.0076 0.0072	0.0135 0.0132 0.0127 0.0125 0.0123 0.0119 0.0115 0.0111 0.0107 0.0097 0.0097 0.0090 0.0084 0.0078 0.0072 0.0061 0.0056
Wt %	00/	mol	F _{1c}	F _{1m}	F _{2c}	F _{2m}	F _{3c}	F _{3m}
-	<u>mõl dm</u>	$\frac{10^{3} \text{ mol } \text{kg}^{-1}}{(10^{\circ}\text{C})}$			<u> </u>		·	
4 6 8 10	0.5504 0.8363 1.1294 1.4300	(10°C) 0.5589 0.8561 1.1663 1.4903	0.0118 0.0120 0.0122 0.0125	0.0116 0.0117 0.0119 0.0120	0.0157 0.0158 0.0158 0.0159	0.0155 0.0154 0.0153 0.0152	0.0040 0.0038 0.0036 0.0034	0.0039 0.0037 0.0035 0.0033
	303.15 K	(30 °C)						
1 2 4 6 8 10 12	0.1344 0.2705 0.5477 0.8319 1.1231 1.4215 1.7272	0.1355 0.2737 0.5588 0.8561 1.1663 1.4902 1.8289	0.0120 0.0122 0.0124 0.0127 0.0129 0.0131 0.0133	0.0119 0.0120 0.0122 0.0123 0.0124 0.0125 0.0125	0.0157 0.0158 0.0158 0.0159 0.0159 0.0159 0.0160 0.0160	0.0156 0.0155 0.0155 0.0154 0.0153 0.0152 0.0151	0.0037 0.0036 0.0034 0.0032 0.0030 0.0029 0.0028	0.0037 0.0035 0.0033 0.0031 0.0029 0.0028 0.0026

xli

Wt 웅	$mol dm^{-3}$	m_2/m_2 mol kg ⁻¹	F_{1c}	F _{1m}	F_{2c}	F_{2m}	F 3c	F _{3m}
	303.15 к	-	• • • • • • • • • • • • • • • • • • •		<u></u>	<u></u>	<u>,,</u>	
14 16 18 20 22 24 26	2.0405 2.3614 2.6902 3.0271 3.3724 3.7262 4.0888	2.1833 2.5547 2.9441 3.3530 3.7829 4.2354 4.7123	0.0135 0.0137 0.0139 0.0140 0.0142 0.0144 0.0146	0.0126 0.0126 0.0127 0.0127 0.0127 0.0127 0.0127 0.0127	0.0161 0.0162 0.0163 0.0164 0.0165 0.0166 0.0167	0.0151 0.0150 0.0149 0.0148 0.0147 0.0146 0.0145	0.0026 0.0025 0.0024 0.0023 0.0022 0.0021 0.0020	0.0025 0.0023 0.0022 0.0021 0.0020 0.0019 0.0018
	323.15 K	(50 °C)						
4 6 8 10	0.5435 0.8253 1.1141 1.4100	0.5589 0.8561 1.1663 1.4903	0.0133 0.0134 0.0135 0.0136	0.0130 0.0129 0.0129 0.0129	0.0159 0.0160 0.0160 0.0161	0.0155 0.0154 0.0153 0.0152	0.0026 0.0026 0.0026 0.0025	0.0025 0.0025 0.0025 0.0024
	10	0 (3) Pot	assium I	odide; KI;	[7681-1]	L-0]		
Wt %	$c_2/mol dm^{-3}$	m ₂ / mol kg ⁻¹	F1c	F _{1m}	F2c	F2m	F _{3c}	F _{3m}
	283.15 К	(10 °C)						
12 14 16 18	0.7922 0.9391 1.0908 1.2474	0.8214 0.9806 1.1474 1.3223	0.0197 0.0199 0.0200 0.0202	0.0190 0.0190 0.0190 0.0190	0.0160 0.0161 0.0161 0.0162	0.0154 0.0154 0.0153 0.0153	-0.0037 -0.0038 -0.0039 -0.0040	-0.0036 -0.0037 -0.0037 -0.0038
	303.15 К	(30 °C)						
1 4 6 8 0 12 4 16 20 24 28 5 5 5 5	0.0604 0.1217 0.2470 0.3761 0.5091 0.6461 0.7875 0.9332 1.0837 1.2390 1.3994 1.7366 2.0974 2.7933 3.9582 5.3825	0.0608 0.1229 0.2510 0.3845 0.5238 0.6693 0.8214 0.9806 1.1474 1.3223 1.5059 1.9022 2.3426 3.2436 4.9285 7.3623	0.0201 0.0202 0.0203 0.0205 0.0206 0.0207 0.0209 0.0210 0.0211 0.0213 0.0214 0.0217 0.0220 0.0226 0.0236 0.0249	0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0200 0.0199 0.0199 0.0197 0.0194 0.0189 0.0182	0.0157 0.0158 0.0159 0.0159 0.0160 0.0161 0.0162 0.0162 0.0163 0.0164 0.0166 0.0168 0.0172 0.0179 0.0190	0.0156 0.0156 0.0155 0.0155 0.0155 0.0155 0.0154 0.0153 0.0153 0.0152 0.0151 0.0150 0.0148 0.0139	$\begin{array}{c} -0.0044\\ -0.0045\\ -0.0046\\ -0.0047\\ -0.0047\\ -0.0047\\ -0.0049\\ -0.0049\\ -0.0050\\ -0.0050\\ -0.0050\\ -0.0051\\ -0.0052\\ -0.0054\\ -0.0056\\ -0.0056\\ -0.0059\end{array}$	$\begin{array}{c} -0.0043 \\ -0.0044 \\ -0.0045 \\ -0.0045 \\ -0.0045 \\ -0.0046 \\ -0.0046 \\ -0.0046 \\ -0.0047 \\ -0.0047 \\ -0.0047 \\ -0.0047 \\ -0.0047 \\ -0.0047 \\ -0.0047 \\ -0.0047 \\ -0.0045 \\ -0.0043 \end{array}$
	323.15 к	(50 °C)						
12 14 16 18	0.7808 0.9252 1.0743 1.2281	0.8214 0.9806 1.1474 1.3223	0.0219 0.0220 0.0221 0.0222	0.0208 0.0207 0.0207 0.0206	0.0162 0.0163 0.0164 0.0165	0.0154 0.0154 0.0153 0.0153	-0.0057 -0.0057 -0.0057 -0.0057	-0.0054 -0.0054 -0.0053 -0.0053
der	e calculatio sity data t ok Co., New	that appea	ar in In	ternationa	ht per ce l Critico	ent and a al Tables	queous el , McGraw-	ectrolyte Hill

.

xlii

	xliii
I. M. Sechenov [J. Setchenow]	H. Lawrence Clever Department of Chemistry Emory University Atlanta, GA 30322 1982, March
Ivan Mikhaylovich Sechenov (J	
born 1829, August 1, Teply Star Sechenovo, Arzamas Oblast], Rus	
died 1905, November 2, Moscow,	Russia
Research interests: physiology	, physical chemistry, psychology.
Selected Works, A. A. Subkov, H	Editor, Moscow, 1935.
in German are republished in (olications. Those written originally German, the originals in Russian are of the papers are on psychology.
There are earlier collections in French, and one <i>ca</i> . 1907 in	of Sechenov's papers. An 1889 one n Russian.
Sechenov papers on the salt effec dioxide in various electrolyte a	ct and on the solubility of carbon nd nonelectrolyte aqueous solutions.
3. Ibid. <u>1879</u> , 26, 4. Ibid. <u>1886</u> , 34, 5. Ibid. <u>1887</u> , 35, 1 - 59. 6. Nouv. Mem. Soc. Imp. Nat. Mosc	np. Sci., St. Petersbourg <u>1877</u> , 22,102- cow <u>1889</u> , 15,203 - 274. cwandtsschaftsl. <u>1889</u> , 4, 117 - 125.
Paper 7. is a long abstract of pa Paper 9. and paper 5. contain sor I do not have copies of papers certain. All of the other papers French.	aper 6. ne data in common. 3. and 4. Their citations are not are in German except 9. which is in
The Sechenov Salt Effect Equation	
$y = \alpha f(x)$ α is the Buns y is the Buns	sen coefficient in pure water, sen coefficient in the salt solution, ation of the salt solution.
Sechenov tried several $f(x)$ on hi	
$x_{\sqrt{m}}$ where m	
$p^{k/x}$ where p	
-	ded the last function was the best.
	$= \alpha e^{-k/x} \text{ or } k = -x \ln \frac{Y}{\alpha} = x \ln \frac{\alpha}{Y}.$
	$k_{SCC}/dm \mod^{-1} = (1/c) \log (\alpha^0/\alpha).$ plume data from which the electrolyte
Concentration can be calculated. tion to calculate the concentrati solution and dilute the solution. taking the Bunsen coefficient in electrolyte solution to predict t lyte solutions at each dilution. and the experimental Bunsen coeff solubility apparatus used by Sech	Sometimes he did not give the informa-

Non-SI Unit	k l (non-SI Unit) = k (SI Unit)	k ⁻¹ l (SI Unit) = <u>k⁻¹ (non-SI Unit)</u>
LENGTH		SI Unit, m
Å (angstrom) cm (centimeter) in (inch) ft (foot)	$ \begin{array}{c} 1 \times 10^{-10} (*) \\ 1 \times 10^{-2} (*) \\ 254 \times 10^{-4} (*) \\ 3 048 \times 10^{-4} (*) \end{array} $	$ \begin{array}{c} 1 \times 10^{10} & (* \\ 1 \times 10^2 & (* \\ 3 937 008 \times 10^{-5} \\ 3 280 840 \times 10^{-6} \end{array} $
AREA		SI Unit, m ²
cm ² in ² ft ²	$\begin{array}{c} 1 \times 10^{-4} & (*) \\ 64 516 \times 10^{-8} & (*) \\ 9 290 304 \times 10^{-8} & (*) \end{array}$	
VOLUME		SI Unit, m ³
cm ³ in ³ ft ³ 1 (litre) UKgal (UK gallon) USgal (US gallon)	$ \begin{array}{c} 1 \times 10^{-6} (*) \\ 16 387 064 \times 10 (*) \\ 2 831 685 \times 10^{-8} \\ 1 \times 10^{-3} (*) \\ 45 461 \times 10^{-7} \\ 37 854 \times 10^{-7} \end{array} $	$ \begin{array}{c} 1 \times 10^{6} \\ 6 102 374 \times 10^{-2} \\ 3 531 467 \times 10^{-5} \\ 1 \times 10^{3} \\ 21 997 \times 10^{-2} \\ 26 417 \times 10^{-2} \end{array} $
MASS	J	SI Unit, kg
g (gram) t (tonne) lb (pound)	$\begin{array}{c} 1 \times 10^{-3} & (*) \\ 1 \times 10^{3} & (*) \\ 45 359 \ 237 \times 10^{-8} & (*) \end{array}$	$ \begin{array}{c} 1 \times 10^{3} (*) \\ 1 \times 10^{-3} (*) \\ 2 \ 204 \ 623 \times 10^{-6} \end{array} $
DENSITY		SI Unit, kg m ⁻³
$g cm^{-3}$ $g l^{-1}$ $lb in^{-3}$ $lb ft^{-3}$ $lb UKgal^{-1}$ $lb USgal^{-1}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$1 \times 10^{-3} (*)$ $1 \times 10^{-11} (*)$ $3 \ 612 \ 728 \times 10^{-11}$ $6 \ 242 \ 795 \times 10^{-8}$ $100 \ 224 \times 10^{-7}$ $8 \ 345 \ 406 \times 10^{-9}$
PRESSURE	SI Unit,	Pa (pascal, kg m ⁻¹ s ⁻²)
dyn cm ⁻² at (kgf cm ⁻²) atm (atmosphere) bar lbf in ⁻² (p.s.i.) lbf ft ⁻² inHg (inch of mercury) mmHg (millimeter of mercury, torr)	$ \begin{array}{c} 1 \times 10^{-1} (*) \\ 980 665 \times 10^{-1} (*) \\ 101 325 (*) \\ 1 \times 10^{5} (*) \\ 6 894 757 \times 10^{-3} \\ 47 880 \times 10^{-3} \\ 3 386 388 \times 10^{-3} \\ 1 333 224 \times 10^{-4} \end{array} $	$ \begin{array}{c} 1 \times 10 \\ 1 019 716 \times 10^{-11} (*) \\ 9 869 233 \times 10^{-12} \\ 1 \times 10^{-5} (*) \\ 1 450 377 \times 10^{-10} \\ 20 886 \times 10^{-6} \\ 2 952 999 \times 10^{-10} \\ 7 500 617 \times 10^{-9} \end{array} $

APPENDIX I. Conversion Factors \boldsymbol{k} and \boldsymbol{k}^{-1}

Non-SI Unit	k k ⁻¹ l (non-SI Unit) = l (SI Unit) = <u>k (SI Unit) k⁻¹ (non-SI Uni</u> t	t)
ENERGY	Unit, J (joule, kg m ² s	s ⁻²)
erg cal _{IT} (I.T. calorie) cal _{th} (thermochemical calorie) kW h (kilowatt hour) l atm ft lbf hp h (horse power hour) Btu (British thermal unit)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

•--

.

.

An asterisk (*) denotes an exact relationship

Wate	٢
------	---

COMPONENTS:	EVALUATOR:
(1) Nitrogen; N ₂ ; [7727-37-9] (2) Water; H ₂ O; [7732-18-5]	Rubin Battino Department of Chemistry Wright State University Dayton, Ohio 45435 U.S.A. December 1981

CRITICAL EVALUATION:

Nitrogen is one of the atmospheric gases that has been studied by many workers over a long period of time. We selected the work of nine groups to use for the smoothing equation. In the process of fitting the data to the smoothing equation any data points which differed from the smooth equation by about two standard deviations or more were rejected. The 74 points used for the final smoothing were obtained as follows: (reference number-number of data points from that reference): 1-6; 2-28; 3-10; 4-1; 5-18; 6-1; 7-1; 8-1; 9-8. The fitting equation used was

 $\ln x_1 = A + B/(T/100K) + C \ln (T/100K) + DT/100K$ (1)

Using T/100K as the variable rather than T/K gives coefficients of approximately equal magnitude. The best fit for the 74 points was

 $\ln x_1 = -67.38765 + 86.32129/(T/100K) + 24.79808 \ln (T/100K)$ (2)

where x_1 is the mole fraction solubility at 101,325 Pa partial pressure of g_{as} . The fit in ln x_1 gave a standard deviation of 0.72% taken at the middle of the temperature range. Table 1 gives smoothed values of the mole fraction solubility and the Ostwald coefficient at 5K intervals.

Table 1 also gives the thermodynamic functions $\Delta \overline{G}_{1}^{\circ}$, $\Delta \overline{H}_{1}^{\circ}$, $\Delta \overline{S}_{1}^{\circ}$, and $\Delta \overline{C}_{p}^{\circ}$ for the transfer of the gas from the vapor phase at 101,325 Pa partial gas pressure to the (hypothetical) solution of unit mole fraction. These thermodynamic properties were calculated from the smoothing equation according to the following equations:

۵Ġ	=	-	RAT - 100RB - RCT ln (T/100) - RDT ² /100	(3)
∆≌ً	-		RA + RC ln (T/100) + RC + 2RDT/100	(4)
∆H°ı	=	-	$100RB + RCT + RDT^2/100$	(5)
۵Ĉ°	=		RC + 2RDT/100	(6)
T				

The experimental results of twenty-one other groups were not used for the smoothing equation for a variety of reasons. Although Douglas' (10) work is in general of high quality, the nitrogen solubility data appeared to vary erratically around the smoothing equation. Winkler's values (11) were mostly low. Van Slyke's two values (12) were close and high so both were discarded. Müller's results (13) were about 3% low. Just's values (14) were 1-3% high. Ikels single measurement (15) was 3% low. Orcutt and Seevers' single value (16) was 3% high. Behnke and Yarbrough's single value was 2% high (17). Stoddard's single value (18) was 8% low. Grollman's single value was 6% high (19). Morrison and Billett's single value (20) was 4% low. Brasted and Hirayama's single value (21) was 12% high. Drucker and Moles' single value (22) was 2% low. Christoff's single value was 10% low (23). Bunsen's five experimental values (24) were about 15% low. Braun's five values (25) ranged from 8% high to 2% low. Adeney and Becker's results (26) ranged from 1% high to about 6% low. Power and Stegall's single value (27) was 1.1% low. Wilcock and Battino's value at 298.15 K (28) was 1.4% low. The Wilcock and Battino paper also showed that the solubility of one gas is not affected by the presence of another within their experimental precision, and at the solubilities concerned. Cassuto's values (29) were off by more than 6%. The early measurements by Petterson and Sonden (30) were very low.

Weiss (31) analyzed the data then current on nitrogen solubilities in water and seawater and provided smoothing equations and smoothed data. Klots and Benson (32) determined the ratio of the solubility of ${}^{28}\mathrm{N_2}/{}^{29}\mathrm{N_2}$ in water in the range 275 to 300 K and found the ratio of the Henry's law continued on following page

EVALUATOR:

COMPONENTS:

(1)	Nitrogen; N ₂ ;	[7727-37-9]	Rubin Battino
(2)	Water; H ₂ O;	[7732-18-5]	Rubin Battino Department of Chemistry Wright State University Dayton, Ohio 45435 U.S.A.

December 1981

CRITICAL EVALUATION:

continued

constants (mole fraction and atm units) to be 1.00085 ± 0.00010 in this temperature range. Note that the heavier isotope is more soluble.

Figure 1 shows the temperature dependence of the solubility of nitrogen in water as mole fraction versus T/K. The curve was obtained from the smoothing equation. The solubility expressed as the Ostwald coefficient shows a minimum at about 338K, but over the temperature range of the data used for the smoothing equation no minimum was evident, although the trend to a minimum was apparent.

Smoothed values of the solubility of nitrogen in water and Table 1. thermodynamic functions^a at 5K intervals using equation 2 at 101,325 Pa partial pressure of gas.

т/к	10 ⁵ x1 ^b	10 ² L ^C	∆G [°] /kJ mol ⁻¹	∆H ₁ °/kJ mol ⁻¹	· ∆5°/J mol ⁻¹ K ⁻¹
273.15	1.908	2.373	24.68	-15.45	-147
278.15	1.695	2.147	25.41	-14.42	-143
283.15	1.524	1.965	26.11	-13.39	-140
288.15	1.386	1.818	26.80	-12.36	-136
293.15	1.274	1.698	27.47	-11.33	-132
298.15	1.183	1.601	28.12	-10.30	-129
303.15	1.108	1.523	28.76	-9.27	-125
308.15	1.047	1.461	29.38	-8.24	-122
313.15	0.9981	1.413	29.98	-7.21	-119
318.15	0.9585	1.376	30.57	-6.17	-115
323.15	0.9273	1.349	31.14	-5.14	-112
328.15	0.9033	1.331	31.69	-4.11	-109
333.15	0.8855	1.321	32.23	-3.08	-106
338.15	0.8735	1.319	32.75	-2.05	-103
343.15	0.8666	1.324	33.26	-1.02	-100
348.15	0.8644	1.336	33.75	0.01	- 97

۵ē°₽٦ was independent of temperature and had the value 206 J mol⁻¹ K⁻¹. ^b Mole fraction solubility at 101,325 Pa partial pressure of gas.

^C Ostwald coefficient.

In a review D. M. Himmelblau (33) reported on the partial molal heats and entropies of solution for gases $(O_2, N_2, H_2, H_2, K_2, and CH_4)$ dissolved in water from the freezing to near the critical point. He also gave constants for a general solubility equation for these gases. Recently Clever and Han (34) summarized work on the solubility of hydrogen nitrogen, oxygen, and the noble gases in water from 350-600K. They give smoothing equations and critically evaluate the literature for these systems at high temperatures.

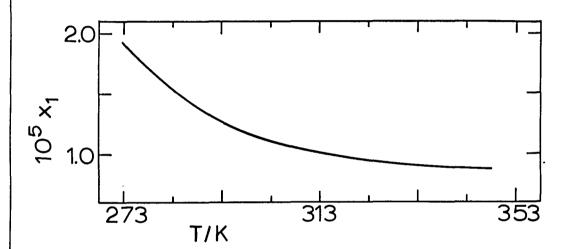
Schulze and Prausnitz (35) have correlated gas solubility data for aqueous systems at high temperatures within the framework of scaled scaled particle theory.

continued on following page

Water

COMPONENTS:

Nitrogen; N₂; [7727-37-9]
 Water; H₂O; [7732-18-5]


EVALUATOR: Rubin Battino Department of Chemistry Wright State University Dayton, Ohio 45435 U.S.A.

December 1981

```
CRITICAL EVALUATION:
```

continued

Note: The critical evaluation in the following section on nitrogen solubility in seawater which was prepared by Dr. C-T. A. Chen does not use the solubility data of Klots and Benson (2) for the pure water part of his smoothing equation. In that sense the pure water solubilities recommended in this part and the following one are not compatible. Differences are small and indicate different ways of judging data.

References

1. Farhi, L. E.; Edwards, A. W. T.; Homma, T. J. Appl. Physiol. 1963, 18, 97-106. 2. Klots, C. E.; Benson, B. B. Sears Foundation: J. Marine Res. 1963, 21, 48-57 3. Morrison, T. J.; Billett, F. J. Chem. Soc. 1952, 3819-22. 4. Bohr, C. Z. Physik. Chem. <u>1910</u>, 71, 47-50. 5. Fox, C. J. J. Trans. Faraday Soc. <u>1909</u>, 5, 68-87. 6. Hawkins, J. A.; Shilling, C. W. J. Biol. Chem. <u>1936</u>, 113, 273-8. 7. Hüfner, G. Z. Physik. Chem. 1907, 57, 611-24. 8. Clever, H. L.; Battino, R.; Saylor, J. H.; Gross, P. M. J. Phys. Chem. 1957, 61, 1078-82. Murray, C. N.; Riley, J. P.; Wilson, T. R. S. Deep-Sea Research <u>1969</u>, 16, 297-310. 10. Douglas, E. J. Phys. Chem. <u>1964</u>, 68, 169-74. 11. Winkler, L. W. Ber. <u>1891</u>, 24, 3602-10. 12. Van Slyke, D. D.; Dillon, R. T.; Margaria, R. J. Biol. Chem. 1934, 105, 571-96. 13. Müller, C. Z. Physik. Chem. <u>1912</u>, 81, 483-503. 14. Just, G. Z. Physik. Chem. <u>1901</u>, 37, 342-67. 15. Ikels, K. G. DDC, Report No. SAM-TDR-64-28 1964. 16. Orcutt, F. S.; Seevers, M. H. J. Biol. Chem. 1937, 117, 501-7. 17. Behnke, A. R.; Yarbrough, O. D. U.S. Naval Medical Bulletin 1938, 36, 542-59. continued on following page

COMPONENTS:	EVALUATOR:
(l) Nitrogen; N ₂ ; [7727-37-9] (2) Water; H ₂ O; [7732-18-5]	Rubin Battino Department of Chemistry Wright State University Dayton, Ohio 45435 U.S.A.
	December 1981
CRITICAL EVALUATION:	
conti	nued
18. Stoddard, J. L. J. Biol. Chem. <u>19</u>	26-27, 71, 629-92.
19. Grollman, A. J. Biol. Chem. <u>1929</u> ,	82, 317-25.
20. Morrison, T. J.; Billett, F. J. C	hem. Soc. <u>1948</u> , 2033-5.
21. Brasted, R. C.; Hirayama, C. J. P	hys. Chem. <u>1958</u> , 62, 125-6.
22. Drucker, K.; Moles. E. Z. Physik	. Chem. <u>1910</u> , 75, 405-36.
23. Christoff, A. Z. Physik. Chem. <u>1</u>	906, 55, 622-34.
24. Bunsen, R. Ann. <u>1855</u> , 93, 1, 496;	Phil. Mag. <u>1855</u> , 9, 116, 181.
25. Braun, L. Z. Physik. Chem. <u>1900</u> ,	
26. Adeney, W. E.; Becker, H. G. Roya 15, 609-28.	l Dublin Soc. Scientific Pro. <u>1919</u> ,
27. Power, G. G.; Stegall, H. J. App	l. Physiology <u>1970</u> , 29 145–9.
28. Wilcock, R. J. Battino, R. Nature	
29. Cassuto, L. Physik. Z. <u>1904</u> , 5,	
30. Petterson, O.; Sonden, K. Ber. <u>1</u>	
31. Weiss, R. F. Deep-Sea Research <u>1</u>	
32. Klots, C. E.; Benson, B. B. J. C	hem. Phys. <u>1963</u> , 38, 890-2.
33. Himmelblau, D. M. J. Phys. Chem.	<u>1959</u> , 63, 1803-8.
34. Clever, H. L.; Han, C. H. "Therm Industrial Applications," Ed. S 133, Amer. Chem. Soc., Washington	S. A. Newman, ACS Symposium Series
35. Schulze, G.; Prausnitz, J. M. I	& EC Fundam. <u>1981</u> , 20, 175-7.

COMPONENTS:			
	ORIGINAL	MEASUREMENTS:	·····
(1) Nitrogen; N ₂ ; [7727-37-9]	Winkler	C, L. V.	
(2) Water; H ₂ O; [7732-18-5]	Ber. <u>18</u>	<u>391</u> , 24, 3602-	-10.
ARIABLES:	PREPARED	BY:	
T/K = 273 - 353	R. E	Battino	
XPERIMENTAL VALUES:	1	<u> </u>	
t/°C T ^a /K 10) ⁵ x1 ^{a,b}	10 ² L ^{a,c}	$10^{2} \alpha^{d}/cm^{3}$ (STP) $cm^{-3} atm^{-1}$
	L.884	2.344	2.3435
	L.492	1.924	1.8564
	242	1.655 1.487	1.5420 1.3400
	.958	1.356	1.1825
50.00 323.15 0	.884	1.286	1.087
	0.836	1.247 1.226	1.022
).802).791	1.220	0.976 0.957
		· · · · · · · · · · · · · · · · · · ·	
AUXILIA	RY INFORMATI	ION	
		ION ND PURITY OF MAT	ERIALS:
	SOURCE A (1) Fr a	ND PURITY OF MAT om air by pas	sing it through wing copper tube
ETHOD/APPARATUS/PROCEDURE: Used Bunsen's absorptiometer and	SOURCE A (1) Fr a	ND PURITY OF MAT om air by pas heated to glo	sing it through wing copper tube
ETHOD/APPARATUS/PROCEDURE: Used Bunsen's absorptiometer and	SOURCE A (1) Fr a	ND PURITY OF MAT om air by pas heated to glo details give	sing it through wing copper tube
ETHOD/APPARATUS/PROCEDURE: Used Bunsen's absorptiometer and	SOURCE A (1) Fr a (2) NO ESTIMATE	ND PURITY OF MAT om air by pas heated to glo details give D ERROR:	sing it through wing copper tube
ÆTHOD/APPARATUS/PROCEDURE: Used Bunsen's absorptiometer and	SOURCE A (1) Fr a (2) NO ESTIMATE	ND PURITY OF MAT om air by pas heated to glo details give: D ERROR: = ±0.03, comp.	sing it through wing copper tube n.
ÆTHOD/APPARATUS/PROCEDURE: Used Bunsen's absorptiometer and	SOURCE A (1) Fr a (2) No ESTIMATE δα/α	ND PURITY OF MAT om air by pas heated to glo details give: D ERROR: = ±0.03, comp.	sing it through wing copper tube n.

COMPONENTS :	ORIGINAL MEASUREMENTS:
	Hüfner, G.
(1) Nitrogen; N ₂ ; [7727-37-9]	
(2) Water; H ₂ O; [7732-18-5]	Z. Physik. Chem. <u>1907</u> , 57, 611-24.
VARIABLES:	PREPARED BY:
T/K = 293	R. Battino
EXPERIMENTAL VALUES:	
EXTERIMENTAL VALUES:	
T/K P/mmHg P/	$kPa 10^{5}x_{1}^{a} 10^{2}\alpha^{b}$
	.73 1.590
	.89 1.552
	.47 1.552 .70 1.565
293.33	.70 1.565 1.260 ^C 1.565 ^C
^a Mole fraction solubility (calcula	ted by compiler) at 101.325 Pa
partial pressure of gas.	
Bunsen coerricient.	
^C Average of four previous values.	
AUXILIARY	INFORMATION
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
Apparatus described in reference 1.	(l) No details given.
An absorption type using gas burets and an absorption flask.	(2) "Pure"
Solubilities also determined in	
several other solvents and	
solutions.	
	ESTIMATED ERROR:
	$\delta \alpha / \alpha = \pm 0.02$, compiler's estimate
	REFERENCES:
	1. Hufner, G. Archiv. G. Anatomie
	und Physiologie, Physiolog.
	1 Abtla, 1894 S. 191.
	Abtlg. <u>1894</u> , S., 191.
	Abtlg. <u>1894</u> , S., 191.
	Abtlg. <u>1894</u> , S., 191.

i

	Wa	ater	7		
COMPONENTS:		ORIGINAL MEASUREMENTS:			
(1) Nitrogen; N ₂ ; [7727-	37-9]	Fox, C. J. J.			
(2) Water; H ₂ O; [7732-18	-5]	Trans. Faraday Soc. <u>1909</u> , 5, 68-87.			
VARIABLES:		PREPARED BY:			
T/K = 274-325		R. Battino			
EXPERIMENTAL VALUES:					
T ^a /K	e Fraction ^b 10 ⁵ x ₁	Ostwald Coeff. ^C 10 ² L	Bunsen Coeff. ^d 10 ² α		
273.68 279.15 283.15 293.75 298.05 303.03 308.14 314.64 319.94 323.04 277.55 280.55 284.05 285.95 287.40	1.866 1.653 1.560 1.269 1.187 1.116 1.061 0.998 0.945 0.922 1.874 1.710 1.601 1.494 1.444 1.404	2.326 2.101 1.959 1.695 1.607 1.534 1.480 1.418 1.362 1.340 2.334 2.162 2.046 1.932 1.880 1.836	2.321 2.056 1.890 1.576 1.473 1.383 1.312 1.231 1.163 1.133 2.331 2.128 1.992 1.858 1.796 1.745		
	AUXILIARY	INFORMATION			
METHOD/APPARATUS/PROCEDURE: A modified form of the Es (1) apparatus was used. procedure given in paper. is degassed by boiling us flask system. The quanti is determined by weighing gas is introduced from a the flask shaken and a fi of the volume of gas abso made after there are no c manometer is used to take different pressures. Sev readings at different tem are taken on one loading absorption flask.	Diagram and The water sing a double ty of water f. The dry gas buret, nal reading orbed is changes. A readings at reral peratures	lime, and P ₂ O ₅ . (2) !Jater - "distil	ained by several ir to and fro e phosphorus, soda Lled water".		

COMPO	ONENTS:	- <u></u>	ORIGINAL MEASUREMENT	'S :
(1)	Nitrogen; N ₂ ; ['	7727-37-9]	Fox, C. J. J.	
	Water; H ₂ O; [77]		Trans. Faraday Soc.	1909, 5, 68-87.
	2	-		
EXP	ERIMENTAL VALUES		inued	
		Mole Fraction ^b		Bunsen Coeff.d
-	т ^а /к	10 ⁵ x,	10 ² L	$10^2 \alpha$
	292.15 296.45	1.266 1.216	1.682 1.638	1.573 1.509
	303.05	1.117	1.535	1.384
	308.91	1.047	1.465	1.295
	313.43 318.88	1.008 0.957	1.427 1.376	1.244 1.179
	321.85	0.930	1.348	1.144
_	325.16	0.900	1.315	1.105
	a Original tempe	erature reported a	s °C to 0.01°C.	
			325 Pa (latm) partial	pressure of gas
	calculated by	compiler.		
	c Ostwald coeffi	cients calculated	by compiler.	
	^d Bunsen coeffic	ients reported in	original paper.	
	^e Second series	of measurements.		
	f Smoothing equa 0.009196t ² - 0	tion of author gi 0.00006779t ³ with	ven as 1000¤ = 22.998 t in °C.	-0.5298t +
	^g Author also de 0 to 28°C and	etermined the solu 0 to 20 per mille	bility of nitrogen in Cl.	seawater from

r

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Bohr, C.
(2) Water; H ₂ O; [7732-18-5]	Z. Physik. Chem. <u>1910</u> , 71, 47-50.
VARIABLES:	PREPARED BY:
T/K = 294	
EXPERIMENTAL VALUES:	R. Battino
TALERIMENTAL VALUES:	
T ^a /K 10 ⁵ × ^b	$10^{2}L^{C}$ $10^{2}\alpha^{d}$
294.35 1.256	5 1.681 1.560
^a Temperature reported t ^b Mole fraction solubili of gas calculated by c	ty at 101.325 kPa (1 atm) partial pressure
^C Ostwald coefficient ca	-
d Bunsen coefficient.	iculated by compiler.
IA	UXILIARY INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The absorption measuring appara described in reference (1). Th paper also reports solubilities sulfuric acid solutions.	lis
	ESTIMATED ERROR: $\delta \alpha / \alpha = \pm 0.03$, estimate by author.
	REFERENCES: (1) Bohr, C. Sauerstoffaufnahme des Blutfarbstoffes. Kopenhagen <u>1895</u> . Jolin, Archiv F. (Anat. u.) Physiologie <u>1889</u> , 265.

,

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Müller, C.
(2) Water; H ₂ O; [7732-18-5]	Z. Physik. Chem. 1912, 81, 483-503.
	<u> </u>
VARIABLES:	PREPARED BY:
T/K = 289-290	R. Battino
EXPERIMENTAL VALUES:	
$\frac{\text{Mole Fraction}^{\text{b}}}{\text{T}^{\text{a}}/\text{K}}$	Ostwald Coeff. ^C 10 ² L Bunsen Coeff. ^d 10 ² α
289.35 1.344 290.35 1.304	1.769 1.670 1.724 1.622
 ^a Temperature reported to 0.1^d ^b Mole fraction solubility at of gas calculated by compile ^c Ostwald coefficient calculated ^d Bunsen coefficient. 	l0l.325 kPa (l atm) partial pressure er.
	INFORMATION
METHOD / APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
Water is degassed by pumping under vacuum. The absorption vessel is about 600 cm ³ and is separately thermostatted from the buret gas measuring system. Both are connected by a copper capillary tube. Gas uptake is read on the gas burets. The absorption flask volume and all liquid volumes were calibrated using mercury. The original paper contains details of operation and a drawing. Solubilities were also measured in	 (1) Nitrogen - from heating potassium nitrite and ammonium nitrite. Washed with potassium hydroxide solution, ferrous sulfate solution, and sulfuric acid; and finally passed through a glowing copper tube. (2) Water - no comment by author.
aqueous solutions of sucrose, chloral hydrate, and glycerol.	ESTIMATED ERROR $\delta \alpha / \alpha = \pm 0.01$, estimate by compiler.
	REFERENCES:

F

.

COMPONENTS:					
			ORIGINAL MEASURE	MENTS:	
(1) Nitrogen; N2	; [7727-37-9	9]		; Becker, H. G.	
2) Water; H ₂ O; [7732-18-5]			Royal Dublin Soc. Scientific Pro. <u>1919</u> , 15, 609-28.		
VARIABLES:			PREPARED BY:		
T/K = 277-3	08		R. Batti	no	
EXPERIMENTAL VALUES	:		L		
t/°C	T ^a /K	10 ⁵ x1 ^a	b 10 ² L ^{a,C}	$10^2 \alpha^d / \text{cm}^3 \text{ (STP) cm}^{-3} \text{ atm}^{-3}$	
3.5 11.2 15.0	276.7 284.4 288.2	1.771 1.463 1.369	2.232 1.895 1.795	2.203 1.820 1.701	
20.1	293.3	1.247	1.663	1.549	
24.8 30.4	296.0 303.6	1.173 1.067	1.588 1.469	1.456 1.322	
35.1	308.3	0.986	1.377	1.220	
		AUXILIARY	INFORMATION		
ME THOD / APPARATUS / PRO	OCEDURE :	AUXILIARY	INFORMATION SOURCE AND PURIT	Y OF MATERIALS;	
METHOD/APPARATUS/PRO A manometric sys jacketed burets	stem using w		SOURCE AND PURIT (1) Prepared bichroma	Y OF MATERIALS: from potassium te, ammonium sulphate, um nitrite.	
A manometric sys	stem using w		SOURCE AND PURIT (1) Prepared bichroma	from potassium te, ammonium sulphate, um nitrite.	
A manometric sys	stem using w		SOURCE AND PURIT (1) Prepared bichroma and sodi	from potassium te, ammonium sulphate, um nitrite.	
A manometric sys	stem using w		SOURCE AND PURIT (1) Prepared bichroma and sodi (2) Distille	from potassium te, ammonium sulphate, um nitrite. d.	
A manometric sys	stem using w		SOURCE AND PURIT (1) Prepared bichroma and sodi (2) Distiller ESTIMATED ERROR:	from potassium te, ammonium sulphate, um nitrite. d.	
METHOD/APPARATUS/PRO A manometric sy: jacketed burets	stem using w		SOURCE AND PURIT (1) Prepared bichroma and sodi (2) Distille ESTIMATED ERROR: δα/α = ±0.01	from potassium te, ammonium sulphate, um nitrite. d.	
A manometric sys	stem using w		<pre>SOURCE AND PURIT (1) Prepared bichroma and sodi (2) Distilled ESTIMATED ERROR: δα/α = ±0.01 δT/K = ±0.1</pre>	from potassium te, ammonium sulphate, um nitrite. d.	
A manometric sys	stem using w		<pre>SOURCE AND PURIT (1) Prepared bichroma and sodi (2) Distilled ESTIMATED ERROR: δα/α = ±0.01 δT/K = ±0.1</pre>	from potassium te, ammonium sulphate, um nitrite. d.	

-

z witrogen Solubili	lies up to 200 kFa
COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	<pre>Frolich, P.K.; Tauch, E.J.; Hogan, J.J.; Peer, A.A.</pre>
(2) Water; H ₂ O; [7732-18-5]	Ind. Eng. Chem. <u>1931</u> , 23, 548-50.
VARIABLES:	PREPARED BY:
T/K = 298.15	C-T. A. Chen.
P/MPa (absolute) = 0.1-19	
EXPERIMENTAL VALUES:	
P ^a /atm	s ^b
20 (2.03 MPa)	0.28
60 (6.08 MPa)	0.83
100 (10.13 MPa)	1.39
140 (14.18 MPa)	1.95
190 (19.25 MPa)	2.64
AUXILIARY	INFORMATION
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
Water was introduced into a steel cylinder of 2 liters capacity. Nitrogen was then forced in under pressure and the cylinder agitated in a water bath maintained at 298.15 K. After the pressure had become constant, some water was withdrawn. The water and the nitrogen separating from it on	No details given
release of pressure were collected over mercury in a buret and the two	
volumes were read directly. Corrections were made for the vapor	ESTIMATED ERROR:
pressure of the liquid and the	
atmospheric solubility of the gas. Pressures were measured with a Pourdon Course	$\delta S/S = \pm 0.05$, compiler's estimate
Bourdon Gauge.	
	REFERENCES:

		440					
COMPONENTS:			ORIGIN	AL MEASU	REMENTS:		
(1) Nitrogen; N	2; [7727-37-9]]	Good	iman, J	. B.; Kr	ase, N.	Ψ.
(2) Water; H ₂ O;	[7732-18-5]		Ind.	Eng.	Chem. <u>19</u>	931, 23,	401-4
VARIABLES:			PREPAR	ED BY:			
T/K = 273-443 P/MPa (hydrostat	:ic) = 10.13 ·	- 30.39	C-	-T. A.	Chen		
EXPERIMENTAL VALUES:							
P ^a /atm	<u> </u>		s ^k				
100(10.13MPa)	273.15K ^C 298		<u>15K 35</u> 003	<u>0.934</u>	<u>373.15K</u> 0.954	417.15K 1.025	<u>442.15K</u> 1.08
125(12.66MPa)		.44 1.	24	1.15	1.17	1.30	1.52
200(20.26MPa)		-	49	2.27			3.29
300(30.39MPa)	3.60 3	.25 2.	99	2.86	2.91	3.46	3.83
		AUXILIARY	INFORM/	TION			
METHOD/APPARATUS/PRO	CEDURE :		SOURCE	AND PUR	ITY OF MAT	TERIALS:	w
Nitrogen was for long, 6.3 cm in cylinder, which saturated with r temperature and The water was th thermostated star stirred at the c and pressure. A sample was without glass trap. The was then measure buret. The press	side-diameter contained wat hitrogen at ro the desired p hen transferro desired tempe: After equilibi drawn into a v e nitrogen re ed over mercus ssure was meas	steel ter oom pressure. ed to a re it was rature rature rium, a weighed leased ry in a	com heat and pass	nercial ted cop carbon	source per wire dioxide trogen t	was drav e at 450° e were re	unspecifié wn over °C. Water emoved by soda lime.
by a Bourdon gau	ıge.						
			REFERE	NCES:			
		1	1				

.

COMPONENTS:	·		ORIGINAL MEASUREMENTS:	
(1) Nitrogen; N ₂ ; [7727-37-9]		Wiebe, R.; Gaddy,	V. L.; Heins, C.Jr.	
(2) Water; H ₂ O;	(2) Water; H ₂ O; [7732-18-5]		J. Am. Chem. Soc.	1933, 55, 947-53.
2				
VARIABLES:			PREPARED BY:	
T/K = 298-373 P/MPa (hydrostat	tic) = 0-10	1	C-I. A. Chen	
EXPERIMENTAL VALUES:	<u> </u>			
	cm	³ N ₂ at STE of wat	? per gram ter	
P ^a /atm T/K			15 T/Kb= 348.15	т/к ^b = 373.15
25(2.530 MPa)	0.348	0.273	3 0.254	0.266
50(5.071 MPa)	0.674	0.533	3 0.494	0.516
100(10.13 MPa)	1.264	1.011	0.946	0.986
200(20.27 MPa)	2.257	1.830) 1.732	1.822
300(30.40 MPa)	3.061	2.534	2.413	2.546
500(50.66 MPa)	4.441	3.720	3.583	3.799
800(81.06 MPa)	6.134	5.223	5.062	5.365
1000(101.3 MPa)	7.15	6.123	5.934	6.256
^b Calculated b ^C Data include			ly published (Wiebe	e, et al., <u>1932</u>)
		AUXILIARY	INFORMATION	
METHOD/APPARATUS/PRO	CEDURE:		SOURCE AND PURITY OF M	ATERIALS:
Two cylinders of capacity, respect with water to thr The nitrogen was larger and the sm successively for before water samp from the smaller analysis. The la used as a reservo	ively were ce-fourth bubbled th aller cyli several ho bles were t cylinder f trger cylin ir. The	filled capacity. rough the nder urs aken or der was		Impurities are caces of oxygen.
experiments were approached from both under and supersaturation.		ESTIMATED ERROR:		
		$\delta T/K = \pm 0.05$ $\delta S/S = \pm 0.005$, authors' estimate		
			REFERENCES: 1. Wiebe, R.; Gadd Jr. Ind. Eng. C 927.	ly, V.L.; Heins, C. Chem. <u>1932</u> , 24,
	_			

Wate	er
------	----

			vva	iter		1;
COMPONENTS :				ORIGIN	AL MEASUREMENTS:	
	(1) Nitrogen; N ₂ ; [7727-37-9]		Van	Slyke, D. D.; Dil	lon, R. T.;	
(2) Wat	er, H ₂ 0; [7]	732-18-51		Ma Ma	rgaria, R.	
127 1140	<i>c</i> , n ₂ , <i>i</i> , <i>i</i> ,	,52 10 5,		J. B	iol. Chem. <u>1934</u> ,	105, 571-96.
VARIABLES:				PREPAR	RED BY:	
1/K	= 298-311				R. Battino	
EXPERIMENT	AL VALUES:			L		
		_b,	_ a	41 -	2 C (3 ()	2 - d - 3 -
T∕°C	т ^а /к	P ⁻ /rumHg	P_ P_	/kPa 2	$10^{2}\alpha^{C}/cm^{3}$ (STP) cm ³ atm ⁻¹	$\frac{10^2 \alpha^{20}/\text{cm}^3 (\text{STP})}{\text{g}^{-1} \text{H}_2 \text{O}}$
25	298.15	580		7.3	1.469	1.473
25 25	298.15 298.15	580 587		7.3	1.475 1.483	1.479 1.487
25	298.15	587	-	78.3	1.483	1.487
25	298.15	589		8.5	1.480	1.484
25 25	298.15 298.15	589 589		78.5 78.5	1.486 1.485	1.490 1.489
25	298.15	589		8.5	1.485	1.489
38	311.15	564.5		5.26	1.272	1.281
		AUX	ILIARY	INFORM	ATION	• <u>••••••••</u> ••
ETHOD/APPA	ARATUS/PROCEDU	RE :		SOURCE	AND PURITY OF MATER	IALS:
The wate	r was satur	ated with gas	5	(1)	From air.	
using th Method o	e rotating of Austin	double tonome t al.(1). 2-	ter	(2)	"Freshly distille	eđ. "
Was allo	wed for sat	uration. The	2	(2)	TTODUTL ATOUTTO	
amount o	f dissolved	nitrogen was	5			
Van Slyk	ed using th e and Neill	e method of				
	e and Nerri	(2) •				
				2007		
				ESTIMA	TED ERROR:	
					= ±0.04 = ±0.01, compile:	's estimate
				REFERE	NCES :	
				1. Au	stin, J.H.; Culle	en, G.E.;
				На	stings, A.B.; McI	Lean, F.C.;
				Pe J.	ters, J.D.; Van S Biol. Chem. <u>1922</u>	уке, D.D. . 54. 134.
				2. Va	n Slyke, D.D.; Ne	eil, J.M.
				J.	Bioł. Chem. <u>1924</u>	, 61, 523.
			1			

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Witrogen; N ₂ ; [7727-37-9]	Hawkins, J. A.; Shilling, C. M.
(2) Water; H ₂ O; [7732-18-5]	J. Biol. Chem. <u>1936</u> , 113, 273-8.
VARIABLES:	PREPARED BY:
T/K = 311 P/MPa = 0.1-0.6	R.Battino
EXPERIMENTAL VALUES:	
T/K P/atm	P/MPa $10^{5}x_{1}^{a}$ $10^{2}\alpha^{b}$
311.15 0.939	0.0951 1.281 0.0958 1.259
311.15 0.945 311.15 1.955	0.0958 1.259 0.1981 1.299
311.15 3.921	0.3973 1.261
311.15 5.958 311.15 6.042	0.6037 1.246 0.6122 1.270
311.15	1.028 ^c 1.269 ^c
a Mole fraction solubility (c	calculated by compiler) at 101.325 Pa
partial pressure of gas.	
^b Bunsen coefficient. Each v	value is average of duplicate runs.
^C Average value.	
	LIARY INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS;
Procedure followed is that of Austin, et al., (1). This is t	-ho
Van Slyke approach. Also deter	- No details given
mined nitrogen solubility in ox	
and dog blood.	
	ESTIMATED ERROR:
	BUTTATED ERROR.
	$\delta \alpha / \alpha = \pm 0.015$, compiler's estimate.
	REFERENCES :
	1. Austin, J.H.; Cullin, C.E.;
	Hastings, A.B.; MacLean, F.C.;
	Peters, J.P.; Van Slyke, D.D.
	Hastings, A.B.; MacLean, F.C.; Peters, J.P.; Van Slyke, D.D. J. Biol. Chem. <u>1922</u> , 54, 134.

COMPONENTS:	ORIGINAL MEASUREMENTS:		
(1) Nitrogen; N ₂ ; [7727-37-9]	Morrison, T. J.; Billett, F.		
(2) Water; H ₂ O; [7732-18-5]	J. Chem. Soc. <u>1952</u> , 3819-22.		
_			
VARIABLES:	PREPARED BY:		
T/K = 286 - 346			
	R. Battino		
EXPERIMENTAL VALUES:			
T/K^a Mole Fraction ^b 105x ₁	Ostwald Coeff. ^C 10 ² L S	so ^d	
285.65 1.477		18.37	
288.65 1.385 293.45 1.280		17.22 15.89	
298.65 1.190		14.76	
303.15 1.112		13.77	
308.75 1.030 314.75 0.9702		L2.74 L1.97	
319.55 0.9364		L1.53	
324.15 0.9156	_	11.25	
328.65 0.9029 336.95 0.8781		L1.07 L0.72	
345.65 0.8677	-	L0.54	
^a Temperature reported to 0.1°C. ^b Mole fraction solubility at 101.3 calculated by compiler. ^c Ostwald coefficient calculated by ^d S _o is the solubility in cm ³ at states 1000 g of water at a total gas property.	v compiler. andard temperature and pr		
	INFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS	S;	
Solvent is degassed by thorough boiling. It then flows in a thin film down a glass spiral and into a buret system containing the gas to be dissolved. Equilibrium is rapidly attained. Flow rates may be varied over a wide range without affecting the solubility. The solvent serves as its own indicator in the gas buret and volumes read on the burets are used to calculate the solubility The method is described in reference		te gave the	
(1). The present paper describes an improved degassing section based	ESTIMATED ERROR: $\delta S_{S_{1}} = \pm 0.005$, estimat	e of	
on the vapor-pump principle.	<pre></pre>	by authors.	
	REFERENCES: (1) Morrison, T. J.; Bil J. Chem. Soc. <u>1948</u> ,	lett, F. 2033-5.	

COMPONENTS:	ORIGINAL MEASUREMENTS:		
(1) Nitrogen; N ₂ ; [7727-37-9]	Suciu, S. N.; Zoss, L. M.; Sibbitt, W. L.		
(2) Water; H ₂ O; [7732-18-5]	Am. Soc. Mech. Eng. Paper No. 53-A-64, Presented at the Annual Meeting, New York, <u>1953</u> .		
VARIABLES:	PREPARED BY:		
	H. L. Clever		
EXPERIMENTAL VALUES:			
0 ² H ₁ -5 ² R ₁ (445), w/A111101100 t/ ⁴ F	t/'F N ₂ Partial Pressure/lb in ⁻¹		
The authors prepared the figures above gen in cm ³ (STP) g^{-1} H ₂ O as a function pressures (left); as a function of ter pressures (middle), and as a function different temperatures (right). They w	of temperature at several total nperature at a dozen nitrogen partial of nitrogen partial pressure at ll		
Pray, H. A.; Schweickert, C. E.; Minn itute Reprot BMI- T-25; Ind. Eng. Cher	ick, B. H. Battelle Memorial Inst- n. 1952,44, 1146 - 1151.		
Goodman, J. B.; Krase, N. W. Ind. Eng	g. Chem. <u>1931</u> , 23, 401.		
Saddington, A. W.; Krase, N. W. J. An	n. Chem. Soc. <u>1934</u> , 56, 353 - 361.		
Zoss, L. M. Ph. D. thesis, Purdue Un			
McKee, O. G. Ph. D. thesis, Purdue Un			
Suciu, S. N. Ph. D. thesis, Purdue Un			
AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:		
	ESTIMATED ERROR:		
	REFERENCES :		
L			

COMPONENTS:	ORIGINAL MEASUREMENTS:		
(l) Nitrogen; N ₂ ; [7727-37-9] (2) Water; H ₂ O; [7732-18-5]	Clever, H. L.; Battino, R.; Saylor, J. H.; Gross, D.M. J. Phys. Chem. <u>1957</u> , 61, 1078-82.		
VARIABLES:	PREPARED BY:		
T/K = 298	R. Battino		
EXPERIMENTAL VALUES:	L		
T/K 10 ⁵ 3	$10^2 \beta^b$		
298.15 1.1	35 1.47		
gas (calculated by compile:	t 101.325 Pa partial pressure of c).		
^b Bunsen coefficient.			
	<i>,</i>		
	INFORMATION		
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:		
A modification of the apparatus of Morrison and Billett (1) was used. The degassed liquid flows in a thin film through the gas down a 6 ft. absorption spiral. Gas uptake is measured on a gas buret where the solvent is the confining medium. See reference 1 for details	No details given.		
	ESTIMATED ERROR:		
	$\delta \alpha / \alpha = \pm 0.01$, compiler's estimate.		
	REFERENCES:		
	 Morrison, T. J.; Billett, F. J. Chem. Soc. <u>1948</u>, 2033; <i>ibid.</i>, <u>1952</u>, 3819. 		

COMPONENTS:	ORIGINAL MEASUREMENTS:		
<pre>(1) Nitrogen; N₂; [7727-37-9] (2) Water; H₂O; [7732-18-5]</pre>	Farhi, L. E.; Edwards, A. W. T.; Homma, T.		
	J. Appl. Physiol. <u>1963</u> , 18, 97–106.		
VARIABLES:	PREPARED BY:		
T/K = 276-310	R. Battino		
EXPERIMENTAL VALUES:			
	$10^{2}L^{a,c}$ $10^{2}\alpha^{d}$		
3.1 276.25 1.76 26.8 299.95 1.15			
27.15 300.30 1.1	50 1.567 1.425		
32.0 305.15 1.08 32.05 305.20 1.07			
37.05 310.20 1.02			
^b Mole fraction solubility at 101. ^c Ostwald coefficient. ^d Bunsen coefficient in units of c	cm ³ (STP) cm ⁻³ atm ⁻¹ .		
AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:		
The Van Slyke method was used in	(1) From air.		
conjunction with gas chromatography.	(2) Distilled.		
	ESTIMATED ERROR:		
	$\delta \alpha / \alpha = \pm 0.01$, compiler's estimate $\delta T/K = \pm 0.05$.		
	REFERENCES:		

COMPONENTS:			ORIGINAL ME	CASUREMENTS:
(1) Nit	rogen; N ₂ ; [7727-37-	9]	Klots, C	. E.; Benson, B. B.
(2) Wat	er; H ₂ O; [7732-18-5]		J. Marin Res.)	e Res. (Sears Found. Marine <u>1963</u> , 21, 48-57.
VARIABLES:			PREPARED BY	:
T/K	= 275-300		R. Bat	tino
EXPERIMENTAL				de
T ^a /K	Mole Fraction ^b 10 ⁵ x1	Ostwald 10	l Coeff. 2 _L	Bunsen Coeff. ^d Henry's Law ⁶ $10^{2}\alpha$ $10^{-4}K$

^{Ta} /K	fole Fraction ² 10 ⁵ x ₁	Ostwald Coeff. 10 ² L	Bunsen Coeff. $10^{2}\alpha$	10 ⁻⁴ K
275.01	1.846	2.313	2.297	5.417
275.33	1.833	2.299	2.281	5.453
275.36	1.829	2.293	2.275	5.467
275.86	1.809	2.273	2.251	5.528
276.51	1.776	2.237	2.210	5.627
276.90	1.753	2.210	2.181	5.704
276,98	1.749	2.207	2.176	5.718
277.96	1.706	2.160	2.123	5.861
278.40	1.686	2.138	2.098	5.929
279.04	1.671	2.124	2.079	5.984
279.07	1.664	2.115	2.070	6.010
280.03	1.635	2.085	2.034	6.114
280.81	1.603	2.050	1.994	6.238
282.08	1.562	2.007	1.943	6.400
282.38	1.552	1.996	1.931	6.441
283.25	1.519	1.959	1.889	6.583 ⁻
284.18	1.492	1.930	1.855	6.704
285.40	1.462	1,900	1.818	6.840
285.92	1.445	1.881	1.797	6.918
287.07	1.415	1.849	1.759	7.067
288.08	1.389	1.821	1.727	7.199
289.08	1.367	1.798	1.699	7.315
289.99	1.344	1.773	1.670	7.440
290.97	1.318	1.745	1.638	7.587
292.64	1.287	1.712	1.598	7.776
			continued on	following pag

AUXILIARY INFORMATION METHOD/APPARATUS/PROCEDURE: SOURCE AND PURITY OF MATERIALS: Two bulbs of ca. 300 cm³ capacity are (1) Nitrogen - "Tank" grade with connected by two stopcocks. Degassed about 0.1% each oxygen and water is introduced into one bulb. argon. The volumes of both are known to better than 0.05%. The stopcocks be-(2) Water - "distilled" tween the bulbs are opened, about one-half of the water is moved into the gas bulb and the apparatus agitated in a thermostat for up to 48 hours. The bulbs are placed upright and the saturated water and gas phases isolated. The undissolved gas is removed (via a Toepler pump) and its ESTIMATED ERROR: pressure, volume and temperature measured in the dry state to deter-Precision $\delta \alpha / \alpha = \pm 0.002$, Author's mine the number of moles of gas The moles of dissolved undissolved. estimate. gas are similarly determined. The constancy of the gas mass in a given **REFERENCES:** experiment was about 0.05%. Solubilities are calculated from the known volumes and quantities with appropriate corrections for gas non-ideality.

COMPONENTS:		ORIGINAL	L MEASUREMENTS	3:	
(1) Nitrogen; N ₂ ; [7727-37-9]		Klots, C	Klots, C. E.; Benson, B. B.		
(2) Water; H ₂ O; [7732-18-5]			J. Marine Res. (Sears Found. Marine Res.) <u>1963</u> , 21, 48-57.		
EXPERIMENTAL VALUES:	con	tinued			
Иole Fract T ^a /K 10 ⁵ х ₁	ion ^b Ostwald 10 ² L	Coeff. ^C	Bunsen Coeff $10^{2}\alpha$	d Henry's Law ^e 10-4 _K	
293.331.271294.411.246295.271.232296.291.207297.201.197298.221.183299.251.164300.161.149	1. 1. 1. 1. 1.	596 553 525 516 503 582 565	1.579 1.547 1.530 1.498 1.485 1.468 1.444 1.424	7.864 8.028 8.113 8.288 8.354 8.453 8.453 8.584 8.711	
	T ^a /K	a (Ar)	/α(N ₂) ^f		
	275.50 276.17 279.91 282.10 283.71 284.40 286.34 288.16 290.76 292.45 293.37 295.54 297.53 298.74 299.87 T ^a /K	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	$\begin{array}{c} 234 \\ 232 \\ 222 \\ 209 \\ 200 \\ 199 \\ 190 \\ 176 \\ 168 \\ 160 \\ 158 \\ 150 \\ 143 \\ 137 \\ 137 \\ 137 \\ 7 \alpha \left(N_2\right)^{q} \\ 238 \\ 207 \end{array}$		
	285.71 294.97 300.43	2.	207 147 132		
 ^a Calculated by compare b Mole fraction solution calculated by compare constant of the solution of the sol	bility at 101,32 ler. calculated by - data original at - data original t - data origin t state of the second fraction solubi ability to nitro briginal mixture cically.	5 Pa (1 at compiler. ly reporte ally report the fugacit lity. gen solubi of roughl s spectrom	d as. ted as. y of nitrogen lity expressed y 50:50 composition	in atmospheres, d as Bunsen sition.	

COMPONENTS:	ORIGINAL MEASUREMENTS:		
(1) Nitrogen; N ₂ ; [7727-37-9]	Douglas, E.		
(2) Water; H ₂ O; [7732-18-5]	J. Phys. Chem. <u>1964</u> , 68, 169-74.		
WARY AND TO THE REAL PROPERTY AND THE REAL P			
VARIABLES:	PREPARED BY:		
T/K = 276-303 P/KPa = 101.325	R. Battino		
EXPERIMENTAL VALUES:	a d e f		
T ^a /K Mole Fraction ^b Ostwald Coeff. 10 ⁵ x ₁ 10 ² L	^C Bunsen Coeff. ^d No.Pts ^e Range in ^f $10^2 \alpha$ $10^2 \alpha$		
276.25 1.762 2.217	2.192 3 2.187-2.197		
280.98 1.575 2.015 284.83 1.460 1.894	1.959 10 1.951-1.966 1.816 5 1.812-1.817		
284.83 1.460 1.894 293.10 1.254 1.672	1.558 10 1.550-1.565		
302.65 1.093 1.500	1.354 10 1.348-1.363		
a			
^a Temperature reported to 0.01°C.			
^b Mole fraction solubility at 101.325 calculated by compiler.	kPa (1 atm) partial pressure of gas		
^c Ostwald coefficient calculated by c	ompiler.		
^d Bunsen coefficient.			
	that temperature. Value reported as		
Bunsen coefficient is an average of	these measurements.		
^f The range in the replicate measurem	ents.		
AUXILIARY	INFORMATION		
METHOD / APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS;		
The apparatus and procedures are	(1) Nitrogen - no comment by author.		
based on the Scholander microgaso-	(2) Water - double distilled.		
metric apparatus (1). This version uses one arm with an expanded solvent	(2) Water - double distilled.		
reservoir. Degassed water is			
introduced into this reservoir and sealed over mercury. The water is			
then tipped into the absorption			
chamber. Gas is introduced and the entire apparatus is shaken in a			
water thermostat (controlled to			
0.01°C). Gas and liquid volumes are read on a micrometer syringe by	ESTIMATED ERROR:		
displacement of mercury.			
	$\delta \alpha / \alpha = \pm 0.003$, estimate by author. $\delta T/K = \pm 0.02$, estimate by author.		
	REFERENCES:		
	(1) Scholander, P.F. J. Biol. Chem.		
	<u>1947</u> , 167, 235.		

23

COMPONENTS:			ORIGINAL MEASUREMENT	rs:
(1) Nitrogen; N ₂ ; [7727-37-9]			Enns, T.; Scholander, P. F.; Bradstreet, E. D.	
(2) Water; H ₂ O; [7732-18-5]			J. Phys. Chem. <u>1965</u> , 69, 389-91.	
		J. rhys. chem.	1905, 07, 389-91.	
VARIABLES:			PREPARED BY:	<u> </u>
T/K = 298 P/MPa (hydrostatic) = 0-10			C-T.A. Chen	•
EXPERIMENTAL VALUES: P ^a /atm	P ^b /MPa	P ^C /mm Ho	g P ^C /mm Hg	P ^C /mm Hg
			= 298.15	
0	0	733	705	732
34	3.45	773	744	769
68 102	6.89 10.34	803 843	777 811	806.5 844
^a Hydrostatic pr	essure.			
^b Calculated by	compiler.			
c The values in	the table a	re the nit	rogen equilibrium	n pressures in units
of mm Hg. The the nitrogen e			ect of the hydrost	tatic pressure on
	-	-		
		·····		· · · · · · · · · · · · · · · · · · ·
		AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROC	CEDURE:		SOURCE AND PURITY O	F MATERIALS;
Water was gas-ex				
desired initial	experiment. Nitrogen at the desired initial pressure was			
	dissolved in water at a constant temperature. The equilibrium		No detai	ils given.
vessel was shaken for 0.5 to 1 hr. After that, the water was transferred				
to a syringe whi	ch has a te	flon		
tube attached to it. The pressure developed within the tube was then				
read on a mercur	y manometer	•		
			ESTIMATED ERROR:	
			REFERENCES :	
	•			

	ORIGINAL MEASUREMENTS:	
(1) Nitrogen; N ₂ ; [7727-37-9]	Murray, C. N.; Riley, J. P.; Wilson, T. R. S. Deep-See Research <u>1969</u> , 16, 297-310.	
(2) Water; H ₂ O; [7732-18-5]		
VARIABLES:	PREPARED BY:	
T/K = 274-304 P/kPa = 101.325	R. Battino	
EXPERIMENTAL VALUES: Mole fraction ^b T ^a /K 10 ⁵ x ₁	Ostwald Coeff. ^C 10 ² L	Bunsen Coeff. ^d $10^{2}\alpha$
273.73 1.875	2.337	2.332
275.92 1.782	2.199	2,217
278.10 1.686	2.136	2.098
280.02 1.615	2.060	2.009
282.30 1.538	1.977 1.912	1.913 1.837
284.23 1.477 288.03 1.375	1.802	1.709
293.33 1.254	1.672	1.557
297.52 1.175	1.588	1.458
303.86 1.075	1.482	1.332
AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE:	••	
The apparatus was a modification of	SOURCE AND PURITY OF MA	TERIALS:
the design by Ben-Naim and Baer (1). Degassed water is forced by centrifugal action up two outside tubes of the absorption vessel and down a central tube contacting the gas along the way. Gas uptake is read on a gas buret system. The whole apparatus is thermostatted to 0.012°C. The degassing apparatus is a modification of the design of Battino and Evans (2)	(1) Nitrogen - Brit white spot gr	cish Oxygen Company rade (99.9%). of impurity were),005% Ar.
Decassed water is forced by centrifugal action up two outside tubes of the absorption vessel and down a central tube contacting the gas along the way. Gas uptake is read on a gas buret system. The whole apparatus is thermostatted to 0.012°C. The degassing	<pre>(1) Nitrogen - Brit white spot gr Maximum levels 0.001% O₂ and ((2) Water - distill</pre>	cish Oxygen Company rade (99.9%). of impurity were),005% Ar.
Decassed water is forced by centrifugal action up two outside tubes of the absorption vessel and down a central tube contacting the gas along the way. Gas uptake is read on a gas buret system. The whole apparatus is thermostatted to 0.012°C. The degassing apparatus is a modification of the design of Battino and Evans (2)	(1) Nitrogen - Brit white spot gr Maximum levels 0.001% O ₂ and 0	tish Oxygen Company rade (99.9%). of impurity were 0.005% Ar. Led
Decassed water is forced by centrifugal action up two outside tubes of the absorption vessel and down a central tube contacting the gas along the way. Gas uptake is read on a gas buret system. The whole apparatus is thermostatted to 0.012°C. The degassing apparatus is a modification of the design of Battino and Evans (2) utilizing a magnetically driven	<pre>(1) Nitrogen - Brit white spot gr Maximum levels 0.001% O₂ and O (2) Water - distill ESTIMATED ERROR: δT = ±0.02K, estimat δα/α = ±0.0019, est</pre>	tish Oxygen Company rade (99.9%). of impurity were).005% Ar. Led
Decassed water is forced by centrifugal action up two outside tubes of the absorption vessel and down a central tube contacting the gas along the way. Gas uptake is read on a gas buret system. The whole apparatus is thermostatted to 0.012°C. The degassing apparatus is a modification of the design of Battino and Evans (2) utilizing a magnetically driven	(1) Nitrogen - Brit white spot gr Maximum levels 0.001% O_2 and ((2) Water - distill ESTIMATED ERROR: $\delta T = \pm 0.02K$, estimation $\delta \alpha / \alpha = \pm 0.0019$, est REFERENCES: (1) Ben-Naim, A.; Ba	cish Oxygen Company rade (99.9%). of impurity were 0.005% Ar. led ate by compiler. cimate of authors mer, S. Thans.
Decassed water is forced by centrifugal action up two outside tubes of the absorption vessel and down a central tube contacting the gas along the way. Gas uptake is read on a gas buret system. The whole apparatus is thermostatted to 0.012°C. The degassing apparatus is a modification of the design of Battino and Evans (2) utilizing a magnetically driven	(1) Nitrogen - Brit white spot gr Maximum levels 0.001% O_2 and ((2) Water - distill ESTIMATED ERROR: $\delta T = \pm 0.02K$, estimation $\delta \alpha / \alpha = \pm 0.0019$, est	cish Oxygen Company rade (99.9%). of impurity were 0.005% Ar. led ate by compiler. cimate of authors mer, S. Trans. 53, 59, 2735-8. ans, F. D. Anal.

COMPONENTS:	ORIGINAL MEASUREMENTS:				
(1) Nitrogen; N ₂ ; [7727-37-9]	Power, G.G.; Stegall, H.				
(2) Water; H_2O ; [7732-18-5]	J. Appl.Physiology, <u>1970</u> , 29, 145-9.				
MADT ADT 700 -					
VARIABLES: T/K = 310	PREPARED BY:				
174 - 510	C.L. Young.				
EXPERIMENTAL VALUES:					
	* *				
T/K Bunsen coefficient, S.D. No. of measurement α/cm^3 (STP) $cm^{-3}atm^{-1}$					
310.15 0.01257 0.	00009 4				
* Standard deviation.					
· Standard deviation.					
AUXILIARY	INFORMATION				
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:				
5 to 12 cm ³ samples placed in a	(1) Matheson sample, purity				
stirrer cell and gas, saturated with water vapor passed through	better than 99.7 mole per cent.				
water for 30-60 mins. Samples	cent.				
of saturated liquid withdrawn and transferred to Van Slyke apparatus.					
Dissolved gas removed under reduced pressure.					
pressure.					
	ESTIMATED ERROR:				
	L'STIFATED ERROR:				
	$\delta T/K = \pm 0.1$				
	REFERENCES:				

COMPONENTS:	OPTOTNAL ACTIONS		
	ORIGINAL MEASUREMENTS: Spink, T. J.		
(1) Nitrogen; N ₂ ; [7727-37-9]			
(2) Water; H ₂ O; [7732-18-5]	M.S. Thesis, Oregan State University, Corvallis, OR, <u>1971</u> .		
VARIABLES:	PREPARED BY:		
T/K = 285-299 P/MPa (hydrostatic) = 0-0.20	C-T. A. Chen		
EXPERIMENTAL VALUES:			
t/°C T ^a /K P ^b =0(0 MPa)	P=l atm(0.1 MPa) P=2 atm(0.2 MPa)		
10 ⁶ x ₁ 10 ³ β ⁶	c 10 ⁶ x ₁ 10 ³ $_{\beta}^{c}$ 10 ⁶ x ₁ 10 ³ $_{\beta}^{c}$		
Mixed System			
12.3 285.45 18.78 22.9	95 33.88 21.08 56.30 23.35		
19.6 292.75 18.08 22.5	50 34.27 21.32 53.32 22.11		
25.5 298.65 15.96 19.9	95 33.01 20.54 48.60 20.16		
Unmixed System			
25.5 298.65 15.7			
AUXILIARY	INFORMATION		
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS;		
The saturation chamber was a six	(1) Notherson must state up la		
inch piece of Pyrex glass pipe, four inches in diameter. The	<pre>(1) Matheson pre-purified grade, >99.997% purity.</pre>		
nitrogen entered tangentially at the bottom and exitted from the top where a manometer was connected for pressure measurement. Water samples were drawn after five days and the dissolved nitrogen	(2) Doubly distilled.		
Concentration measured by a Varian Aerograph 2100 chromatograph. A			
different experiment was also			
performed where the gas entered the chamber from the top of the	ESTIMATED ERROR:		
chamber and no mixing was allowed.	$\delta x_1/x_1 = \pm 0.2$, compiler's estimate.		
	REFERENCES:		
Í			

Water

.

COMPONENTS:			ORIGINAL MEASUREMENTS:
(1) Nitro	gen; N ₂ ; [7727-37-9]]	Wilcock, R. J.; Battino, R.
	; H ₂ O; [7732-18-5]		Nature <u>1974</u> , 252, 614-5.
	2		
VARIABLES:			PREPARED BY:
т/к =	: 298		R. Battino
		· · · ,· - , ·	
EXPERIMENTAL			h
	T/K l	0 ⁵ x ₁ (N ₂) ⁶	$10^{5} x_{1} (0_{2}/N_{2})^{b}$
	298.15	1,166	1.775
1	298.15	1.166	1.779 1.757
	298.15		1.757
2			
			1.325kPa partial pressure of gas.
^D 1101 50.	e fraction, but for 5 mol per cent nitro	a mixtu: ogen.	re of 49.5 mol per cent oxygen and
	.	-	
·			
		AUXILIARY	INFORMATION
METHOD/APPAR	ATUS/PROCEDURE:	<u></u>	SOURCE AND PURITY OF MATERIALS:
Degassed	water is flowed slo	wly	(1) No details given.
containin	n absorption spiral og the gas. As the o	gas	(2) Distilled.
dissolves	the uptake is dete: Measurements are	rmined	
at consta	nt pressure. Detail reference (1).		
grven m	Telefence (1).		
			ESTIMATED ERROR:
			$\delta x_1/x_1 = \pm 0.01$, compiler's estimate $\delta T/K = \pm 0.05$, compiler's estimate.
]			
			REFERENCES: (1) Battino, R.; Evans, F. D.;
			Danforth, U. F. J. Am. Oil
			Chem. Soc. <u>1968</u> , 45, 830.

ţ

COMPONENTS:

(1) Nitrogen; N₂; [7727-37-9]

ORIGINAL MEASUREMENTS:

Cosgrove, B. A.; Walkley, J.

VARIABLES: $T/K = p_1/kPa =$	278.15 - 313.15 101.325	PREPARED BY:	H. L. Clever
XPERIMENTAL VALUES:			-
	Temperature	Mol Fraction	
	<i>T/</i> K	10 ⁴ <i>x</i> ₁	
	278.15 283.15 288.15 293.15 298.15 303.15 308.15 313.15	0.1692 0.1513 0.1372 0.1275 0.1175 0.1116 0.1062 0.09986	-
7 20 ml malin	CEDURE:	ront	RITY OF MATERIALS: en. No information.
(sublimation tech to a previously e saturation cell i ated controlled (The gas is disper constantly stirre by a course, frit uration is obtain	CEDURE: ne of degassed solve inique) is transfer evacuated (10 ⁻⁺ mmHg mmersed in an insu- (± 0.01 K) water ba- sed through the ed solution at 1 at- ted glass disc. Sa- hed within a few inalysis the solution to under 1 atm gas	SOURCE AND PU red (1) Nitroge 11- (2) Water.	en. No information.
A 20 ml volum (sublimation tech to a previously e saturation cell i ated controlled (The gas is disper constantly stirre by a course, frit uration is obtain hours. Prior to a is allowed to sit pressure for 1 ho A saturated sa from the saturati greaseless, gas t al) Gilmont syrin is injected to "w stripped and then	CEDURE: ne of degassed solve inique) is transfer evacuated (10 ⁻⁺ mmHg mmersed in an insu- (± 0.01 K) water ba- sed through the ed solution at 1 at ted glass disc. Sa- hed within a few inalysis the solution to under 1 atm gas pur. mple is withdrawn on cell using a light (2.500 ± 0.000 lige. A 0.250 ml sam ret" the frit. It i	SOURCE AND PU Yent (1) Nitroge (1) Nitroge (2) Water. (2) Water. (3) (2) Water. (4) (5) ESTIMATED ERR $\delta x_1/x$ S REFERENCES:	en. No information. No information.

30	Nitrogen Solubili	ties up to 200 kPa
COMPONE	NTS:	ORIGINAL MEASUREMENTS:
(1) N	litrogen; N ₂ ; [7727-37-9]	Cosgrove, B. A.; Walkley, J.
(2) W	Mater-d ₂ ; D ₂ O; [7789-20-0]	J. Chromatogr. <u>1981</u> , 216, 161 - 7.
VARIABL		PREPARED BY:
	T/K = 278.15 - 313.15 $p_1/kPa = 101.325$	H. L. Clever
EXPERIM	ENTAL VALUES:	I
	Temperature	Mol Fraction
	T/K	10 ⁴ <i>x</i> ₇
	278.15 283.15	0.1862 0.1691
	288.15	0.1561
	293.15 298.15	0.1467 0.1335
	303.15 308.15	0.1249 0.1170
	313.15	0.1069
MERLOD		INFORMATION
A 2	APPARATUS/PROCEDURE: 0 ml volume of degassed solvent	SOURCE AND PURITY OF MATERIALS;
(subl)	imation technique) is transferre previously evacuated (10 ⁻⁴ mmHg)	d (1) Nitrogen. No information
satura	ation cell immersed in an insul- controlled water bath (\pm 0.01 K)	(2) Water-d ₂ . No information.
The ga	as is dispersed through the	
byac	antly stirred solution at 1 atm course, fritted glass disc. Sat-	
	on is obtained within a few . Prior to analysis the solution	
	lowed to sit under 1 atm gas ure for 1 hour.	
Asa	aturated sample is withdrawn	ESTIMATED ERROR:
	the saturation cell using a eless, gas tight (2.500 ± 0.001	$\delta x_1 / x_1 = \pm 0.015$ (compiler)
ml) Gi	ilmont syringe.A 0.250 ml sample jected to "wet" the frit. It is	
stripp	ped and then four 0.500 ml	REFERENCES:
to the	es are injected sequentially in- e cell. The stripped gas is	
dried	before entering the column. The s analyzed on a dual filament	
conduc	ctivity detector. Calibrations oure gas are made before and	
	each series of runs.	

Seawater

COMPONENTS:	EVALUATOR:
(1) Nitrogen; N ₂ ; [7727-37-9] (2) Seawater	Chen-Tung A. Chen School of Oceanography Oregon State University
	Corvallis, OR 97331 U.S.A. February 1982

CRITICAL EVALUATION:

Nitrogen solubility measurements covering a wide range of salinity and temperature have been made by Tornoe (1), Dittmar (2), Hamberg (3), Fox (4), Rakestraw and Emmel (5), Benson and Parker (6), Douglas (7,8), and Murray, Riley and Wilson (9). The first three are only of historical interest because of the comparatively crude techniques used (9,10). The results of Fox (4) and Rakestraw,(5) are more precise but apparently suffer from systematic errors (9). Benson and Parker (6) did not measure the nitrogen solubility directly but only reported the ratio of solubility of nitrogen to argon or oxygen. Because of these limitations, these three are cited here but are excluded from further analysis.

The first accurate nitrogen solubility measurements on water and seawater were carried out by Douglas (7, 8) and later confirmed by Murray, Riley and Wilson (9). Since the data of these workers are similar in precision and have been shown to agree well (9,11) their results were combined to form the data base for this study. The following equation is used to represent the Bunsen solubility coefficient with a standard deviation of 5.4×10^{-5} units (approximately 0.4%):

 $\ln C = 59.7745 - 76.7685/(T/100 \text{ K}) - 88.327 \ln (T/100 \text{ K})$ $+ 19.5287 (T/100 \text{ K}) + S [(7.1485 \times 10^{-3} - 3.9793 \times 10^{-2}/(T/100 \text{ K})]$ (1)

where T is the absolute temperature and S is the salinity in parts per thousand.

It should be pointed out that neither Douglas (7, 8) nor Murray, Riley and Wilson (9) corrected their data for the gas dissolution effect on the volume of the aqueous phase (11). Although their original experimental data have been compiled in this study, corrected values were used in the least squares fit. The corrections were made according to the following equation (Weiss, personal communication, 1979):

$$\Delta = \frac{273.15\Phi_{\rm v}}{22404\ \rm T} \tag{2}$$

In the present study, the partial molal volume of nitrogen (Φ_v) in water is taken as 33.3 cm³/mol (12), and the volume of 1 mole of nitrogen is taken as 22404 ml at STP.

For practical oceanographic purposes, it is convenient to use an equation for the nitrogen solubilities from water-saturated air at 1 atm total pressure in ml(STP)/1 as a function of salinity and temperature (11, 13, 14). In order to take full advantage of the precision of the data, it is also desirable to express the solubility unit in terms of μ mol/kg, since it is pressure and temperature independent (11, 13, 14). Consequently, the combined data sets have also been fit to the following equations (15, 16):

 $\ln C (ml/l) = -29.1410 + 53.3161/(T/100 K) + 7.499 \ln (T/100 K) + 1.8298 (T/100 K) + S (7.365 x 10^{-3} - 4.038 x 10^{-2}/(T/100 K)) \pm 0.4\%$ (3)

continued on following page

- (1) Nitrogen; N₂; [7727-37-9]
- (2) Seawater

EVALUATOR:

Chen-Tung A. Chen School of Oceanography Oregon State University Corvallis, OR 97331 U.S.A. February 1982

CRITICAL EVALUATION:

continued

ln C (μ mol/kg) = -29.2710 + 58.6753/(T/100 K) + 10.3401 ln (T/100 K) + 1.5045 (T/100 K) + S (7.116 x 10⁻³ -4.186 x 10⁻²/(T/100 K)) ± 0.4% (4)

The vapor pressures for pure water and seawater have been calculated using the formulas given by Besley and Bottomley (17, for pure water) and by Robinson (18, for seawater). The densities have been calculated using the equation of Millero, Gonzalez and Ward (19).

Limited information is available on the pressure effect of nitrogen solubility $in_{k}^{\mu\nu\rho}$ (12, 20-24), but nothing is available for seawater. It is the evaluator's opinion that, within the precision of these measurements, the pure water data can be applied to seawater. Since no seawater data are available, the more recent pure water data are compiled for reference but should be used for seawater only with caution.

References

- 1. Törnoe, H. The Norwegian North Atlantic Expedition 1876-78, V.24, Grondahl Christiania, <u>1880</u>.
- Dittmar, W. "Report on the Scientific Results of the Exploring Voyage of H.M.S. Challenger. Physics and Chemistry", V.1 H. M. Stationery Office. London, <u>1884</u>.
- 3. Hamberg, A. J. Prakt. Chem. 1886, 33, 433-41.
- 4. Fox, C. J. J. Trans. Faraday Soc., 1909, 5, 68-87.
- 5. Rakestraw, N. W.; Emmel, V. M. J. Phys. Chem. <u>1938</u>, 42, 1211-5.
- 6. Benson, B. B.; Parker, P. D. M. J. Phys. Chem. 1961, 65, 1489-96.
- 7. Douglas, E. J. Phys. Chem. 1964, 68, 169-74.
- 8. Douglas, E. J. Phys. Chem. 1965, 69, 2608-10.
- 9. Murray, C. N.; Riley, J. P.; Wilson, T. R. S. Deep-Sea Res. <u>1969</u>, 16, 297-310.
- 10. Coste, J. H. J. Phys. Chem. 1927, 31, 81-7.
- 11. Weiss, R. E. Deep-Sea Res. 1970, 17, 721-35.
- 12. Enns, T.; Scholander, P. F.; Bradstreet, E. D. J. Phys. Chem. <u>1965</u>, 69, 389-91.
- 13. Craig, H.; Weiss, R. F. Earth Planet. Sci. Lett. 1968, 5, 175-83.
- Kester, D. in "Chemical Oceanography" V. 1, 2nd edition, J. P. Riley and G. Skirrow, eds., Academic Press, <u>1975</u>.
- Chen, C. T. in "Solubility Data Series. V. 4. Argon", H. L. Clever, ed., Pergamon Press, <u>1980</u>.
- Chen, C. T. in "Solubility Data Series V.7, Oxygen and Ozone", R. Battino, ed., Pergamon Press, <u>1981</u>.

continued on following page

COMPO	NENTS:		
(1)	Nitrogen;	^N 2;	[7727-37-9]
(2)	Seawater		

	EVALUATOR:	
	Chen-Tung	A. Chen
ĺ	School of	Oceanog

School	of	Oce	ean	ogra	iphy	
Oregon	Sta	ate	Un	iver	:sit	y
Corvall	is,	, OI	ર	9733	31	
U.S.A.						
Februar	y]	L982	2			

continued

17. Besley, L.; Bottomley, G. A. J. Chem. Thermodyn. <u>1973</u>, 5, 397-410.

18. Robinson, R. A. J. Mar. Biol. Ass. U.K. <u>1954</u>, 33,449-55.

- 19. Millero, F. J.; Gonzalez, A.; Ward, G. K. J.Mar. Res. <u>1976</u>, 34, 61-93.
- 20. Goodman, J. B.; Norman, W. K., Ind. Eng. Chem, 1931,23, 401-4.
- 21. Frolich, P. K.; Tauch, E. J.; Hogan, J. J.; Peer, A. A. Ind. Eng. Chem., <u>1931</u>, 23, 548-50.
- Wiebe, R.; Gaddy, V. L.; Heins, C. Jr., Ind. Eng. Chem., <u>1932</u>, 24, 927.
- Wiebe, R.; Gaddy, V. L.; Heins, C. Jr. J. Am. Chem. Soc. <u>1933</u>, 55, 947-53.

. -

24. Spink, T. J. M. S. thesis, Oregon State Univ., 1971.

COMPONENTS:	<u></u>		ORIGIN	AL MEASUR	EMENTS:	
(1) Nitrogen; N	2; [7727-37-9]		Fox,	C.J.J		
(2) Seawater			Trans	. Farado	ay Soc. <u>1909</u>	, 5, 68-87.
VARIABLES:	······································		PREPAR	ED BV.	· · · · · · · · · · · · · · · · · · ·	······································
T/K = 273	-301 y/%= 0-20			C-T.A. (Chen	
EXPERIMENTAL VALUES	3:			· ••• • •••	<u></u>	
т ^а /к	Chlorinity (%)	s ^b (cc/100)0cc)	г ^а /к	Chlorinity (%)	(cc/1000cc)
273.15	0 4 8 12 16 20	18.6 17.7 16.9 16.0 15.1 14.3	7 90 :)3 _8	289.15	0 4 12 16 20	13.45 12.94 12.44 11.93 11.73 10.92
277.15	0 4 8 12 16 20	17.0 16.2 15.5 14.7 14.0 13.2)2 27 51 : 75	293.15	0 4 8 12 16 20	12.59 12.15 11.70 11.25 10.81 10.36
281.15	0 4 8 12 16 20	15.6 14.9 14.3 13.6 13.0 12.3	8 2 6 2 0	297.15	0 4 8 12 16 20	11.86 11.46 11.07 10.67 10.27 9.87
			CC	ontinued	l on followi	ng page
		AUXILIARY	INFORMA	TION	<u> </u>	
METHOD/APPARATUS/PF	ROCEDURE:		SOURCE	AND PURI	TY OF MATERIAL	S:
A modified form (1) method. The acidified before The dry air was burette to a gla the gas-free sea was subsequently resulting decrea burette measured changes.	e seawater was e boiling and w introduced fro ass bulb contai awater. The bu y shaken and th ase of air in t	veighing. om a ning nlb ne the		pecified	l air and sea	awater
			ESTIMA	TED ERROF	:	
			§∕\$	$5 = \pm 0.0$	004, compiler	r's estimate
					er, т.Z. Р , 176	nysik. Chem.
	······					·

COMPONENTS: (1) Nitrogen; N₂; [7727-37-9] (2) Seawater ORIGINAL MEASUREMENTS: Fox, C. J. J. Trans. Faraday Soc. <u>1909</u>, 5, 68-87.

EXPERIMENTAL VALUES:

continued

т ^а /К	Chlorinity (왕)	s ^b (cc/1000cc)	т ^а /к	Chlorinity (%)	S (cc/1000cc)
	0	14.45		0	11,25
	4	13.88		4	10.89
	8	13.30	301.15	8	10.52
285.15	12	12.72		12	10.16
	16	12.15		16	9.80
	20	11.57		20	9.44

^a Original temperature reported in °C to 0.01°C.

^b Number of cc of nitrogen (containing Argon) absorbed by 1000cc of seawater from a free dry atmosphere at 760 mmHg total pressure.

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Rakestraw, N. W.; Emmel, V. M.
(2) Seawater	J. Phys. Chem. <u>1938</u> , 42, 1211-5.
VARIABLES:	PREPARED BY:
T/K = 275-298 Chlorinity/%。 = 16-20	R. Battino
EXPERIMENTAL VALUES:	
$t/^{\circ}C$ T^{a}/K $10^{2}\alpha^{b}$	$/cm^3$ (STP) cm ⁻³ atm ⁻¹
Chlorinity/%, 16.03 2.11 275.26 1.42	
7.08 280.23 1.26	8 1.240 1.208
12.15 285.30 1.15 18.03 291.18 1.03	3 1.005 0.989
25.05 298.20 0.91	9 0.900 0.881
^a Calculated by compiler.	
^b Bunsen coefficient.	
^C Chlorinity in grams of chlori	ne per kg of seawater.
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS;
Duplicate samples were saturated	(1) From air.
with air and then "analyzed for nitrogen" by a method unspecified.	(2) "Natura" seawater, diluted as needed.
	ESTIMATED ERROR:
	$\delta \alpha / \alpha = \pm 0.01$, compiler's estimate.
	REFERENCES:

COMPONENTS: (1) Nitrogen; N ₂ ; (2) Seawater Nitrogen/Argon Nitrogen/Oxygen VARIABLES: T/K = 273 - 303 Concentration EXPERIMENTAL VALUES: Salinity/%. 0.066 0.084 0.11 0.102 32.59 32.565 32.60 32.65 32.	and n ratios. • t/°C T 0.0 2	Benso J. Ph PREPARED	BY: R. E	NTS: Parker, P.D.M. . <u>1961</u> , 65, 1489-96 Battino	5.
(2) Seawater Nitrogen/Argon Nitrogen/Oxyger VARIABLES: T/K = 273 - 303 Concentration EXPERIMENTAL VALUES: Salinity/%. 0.066 0.066 0.084 0.11 0.102 32.59 32.565 32.60 32.65 32.58	and n ratios. • t/°C T 0.0 2	J. Ph	BY: R. E	. <u>1961</u> , 65, 1489-96	5.
Nitrogen/Argon Nitrogen/Oxyges VARIABLES: T/K = 273 - 303 Concentration EXPERIMENTAL VALUES: Salinity/%. 0.066 0.066 0.084 0.11 0.102 32.59 32.565 32.65 32.65 32.65 32.65 32.65 32.65 32.65 32.65 32.97 34.70 34.70 34.70 34.67 34.695 34.65 35.11	n ratios. • t/°C T 0.0 2	PREPARED	BY: R. E		5 .
T/K = 273 - 303 Concentration EXPERIMENTAL VALUES: Salinity/%. 0.066 0.066 0.084 0.11 0.102 32.59 32.565 32.60 32.65 32.58 32.65 32.65 32.65 32.65 32.65 32.58 32.65 32.65 32.58 32.65 32.58 32.65 32.59 34.70 34.70 34.67 34.695 34.65 35.11	0.0 2		R. E	3attino	
Concentration EXPERIMENTAL VALUES: Salinity/% 0.066 0.066 0.084 0.11 0.102 32.59 32.565 32.60 32.65 32.59 34.70 34.70 34.67 34.67 34.65 35.11	0.0 2	a/K		3attino	
Salinity/%. 0.066 0.066 0.48 0.066 0.084 0.11 0.102 32.59 32.565 32.60 32.65 32.65 32.65 32.65 32.65 32.97 34.70 34.70 34.70 34.67 34.695 34.65 35.11	0.0 2	^a /K	N /A-b		
$\begin{array}{c} 0.066\\ 0.066\\ 0.48\\ 0.066\\ 0.084\\ 0.11\\ 0.102\\ 32.59\\ 32.565\\ 32.60\\ 32.65\\ 32.65\\ 32.65\\ 32.65\\ 32.65\\ 32.97\\ 34.70\\ 34.70\\ 34.70\\ 34.71\\ 34.67\\ 34.695\\ 34.695\\ 34.65\\ 35.11\\ \end{array}$	0.0 2	a/K	h /a b		
$\begin{array}{c} 0.066\\ 0.48\\ 0.066\\ 0.084\\ 0.11\\ 0.102\\ 32.59\\ 32.565\\ 32.60\\ 32.65\\ 32.65\\ 32.65\\ 32.65\\ 32.65\\ 32.97\\ 34.65\\ 34.70\\ 34.71\\ 34.67\\ 34.695\\ 34.695\\ 34.65\\ 35.11\end{array}$			^N 2 ^{/ AL}	N ₂ /0 ₂ ^b	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	78.2 83.2 93.2 98.2 03.2 73.2 78.2 83.2 93.2 93.2 73.2 78.2 98.2 93.2 93.2 93.2 93.2 93.2 93.2 93.2 93.2 93.2 93.2 93.2 93.2 93.2 93.2	37.92 38.29 38.42 38.66 39.03 39.43 39.71 37.78 37.78 38.00 37.51 ^C 38.47 38.78 39.25 37.52 37.64 38.05 37.52 37.64 38.05 37.96 38.28 38.89 39.23 37.74 continue	1.836 1.825 1.826 1.859 1.859 1.941 1.941 1.987 1.833 1.803 1.830 1.821 ^C 1.907 1.934 1.954 1.845 1.816 1.828 1.833 1.858 1.947 1.926 1.860 d on following pag	·
	AUXILIARY	 INFORMATI	ON		
METHOD/APPARATUS/PROCEDURE Four flasks containi water and water of s 32, 34, and 36%, wer in contact with the over sixty hours. S removed for salinity The dissolved gas wa other samples and th Na/O ₂ ratios were de mass spectrometer tu tive to the ratios. procedure are given	ng distilled alinities ca. thermostatted atmosphere for amples were determinations. s extracted from e Na/Ar and termined on a ned to be sensi- Details of the	 (1) Frcc 78. 0.0 (2) Dis wat wat ESTIMATE: δ (N₂/Art 	om air of .08% N ₂ ; .032% CO ₂ , stilled, ter dilute ter. D ERROR: $c)/(N_2/Ar)$ = ±0.15	<pre>DF MATERIALS: compositions: 20.94% O₂, 0.93% A traces of rare ga sea water, or sea ed with distilled = ±0.015, authors estimate.</pre>	ses.

COMPONENTS:					ORIGINAL MEASUREMENTS:			
(1) Nitro	Nitrogen; N ₂ ; [7727-37-9]			Benson, B.B.; Parker. P.D.M.				
	ogen/1	Argon ar Oxygen 1			J. 1	^p hys. Chem.	<u>1961</u> , 65, 1	489-96.
CRITICAL EVAL	UATION:			conti	nued			4
S	alinit	ty/%。	t/°C	т ^а	/к	N2/Arb	N2/02 ^b	
_	36.] 36.] 36.] 36.2 36.2	L7 L6 L7 23	$5.0 \\ 10.0 \\ 15.0 \\ 20.0 \\ 25.0 \\ 30.0$	28 28 29 29	8.2 3.2 8.2 3.2 8.2 3.2 8.2 3.2	37.72 37.80 37.96 38.45 38.73 39.24	1.821 1.803 1.830 1.870 1.914 1.918	
	b N2 ea ob αN C Th d Th eq (1) (2 (3)	$\frac{1}{2} / \alpha_{\text{Ar}} = \frac{1}{2} / \alpha_{\text{Ar}} $	<pre>sies found e ratio o (20.94/7 (0.93/78 at rejecte ors give t = 1.800 = 1.807 + 1.5%o. = 37.90 : = 37.48</pre>	re the in s f the 8.08) .03)(ed by the fo + 0.00 + 0.00	ea wat Bunse (N ₂ /O ₂ N ₂ /Ar) the au 11owir 0533 (396 (t 590 (t	•	d with air. nts, α, use ares smooth % for pure for salini to 1.5% for	To ed water. ties pure

.

ORIGINAL MEASUREMENTS:			
Douglas, E.			
J. Phys. Chem. <u>1965</u> , 69, 2608-10.			
1			

EXPERIMENTAL VALUES:

continued							
t/°C	т ^а /к	$10^2 \alpha^{\rm C}/{\rm cm}^3$ (STP)		cm ⁻³ atm ⁻¹	<u></u>		
		C1%• =	20.985				
2.10 5.92 10.15 15.05 19.41 24.88 29.99	275.25 279.07 283.30 288.20 292.56 298.03 303.14	1.689 1.566 1.442 1.319 1.227 1.140 1.076	1.692 1.563 1.436 1.320 1.222 1.139 1.078	1.698 1.567 1.442 1.320 1.231 1.139 1.071			

^a Calculated by compiler.

^b Chlorinity is in grams of chlorine per kilogram of seawater.

• --

^c Bunsen coefficient.

• •

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Douglas, E.
(2) Seawater	J. Phys. Chem. <u>1965</u> , 69, 2608-10.
VARIABLES:	PREPARED BY:
T/K = 275-303 Chlorinity/%g = 15-21	R. Battino
	N. Bulling
EXPERIMENTAL VALUES:	
	$^{3}(\text{STP})$ cm ⁻³ atm ⁻¹
Cl %• = 1	15.376
1.50 274.65 1.857 6.46 279.61 1.661	1.858 1.852 1.667 1.670
10.00 283.15 1.544	1.550 1.551
14.81 287.96 1.416	1.422 1.417
19.99 293.14 1.299 25.08 298.23 1.209	1.303 1.304 1.210 1.203
29.83 302.98 1.137	1.144 1.139
	18.604
2.17 275.32 1.746 6.80 279.95 1.588	1.748 1.746 1.589 1.592
10.25 283.40 1.485	1.476 1.485
14.51 287.66 1.373	1.367 1.370
19.41 292.56 1.264 25.27 298.42 1.161	1.269 1.268 1.168 1.165
29.72 302.87 1.109	1.111 1.107
	continued on following page
	INFORMATION
	• · · · · ·
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Used a modification of the Scholander microgasometric apparatus described in an earlier paper (1) of the author's. Gas-free seawater is equilibrated with the gas. All volumes are determined on a micro- meter buret. The apparatus takes about 8 cm ³ of seawater.	 Mass spectrometer analysis showed 0.04% O₂ and less than 0.03% Ar. Gas-free, millipore filtered, stored at 4°C.
	ESTIMATED ERROR:
	$\delta \alpha / \alpha = \pm 0.005$, author's estimate $\delta Cl \$ to ± 0.05 %, author's estimate
	$\delta T/K = \pm 0.01$, compiler's estimate
	REFERENCES:
	(1) Douglas, E. J. Phys. Chem. <u>1964</u> , 68, 169-74.

		Seav			4
COMPONENTS: (1) Nitrogen; N ₂ ; (2) Seawater	[7727-37-9]	ORIGINAL MEASUREMENTS: Murray, C.N.; Riley, J.P.; Wilson, T.R.S. Deep-Sea Research <u>1969</u> , 16, 297-310.			
	274-304 ty/%o= 0-40		PREPARED BY: R. Bat	tino	
EXPERIMENTAL VALUES:			<u> </u>		
	Chlorinity /۴۰	10 ² a ^a	Salinity /%。	Chlorinity /%。	10 ² a ^a
0.00 3.45 5.80 16.26 37.70	(273.73 K) 0.00 1.91 3.21 9.00 20.87	2.277 2.230 2.083	0.00 6.10 15.45 23.90 34.00	(280.02 K) 0.00 3.38 8.55 13.23 18.82	2.009 1.927 1.801 1.700 1.587
2.77°C 0.00 8.65 18.80 26.42 33.20	(275.92 K) 0.00 4.79 10.41 14.62 18.38	2.078 1.938	9.15°C 0.00 10.01 13.55 20.73 31.15	(282.30 K) 0.00 5.45 7.50 11.48 17.24	1.913 1.784 1.739 1.663 1.546
4.95°C 0.00 11.36 16.25 26.58 32.55	(278.10 K) 0.00 6.29 9.00 14.71 18.02	1.934 1.873 1.740	11.08°C 0.00 7.65 9.60 21.50 26.60 34.25	(284.23 K) 0.00 4.24 5.31 11.90 14.72 18.96	1.837 1.746 1.722 1.598 1.540 1.456
			contin	ued on follow	ing page
	AU	JXILIARY	INFORMATION		<u></u>
METHOD/APPARATUS/PRO The Ben-Naim an was used. In t by high-speed s liquid up two s return via a ce Equilibrium is (in the wet sta a gas buret sys contains drawin description of procedure.	d Baer (1) app his a vortex ca tirring forces ide-arms to ntral arm. rapid. Gas up te) is measured tem. The papes gs and a detail	aused take d on r Led	(l) Briti "whit	JRITY OF MATERIA sh Oxygen Comj e spot" grade ce seawater	pany,
			ESTIMATED ERI $\delta T/K = \pm 0$ $\delta S \& =$ $\delta \alpha / \alpha = \pm 0$ REFERENCES: 1. Ben-Na Farada	.02 ±0.02	S. Trans. 59, 2735-8.

		· · · · · · · · · · · · · · · · · · ·						
COMPONENTS:		ORIGINAL MEASUREMENTS:						
	ogen; N ₂ ; [7727-37		, С.N. son, Т.		ey, J.P	• ;		
(2) Seaw	ater	Deep-S	sea Res	earch	<u>1969</u> ,	16, 29	97-310.	
EXPERIME	NTAL VALUES:				·			
		continued	1					
Salinity /%0	Chlorinity /%。	10 ² α ^a	Sa1 /%		С	hlorin %°	ity	10 ² α ^a
14.8	8°C (288.03 K)			24.3	7°C (2	97.52	К)	
0.00 8.35	0.00	1.709 1.604		00 15		0.00		1.458 1.329
23.90	4.62 13.23	1.604		15 50		11.90		1.266
26.75	14.81	1.424	31.	85		17.63		1.189
34.05	18.83	1.365	35.	81		19.82		1.158
	8°C (293.33 K)	1 669	~	30.7 00	1°C (3	03.86		1 222
0.00 9.94	0.00 5.50	1.557 1.451		00 65		0.00 6.45		1.332
21.89	12.12	1.351	23.	95		13.26		1.147
23.52	13.02	1.335		20		19.49		1.074
36.28	20.08	1.232	40.	05		22.17		1.050
The tabl	e below gives the a ent as a function o	authors' sm of temperat Chlorini	ure and	chlor	of th inity.	e Buns	en	
T/K t/°C	0 2 4	6 8	10	12	14	16	18	20
271.15 -1								19.00
272.15 -2 273.15 0		21 92 21 3						18.54
274.15 1	23.10 22.47 21.91	21.37 20.8	3 20.31	19.78	19.25	18.73	18.21	17,68
275.15 2	22.54 21.91 21.37	20.85 20.3	3 19.82	19.31	18.80	18,29	17.79	17.29
	22.00 21.38 20.86	20.35 19.8	5 19.35	18.86	18.37	17.88	17.39	16.91
277.15 4 278.15 5	21.48 20.88 20.37 20.99 20.39 19.90	19.87 19.3	8 18.91 4 18.48	18.02	17.56	17.48	16.65	16.19
279.15 6	20.52 19.93 19.45	18.98 18.5	2 18.07	17.62	17.18	16.73	16.30	15.86
280.15 7	20.06 19.49 19.02							
281.15 8 282.15 9	19.63 19.06 18.60 19.22 18.66 18.21							
283.15 10	18.82 18.27 17.83	17.42 17.0	1 16.61	16.21	15,81	15.42	15.03	14.64
284.15 11	18.44 17.90 17.47	17.07 16.6	7 16.28	15.89	15.51	15.13	14.75	14.37
285.15 12	18.07 17.54 17.13							
286.15 13 287.15 14	17.72 17.20 16.79 17.38 16.87 16.48	16.41 16.0	3 15.66	15.30	14,93	14.57	14.22	13.86
288.15 15	17.06 16.56 16.17	15.80 15.4	4 15.09	14.75	14.40	14.06	13.72	13.38
289.15 16	16.75 16.26 15.88	15.52 15.1	7 14.83	14.49	14,15	13.82	13.49	13,16
290.15 17	16.45 15.97 15.60	15.25 14.9	1 14.57	14.24	13.91	13.59	13.27	12.94
291.15 18	16.17 15.69 15.33							
292.15 19 293.15 20	15.89 15.43 15.07 15.63 15.17 14.82	14./4 14.4	L 14.09 R 13 97	13.78	13.46	13.15	12,85	12.54
294.15 21	15.37 14.93 14.59	14.27 13.9	5 13.65	13.35	13.05	12.75	12.46	12.16
295.15 22	15.13 14.69 14.36	14.05 13.7	4 13.44	13.14	12.85	12.56	12.27	11.99

continued on following page

.

.

COMPONE				·								
	OMPONENTS: (1) Nitrogen, N : [7727-37-9]							ORIGINAL MEASUREMENTS:				
	<pre>(1) Nitrogen; N₂; [7727-37-9] (2) Seawater</pre>						Murray Wils	, C.N. on, T.		у, Ј.Р	• 7	
(/							Deep-S	ea Res	earch	1969,	16, 29	7-310.
						[·	•	
	-											
EXPER	IMEN	TAL V	ALUES:			conti		。/ \			· · · · · · · · · · · · · · · · · · ·	
T/K	t/°	c o	2	4	6	8	nity (10	12	14	16	18	20
296.15	23	14.9	0 14.47	14.14	13.83	13.53	13.24	12.95	12.66	12.38	12.10	11.82
297.15			7 14.25 6 14.04									
299.15	26	14.2	5 13.84	13.54	13.25	12.96	12.69	12.41	12.14	11.87	11.61	11.34
	-		5 13.65									
301.15 302.15		13.6	5 13.47 7 13.29	13.00	12.72	12.46	12.19	11.94	11.68	11.42	11.17	10.92
303.15			9 13.12 2 12.96									
305.15			6 12.80									
306.15	33		0 12.65									
307.15	34	12.8	5 12.50	12.24	11.99	11.74	11.50	11.26	11.02	10.78	10.55	10.32
The fo		ing +	able gi	wor th			mootho					· · · · · · · · · · · · · · · · · · ·
solubi	Lity	in u	able gi nits of	cm ³ (STP)/L	n ³ fro	m an at	tmosphe	ere of	78.08	⁸ N ₂	
and 100)% r	elati	ve humi	dity.							-	
т/к	t/°	с 0	2	4	C1 6	nlorin 8	ity (°, 10	/。。) 12	14	16	18	20
271.15 272.15								16.13	15.69		14.82	
273.15	0 1		9 17.89 2 17.43									
275.15	2		3 16.99									
276.15	3		5 16.57									
277.15	4 5	16.6	4 16.17 5 15.78	15.78 15.41	15.39	15.01	14.65	14.28	13,90 13,59	13.54	13.18	12.81
279.15	6 7	15.8	3 15.42 L 15.07	15.05	14.68	14.33	13.98	13.63	13,29	12.94	12,61	12.27
	•											
281.15	8 9		7 14.73 14.41									
283.15			2 14.09 L 13.80									
285.15			13.51									
286.15	13	13.6	3 13.23	12.92	12.62	12.33	12.05	11.77	11.49	11.21	10.94	10.66
287.15			5 12.97) 12.71									
89.15	16	12.84	12.47	12.18	11.90	11.63	11.37	11.11	10.85	10.60	10.35	10.09
90.15	11		12.23									9.91
91.15 92.15			12.00								9.98 9.82	9.75 9.58
93.15	20	11.92	11.57	11.31	11.06	10.82	10.58	10.34	10.11	9.88	9.65	9.42
94.15 95.15			11.37 11.17					9.99	9.94 9.77	9.71 9.55	9.49 9.33	9.26 9.12
96.15	23	11.31	10.99	10.74	10.50	10.27	10.05	9.83	9.61	9.40	9.19	8.97
97.15	24	11.12	10.80	10.56	10.33		9.90	9.67 9.52	9.46 9.31	9.25 9.11	9.04	8.83
99.15	26	10.76	10.45	10.22	10.00	9.78	9.58	9.37	9.17	8.96	8.77	8.56
800.15	27	10.59	10.28	10.06	9.84	9.64	9.43	9.23	9.03	8.83	8.63	8.44

continued on following page

. 43

COMPONENTS: (1) Nitrogen; N ₂ ; [7727-37-9]						ORIG	INAL M	EASURE	MENTS:		_	
								.N.; R T.R.S		J.P.;		
(2) Seawater						Dee	p-Sea	Resear	ch <u>196</u>	<u>9</u> , 16,	297-3	310.
		<u></u>						<u></u>			<u></u>	
EXPER	IMENT	AL VALU	JES:		cont	inued						
					Chlori	nity	(%°)					
Т/К	t/°C	. 0	2	4	6	8	10	12	14	16	18	20
301.15		10.41		9.90		9.49 9.35	9.28	9.09	8.89	8.70	8.50	
303.15	30	10.09	9.82	9.60 9.46	9.40	9.20		8.82		8.45	8.26	8.07
305.15		9.79		9.32			8.75	8.57	8.39		8.03	
306.15 307.15		9.65 9.51	9.39 9.25	9.19 9.06			8.63 8.51	8.45 8.33	8.27 8.15	8.09 7.98	7.92 7.81	

COMPONENTS:

(1) Nitrogen; N₂; [7727-37-9]

(2) Electrolyte

(3) Water; H₂O; [7732-18-5]

EVALUATOR:

H. Lawrence Clever Department of Chemistry Emory University Atlanta, GA 30322 USA

1981, December

CRITICAL EVALUATION:

An Evaluation of the Solubility of Nitrogen in Aqueous Electrolyte Solutions.

Not enough workers have measured the solubility of nitrogen in any one aqueous electrolyte system over common ranges of concentration and temperature to recommend solubility values. Most of the available data are classed as tentative.

In order to have a common basis for comparison, where possible the solubility data have been converted to Sechenov (Setschenow) salt effect parameters at a nitrogen partial pressure of 101.325 kPa in the form

 $k_{sca}/dm^3 mol^{-1} = (1/(c_p/mol dm^{-3}))\log(\alpha^{\circ}/\alpha)$

where c_2 is the electrolyte concentration in mol dm⁻³, and α° and α are the Bunsen coefficients in pure water and electrolyte solution, respectively. The Ostwald coefficient ratio, L°/L , will give the same value, but the salt effect parameter is symbolized, k_{scL} . Both ratios are equivalent to a

molar gas solubility ratio, c_1°/c_1 , thus

$$k_{scc} = k_{sca} = k_{scL} = (1/(c_2/\text{mol } dm^{-3})) \log (c_1^\circ, sat/c_1, sat)$$

Other forms of the salt effect parameter will be found on the data sheets that follow this discussion. They include

 $k_{sms}/kg \text{ mol}^{-1} = (1/(m_2/\text{mol } kg^{-1}))\log(s^{\circ}/s)$ $k_{scx}/dm^3 \text{ mol}^{-1} = (1/(c_2/\text{mol } dm^{-3}))\log(x^{\circ}/x)$ $k_{smx}/kg \text{ mol}^{-1} = (1/(m_2/\text{mol } kg^{-1}))\log(x^{\circ}/x)$

where m_2 is the electrolyte molality, s°/s is the Kuenen coefficient ratio, and x°/x is the mole fraction gas solubility ratio usually calculated with respect to all ions in the solution. The Kuenen coefficient, s, is referenced to 1 g of water whether it is for pure water or the electrolyte solution. Thus the s°/s ratio is equal to a gas molality ratio m_1°/m_1 , and $k_{\rm SMM} = k_{\rm SMS}$. The density data required to convert the salt effect parameter from one form to another were taken from the *International Critical Tables*, McGraw-Hill Co., Inc., 1928, Vol. III.

The various Sechenov constants can be interconverted by use of the relationships

$$k_{scc} = \frac{m_2}{c_2} k_{smm} + \frac{1}{c_2} \log \left[\left(\frac{\rho^{\circ}}{\rho} \right) \left(\frac{(1000 + m_2 M_2)}{1000} \right) \right]$$
(1)

$$k_{scx} = \frac{m_2}{c_2} \quad k_{smx} = \frac{m_2}{c_2} \quad k_{smm} + \frac{m_2}{c_2} \left[\frac{1}{m_2} \left[\log \left(\frac{(1000 + vM_3m_2)}{1000} \right) \right] \right]$$
(2)

and

$$k_{\rm smx} = \frac{c_2}{m_2} k_{\rm scx} = \frac{c_2}{m_2} k_{\rm scc} + \frac{c_2}{m_2} \left[\frac{1}{c_2} \left[\log \left(\frac{(1000 + (\nu M_3 - M_2) c_2)}{1000 \rho^{\circ}} \right) \right] \right]$$
(3)

where ρ and ρ° are the densities of gas saturated electrolyte solution and pure water respectively, and v is the number of ions in the electrolyte formula. For very soluble gases the log terms above may need additional terms containing the gas concentrations in either molality or molarity.

COMPONENTS:	EVALUATOR:
(1) Nitrogen; N ₂ ; [7727-37-9]	H. Lawrence Clever Department of Chemistry
(2) Electrolyte	Emory University
(3) Water; H ₂ O; [7732-18-5]	Atlanta, GA 30322 USA
2	1981, December

The activity coefficient of the dissolved nitrogen, y_1 , is a function of the concentration of all solute species, which in the present systems are the electrolyte and the nonelectrolyte. At a given temperature log y_1 can be represented as a power series in c_1 and c_2

$$\log y_1 = \sum_{nm} k_{nm} c_1^n c_2^m$$
(4)

(5)

If it is assumed that for low concentrations of both nonelectrolyte, c_1 , and electrolyte, c_2 , the only important terms are the linear ones,

 $\log y_1 = k_1 c_1 + k_2 c_2$

The expression has been experimentally verified for moderately dilute solutions in which there is no chemical interaction between the solute species.

The measurements of the nonelectrolyte solubility in pure water, $c_{1,sat}^{\circ}$, and in a salt solution, $c_{1,sat}$, give directly the activity coefficient of the nonelectrolyte. Long and McDevit (8) show that

$$\log(y_1/y_1^\circ) = \log(c_{1,sat}^\circ/c_{1,sat}) = k_1(c_{1,sat}^\circ-c_{1,sat}^\circ) + k_2c_2$$
(6)

If the nonelectrolyte solubility values are low, as they generally are for a gas, the term in k_1 can be neglected, even though k_1 is similar in magnitude to k_2 . Thus for low nonelectrolyte concentration

 $\log(y_{1}/y_{1}^{\circ}) = \log(c_{1,sat}^{\circ}/c_{1,sat}) = k_{2} c_{2}$ (7)

The solubility data which are evaluated in this section do not always meet the requirements set forth above. Thus, the experimental Setschenow salt effect parameters, k_s , may not be equivalent to the theoretically important salt effect parameter, k_s .

Although for a given system the experimental values of k_{scc} , k_{sca} , and k_{scL} will have the same magnitude and units, there may be a unit problem when one tries to use equation (3). The constant k_2 will have inverse c_2 units, dm³ mol⁻¹, and k_1 will have inverse c_1 units. If the gas solubility is expressed as c_1 /mol dm⁻³, k_1 units will be dm³ mol⁻¹, but if the Bunsen or Ostwald coefficients are used for c_{1sat} and c_{1sat}° in equation 3, then k_1 will have units which are the inverse of the Bunsen or Ostwald coefficients, cm³ atm (cm³(STP))⁻¹ and cm³cm⁻³

A plot of log (α°/α) vs. c_2 is usually linear over moderate concentrations of the electrolyte. However, curvature of the plot is often seen at above moderate concentrations, and in extreme cases one observes regions of both salting-out and salting-in over different concentration regions of the same isotherm.

The salt effect parameters, $k_{sc\alpha}/dm^3$ mol⁻¹, are presented by several methods in the evaluation.

COMPONENTS: (1) Nitrogen; N ₂ ; [7727-37-9] (2) Electrolyte (3) Water; H ₂ O; [7732-18-5]	EVALUATOR: H. Lawrence Clever Department of Chemistry Emory University Atlanta, GA 30322 USA 1981, December

In the first method $k_{sc\alpha}$ values are calculated for each experimental determination, and a graph is prepared of $k_{sc\alpha}$ vs. c_2 . If the plot is linear and of zero slope, $k_{sc\alpha}$ is taken to be independent of concentration. In such cases an average value of $k_{sc\alpha}$ is given. If the plot is linear, but of non-zero slope, $k_{sc\alpha}$ is fitted to a linear equation in c_2 .

In the second method a graph is prepared of $\log(\alpha^{\circ}/\alpha) vs. c_2$. A linear plot shows no concentration dependence of the salt effect parameter and the slope is $k_{sc\alpha}$. Recently some workers have fitted such plots that show curvature to a function

$$\log(\alpha^{\circ}/\alpha) = k_{sc\alpha}^{\circ} c_2/(1 + k_{sc\alpha}^{\dagger} c_2)$$
(8)

In a sense the first method, in which the salt effect parameter is given by a linear function of concentration, $k_{SCM} = a + bc_2$, is equivalent to

$$\log(\alpha^{\circ}/\alpha) = (a + bc_{0})c_{0} = ac_{0} + bc_{0}^{2}$$
(9)

however, the constants should be redetermined from the $\log{(\alpha^{\circ}/\alpha)}$ and $c_{2}^{}.$ data.

Data on the solubility of nitrogen in aqueous electrolyte solutions are meager and, with a few exceptions, of poor quality. Solubility data are reported by more than one laboratory for only three systems. They are aqueous sulfuric acid, sodium chloride, and sodium sulfate. Overall there are data on about 25 systems.

The systems are given in the order of the standard arrangement for inorganic compounds used by the U. S. National Bureau of Standards publications. The number before each system is the standard order number for the electrolyte cation.

The general policy in evaluating salt effects on gas solubility has been to convert all salt effect data into sechenov salt effect parameters of the form $k_{\rm scc}/{\rm dm^3\ mol^{-1}}$ for purposes of comparison. The salt effect

parameter is defined in terms of the ratio of the solubility in pure water to the solubility in the salt solution. When available, the author's solubility in pure water is used, rather than Battino's recommended values (this volume, pp. 1-3), in the belief that the author's systematic errors may partially cancel in the ratio. However, the choice of the nitrogen solubility in pure water is important and can change the value of k scc especially when the electrolyte concentration is small. Further comments

2 Nitrogen + Sulfuric acid [7664-93-9] + Water

on this point will be made in several of the evaluations.

Both Christoff (2) and Bohr (3) report Ostwald coefficients of nitrogen in aqueous sulfuric acid solutions at temperatures near 293.15 K. The salt effect parameter, k_{scc} , decreases as the sulfuric acid concentration increases.

COMPONENTS: (1) Nitrogen; N ₂ ; [7727-37-9] (2) Electrolyte (3) Water; H ₂ O; [7732-18-5]	EVALUATOR: H. Lawrence Clever Department of Chemistry Emory University Atlanta, GA 30322 USA 1981, December

mol-1	neter, k _{scc} /dm ³	Salt Effect Para	Sulfuric Acid	T/K	
	Christoff	Bohr	$c_2/\text{mol dm}^{-3}$		
			0.0	294.03	
		0.096	2.45		
		0.075	4.45		
	0.056		4.63	293.15	
		0.070	5.35	293.35	
	0.024		9.52	293.15	
		0.050	10.15	294.25	
		0.041	12.4	294.65	
		0.033	14.8	293.95	
		0.011	17.15	294.05	
		0.005	17.9	294.25	
	-0.002		17.9	293.15	

At 17.9 mol dm^{-3} sulfuric acid Bohr's data indicates a small salting out, and Christoff's a small salting in. Both sets of data are classed as tentative with no reason to prefer one set over the other.

29 Nitrogen + Hydrated aluminum oxide [1333-84-2] + Water 41 Nitrogen + Hydrated ferric oxide [12259-21-1] + Water

The data of Shkol'nikova (11) are classed as tentative. She did not report a nitrogen in water solubility value. No salt effect parameters were calculated for the colloidal solutions.

93 Nitrogen + Magnesium sulfate [7487-88-9] + Water

Smith, Kelemen and Nagy (13) measured the solubility of nitrogen in 0, 1.25, and 2.49 mol dm⁻³ magnesium sulfate solutions at 303.15 K and a total pressure range of 1.5 to 7.0 MPa. The evaluator calculated values of $k_{\rm scc}$ assuming Henry's law was obeyed at each electrolyte concentration.

The nitrogen solubility was reported as mole fraction which was calculated with respect to the number of moles of electrolyte (formula) rather than the number of moles of ions. The salt effect parameters change little with concentration. The data are classed as tentative.

Т/К	Magnesium Sulfate c ₂ /mol dm ⁻³	Salt Effect Parameter k _{scc} /dm ³ mol ⁻¹	Standard Deviation $\sigma/dm^3 mol^{-1}$
303.15	1.25	0.222	0.012
	2.49	0.228	0.011

94 Nitrogen + Calcium chloride [10043-53-4] + Water

Smith, Kelemen, and Nagy (13) measured the solubility of nitrogen in 0, 0.50, 1.75, 3.50, and 5.60 mol dm⁻³ calcium chloride solutions at 303.15 K and a total pressure range of 12 to 73 bar. The evaluator calculated $k_{\rm SCX}$ and $k_{\rm SCC}$ values at four or five pressures at each concentration assuming Henry's law is obeyed. The nitrogen solubility was reported as mole fraction which was calculated with respect to moles of calcium chloride (CaCl₂) rather than respect to the moles of ions (Ca²⁺, Cl⁻). The salt effect parameter shows a definite decrease as the electrolyte concentration increases. The results are classed as tentative.

COMPONENTS:		EVALUATOR:			
(1) Nitrogen; N ₂ ; [77	27-37-9]		H. Lawrence Clever		
(2) Electrolyte			Department of Chemistry Emory University		
_	10 51	Atlanta, GA			
(3) Water; H ₂ O; [7732	-18-2]	1981, Decemb	ber		
				·	
CRITICAL EVALUATION:					
T/K	Calcium Chloride c ₂ /mol dm ⁻³	Salt Effect Parameter k _{scc} /dm ³ mol ⁻¹	Standard Deviation σ/dm ³ mol ⁻¹		
303.15	0.50 1.75 3.50 5.60	0.212 0.177 0.157 0.149	0.020 0.008 0.008 0.026		

96 Nitrogen + Barium chloride [10361-37-2] + Water

Braun (1) measured the solubility of nitrogen in water and in six solutions of barium chloride at molalities between 0.165 and 0.7707 mol kg^{-1} at five degree intervals from 278.2 to 298.2 K. The salt effect parameters calculated from the solubility data decreased with concentration and increased with temperature. The solubility parameters were greatest at the lower barium chloride concentrations and leveled off to values about 2/3 as large at the four higher concentrations. The variation of the salt effect parameter with concentration depends to some extent on the value of the solubility of nitrogen in water. The effect described above is not as pronounced when Battino's recommended nitrogen in water solubility is used instead of Barun's value. The increase of the parameter with temperature is contrary to normal behavior, thus the data are classed as doubtful. Average values of the parameter at barium chloride molalities from 0.35 to 0.77 mol kg^{-1} are below.

T/K	278.2	283.2	288.2	293.2	298.2
$k_{\rm scc}/\rm dm^3~mol^{-1}$	0.31	0.31	0.32	0.34	0.36

98 Nitrogen + Lithium chloride [7447-41-8] + Water

Morrison and Billett (9) measured the solubility of nitrogen in water and in one mol kg⁻¹ lithium chloride solution at four temperatures. Only the salt effect parameter based on the two solubility measurements was reported by the authors. They are classed as tentative. Values of k_{smx} , and k_{scc} are given below.

T/K	k _{smm} /kg mol ⁻¹	k _{smx} /kg mol ⁻¹	k _{scc} /dm ³ mol ⁻¹
285.75	0.125	0.140	0.135
303.15	0.095	0.110	0.105
322.55	0.084	0.099	0.095
344.85	0.092	0.107	0.104

99(1)Nitrogen + Sodium Hydroxide [1310-73-3] + Water

Levina and Stisbarovskaya (7) measured the solubility of nitorgen in 0, 0.5, and 4 mol dm^{-3} sodium hydroxide at ten temperatures between 273 and 513 K at a total pressure of 9.81 MPa. The authors calculated the solubility of nitrogen at a nitrogen partial pressure at 9.81 MPa.

The salt effect parameters, k_{scm} , calculated from the data by the evaluator show considerable scatter. No effort was made to calculate k_{scc} values since it is believed the uncertainty in the data is larger than the conversion factor. The data are classed as tentative in the 275 to 323 K range and doubtful at the high temperatures.

COMPONENTS: (1) Nitrogen; N ₂ ; [7727-37-9] (2) Electrolyte (3) Water; H ₂ O; [7732-18-5]			Departme Emory U	ence Clevent of Clant niversity , GA 303	nemistry /	USA		
	273 0.20 348 0.16			98 4	19	323 0.22 473 0.20	513 0.14	

99(2)Nitrogen + Sodium chloride [7647-14-5] + Water

There are seven papers on the solubility of nitrogen in aqueous sodium chloride solution. Four of the papers (1, 4, 9, 12) report measurements of a nitrogen partial pressure near 101.325 kPa (1 atm), and three (13, 14, 15) report solubility measurements at nitrogen partial pressures up to 7 MPa. Although there is some scatter in the calculated salt effect parameters from the data in the seven papers, the values are of similar, magnitude.

The salt effect parameter appears to decrease as the sodium chloride concentration increases. However, this trend depends to some extent on the value of the gas solubility in pure water chosen to calculate the solubility ratio. The choice of the value is more critical for dilute electrolyte solutions than concentrated solutions.

Braun (1) measured the solubility of nitrogen in 12 aqueous sodium chloride solutions over the 0.12 to 2.27 mol dm⁻³ concentration range at five degree intervals over the 278.2 to 298.2 K temperature range. The salt effect parameters calculated from the data decrease in magnitude as the sodium chloride concentration increases and increase in magnitude as the temperature increases. Both the concentration and temperature trends lead the evaluator to have doubts about the reliability of the data. At sodium chloride concentrations near 0.12 mol dm⁻³ the salt effect parameter is about 100 per cent greater than the values in the 1.0 to 2.2 mol dm⁻³ concentration range. The increase in $k_{\rm scc}$ magnitude with temperature is

definitely contrary to the normal behavior in this temperature range. Braun's value for the solubility of nitrogen in pure water is greater than the recommended value at 298.2 K and less than the recommended value at the other temperatures. The data are classed as doubtful.

Van Slyke, Dillon, and Margaria (4) measured the solubility of nitrogen in water and in 0.155 mol dm⁻³ sodium chloride solution at 298.15 and 311.15 K. The salt effect parameters calculated from their data are sensitive to the nitrogen in water solubility values used. Values of $k_{\rm scc}$ are given for both the Van Slyke *et al*. and the Battino recommended value of the nitrogen + water solubility. The data are classed as tentative, but they were not used in the smoothed data fit.

Morrison and Billett (9) measured the solubility of nitrogen in water and in one mol kg^{-1} sodium chloride solution at four temperatures between 285.75 and 344.85 K at atmospheric pressure. Their data are classed as tentative.

Mishnina, Avdeeva, and Bozhovakaya (12) made some measurements of their own, but also used the measurements of Morrison and Billett (9) to prepare a table of smoothed values of the Bunsen coefficient and the salt effect parameter for sodium chloride solutions up to saturation at five degree intervals from 283.15 to 393.15 K. They apparently assume the salt effect parameter is independent of the sodium chloride concentration. Since their data are already smoothed the comparison of their data with the data of others should be used with caution. The data are classed as tentative.

COMPONENTS:	EVALUATOR:
(1) Nitrogen; N ₂ ; [7727-37-9]	H. Lawrence Clever
2	Department of Chemistry
(2) Electrolyte	Emory University
	Atlanta, GA 30322 USA
(3) Water; H ₂ O; [7732-18-5]	1001 December
	1981, December

T/K		Salt Effec	t Parameter	, k _{scc} /đm³ mo	1-1	
	Braun ¹	Van Slyke, Dillon, Margaria	Morrison, Billett	Mishnina, Avdeeva, Bozhovakaya	Smith, et al.	Smoothed Values ⁶
278.15	0.158					
283.15	0.166			0.160		0.161
285.75			0.164			
288.15	0.168			0.148		0.150
293.15	0.185	•		0.137		0.141
298.15	0.295	$0.114^2/0.144^3$		0.129		0.134
303.15			0.132	0.121	0.1244	0.127
308.15				0.117		0.122
311.15		0.090²/0.117³				
313.15				0.113		0.118
318.15				0.109		0.115
322.55			0.118		-	
323.15				0.106	0.122⁵	0.113
324.65						
328.15				0.106		0.111
333.15				0.106		0.110
338.15				0.106		0.109
343.15				0.106		0.109
353.15						0.110
344.85			0.119			
363.15						0.113
373.15					_	0.118
375.65					0.1165	
398.15					0.132⁵	

 1 Average value of the salt effect parameter from Braun's data at sodium chloride concentrations between 1.17 and 2.27 mol dm⁻³. The standard deviations ranged from 0.006 to 0.009. The salt effect parameters based on Braun's data over the 0.12 to 0.75 mol dm⁻³ range were up to 100 per cent larger. The larger values were rejected. The use of Battino's recommended nitrogen in water solubilities increased the 298.15 K $\rm k_{SCC}$ value about 10 per cent and decreased the values at the other temperatures by 5 to 10 per cent.

 2 Values calculated using α° values of Van Slyke et al.

- 3 Values calculated using α° values based on Battino's recommended values (This volume, pp. 1-3.).
- ⁴ Smith, Kelemen, and Nagy (13).
- ⁵ O'Sullivan and Smith (15).
- ⁶ The smoothed values are based on a linear regression that weighted the Morrison and Billett (9) and the Smith *et al*. (13, 15) values two times and the Misnina *et al*. (12) values one time.

 (1) Nitrogen; N₂; [7727-37-9] (2) Electrolyte (3) Water; H₂O; [7732-18-5] 	EVALUATOR: H. Lawrence Clever Department of Chemistry Emory University Atlanta, GA 30322 USA 1981, December
---	--

Smith, Kelemen and Nagy (13), and O'Sullivan and Smith (14, 15) measured the solubility of nitrogen in water and in aqueous sodium chloride solution up to concentrations of 5.27 mol kg⁻¹ and temperatures from 303.15 to 398.15 K under nitrogen pressures up to near 7 MPa. They reported the nitrogen solubility as mole fraction, but it should be noted that they calculated the mole fraction on the basis of the formula (NaCl) not the moles of the individual ions (Na⁺, Cl⁻). The evaluator calculated salt effect parameters from their data assuming Henry's law behavior. The results agree with those of Morrison and Billett (9), and Mishnina *et al.* (12) at one molar sodium chloride. At 303.15 K the salt effect parameters from the data of Smith *et al.* (13, 15) decrease with the salt concentration. At other temperatures the parameter does not show a consistent change with concentration. See table below.

Sodium Chloride		k _{scc} /dm	3 mol ⁻¹	
$c_2/mol dm^{-3}$	303.15 K	324,65 K	375.65 K	398.15 K
1.00	0.124	0.122	0.116	0.132
2.7 4	0.113	0.120	0.124	0.126
5,47	0.098			

The smoothed values of k_{scc} shown in the earlier comparison table were obtained by a linear regression that weighted the Morrison and Billett and the Smith *et al*. values two times, and the Mishnina *et al*. values one time. The equation is

 $\ln k_{SGC} = -41.900 + 70.099/(T/100 \text{ K}) + 20.492 \ln (T/100 \text{ K}).$

The Smith et al. value at 398.15 K was omitted.

99(3)Nitrogen + Sodium sulfite [10579-83-6] + Water 99(4)Nitrogen + Sodium sulfate [7757-82-6] + Water

Yasunishi (18) measured the solubility of nitrogen in water and in up to ten^{*} concentrations of sodium sulfite and sodium sulfate between 0 and 1.0 mol dm⁻³ at 298.15 K. He made vapor pressure and solvent dilation corrections. The salt effect parameters calculated from his data show little variation with electrolyte concentration. The values were averaged. His results appear to be reliable and they are classed as tentative.

Smith, Kelemen, and Nagy (13) measured the solubility of nitrogen in 0, 0.50, 1.25, and 2.10 mol dm⁻³ sodium sulfate solution over the total pressure range of 1.5 to 7.0 MPa. The evaluator calculated the salt effect parameters assuming Henry's law is obeyed at each salt concentration. The nitrogen solubility was reported as mole fraction which was calculated with respect to the number of moles of electrolyte (Na₂SO₄), not the number of moles of ions (Na⁺, SO²⁻₄). The salt effect parameters, converted to k scc values, decrease in magnitude as the sodium sulfate concentration increases. The value at 0.50 mol dm⁻³ is about 4 per cent less than Yasumishi's value at 298.15 K which is a reasonable decrease for the five degree increase in temperature. The other values are significantly lower in value.

Both sets of data are classed as tentative, but the Yasunishi data are preferred.

different

COMPONENTS: (1) Nitrogen; N ₂ ; [7727-37-9] (2) Electrolyte (3) Water; H ₂ O; [7732-18-5]	EVALUATOR: H. Lawrence Clever Department of Chemistry Emory University Atlanta, GA 30322 USA 1981, December
--	--

Т/К	Electrolyte	Number of Determinations ¹	Concentration Range $c_2^{2/mol}$ dm ⁻³	Salt Effect Parameter k _{scc} /dm ³ mol ⁻¹
298.15	Na2SO3	11	0 - 1.04	$\overline{0.383 \pm 0.012^2}$
298.15	Na_2SO_4	8	0 - 1.08	0.353 ± 0.005^2
303.15	Na2SO4	2	0 - 0.5	0.339
		2	0 - 1.25	0.30
		2	0 - 2.10	0.24

¹ Includes measurement in pure water.

² Average ± standard deviation.

99(5)Nitrogen + Sulfuric acid [7664-93-9] + Sodium sulfate [7757-82-6] + Water

The single solubility value of Kobe and Kenton (6) is classed as tentative. A data sheet on a gas mixture of nitrogen, oxygen, and carbon dioxide is also classed as tentative.

99(6)Nitrogen + Sodium sulfite [10579-83-6] + Sodium sulfate [7757-82-6] + Water

Yasunishi (18), see 99(3) and (4) above, measured the solubility of nitrogen in a mixed electrolyte solution of varying concentration and ratio of sulfite and sulfate ion. The salt effect parameters for the mixtures fall between the values reported above for the single salt solutions. They are classed as tentative.

99(7)Nitrogen + Sodium bicarbonate [144-55-8] + Water 99(8)Nitrogen + Sodium carbonate [497-19-8] + Water

Van Slyke, Dillon, and Margaria (4) measured the solubility of nitrogen in water and in solutions of sodium bicarbonate and sodium carbonate of one concentration. The salt effect parameter values were calculated using the author's value of the solubility of nitrogen in water. The use of Battino's recommended nitrogen + water solubility value would decrease the k_{scc} values by 18 and 16 per cent respectively. (Values are 0.139 and 0.312).

<i>т/</i> к	Electrolyte	Number of Determinations	Concentration c ₂ /mol dm ⁻³	Salt Effect Parameter ¹ ^k scc ^{/dm³} mol ⁻¹
298.15	NaHCO ₃	4	0.153	0.170 ± 0.007
	Na2CO3	2	0.077	0.373 ± 0.006

¹ Average ± standard deviation.

COMPONENTS:	EVALUATOR:
(1) Nitrogen; N ₂ ; [7727-37-9]	H. Lawrence Clever Department of Chemistry
(2) Electrolyte	Emory University Atlanta, GA 30322 USA
(3) Water; H ₂ O; [7732-18-5]	1981, December

CRITICAL EVALUATION: 99(9)Nitrogen + Acetic acid [64-19-7] + Sodium acetate [127-09-3] + Metal (2+) acetate + Water

Brasted and Hirayama (10) measured the solubility of nitrogen in water and in aqueous mixtures containing 1.0 mol dm^{-3} acetic acid, 0.50 mol dm^{-3} sodium acetate, and several concentrations of a transition metal (2+) acetate. There is some confusion in the paper over the Bunsen and Ostwald coefficient definitions, but the solubility data are clearly given as Ostwald coefficients.

It is unfortunate that the authors did not measure the nitrogen solubility in just the acetic acid and sodium acetate mixture. Such a solubility value would have been helpful in understanding the influence of the metal (2+) acetate on the nitrogen solubility. The salt effect parameter was calculated by the evaluator on the basis of both total electrolyte molarity and on ionic strength. The trends in the salt effect parameter values show no systematic pattern with either molarity or ionic strength.

T/K			Salt Effect	Parameter
	M(2+) Acetate Cor c_4^{\prime}	Concentration ² c_4 /mol dm ⁻³	k _{scc} /dm ³ mol ⁻¹	k _{sic} /dm ³ mol ⁻¹
298.15	33. $Zn(C_2H_3O_2)_2$	0.15	0.169	0.116
	35. Hg (C ₂ H ₃ O ₂)	0.05	0.083	0.070
		0.15	0.113	0.077
	36. Cu(C ₂ H ₃ O ₂) ₂	0.05	0.169	0.143
		0.157	0.123	0.084
	37. Ni(C ₂ H ₃ O ₂) ₂	0.051	0.148	0.126
		0.15	0.098	0.067
	40. Co(C ₂ H ₃ O ₂) ₂	0.033	0.187	0.166
		0.10	0.155	0.116
	48. $Mn(C_2H_3O_2)_2$	0.05	0.145	0.123
	2322	0.15	0.123	0.084

¹ The number before the formula is the standard order number.

² The other concentrations are acetic acid, $c_2/mol \ dm^{-3} = 1.00$, and sodium acetate, $c_3/mol \ dm^{-3} = 0.50$. The acetic acid concentration was not used in the calculation of the k_{scc} and k_{slc} values.

100(1)Nitrogen + Potassium chloride [7447-40-7] + Water

Bikov (5) measured the solubility of nitrogen in 0, 0.5, 1.0, and 2.0 mol dm⁻³ aqueous potassium chloride solution per gram of solvent at a total pressure of 9.81 MPa at eight temperatures between 273 and 513 K. The author calculated the solubility per g of solution at a nitrogen partial pressure of 9.81 MPa apparently by subtracting the water vapor pressure from the total pressure and assuming Henry's law is obeyed.

Salt Solutions (Aqueous)

COMPONENTS:	EVALUATOR:
(1) Nitrogen; N ₂ ; [7727-37-9]	H. Lawrence Clever Department of Chemistry
(2) Electrolyte	Emory University Atlanta, GA 30322 USA
(3) Water; H ₂ O; [7732-18-5]	1981, December

CRITICAL EVALUATION:

The salt effect parameters, k_{scm} , calculated from the data by the evaluator showed scatter with respect to both the potassium chloride concentration and the temperature. The k_{scm} values are the average values for the three KCl solutions at each temperature. The data are classed as doubtful.

T/K 2 k _{scm} /dm ³ mol ⁻¹ 0								
--	--	--	--	--	--	--	--	--

100(2)Nitrogen + Potassium iodide [7681-11-0] + Water

Morrison and Billett (9) measured the solubility of nitrogen in water and in one mol kg⁻¹ potassium iodide solution at four temperatures between 285.75 and 344.85 K. The authors reported the solubility in water and the solubility parameter, k_{smm} , but not the solubility in the solution. The data are classed as tentative.

т/к	Salt Effect Parameter		
	k _{smm} /kg mol ⁻¹	k _{smx} /kg mol ⁻¹	k _{scc} /dm ³ mol ⁻¹
285.75 303.15 322.55 344.85	0.134 0.100 0.086 0.084	0.149 0.115 0.101 0.099	0.160 0.126 0.113 0.112

100(3)Nitrogen + Potassium carbonate [584-08-7] + Water

Schröder (17) measured the solubility of nitrogen in 0, 0.5, 1, 2, 4, and 6 mol dm⁻³ aqueous potassium carbonate solutions at six temperatures between 323 and 403 K at nitrogen partial pressures between 1.01 and 4.05 MPa (10 and 40 atm). Most of the results are presented in graphs, but some results are tabulated. Results from the present work were combined with results from an earlier Schröder paper (16) to calculate several k_{scc} values at the nitrogen partial pressure of 4.05 MPa.

T/K	Potassium Carbonate $c_2/mol dm^{-3}$	Salt Effect Parameter k_scc/dm ³ mol ⁻¹
323.15	0.5 1 2 0.5	0.272 0.263 0.240 0.477 0.456
	2 4 6	0.171, 0.329 ¹ 0.209 0.143

¹ Average 0.250.

The values at 363.15 for the 0.5 and 1 mol dm^{-3} potassium carbonate are classed as doubtful. The other values are classed as tentative.

EVALUATOR: COMPONENTS: (1) Nitrogen; N₂; [7727-37-9] H. Lawrence Clever Department of Chemistry (2) Electrolyte Emory University Atlanta, GA 30322 USA (3) Water; H₂O; [7732-18-5] 1981, December CRITICAL EVALUATION: References: Braun, L. Z. Phys. Chem. 1900, 33, 721. 1. Christoff, A. Z. Phys. Chem. 1906, 55, 622. 2. Bohr, C. Z. Physik. Chem. 1910, 71, 47. 3. Van Slyke, D. D.; Dillon, R. T.; Margaria, R. J. Biol. Chem. <u>1934</u>, 105, 571. 4. 5. Bikov, M. M. Tr. Voronezhsk. Gos. Univ. 1937, 9, 29. 6. Kobe, K. A.; Kenton, F. H. Ind. Eng. Chem., Anal. Ed. <u>1938</u>, 10, 76. 7. Levina, M. I.; Stsibarovskaya, N. P. Russ. J. Phys. Chem. 1939, 12, 653. Long, F. A.; McDevit, W. F. Chem. Fev. 1952, 51, 119. 8. Morrison, T. J.; Billett, F. J. Chem. Soc. 1952, 3819. 9. 10. Brasted, R. C.; Harayama, C. J. Phys. Chem. 1958, 62, 125. Shkol'nikova, R. I. 11. Uch. Zap. Leningr. Gos. Univ., Ser. Khim. Nauk. <u>1959</u>, Nr. 18, 64. Chem. Abstr. <u>1961</u>, 55, 25443b. 12. Mishnina, T. A.; Avdeeva, O. I.; Bozhovakaya, T. K. Materialy Vses. Nauchn. Issled'. Geol. Inst. 1961, 46, 93. 13. Smith, N. O.; Kelemen, S.; Nagy, B. Geochim. Cosmochim. Acta 1962, 26, 921. O'Sullivan, T. D.; Smith, N. O. 14. Geochim. Cosmochim. Acta 1966, 30, 617. O'Sullivan, T. D.; Smith, N. O. J. Phys. Chem. <u>1970</u>, 74, 1460. (Corrn.-J. Phys. Chem. <u>1970</u>, 74, 4612). 15. 16. Schröder, W. Z. Naturforsch, 1969, 24b, 500. Schröder, W. Z. Phys. Chem. (Wiesbaden) 1971, 75, 248. 17. 18. Yasunishi, A. J. Chem. Eng. Jpn. 1977, 10, 89.

ORIGINAL MEASUREMENTS: Christoff, A. Z. Phys. Chem. <u>1906</u> , 55, 622-34. PREPARED BY: M. E. Derrick H. L. Clever Ostwald Coefficient
Z. Phys. Chem. <u>1906</u> , 55, 622-34. PREPARED BY: M. E. Derrick H. L. Clever
PREPARED BY: M. E. Derrick H. L. Clever
M. E. Derrick H. L. Clever
M. E. Derrick H. L. Clever
/mol kg ⁻¹ Ostwald
Coefficient L x 10 ²
0.0 1.537 5.690 0.8447 16.37 0.6144 22. 1.672
INFORMATION
SOURCE AND PURITY OF MATERIALS:
 (1) Nitrogen. Oxygen was removed from air by passage over copper in a combustion furnace. (2) Sulfuric acid. Merck (Darmstadt). Specific gravity 1.271, 1.523, and 1.839 for 35.82, 61.61, and 95.6 wt per cent acid, respec- tively. (3) Water. Distilled. ESTIMATED ERROR:

COMP	ONENTS:		ORIGINAL MEASUREMENTS	:	
(1) Nitrogen;	N ₂ ; [7727-37-9]	Bohr, C.		
		Acid; H ₂ SO ₄ ; [7664-93-9]	Z. Physik. Chem.	1010 71 47-50	
		D; [7732-18-5]	2. raysak. chem.	<u>1910</u> , 77, 47-50.	
	2				
VARI	LABLES:		PREPARED BY:		
	T/K = 294 P/kPa = 1	01	R. Battino		
	C/N = 0-30		N. Dateino		
EXPE	CRIMENTAL VALU				
			Ostwald Coeff. ^C	Bunsen Coeff. ^d	
	т ^а /к	Normality ^b	10 ² L	$10^2 \alpha$	
	204 05	<u> </u>	1 60	1 56	
	294.05 294.05	0.0 4.9	1.68 0.98	1.56 0.91	
	294.05	8.9	0.78	0.72	
	294.35	10.7	0.71	0.66	
	294.25	20.3	0.53	0.49	
	294.65	24.8	0.52 0.55	0.48	
	293.95 294.05	29.6 34.3	1.08	0.51 1.00	
	294.25	35.8	1.39	1.29	
-					
ļ	a Temperatu	re reported to 0.1°C.			
	b		ion in a contre nor	litan	
	Normality	y of sulfuric acid solut	TOU IU d-edury ber	IICEI.	
	C Ostwald o	coefficient calculated b	y compiler.		
	d _				
	Bunsen co	pefficient.			
		AUXILIARY	INFORMATION		
		<u></u>			
METH	IOD/APPARATUS/I	PROCEDURE:	SOURCE AND PURITY OF N	MATERIALS:	
The	absorption	measuring apperatus is			
		reference (1).			
			No details	s given.	
ł					
			ESTIMATED ERROR:		
			δα/α = ±0.03, est	imate by author.	
			Normality to 0.1,	estimate by author.	
			REFERENCES:		
ĺ			(1) Bohr, C. Sau	erstoffaufnahme des	
				es, Kopenhagen	
			1895.		
				P. F. (Anat. U.)	
			Physiologie <u>1</u>	.009,265.	

					55
COMPONENTS: (1) Nitrogen; N ₂ ; [7727-37-9] (2) Nitric acid; HNO ₃ ; [7697-37-2] (3) Water; H ₂ O; [7732-18-5]		Shapka Zhura Drusl Vestn. 1974	MEASUREMENTS: , A. V.; Yudi avleva, A.N.; hlyak, O.G. Khar'kov Pol , (98), 44-5. Abstr. <u>1975</u> ,	Vorona, N.Ya; itekhn in-ta	
VARIABLES:		PREPARED	BY:	· · · · · · · · · · · · · · · · · · ·	
T/K = 290 P/MPa = 1.1-4	1.2	v	. Katovic		
EXPERIMENTAL VALUES:			<u>, , , , , , , , , , , , , , , , , , , </u>	· · · · · · · · · · · · · · · · · · ·	
	t/°C =	17 (290 K))		
- /-	P/atm	P/atm	P/atm	P/atm	
C _{INO3} /%	11	21	31	41	
•••••••••••••••••••••••••••••••••••••••	s ^a	s ^a	s ^a	s ^a	•
0	0.161	0.290 0.280	0.45 0.465	0.5 0.439	
18	0.155 0.165	0.300 0.320 0.323	0.404 0:425 0.440	0.643	
42	0.139	0.292	0.40	0.45	
50	0.115	0.230	0.326 0.342	0.43 - 0.45	
67	0.154 0.16	0.225 0.300 0.25 0.31	0.365 0.41 0.37 0.45	0.44 0.46 0.495 0.53	
	(1.11) ^b	(2.13)	(3.14)	(4.15)	
a Solubility of b Values in par	nitrogen in & N entheses are the	2 (STP)/1 pressure	solution. in MPa.		_
	AUXILIAF	Y INFORMATI	ON		
METHOD/APPARATUS/PROCEDU	JRE:	SOURCE AL	ND PURITY OF MAT	TERIALS:	
Nitrogen at 60 atm was brought into contact with a known volume of nitric acid solution in a thermo- stated absorption vessel. The system was equilibrated for 30-40 minutes with stirring during which time the pressure was lowered to the desired value. A sample of the saturated solution was withdrawn and analyzed for the dissolved nitrogen content.		NC	o details giv		
		estimate S/S		piler's estimat	e.
		REFERENC	FS		

COMPONENTS:			ORIGINAL MEASUREMENTS:
	_		
(1) Nitrogen; N ₂ ; [7727-37-9]		Shkol'nikova, R. I.	
(2) Hydrated aluminum oxide; Al ₂ O ₃ ·xH ₂ O; [1333-84-2]		Uch. Zap. Leningr. Gos. Univ., Ser. Khim. Nauk. <u>1959</u> , Nr. 18, 64-86.	
(3) Water; H ₂ O; [7732-18-5]		Chem. Abstr. <u>1961</u> , 55, 25443b.	
VARIABLES: T/K = 293.15 - 313.15 P/kPa = 101.325 Al ₂ O ₃ /wt % = 0.1, 0.35		PREPARED BY: A. L. Cramer H. L. Clever	
EXPERIMENTAL VALUES:			
	T/K A	1 ₂ 0 ₃ /W	t % Bunsen Coefficient α x 10 ³
	293.15	0.1 0.35	15.8 12.6
	303.15	0.1 0.35	
	313.15	0.1 0.35	
•••••••••••••••••••••••••••••••••••••••	AUX	ILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE	:	,	SOURCE AND PURITY OF MATERIALS:
The apparatus and pro Lannung were modified			(1) Nitrogen. Source not given. Stated to be near 100 per cent.
			(2) Aluminium oxide. No information.
			(3) Water. No information.
			Υ.
			ESTIMATED ERROR:
			ESTIMATED ERROR:
			ESTIMATED ERROR: REFERENCES:

COMPONENTS:	ORIGINAL MEASUREMENTS: Shkol'nikova, R. I.
(1) Nitrogen; N ₂ ; [7727-37-9]	
(2) Hydrated ferric oxide; Fe ₂ O ₃ ·xH ₂ O; [12259-21-1]	Uch. Zap. Leningr. Gos. Univ., Ser. Khím. Nauk. <u>1959</u> , Nr. 18, 64-86.
(3) Water; H ₂ O· [7732-18-5]	Chem. Abstr. <u>1961</u> , 55, 25443b.
VARIABLES:	PREPARED BY:
T/K = 293.15 - 313.15 P/kPa = 101.325 $Fe_2O_3/wt \% = 0.1 - 0.8$	A. L. Cramer H. L. Clever
EXPERIMENTAL VALUES:	
T/K Fe ₂ 0	3 ^{/Wt %} Bunsen Coefficient α x 10 ³
	0.1 16.0 0.5 13.4 0.8 13.0
	0.1 13.1
	0.5 11.1 0.8 10.7
313.15	0.1 11.0
	0.5 9.9
	0.8 8.6
The enthalpy of solution of nitrog	en was calculated from the temperature ent. It is 3060, 3420, 3570, and 3760 and 0.8 wt % Fe ₂ O ₃ respectively.
The enthalpy of solution of nitrog coefficient of the Bunsen coefficient	ent. It is 3060, 3420, 3570, and 3760
The enthalpy of solution of nitrog coefficient of the Bunsen coefficient cal mol ⁻¹ in water, and 0.1, 0.5,	ent. It is 3060, 3420, 3570, and 3760
The enthalpy of solution of nitrog coefficient of the Bunsen coefficient cal mol ⁻¹ in water, and 0.1, 0.5,	ent. It is 3060, 3420, 3570, and 3760 and 0.8 wt % Fe ₂ 0 ₃ respectively.
The enthalpy of solution of nitrog coefficient of the Bunsen coefficient cal mol ⁻¹ in water, and 0.1, 0.5, a AUXILI	ent. It is 3060, 3420, 3570, and 3760 and 0.8 wt % Fe ₂ O ₃ respectively. ARY INFORMATION
The enthalpy of solution of nitrog coefficient of the Bunsen coefficient cal mol ⁻¹ in water, and 0.1, 0.5, AUXILI METHOD/APPARATUS/PROCEDURE: The apparatus and procedure of	ent. It is 3060, 3420, 3570, and 3760 and 0.8 wt % Fe ₂ O ₃ respectively. ARY INFORMATION SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Source not given.
The enthalpy of solution of nitrog coefficient of the Bunsen coefficient cal mol ⁻¹ in water, and 0.1, 0.5, AUXILI METHOD/APPARATUS/PROCEDURE: The apparatus and procedure of	ent. It is 3060, 3420, 3570, and 3760 and 0.8 wt % Fe ₂ O ₃ respectively. ARY INFORMATION SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Source not given. Stated to be near 100 per cent.
The enthalpy of solution of nitrog coefficient of the Bunsen coefficient cal mol ⁻¹ in water, and 0.1, 0.5, AUXILI METHOD/APPARATUS/PROCEDURE: The apparatus and procedure of	ent. It is 3060, 3420, 3570, and 3760 and 0.8 wt % Fe ₂ O ₃ respectively. ARY INFORMATION SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Source not given. Stated to be near 100 per cent. (2) Ferric oxide. No information.
The enthalpy of solution of nitrog coefficient of the Bunsen coefficient cal mol ⁻¹ in water, and 0.1, 0.5, AUXILI METHOD/APPARATUS/PROCEDURE: The apparatus and procedure of	ent. It is 3060, 3420, 3570, and 3760 and 0.8 wt % Fe ₂ O ₃ respectively. ARY INFORMATION SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Source not given. Stated to be near 100 per cent. (2) Ferric oxide. No information. (3) Water. No information.
The enthalpy of solution of nitrog coefficient of the Bunsen coefficient cal mol ⁻¹ in water, and 0.1, 0.5, AUXILI METHOD/APPARATUS/PROCEDURE: The apparatus and procedure of	ent. It is 3060, 3420, 3570, and 3760 and 0.8 wt % Fe ₂ O ₃ respectively. ARY INFORMATION SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Source not given. Stated to be near 100 per cent. (2) Ferric oxide. No information.
The enthalpy of solution of nitrog coefficient of the Bunsen coefficient cal mol ⁻¹ in water, and 0.1, 0.5, AUXILI METHOD/APPARATUS/PROCEDURE: The apparatus and procedure of	ent. It is 3060, 3420, 3570, and 3760 and 0.8 wt % Fe ₂ O ₃ respectively. ARY INFORMATION SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Source not given. Stated to be near 100 per cent. (2) Ferric oxide. No information. (3) Water. No information.
The enthalpy of solution of nitrog coefficient of the Bunsen coefficient cal mol ⁻¹ in water, and 0.1, 0.5, AUXILI METHOD/APPARATUS/PROCEDURE: The apparatus and procedure of	ent. It is 3060, 3420, 3570, and 3760 and 0.8 wt % Fe ₂ O ₃ respectively. ARY INFORMATION SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Source not given. Stated to be near 100 per cent. (2) Ferric oxide. No information. (3) Water. No information. ESTIMATED ERROR:
The enthalpy of solution of nitrog coefficient of the Bunsen coefficient cal mol ⁻¹ in water, and 0.1, 0.5, AUXILI METHOD/APPARATUS/PROCEDURE: The apparatus and procedure of	ent. It is 3060, 3420, 3570, and 3760 and 0.8 wt % Fe ₂ O ₃ respectively. ARY INFORMATION SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Source not given. Stated to be near 100 per cent. (2) Ferric oxide. No information. (3) Water. No information. (3) Water. No information. ESTIMATED ERROR: REFERENCES: 1. Lannung, A.

COMPONENTS :		ORIGINAL MEASUREMENTS:	
(1) Nitrogen; N ₂ ; [77	27-37-9]	Braun, L.	
(2) Barium chloride; [10361-37-2]	BaCl ₂ ;	Z. Phys. Chem. <u>1900</u> , 33,721-41.	
(3) Water; H ₂ O; [7732	-18-5]		
VARIABLES:		PREPARED BY:	
T/K = 278-298 Concentration		C.L. Young	
EXPERIMENTAL VALUES:		•••• <u></u>	
	soln./g	00g Bunsen coefficient, α	
278.2 283.2 288.2 293.2	13.830 11.927 6.903 6.738 3.870 3.325 0.0 13.830 11.927 6.903 6.738 3.870 3.325 0.0 13.830 11.927 6.903 6.738 3.870 3.325 0.0 13.830 11.927 6.903 6.738 3.870 3.325 0.0	0.01270 0.01368 0.01598 0.01628 0.01802 0.01826 0.02173 0.01166 0.01249 0.01474 0.01660 0.01681 0.02003 0.01036 0.01317 0.01340 0.01340 0.01340 0.01340 0.01789 0.00976 0.01184 0.0182 0.01323	
	3.325 AUXILIARY	0.01346 INFORMATION	
METHOD/APPARATUS/PROCEDURE		SOURCE AND PURITY OF MATERIALS:	
METHOD/APPARATUS/PROCEDURE: Ostwald method, using gas buret and pipet. Measurement of volume of gas before and after absorption. Vapor pressure of water was allowed for assuming Raoult's law. Solution was degassed. Concentration of salt solution estimated by titration with silver nitrate solution.		No details given.	
		ESTIMATED ERROR: $\delta \alpha / \alpha = \pm 0.03$	
		REFERENCES:	

COMPONENTS: (1] Nitrogen; N ₂ ; [7727-37-9]			ORIGINAL MEASUREMENTS:			
(2)				Braun, L. Z. Phys. Chem. <u>1900</u> , 33,721-41.		
(3)	Water; H_2O ; [7732-18-5]			-		
EXP	ERIMENTAL VALUES:	, 	L	<u> </u>		
	T/K	Wt. of salt p soln. /g	er 100g	Bunsen c	oefficient a	.,
	293.2 298.2 13.830 11.927 6.903 6.738 3.870 3.325 0.0			0.01621 0.00783 0.00855 0.01044 0.01036 0.01137 0.01190 0.01432		
						-
			-	-		
						, , }
						i
1						

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Morrison, T. J.; Billett, F.
(2) Lithium Chloride; LiCl; [7447-41-8]	J. Chem. Soc. <u>1952</u> , 3819-22.
(3) Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
T/K = 285.75 - 344.85 P/kPa = 101.325	H. L. Clever, R. Battino
EXPERIMENTAL VALUES:	
	lt Effect Parameters $g(S^{\circ}/S)^{1}$ $(1/m)\log(x^{\circ}/x)$
285.75 0.0035 0.1	25 0.140
303.15 0.0033 0.0	95 0.110
322.55 0.0031 0.0	84 0.099
344.85 0.0029 0.0	92 0.107
^m LiCl ^{mol} kg ⁻¹ . The nitrogen solubil	ompiler changed the c to an m for ity S is cm^3 (STP) kg^{-1} .
The salt effect parameters were calcus solubility of nitrogen in water, S°, S. Only the solubility of the nitrog salt effect parameter are given in the the salt solution are not given.	and in the one molal salt solution, en in water, and the value of the
The compiler calculated the values of mole fraction gas solubility ratio.	the ball blood paramotor abing the
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The degassed solvent flows in a thin film down an absorption helix con- taining the nitrogen gas plus solvent vapor at a total pressure of one atmosphere. The volume of gas	 Nitrogen. From a cylinder and from ammonium nitrite gave the same results. Lithium Chloride. "AnalaR"
buret system (1).	material.
	(3) Water. No information given.
	ESTIMATED ERROR:
	$\delta k = 0.010$
	REFERENCES: 1. Morrison, T. J.; Billett, F. J. Chem. Soc. <u>1948</u> , 2033-5.

,

•

COMPONENTS:	ORIGINAL MEASUREMENTS:
(l) Nitrogen; N ₂ ; [7727-37-9]	Levina, M. I.; Stsibarovskaya, N. P.
<pre>(2) Sodium hydroxide; NaOH; [1310-73-2]</pre>	Russ. J. Phys. Chem. <u>1939</u> , 12, 653-9.
(3) Water; H ₂ O; [7732-18-5]	
VARIABLES: T/K = 273-533	PREPARED BY:
P/MPa = 9.8 Concentration	V. Katovic
EXPERIMENTAL VALUES: O>	ygen Solubility ^b
t/°C T ^a /K H ₂ O	NaOH Solution/N 0.5 2 4
Total pressure at 100 kg/cm ²	(9.81 MPa)
0 273 1.24	1.03 0.41 0.18
25 298 1.01 35 308 0.88	0.76 0.37 0.16 0.65 0.35 0.14
50 323 0.78	0.58 0.26 0.15
75 348 0.64 100 373 0.71	0.55 0.25 0.17 0.59 0.31 0.20
100 373 0.71 125 398 0.77	0.59 0.31 0.20 0.62 0.33
150 423 0.99	0.80 0.44 0.24
200 473 1.46 240 513 1.66	1.07 0.62 0.37 1.44 0.84 0.51
	continued on following page
AUXILIARY	INFORMATION
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS;
Solubility determined by an	(1) From air.
apparatus described in the paper, by measuring the volume of liquid and air. Solubility of nitrogen was	
calculated from measured volume of air and oxygen (determined by	(2,3) No details given.
calculated from measured volume of	
calculated from measured volume of air and oxygen (determined by	ESTIMATED ERROR:
calculated from measured volume of air and oxygen (determined by	
calculated from measured volume of air and oxygen (determined by	ESTIMATED ERROR: δ solubility/solubility = ±0.05,
calculated from measured volume of air and oxygen (determined by	ESTIMATED ERROR: δ solubility/solubility = ±0.05, compiler's estimate.
calculated from measured volume of air and oxygen (determined by	ESTIMATED ERROR: δ solubility/solubility = ±0.05, compiler's estimate.
calculated from measured volume of air and oxygen (determined by	ESTIMATED ERROR: δ solubility/solubility = ±0.05, compiler's estimate.

.

COMPONENTS :

- (1) Nitrogen; N₂; [7727-37-9]
- (2) Sodium hydroxide; NaOH;
 [1310-73-2]
- (3) Water; H₂O; [7732-18-5]

ORIGINAL MEASUREMENTS: Levina, M. I.; Stsibarovskaya, N. P. Russ. J. Phys. Chem. <u>1939</u>, 12, 653-9.

EXPERIMENTAL VALUES:

continued

Nitrogen Solubilities up to 200 kPa

ı.		_	Solub NaC	oility Coer OH Solution	fficient ^b n/N	ł
t,	′°С ч	^а /к н ₂ о	0.5	5 2	4	
	0 2	73 1.5	8 1.31	0.52	0.23	
2	25 2	98 1.2	8 0.96	0.47	0.20	
3	5 3	08 1.1	1 0.82	0.44	0.18	
5	50 3	23 0.9	9 0.74	0.33	0.19	
-	75 3	48 0.8	1 0.70	0.32	0.21	
10	00 3	73 0.9	1 0.75	5 0.39	0.25	
12	25 3	98 1.0	1 0.80	0.43		
15		23 1.3				
20		73 2.2		0.93	0.54	
24	-	13 3.2			0.92	

^a Calculated by compiler.

^b Solubility coefficient of cm³(STP) per 1 gram of a solution at a partial nitrogen pressure of 100 kg/cm² (9.81 MPa).

COMPONENTS:	OPTCINAL MEACUDERSHITC.
(1) Nitrogen; N_2 ; [7727-37-9]	ORIGINAL MEASUREMENTS: Braun, L.
(2) Sodium chloride; NaCl; [7647-14-5]	Z. Phys. Chem. <u>1900</u> ,33, 721-41.
(3) Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
T/K = 278-298 Concentration	C.L. Young
EXPERIMENTAL VALUES:	
T/K Wt. of salt per 1 soln./g	LOOg Bunsen coefficient, α
278.2 11.732	0.01016
10.945	0.01052
8.135 8.033	0.01266 0.01248
6.595	0.01380
6.400	0.01375
4.196 3.880	0.01579 0.01615
2.120	0.01795
2.100	0.01805
0.686	0.01994 0.02000
0.671 0.0	0.02173
283.2 11.732	0.00930 .
10.945 8.135	0.00912 0.01131
8.135	0.01121
6.595	0.01252
6.400 4.196	0.01259 0.01451
3.880	0.01451
2.120	0.01638
2.100 0.686	0.01656 0.01833
0.688	0.01833
0.0	0.02003
AUXILIAR	Y INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Ostwald method, using gas buret and	
pipet. Measurement of volume of	
gas before and after absorption. Vapor pressure of water was allowed	No details given.
for assuming Raoult's law. Solution	
was degassed. Concentration of salt	
solution estimated by titration with silver nitrate solution.	
	ESTIMATED ERROR:
	LSTIPATED ERROR.
	$\delta \alpha / \alpha = \pm 0.03.$
	REFERENCES :

.

COMPONENTS:		GINAL MEASUREMENTS
(1) Nitrogen; N ₂ ; [7727-37-9		Braun, L.
(2) Sodium chloride; NaCl; [7647-14-5]		Z. Phys. Chem. <u>1900</u> ,33,721-41.
(3) Water; H ₂ O; [7732-18-5]		
EXPERIMENTAL VALUES:		
T/K Wt. of	salt per 100g soln./g	Bunsen coefficient, α
	L1.732 L0.945 8.135 8.033 6.595 6.400 4.196 3.880 2.120	0.00810 0.00824 0.01014 0.00995 0.01120 0.01134 0.01294 0.01316 0.01469
	2.100 0.686 0.671 0.0	0.01467 0.01640 0.01642 0.01789
	0.0 11.732 10.945 8.135 8.033 6.595 6.400 4.196 3.880 2.120 2.100 0.686 0.671 0.0	0.00657 0.00703 0.00872 0.00871 0.00972 0.00975 0.01151 0.01168 0.01311 0.01314 0.01477 0.01484 0.01621
	11.732 10.945 8.135 8.033 6.595 6.400 4.196 3.880 2.120 2.100 0.686 0.671 0.0	0.00470 0.00565 0.00749 0.00802 0.00826 0.00990 0.01005 0.01131 0.01133 0.01295 0.01304 0.01432

Salt Solutions (Aqueous)

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Morrison, T. J.; Billett, F.
(2) Sodium Chloride; NaCl; [7647-14-5	J. Chem. Soc. <u>1952</u> , 3819-22.
(3) Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
T/K = 285.75 - 344.85 P/kPa = 101.325	H. L. Clever, R. Battino
EXPERIMENTAL VALUES:	
	lt Effect Parameters $g(S^{\circ}/S)^{1}$ $(1/m) \log (x^{\circ}/x)$
285.75 0.0035 0.15 303.15 0.0033 0.12	
322.55 0.0031 0.10 344.85 0.0029 0.10	06 0.121
¹ The authors used (1/c)log(S°/S) with water. For the 1-1 electrolyte the o m _{NaCl} /mol kg ⁻¹ . The nitrogen solubi:	compiler changed the c to an m for
The salt effect parameters were calcus solubility of nitrogen in water, S°, S. Only the solubility of the nitrog salt effect parameter are given in the the salt solution are not given.	and in the one molal salt solution, gen in water, and the value of the
The compiler calculated the values of the mole fraction gas solubility rat:	the salt effect parameter using
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The degassed solvent flows in a thin film down an absorption helix con- taining the nitrogen gas plus solvent vapor at a total pressure of one atmosphere. The volume of gas	 (1) Nitrogen. From a cylinder and from ammonium nitrite gave the same results. (2) Sodium Chloride. "AnalaR"
absorbed is measured in an attached buret system (1).	material.
	(3) Water. No information given.
	ESTIMATED ERROR:
	δk = 0.010
	REFERENCES:
	<pre>1. Morrison, T. J.; Billett, F. J. Chem. Soc. <u>1948</u>, 2033-5.</pre>

.

NaCl/g eq dm ⁻³				B	unsen	Coeffi	cient,	α x 1	0 ³					XPERI	VARIABLES c2/mo		(2) S	COMPONENTS	70
T/K	0.0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0	5.4	Salt Effect Parameter ^k s	EXPERIMENTAL	LES: T/K. P/kPa /mol dm ⁻³	[7647-14-5] Water; H ₂ 0;	Nitrogen Sodium c	NTS:	
283.15	19.5	16.2	13.5	11.2	9.3	7.7	6.4	5.3	4.5	3.8	3.1	2.7	0.160	VALUES		L4+5] H ₂ 0;	hlo u		
288.75	17.4	14.7	12.4	10.4	8.8	7.4	6.3	5.3	4.4	3.7	3.2	2.8	0.148	UES	: 28 : 10	, _ 1	12 T		
293.15	16.0	13.7	11.7	10.0	8.5	7.3	6.2	5.3	4.5	3.9	3.3	2.9	0.137		μω 1 • •	, 773	; [7 .ide;		
298.15	14.8	12.8	11.0	9.5	8.1	7.0	6.1	5.2	4.5	3.9	3.4	3.0	0.129		15 325 5.				
303.15	13.8	12.0	10.4	9.1	7.9	6.9	6.0	5.2	4.5	3.9	3.4	3.1	0.121		1 4	18-	727-37 NaCl;		-
308.15	12.8	11.2	9.8	8.5	7.5	6.5	5.7	5.0	4.4	3.8	3.3	3.0	0.117		343	°-5 ∫	, -5 5-L		litro
313.15	12.2	10.7	9.4	8.3	7.2	6.4	5.6	4.9	4.3	3.8	3.3	3.0	0.113		3.15		Ľ		Nitrogen Solubilities up to
318.15	11.5	10.1	9.0	7.9	7.0	6.1	5.4	4.8	4.2	3.7	3.3	3.0	0.109		ហ				S S
323.15	11.3	10.0	8.8	7.8	6.9	6.1	5.4	4.8	4.3	3.8	3.3	3.0	0.106						j p
328.15	11.1	9.8	8.7	7.7	6.8	6.0	5.3	4.7	4.2	3.7	3.3	3.0	0.106						
333.15	10.8	9.6	8.5	7.5	6.6	5.9	5.2	4.6	4.1	3.6	3.2	2.9	0.106		PR	M	М	OR	u St
338.15	10.7	9.5	8.4	7.4	6.6	5.8	5.1	4.6	4.0	3.6	3.2	2.9	0.106		EPA	ate Ge	ish Bo	IGI	b b
343.15	10.6	9.4	8.3	7.4	6.5	5.8	5.1	4.5	3.9	3.5	3.1	2.8	0.106		REPARED	ol	un 11 Dzho	ORIGINAL	200
The table of sm solutions was p A 1958 report o	prepare	ed by t	he aut	hors.	The c	omplet	e sour	ce of (data f	or th	ne tab	le is	s not clear.) BY: A. L. Cramer H. L. Clever	Materialy Vses. Nauchn. Issled. Geol. Inst. <u>1961</u> , 46, 93-110.	Mishnina, T. A.; Avdeeva, O. I. Bozhovakaya, T. K.	, MEASUREMNTS :	kPa

Nitrogen Solubilities up to 200 kPa

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Van Slyke, D.D.; Dillon, R.T.; Margaria, R.
(2) Sodium salts; see below.	-
(3) Water; H ₂ O; [7732-18-5]	J. Biol. Chem. <u>1934</u> , 105, 571-96.
VARIABLES:	PREPARED BY:
T/K = 298-311	FREFARED DI.
Concentration	R. Battino
EXPERIMENTAL VALUES:	
At 25°C (298.15K) Except F	or Indicated Point
a muta phase p a muta p b/kpa	$10^{2} c_{1}$ $10^{2} c_{2} d_{1}$
	$\frac{10^2 \alpha^{\circ}}{cm^3} (\text{STP}) \text{ cm}^3 \text{ atm}^{-1} \frac{10^2 \alpha^{\circ} d}{cm^3} (\text{STP}) \text{ g}^{-1} \text{ H}_2 0$
0.155 M NaCl ^e 582 77.6	1.408 1.416
0.155 M NaCl 582 77.6 0.155 M NaCl 590 78.7	1.410 1.418 1.406 1.414
	1.410 1.418
0.155 M NaCl^{1} 564.5 75.26	1.220
0.077 M Na ₂ CO ₃ g 587 78.3 0.077 M Na ₂ CO ₃ g 587 78.3 0.153 M NaHCO ₃ h 555 74.0	1.387 1.391 1.389, 1.393
0.153 M NaHCOoh 555 74.0	1.396 1.404
[0.133 M Manco3 335 74.0	1.402 ⁿ 1.410
1 0.100 H Hancos 200 1410	1.394 ^h 1.402 1.396 ^h 1.404
0.153 M NaHCO3 555 74.0	1.396** 1.404
a Nitrogen partial pressure. Solubi	lities calculated at 101 kPa P _N .
^b Calculated by compiler.	¹ ²
C Bunsen coefficient.	
^d Solubility in cm ³ (STP) nitrogen p	or gram of Water
e Sodium chloride; NaCl; [7647-14-5]	
f At 38°C (311.15 K).	
^g Sodium carbonate; Na ₂ CO ₃ ; [497-19-	
h Sodium bicarbonate; NaHCO ₃ ; [144-5]	5-8]. Solution also contained
0.003 M Na ₂ CO ₃ . Values have been	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The solutions were saturated with	(1) From air.
gas using the rotating double	(I) FIOM AIL.
tonometer method of Austin, et al. (1). 2-2.5 h were allowed for	(2) Reagent grade.
saturation. The amount of	(3) "Freshly Distilled".
dissolved nitrogen was determined using the method of Van Slyke and	· · · ·
Neil (2).	
	ļ (
]	
	ESTIMATED ERROR:
	$\delta \mathbf{T}/\mathbf{K} = \pm 0.04$
	$\delta \alpha / \alpha = \pm 0.01$, compiler's estimate.
	REFERENCES:
	1. Austin, J.H.; Cullen, G.E.;
1	Hastings, A.B.; McLean, F.C.; Peters, J.D.; Van Slyke, D.D. J.
	Biol. Chem. 1922, 54, 134.
	2. Van Slyke, D.D.; Neil, J.M. J.
	Biol. Chem. <u>1924</u> , 61, 523.
1	

72 Nitrogen Solubili	ties up to 200 kPa
COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Yasunishi, A.
<pre>(2) Sulfurous acid, disodium salt, (Sodium sulfite); Na₂SO₃; [10579-83-6]</pre>	J. Chem. Eng. Jpn. <u>1977</u> , 10,89–94
(3)Water: H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
T/K = 298 Concentration	C.L. Young
EXPERIMENTAL VALUES:	
Pressure = 1.01325×10^5 Pa	
T/K Conc of s /mol	alt soln. Ostwald 1 ⁻¹ coefficient,L
298.15 0.0 0.10 0.20 0.31 0.47 0.63 0.77 0.78 0.93 1.04	6 0.01470 9 0.01338 8 0.01239 2 0.01073 6 0.00931 8 0.00808 5 0.00830 8 0.00720
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Volumetric apparatus with multibulb buret and magnetic stirrer. Amount of solution and gas absorbed determined volumetric- ally. Density and composition of solution determined after absorp- tion. Details in source.	 (1) Purity 99.99 mole per cent (2) Guaranteed reagent (3) Degassed
	ESTIMATED ERROR: $\delta T/K = \pm 0.05; \ \delta L = \pm 1 \&$ (estimated by compiler) REFERENCES:

ORIGINAL MEASUREMENTS:
Yasunishi, A.
J. Chem. Eng. Jpn. <u>1977</u> ,40,89-94.
PREPARED BY:
C.L. Young
salt soln. Ostwald 1 ⁻¹ coefficient,L
0.01619 01 0.01491 01 0.01377 03 0.01262 16 0.01075 64 0.00871 12 0.00761 79 0.00670
ARY INFORMATION
SOURCE AND PURITY OF MATERIALS: (1) Purity 99.99 mole per cent (2) Guaranteed reagent (3) Degassed

	······································
COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Kobe, K. A.; Kenton, F. H.
(2) Sodium sulfate; Na ₂ SO ₄ ;	Ind. Eng. Chem., Anal. Ed. <u>1938</u> ,
[7757-82-6] (3) Sulfuric acid: H ₂ SO ₄ ; [7664-93-9]	10, 76-7.
(4) Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
T/K = 298.15 N ₂ P/kPa = 101.325	P. L. Long
N2 F/ KF4 - 101.525	H. L. Clever
EXPERIMENTAL VALUES:	
Temperature Solvent Absorb	ed Bunsen Ostwald
Volume Oxygen	Coefficient Coefficient
t/°C T/K cm ³ Volume cm ³	$\alpha \times 10^2$ L $\times 10^2$
25 298:15 99.54 0.50	
99.54 0.48	a a . 40
The solvent is a mixture of 8	00 g H_2O 00 g Na_2SO_4 (anhydrous)
2	$40 \text{ cm}^3 \text{ H}_2\text{SO4}(36 \text{ N})$
Thus the solution molality is:	
m _{Na2} SO4/mol	
"Na ₂ SO ₄ , "01	a^{-1} 0.90
mH2SO4/mol k	g – 0.90
AUXILIARY	INFORMATION
METHOD / APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
The apparatus was described in detail in an earlier paper (1). The appara-	(1) Nitrogen. Source not given. Purity stated to be 99 ⁺ per
tus consists of a gas buret, a pres-	cent.
sure compensator, a 200 cm ³ absorp- tion bulb, and a mercury leveling	(2 & 3) Sodium sulfate and sulfuric
bulb. The absorption bulb is	acid. Sources not given. Analytical grades.
attached to a shaking machine.	
The solvent and the gas are placed in an absorption bulb. The bulb is	(4) Water. Distilled.
shaken until equilibrium is reached.	
The remaining gas is returned to the buret. The difference in the final	
and initial volumes is taken as the gas absorbed.	$\delta \alpha / cm^3 = 0.001$ (authors)
The authors also measured the solvent	
vapor pressure.	REFERENCES:
	1. Kobe, K. A.; Williams, J. S.
	Ind. Eng. Chem., Anal. Ed. 1935, 7, 37.

	•
COMPONENTS: (1) Nitrogen; N ₂ ; [7727-37-9]	ORIGINAL MEASUREMENTS:
	Yasunishi, A.
(2) Sulfuric acid, disodium salt, (Sodium sulfate); Na ₂ SO ₄ ;	
[7757-82-6]	J. Chem. Eng. Jpn. <u>1977</u> ,10,89-94
(3) Sulfurous acid, disodium salt	
(Sodium sulfite); Na ₂ SO ₄ ;	
[10579-83-6] ⁴ ⁴ (4) Water; H ₂ O; [7732-18-5]	
(4) Water, m20, [//52-10-5]	PREPARED BY:
VARIABLES : T/K = 298	C.L. Young
Concentration	
EXPERIMENTAL VALUES: Pressure =	1.01325 x 10 ⁵ Pa
	ction of sodium Ostwald in mixed salt. coefficient, L
salt/mol 1-2 sullite	in mixed salt. coefficient, L
	· · · · · · · · · · · · · · · · · · ·
000.17	
	0.253 0.01244 0.502 0.01246
	0.502 0.01246 0.713 0.01251
	0.504 0.00973
	0.258 0.00796
0.883	0.508 0.00767
	ΤΝΕΩΡΜΑΤΓΩΝ
	INFORMĄTION
AUXILIARY METHOD/APPARATUS/PROCEDURE :	INFORMATION SOURCE AND PURITY OF MATERIALS;
METHOD/APPARATUS/PROCEDURE: Volumetric apparatus with multibulb	,
METHOD/APPARATUS/PROCEDURE: Volumetric apparatus with multibulb buret and magnetic stirrer. Amount	SOURCE AND PURITY OF MATERIALS; (1) Purity 99.99 mole per cent
METHOD/APPARATUS/PROCEDURE: Volumetric apparatus with multibulb buret and magnetic stirrer. Amount of solution and gas absorbed	SOURCE AND PURITY OF MATERIALS;
METHOD/APPARATUS/PROCEDURE: Volumetric apparatus with multibulb buret and magnetic stirrer. Amount of solution and gas absorbed determined volumetrically. Density and composition of solution deter-	SOURCE AND PURITY OF MATERIALS; (1) Purity 99.99 mole per cent
METHOD/APPARATUS/PROCEDURE: Volumetric apparatus with multibulb buret and magnetic stirrer. Amount of solution and gas absorbed determined volumetrically. Density	SOURCE AND PURITY OF MATERIALS; (1) Purity 99.99 mole per cent (2) and (3) Guaranteed reagents
METHOD/APPARATUS/PROCEDURE: Volumetric apparatus with multibulb buret and magnetic stirrer. Amount of solution and gas absorbed determined volumetrically. Density and composition of solution deter- mined after absorption. Details in	SOURCE AND PURITY OF MATERIALS; (1) Purity 99.99 mole per cent (2) and (3) Guaranteed reagents
METHOD/APPARATUS/PROCEDURE: Volumetric apparatus with multibulb buret and magnetic stirrer. Amount of solution and gas absorbed determined volumetrically. Density and composition of solution deter- mined after absorption. Details in	SOURCE AND PURITY OF MATERIALS; (1) Purity 99.99 mole per cent (2) and (3) Guaranteed reagents
METHOD/APPARATUS/PROCEDURE: Volumetric apparatus with multibulb buret and magnetic stirrer. Amount of solution and gas absorbed determined volumetrically. Density and composition of solution deter- mined after absorption. Details in	SOURCE AND PURITY OF MATERIALS; (1) Purity 99.99 mole per cent (2) and (3) Guaranteed reagents
METHOD/APPARATUS/PROCEDURE: Volumetric apparatus with multibulb buret and magnetic stirrer. Amount of solution and gas absorbed determined volumetrically. Density and composition of solution deter- mined after absorption. Details in	SOURCE AND PURITY OF MATERIALS; (1) Purity 99.99 mole per cent (2) and (3) Guaranteed reagents (4) Degassed
METHOD/APPARATUS/PROCEDURE: Volumetric apparatus with multibulb buret and magnetic stirrer. Amount of solution and gas absorbed determined volumetrically. Density and composition of solution deter- mined after absorption. Details in	SOURCE AND PURITY OF MATERIALS; (1) Purity 99.99 mole per cent (2) and (3) Guaranteed reagents (4) Degassed ESTIMATED ERROR:
METHOD/APPARATUS/PROCEDURE: Volumetric apparatus with multibulb buret and magnetic stirrer. Amount of solution and gas absorbed determined volumetrically. Density and composition of solution deter- mined after absorption. Details in	SOURCE AND PURITY OF MATERIALS; (1) Purity 99.99 mole per cent (2) and (3) Guaranteed reagents (4) Degassed
METHOD/APPARATUS/PROCEDURE: Volumetric apparatus with multibulb buret and magnetic stirrer. Amount of solution and gas absorbed determined volumetrically. Density and composition of solution deter- mined after absorption. Details in	SOURCE AND PURITY OF MATERIALS; (1) Purity 99.99 mole per cent (2) and (3) Guaranteed reagents (4) Degassed ESTIMATED ERROR:
METHOD/APPARATUS/PROCEDURE: Volumetric apparatus with multibulb buret and magnetic stirrer. Amount of solution and gas absorbed determined volumetrically. Density and composition of solution deter- mined after absorption. Details in	SOURCE AND PURITY OF MATERIALS; (1) Purity 99.99 mole per cent (2) and (3) Guaranteed reagents (4) Degassed ESTIMATED ERROR: $\delta T/K = \pm 0.05; \delta L = \pm 1\%$
METHOD/APPARATUS/PROCEDURE: Volumetric apparatus with multibulb buret and magnetic stirrer. Amount of solution and gas absorbed determined volumetrically. Density and composition of solution deter- mined after absorption. Details in	SOURCE AND PURITY OF MATERIALS; (1) Purity 99.99 mole per cent (2) and (3) Guaranteed reagents (4) Degassed ESTIMATED ERROR: $\delta T/K = \pm 0.05; \ \delta L = \pm 1\%$ (estimated by compiler)
METHOD/APPARATUS/PROCEDURE: Volumetric apparatus with multibulb buret and magnetic stirrer. Amount of solution and gas absorbed determined volumetrically. Density and composition of solution deter- mined after absorption. Details in	SOURCE AND PURITY OF MATERIALS; (1) Purity 99.99 mole per cent (2) and (3) Guaranteed reagents (4) Degassed ESTIMATED ERROR: $\delta T/K = \pm 0.05; \ \delta L = \pm 1\%$ (estimated by compiler)
METHOD/APPARATUS/PROCEDURE: Volumetric apparatus with multibulb buret and magnetic stirrer. Amount of solution and gas absorbed determined volumetrically. Density and composition of solution deter- mined after absorption. Details in	SOURCE AND PURITY OF MATERIALS; (1) Purity 99.99 mole per cent (2) and (3) Guaranteed reagents (4) Degassed ESTIMATED ERROR: $\delta T/K = \pm 0.05; \ \delta L = \pm 1\%$ (estimated by compiler)
METHOD/APPARATUS/PROCEDURE: Volumetric apparatus with multibulb buret and magnetic stirrer. Amount of solution and gas absorbed determined volumetrically. Density and composition of solution deter- mined after absorption. Details in	SOURCE AND PURITY OF MATERIALS; (1) Purity 99.99 mole per cent (2) and (3) Guaranteed reagents (4) Degassed ESTIMATED ERROR: $\delta T/K = \pm 0.05; \ \delta L = \pm 1\%$ (estimated by compiler)
METHOD/APPARATUS/PROCEDURE: Volumetric apparatus with multibulb buret and magnetic stirrer. Amount of solution and gas absorbed determined volumetrically. Density and composition of solution deter- mined after absorption. Details in	SOURCE AND PURITY OF MATERIALS; (1) Purity 99.99 mole per cent (2) and (3) Guaranteed reagents (4) Degassed ESTIMATED ERROR: $\delta T/K = \pm 0.05; \ \delta L = \pm 1\%$ (estimated by compiler)

.

COMPORENTS: [1] Nitrogen;N ₂ ; [7727-37-9] (3) Carbon dioxide;Co ₂ ; [124-38-9] (4) Sulfuric acid;Eo ₂ ; [124-38-9] (5) Sodium sulfate;Na ₂ So ₂ ; [7757-82-6] (6) Water; H ₂ O ₁ (7732-15) T/K = 298.15 $p_{2}/KDa = 101.325$ EXPERIMENTAL VALUES: Temporature Gas T/K = 298.15 $p_{2}/KDa = 101.325$ EXPERIMENTAL VALUES: Temporature Gas $t/^{\circ}C$ T/K Composition Volume and CO ₂ $q/Ceficient$ $t/^{\circ}C$ T/K Composition Volume T/Cm° V/Cm° 25 298.15 6.1% O ₂ 49.54 1.53 0.0284 0.0310 16.5% CO ₂ 49.54 1.54 0.0284 0.0310 17.5% CO ₂ 49.54 1.54 0.0284 0.0310 16.5% CO ₂ 49.54 1.54 0.0016 16.5% CO ₂ 49.54 1.54 0.0016 16.5% CO ₂ 49.54 1.54 0.0016 17.5% CO ₂ 7.5% CO ₂ 49.54 1.54 0.0016 18.5% CO ₂ 49.54 1.54 0.0016 19.5% CO ₂ 49.54 1.54 0.0016 19.5% CO ₂ 49.54 1.54 0.0016 10.5% CO ₂ 49.54 0.001		
		ORIGINAL MEASUREMENTS:
(3) Carbon dioxide; CO_2 ; $[124-38-9]$ (4) Sulfuric acid; H_2O_2 ; $[7664-93-9]$ (5) Sodium sulfate; N_2O_2 ; $[7732-13-5]$ (6) Water; H_2O_2 ; $[7732-13-5]$ VARIABLES: T/K = 298.15 $p_2/KPA = 101.325$ EXPERIMENTAL VALUES: Temperature Gas Solvent N_2 , O_2 Bunsen Ostwald $t/^{\circ}C$ T/K Composition Volums and CO_2 $a/cm^3 (STP) cm^{-3} atm^{-1}$ $L/cm^3 cm^{-3}$ $per cent Volume V/cm^325 298.15 6.18 O_2 49.54 1.53 0.0284 0.031014.58 CO_2 49.54 1.5479.48 N_2The solvent is a mixture of 800 g H2O200$ g Na ₂ SO ₄ (anhydrous) 40 ml H ₂ SO ₄ (Conc., 36 normal) Thus the molality of the solution is $m_d/mol kg^{-1} = 0.90$ (H_2SO_4) $m_S/mol kg^{-1} = 1.76$ (Na ₂ SO ₄) $m_S/mol kg^{-1} = 1.76$ (Na ₂ SO ₄) $m_S/mol dioxide. Sources not given. Analytical grade. (1, 2, 3) Nitrogen, Oxygen, and Carbon dioxide. Sources not given. Analytical grade. (4, 5) Sulfuric acid and sodium sulfates. Sources not given. Analytical grade. (4, 5) Sulfuric acid and sodium sulfates. Sources not given. Analytical grade. (5) Water. Distilled. da/cm^3 = 10.005 (authors)REFERENCES:1. Kobe, K. A.; Williams, J. S. Ind. Eng. Chem., Anal. Ed.$	(1) Nitrogen;N ₂ ;[7727-37-9]	Kobe, K. A.; Kenton, F. H.
(3) Carbon dioxAde;CO ₂ :[124-38-9] (4) Sulfaric acid;H ₂ SO ₄ :[764-93-9] (5) Sodium sulfate;Na ₂ SO ₄ :[7757-82-6] (6) Water; H ₂ O ₁ [7732-18 ² 5] VARIABLES: T/K = 298.15 p ₁ /KPa = 101.325 EXPERIMENTAL VALUES: Temperature Gas Solvent N ₂ , O ₂ Bunsen Ostwald t/°C T/K Composition Volume and CO ₂ $a/cm^3 (STP) cm^{-3} atm^{-1} L/cm^3 cm^{-3}$ volume V/cm ³ and CO ₂ $a/cm^3 (STP) cm^{-3} atm^{-1} L/cm^3 cm^{-3}$ volume V/cm ³ and CO ₂ $a/cm^3 (STP) cm^{-3} atm^{-1} L/cm^3 cm^{-3}$ volume V/cm ³ and CO ₂ $a/cm^3 (STP) cm^{-3} atm^{-1} L/cm^3 cm^{-3}$ Temperature Gas Solvent N ₂ , O ₂ Bunsen Ostwald t/°C T/K Composition Volume Absorbed v ₂ /cm ³ 25 299.15 6.1% O ₂ 49.54 1.53 0.0284 0.0310 14.5% CO ₂ 49.54 1.54 79.4% N ₂ The solvent is a mixture of 800 g H ₂ O 200 g Na ₂ SO ₄ (anhydrous) 40 ml H ₂ SO ₄ (Conc., 36 normal) Thus the molality of the solution is $m_d/mol kg^{-1} = 0.90 (H_2SO_4)$ $m_{\overline{b}}/mol kg^{-1} = 1.76 (Na_2SO_4)$ METHOD/AFPAANUS/PROCEDURE: The apparatus is described in detail in an earlier paper (1). The appara- pressure compensator, and 200 cm ³ absorption bulb as tatched to a shaking mechanism. The absorption bulb. The bulb is shaken uniti equilibrium is reached. The remaining gas is returned to the volume of gas absorbed. AUXILIARY INFORMATION REFERENCES: 1. Kobe, K. A.; Williams, J. S. Ind. Eng. Chem., Anal. Ed.	(2) Oxygen;0 ₂ ;[7782-44-7]	Ind Eng Cham Angl Ed 1028
(4) Sulfuric acid; H ₂ SO ₄ ; [7664-93-9] (5) Sodium sulfate; Na ₂ SO ₄ ; [7787-82-6] (6) Water: Discrete and the paratus is described in detail n an earlier paper 10. The solution sis THOD/APPARATUS/PROCEDURE: The apparatus is described in detail in an earlier paper (1). The solution is THOD/APPARATUS/PROCEDURE: The apparatus is described in detail th absorption bulb and mercury leveling bub. The absorption bulb is anhare and finitial volumes is taken as the volume of gas absorbed. EXTERNATES (5) Sodium sulfate; Na ₂ SO ₄ (1990) (5) Sodium sulfate, Solvent N ₂ , O ₂ Bunsen Ostwald Coefficient Volume Coefficient Volume Absorbed Volume Absorbed Volume Absorbed Volume Absorbed Volume Absorbed Volume Absorbed Volume Absorbed (1,2,3) Nitrogen, Oxygen, and Carbon disking mechanism. The solvent and the gas are placed in the absorption bulb. The bulb is ahaken uniti equilibrim is reached. The remaining gas is returned to the Volume of gas absorbed. EXTERNATES REFERENCES: 1. Kobe, K. A.; Williams, J. S. Ind. Eng. Chem., Anal. Ed.	£	
(5) Sodium sulfate; Na_So ₁ (1757-62-6) (6) Water; H ₂ O ₁ (7732 ² 18 ² 5) VARIABLES: T/K = 298.15 $p_{j}/KPA = 101.325$ EXPERIMENTAL VALUES: Temperature Gas Solvent N ₂ , O ₂ Bunsen Ostwald t/°C T/K Composition Volume and CO ₂ $a/cm^3(STP)Gm^{-3}atm^{-1} L/cm^{3}cm^{-3}$ Volume V/cm ³ $dcorrel down down down down down down down down$	-	10, 78-7.
VARIABLES: T/K = 298.15 $p_2/KPa = 101.325$ EXPERIMENTAL VALUES: Temperature Gas Solvent N ₂ , O ₂ Bunsen Ostwald $t/^{\circ}C T/K$ Composition Volume and CO ₂ $coefficient Coefficient L/cm^3 cm^{-1}$ $volume V/cm^3$ and CO ₂ $c/cm^3 (STP) cm^{-1} atm^{-1} L/cm^3 cm^{-1}$ $volume V/cm^3$ and CO ₂ $c/cm^3 (STP) cm^{-1} atm^{-1} L/cm^3 cm^{-1}$ v_2/cm^3 25 298.15 6.1% O ₂ 49.54 1.53 0.0284 0.0310 14.5% CO ₂ 49.54 1.54 79.4% N ₂ The solvent is a mixture of 800 g H ₂ O 200 g Na ₂ SO ₄ (anhydrous) 40 ml H ₂ SO ₄ (Conc., 36 normal) Thus the molality of the solution is $m_4/mol kg^{-1} = 0.90 (H_2SO_4)$ $m_5/mol kg^{-1} = 1.76 (Na_2SO_4)$ METHOD/AFPARATUS/FROCEDURE: The apparatus is described in detail in an earlier paper (1). The appara- tus consits of a gas burct, a pressure compensator, and a 200 cm ³ absorption bulb and mercury leveling bulb. The absorption bulb is attached to a shaking mechanism. The solvent and the gas are placed in the absorption bulb is attached The remaining gas is returned to the burct. The difference in the final and initial volumes is taken as the volume of gas absorbed. KEFRENCES: 1. Kobe, K. A., Williams, J. S. Ind. Eng. Chem. Amaly Ed.		
VARIABLES: T/K = 298.15 $p_2/KPa = 101.325$ EXPERIMENTAL VALUES: Temperature Gas Solvent N ₂ , O ₂ Bunsen Ostwald $t/^{\circ}C T/K$ Composition Volume and CO ₂ $coefficient Coefficient L/cm^3 cm^{-1}$ $volume V/cm^3$ and CO ₂ $c/cm^3 (STP) cm^{-1} atm^{-1} L/cm^3 cm^{-1}$ $volume V/cm^3$ and CO ₂ $c/cm^3 (STP) cm^{-1} atm^{-1} L/cm^3 cm^{-1}$ v_2/cm^3 25 298.15 6.1% O ₂ 49.54 1.53 0.0284 0.0310 14.5% CO ₂ 49.54 1.54 79.4% N ₂ The solvent is a mixture of 800 g H ₂ O 200 g Na ₂ SO ₄ (anhydrous) 40 ml H ₂ SO ₄ (Conc., 36 normal) Thus the molality of the solution is $m_4/mol kg^{-1} = 0.90 (H_2SO_4)$ $m_5/mol kg^{-1} = 1.76 (Na_2SO_4)$ METHOD/AFPARATUS/FROCEDURE: The apparatus is described in detail in an earlier paper (1). The appara- tus consits of a gas burct, a pressure compensator, and a 200 cm ³ absorption bulb and mercury leveling bulb. The absorption bulb is attached to a shaking mechanism. The solvent and the gas are placed in the absorption bulb is attached The remaining gas is returned to the burct. The difference in the final and initial volumes is taken as the volume of gas absorbed. KEFRENCES: 1. Kobe, K. A., Williams, J. S. Ind. Eng. Chem. Amaly Ed.	(5) Sodium sulfate; Na ₂ SO ₄ ; [7757-82-6]	
$7/K = 298.15$ P. L. Long H. L. CleverFERENTENTAL VALUES:Temporature Gas per centSolvent N2, 02 Coefficient Volume and CO2 $\alpha/cm^3(STP) cm^{-3} atm^{-1}$ $L/cm^3 cm^{-1}$ $L/cm^3 cm^{-1}$ Volume Absorbed v_2/cm^3 25 298.15 6.1% 02 99.5449.54 1.530.0284 0.031014.5% CO2 99.48 N2The solvent is a mixture of 800 g H20 200 g Na2SO4 (anhydrous) 40 ml H2SO4 (Conc., 36 normal)Thus the molality of the solution is $m_d/mol kg^{-1} = 0.90 (H_2SO_4)$ $m_5/mol kg^{-1} = 1.76 (Na2SO_4)$ SOURCE AND FURITY OF MATERIALS: (1.2.3) Nitrogen, Oxygen, and carbon dioxide. Source not given. Purity stated to be 99t per cent.MINILIARY INFORMATIONMINILARY INFORMATIONSOURCE AND FURITY OF MATERIALS: (1.2.3) Nitrogen, Oxygen, and carbon dioxide. Source not given. Purity stated to be 99t per cent.AUXILIARY INFORMATIONMINILARY INFORMATION <td>(6) Water; H₂O; [7732-18-5]</td> <td>·</td>	(6) Water; H ₂ O; [7732-18-5]	·
$p_1/kPa = 101.325$ H. L. CleverEXPERIMENTAL VALUES: Temperature Gas t/°C T/K Composition Volume and CO a d/cm^3 (STP) cm ⁻¹ atm ⁻¹ $L/cm^3 cm^{-1}$ wolume per cent V/cm^3 Ostwald Coefficient $U/cm^3 cm^{-1}$ atm ⁻¹ $L/cm^3 cm^{-1}$ $L/cm^3 cm^{-1}$ Volume NbsorbedVolume NbsorbedVolume NbsorbedVolume NbsorbedVolume NbsorbedVolume NbsorbedVolume NbsorbedVolume NbsorbedVolume NbsorbedVolume NbsorbedVolume NbsorbedVolume NbsorbedVolume NbsorbedVolume NbsorbedVolume NbsorbedVolume NbsorbedVolume NbsorbedVolume NbsorbedVolume No (Mag Chaine Colspan="2">Ostwald Colspan="2">Ostwald Colspan="2">Ostwald Colspan="2">Coefficient Coefficient L/cm ³ cm ⁻¹ Volume No (Mag Chaine Colspan="2">Volume No (Mag Chaine Colspan="2">Ostwald Coefficient L/cm ³ cm ⁻¹ The solvent is a mixture of 800 g H_2O 200 g Na_2SO4 (Conc., 36 normal)Thus the molality of the solution isMag/mol kg ⁻¹ = 0.90 (H_2SO4)Mag/mol kg ⁻¹ = 1.76 (Na_2SO4)Source compensator, and a 200 cm ³ Photopion bulb and mercury leveling bube. The absorption bulb is attached	VARIABLES:	PREPARED BY:
PERTHENTAL VALUES:Temperature Gas t/°C T/KSolvent N2, O2 Coefficient Volume per centSolvent N2, O2 Coefficient Coefficient Volume Absorbed v_2/cm^3 Bunsen Coefficient Coefficient L/cm³cm ⁻¹ L/cm³cm ⁻¹ L/cm³cm ⁻¹ 25298.156.1% O2 49.5449.541.530.02840.031014.5% CO2 200 g Na2SO4 40 ml H2SO4 40 ml H2SO4 (Conc., 36 normal)0.031014.5% N2The solvent is a mixture of 800 g H2O 200 g Na2SO4 40 ml H2SO4 m5/mol kg ⁻¹ = 0.90 (H2SO4) m5/mol kg ⁻¹ = 1.76 (Na2SO4)MILLIARY INFORMATIONMETHOD/APPARATUS/PROCEDURE: The apparatus is described in detail in an earlier paper (1). The apparatus consists of a gas buret, a pressure compensator, and a 200 cm³ absorption bulb and mercury leveling bulb. The absorption bulb is attached to a shaking mechanism.SOURCE AND FURITY OF MATERIALS: (1,2,3) Nitrogen, Oxygen, and Carbon dioxide. Sources not given. Analytical grade.The solvent and the gas are placed in the absorption bulb. The bulb is shaken until equilibrium is reached. the remaining gas is returned to the buret. The difference in the final and initial volumes is taken as the volume of gas absorbed.Sources not given. Analytical grade.EFTEMATED ERROR: bulb. The bulb is and initial volumes is taken as the volume of gas absorbed.Source and stached to a find. Eng. Chem., Anal. Z6.		P. L. Long
Temperature Gas Solvent N ₂ , O ₂ Bunsen Ostwald $t/^{\circ}C$ T/K Composition Volume and CO ₂ u_{c} (cm ² (STP) cm ⁻³ atm ⁻¹ $L/cm^{3} cm^{-3}$) Volume u_{c} (cm ² (STP) cm ⁻³ atm ⁻¹ $L/cm^{3} cm^{-3}$) Volume u_{c} (cm ² (STP) cm ⁻³ atm ⁻¹ $L/cm^{3} cm^{-3}$) Volume u_{c} (cm ² (STP) cm ⁻³ atm ⁻¹ $L/cm^{3} cm^{-3}$) Volume u_{c} (cm ² (STP) cm ⁻³ atm ⁻¹ $L/cm^{3} cm^{-3}$) Volume u_{c} (cm ² (STP) cm ⁻³ atm ⁻¹ $L/cm^{3} cm^{-3}$) Volume u_{c} (cm ² (STP) cm ⁻³ atm ⁻¹ $L/cm^{3} cm^{-3}$) Volume u_{c} (cm ² (STP) cm ⁻³ atm ⁻¹ $L/cm^{3} cm^{-3}$) Volume u_{c} (cm ² (STP) cm ⁻³ atm ⁻¹ $L/cm^{3} cm^{-3}$) Volume u_{c} (cm ² (STP) cm ⁻³ atm ⁻¹ $L/cm^{3} cm^{-3}$) Volume u_{c} (cm ² (STP) cm ⁻³ atm ⁻¹ $L/cm^{3} cm^{-3}$) Volume u_{c} (cm ² (STP) cm ⁻³ atm ⁻¹ $L/cm^{3} cm^{-3}$) Volume u_{c} (cm ² (STP) cm ⁻³ atm ⁻¹ $L/cm^{3} cm^{-3}$) Volume u_{c} (cm ² (STP) cm ⁻³ atm ⁻¹ $L/cm^{3} cm^{-3}$) Volume u_{c} (cm ² (STP) cm ⁻³ atm ⁻¹ $L/cm^{3} cm^{-3}$) Volume u_{c} (sm ² (STP) cm ⁻³ atm ⁻¹ $L/cm^{3} cm^{-3}$) Volume u_{c} (sm ² (STP) cm ⁻³ atm ⁻¹ $L/cm^{3} cm^{-3}$) Volume u_{c} (sm ² (STP) cm ⁻³ atm ⁻¹ $L/cm^{3} cm^{-3}$) Volume u_{c} (sm ² (STP) cm ⁻³ atm ⁻¹ $L/cm^{3} cm^{-3}$) Volume u_{c} (sm ² (STP) cm ⁻³ atm ⁻¹ $L/cm^{3} cm^{-3}$) Volume u_{c} (sm ² (STP) cm ⁻³ atm ⁻¹ $L/cm^{3} cm^{-3}$) Netroperature (STP) cm ⁻³ cm ⁻³ (STP) cm ⁻³ ctm ⁻³ (STP) cm ⁻³ cm ⁻³ (STP) cm ⁻³ cm ⁻³ (STP) cm ⁻³	$p_{1}/kPa = 101.325$	H. L. Clever
Temperature Gas Solvent N ₂ , O ₂ Bunsen Ostwald $t/^{\circ}C$ T/K Composition Volume and CO ₂ $u_{c}^{com^{2}(STP) cm^{-3} atm^{-1}}$ Coefficient L/cm ³ cm^{-3} volume Absorbed $v_{1/cm^{3}}$ The solvent is a mixture of 800 g H ₂ O 200 g Na ₂ SO ₄ (anhydrous) 40 ml H ₂ SO ₄ (conc., 36 normal) Thus the molality of the solution is $m_{d}/mol \ kg^{-1} = 0.90 \ (H_{2}SO_{4})$ $m_{5}/mol \ kg^{-1} = 1.76 \ (Na_{2}SO_{4})$ METHOD/APPARATUS/PROCEDURE: The apparatus is described in detail in an earlier paper (1). The apparatus competing how the solution s The solvent and the gas are placed in the absorption bulb is attached to a shaking mechanism. The solvent and the gas are placed in the absorption bulb. The bulb is shaken until equilibrium is reached. The remaining gas is returned to the burct. The difference in the final and initial volumes is taken as the volume of gas absorbed. KEFERENCES: 1. Kobe, K. A.; Williams, J. S. Indocumpeted to a since the solution is REFERENCES: 1. Kobe, K. A.; Williams, J. S. Indocumpeted to a since the solue is taken as the volume of gas absorbed.		
t/°C T/K Composition Volume per cent V/Cm ³ V/Cm ³ Volume per cent V/Cm ³ Volume y_2 /Cm ³ 25 298.15 6.1% 0 ₂ 49.54 1.53 0.0284 0.0310 14.5% Co ₂ 49.54 1.54 79.4% N ₂ The solvent is a mixture of 800 g H ₂ O 200 g Na ₂ SO ₄ (anhydrous) 40 ml H ₂ SO ₄ (Conc., 36 normal) Thus the molality of the solution is m_d /mol kg ⁻¹ = 0.90 (H ₂ SO ₄) m_5 /mol kg ⁻¹ = 1.76 (Na ₂ SO ₄) METHOD/APPARATUS/PROCEDURE: The apparatus is described in detail in an earlier paper (1). The apparatus tus consists of a gas buret, a pressure compensator, and a 200 cm ³ absorption bulb and mercury leveling bulb. The absorption bulb is attached to a shaking mechanism. The solvent and the gas are placed in the absorption bulb. The bulb is shaken until equilibrium is reached. The difference in the final and initial volumes is taken as the volume of gas absorbed. KEFERENCES: 1. Kobe, K. A.; Williams, J. S. Ind. Eng. Chem., Anal. Ed.	EXPERIMENTAL VALUES:	
t/*C T/K Composition Volume per cent V/Cm ³ V/Cm ³ Volume per cent V/Cm ³ Volume y_{2} /Cm ³ 25 298.15 6.1% 0 ₂ 49.54 1.53 0.0284 0.0310 14.5% C0 ₂ 49.54 1.54 79.4% N ₂ The solvent is a mixture of 800 g H ₂ O 200 g Na ₂ SO ₄ (anhydrous) 40 ml H ₂ SO ₄ (Conc., 36 normal) Thus the molality of the solution is m_{d} /mol kg ⁻¹ = 0.90 (H ₂ SO ₄) m_{b} /mol kg ⁻¹ = 1.76 (Na ₂ SO ₄) METHOD/APPARATUS/PROCEDURE: The apparatus is described in detail in an earlier paper (1). The apparatus tus consists of a gas burct, a pressure compensator, and a 200 cm ³ absorption bulb and mercury leveling bulb. The absorption bulb is attached to a shaking mechanism. The solvent and the gas are placed in the absorption bulb. The bulb is shaken until equilibrium is reached. The difference in the final and initial volumes is taken as the volume of gas absorbed. KEFERENCES: 1. Kobe, K. A.; Williams, J. S. Ind. Eng. Chem., Anal. Ed.	Temperature Gas Solvent N.,	O. Bunsen Ostwald
25298.15 $6.1 \& 0_2$ 49.54 1.53 0.0284 0.0310 14.58CO249.54 1.54 79.48N2The solvent is a mixture of 800 g H20200 g Na2SO4 (anhydrous)40 ml H2SO4 (Conc., 36 normal)Thus the molality of the solution is $m_d/mol \ kg^{-1} = 0.90 \ (H_2SO_4)$ $m_s/mol \ kg^{-1} = 1.76 \ (Na_2SO_4)$ $m_s/mol \ kg^{-1} = 1.76 \ (Na_2SO_4)$ AUXILIARY INFORMATIONMUXILIARY INFORMATIONMUXILIARY INFORMATIONAUXILIARY INFORMATIONAUXILIARY INFORMATIONAUXILIARY INFORMATIONMUXILIARY INFORMATIONAUXILIARY INFORMATIONMUXILIARY INFORMATIONMUXILIARY INFORMATIONAUXILIARY INFORMATIONMUXILIARY INFORMA	t/°C T/K Composition Volume volume V/cm ³ and per cent Volu Abso	CO_COEfficient Coefficient 2 α/cm ³ (STP)cm ⁻³ atm ⁻¹ L/cm ³ cm ⁻³ ume orbed
14.5% C_{2}^{2} 49.541.5479.4% N2The solvent is a mixture of 800 g H20 200 g Na2SO4 (anhydrous) 40 ml H2SO4 (Conc., 36 normal)Thus the molality of the solution is $m_d/mol \ kg^{-1} = 0.90 \ (H_2SO_4)$ $m_5/mol \ kg^{-1} = 1.76 \ (Na_2SO_4)$ AUXILIARY INFORMATIONAUXILIARY INFORMATIONMETHOD/APPARATUS/PROCEDURE: The apparatus is described in detail in an earlier paper (1). The apparatus tus consists of a gas buret, a pressure compensator, and a 200 cm³ absorption bulb and mercury leveling bulb. The absorption bulb is attached to a shaking mechanism.SOURCE AND PURITY OF MATENIALS: (1,2,3) Nitrogen, Oxygen, and Carbon dioxide. Source not given. Purity stated to be 99+ per cent.AUXILIARY INFORMATIONAUXILIARY INFORMATION	v ₁ ,	/cm ³
14.5% C_{02}^{2} 49.541.5479.4% N2The solvent is a mixture of 800 g H20 200 g Na2S04 (anhydrous) 40 ml H2S04 (Conc., 36 normal)Thus the molality of the solution is $m_d/mol kg^{-1} = 0.90 (H_2S0_4)$ $m_5/mol kg^{-1} = 1.76 (Na2S0_4)$ AUXILIARY INFORMATIONMETHOD/APPARATUS/PROCEDURE:The apparatus is described in detail in an earlier paper (1). The apparatus compensator, and a 200 cm³ absorption bulb and mercury leveling bulb. The absorption bulb is attached to a shaking mechanism.The solvent and the gas are placed in the absorption bulb. The bulb is shaken until equilibrium is reached. The remaining gas is returned to the buret. The difference in the final and initial volume of gas absorbed.SUPPENDIMENTIONREFERENCES: 1. Kobe, K. A.; Williams, J. S. I. M. Eng. Chem., Anal. Ed.REFERENCES: 1. Kobe, K. A.; Williams, J. S.INFORMENCES: 1. Kobe, K. A.; Williams, J. S.	25 298 15 6 19 0 49 54 1	53 0.0294 0.0210
$\frac{79.48 N_2}{The solvent is a mixture of 800 g H_20}{200 g Na_2SO_4} (anhydrous) \\ 40 ml H_2SO_4 (Conc., 36 normal) \\Thus the molality of the solution is \frac{m_d/mol kg^{-1} = 0.90 (H_2SO_4)}{m_5/mol kg^{-1} = 1.76 (Na_2SO_4)} \\ \frac{MILLIARY INFORMATION}{m_5/mol kg^{-1} = 1.76 (Na_2SO_4)} \\ \frac{METHOD/APPARATUS/PROCEDURE:}{The apparatus is described in detail in an earlier paper (1). The apparatus consists of a gas buret, a pressure compensator, and a 200 cm3 absorption bulb and mercury leveling bulb. The absorption bulb is attached to a shaking mechanism. \\ The solvent and the gas are placed in the absorption bulb is staken until equilibrium is reached. The remaining gas is returned to the buret. The difference in the final and initial volume is taken as the volume of gas absorbed. \\ (6) Water. Distilled. \\ (6) Water. Distilled. \\ (6) Water. Distilled. \\ (6) Water. Distilled. \\ (7) Sulfure constant const$	2	
The solvent is a mixture of 800 g H ₂ O 200 g Na ₂ SO ₄ (anhydrous) 40 ml H ₂ SO ₄ (Conc., 36 normal) Thus the molality of the solution is $m_d/mol \ kg^{-1} = 0.90 \ (H_2SO_4)$ $m_5/mol \ kg^{-1} = 1.76 \ (Na_2SO_4)$ METHOD/APPARATUS/PROCEDURE: The apparatus is described in detail in an earlier paper (1). The appara- tus consists of a gas buret, a pressure compensator, and a 200 cm ³ absorption bulb and mercury leveling bulb. The absorption bulb is attached to a shaking mechanism. The solvent and the gas are placed in the absorption bulb is reached. The remaining gas is returned to the buret. The difference in the final and initial volumes is taken as the volume of gas absorbed. Source sources: 1. Kobe, K. A.; Williams, J. S. Ind. Eng. Chem., Anal. Ed.	2	.54
The solvent is a mixture of 800 g H ₂ O 200 g Na ₂ SO ₄ (anhydrous) 40 ml H ₂ SO ₄ (Conc., 36 normal) Thus the molality of the solution is $m_d/mol \ kg^{-1} = 0.90 \ (H_2SO_4)$ $m_5/mol \ kg^{-1} = 1.76 \ (Na_2SO_4)$ METHOD/APPARATUS/PROCEDURE: The apparatus is described in detail in an earlier paper (1). The appara- tus consists of a gas buret, a pressure compensator, and a 200 cm ³ absorption bulb and mercury leveling bulb. The absorption bulb is attached to a shaking mechanism. The solvent and the gas are placed in the absorption bulb is reached. The remaining gas is returned to the buret. The difference in the final and initial volumes is taken as the volume of gas absorbed. Surce show the solution is the final and initial volumes is taken as the volume of gas absorbed. Surce solution is the solution is the solution is the solution is the final and initial volumes is taken as the volume of gas absorbed. Surce solution is the	79.4% N ₂	
$200 \text{ g N}_2 \text{SO}_4 \text{ (anhydrous)} \\ 40 \text{ ml } \text{H}_2 \text{SO}_4 \text{ (Conc., 36 normal)} \\ \text{Thus the molality of the solution is} \\ m_d/\text{mol } \text{kg}^{-1} = 0.90 \text{ (H}_2 \text{SO}_4) \\ m_s/\text{mol } \text{kg}^{-1} = 1.76 \text{ (Na}_2 \text{SO}_4) \\ \text{METHOD/APPARATUS/PROCEDURE:} \\ \text{The apparatus is described in detail in an earlier paper (1). The apparatus consists of a gas buret, a pressure compensator, and a 200 cm3 absorption bulb and mercury leveling bulb. The absorption bulb is attached to a shaking mechanism. \\ \text{The solvent and the gas are placed in the absorption bulb is attached to a shaking mechanism. \\ \text{The solvent and the gas are placed in the absorption bulb is stached. The remaining gas is returned to the buret. The difference in the final and initial volumes is taken as the volume of gas absorbed. \\ \hline \text{REFERENCES:} \\ 1. \text{ Kobe, K. A.; Williams, J. S. Ind. Eng. Chem., Anal. Ed.} \\ \hline \text{REFERENCES:} \\ \hline \text{In Kobe, K. A.; Williams, J. S. Ind. Eng. Chem., Anal. Ed.} \\ \hline \text{Rescale Comparent of the complexity of the solution is the absorption bulb is attached to a shaking mechanism. \\ \hline \text{The solvent and the gas are placed in the final and initial volumes is taken as the volume of gas absorbed.} \\ \hline \text{Rescale Complexity of the solution is the complexity of the solution is taken as the volume of gas absorbed.} \\ \hline \text{Rescale Complexity of the solution is the solution is taken as the volume of gas absorbed.} \\ \hline \text{Rescale Complexity of the solution is the solution is taken as the volume of gas absorbed.} \\ \hline \text{Rescale Complexity of the solution of the solution is taken as the volume of gas absorbed.} \\ \hline \text{Rescale Complexity of the solution of the solution is taken as the volume of gas absorbed.} \\ \hline \text{Rescale Complexity of the solution of the solution is taken as the volume of gas absorbed.} \\ \hline \text{Rescale Complexity of the solution of the solution is taken as the volume of gas absorbed.} \\ \hline Rescale Complexity of the solution of the solution is the solution of the solution of the solution the solution the solu$		
$40 \text{ ml } H_2SO_4 \text{ (Conc., 36 normal)}$ Thus the molality of the solution is $m_4/\text{mol } \text{kg}^{-1} = 0.90 (\text{H}_2SO_4)$ $m_5/\text{mol } \text{kg}^{-1} = 1.76 (\text{Na}_2SO_4)$ $m_5/\text{mol } \text{kg}^{-1} = 1.76 (\text{Na}_2SO_4)$ $\text{AUXILIARY INFORMATION}$ METHOD/APPARATUS/PROCEDURE: The apparatus is described in detail in an earlier paper (1). The apparatus consists of a gas buret, a pressure compensator, and a 200 cm ³ absorption bulb and mercury leveling bulb. The absorption bulb is attached to a shaking mechanism. The solvent and the gas are placed in the absorption bulb. The bulb is shaken until equilibrium is reached. The remaining gas is returned to the buret. The difference in the final and initial volumes is taken as the volume of gas absorbed. $(4,5) \text{ Sulfuric acid and sodium} \text{ sulfate. Sources not given.} Analytical grade. (6) Water. Distilled. (4,5) \text{ Sulfuric acid and sodium} \text{ sulfate. Sources not given.} Analytical grade. (6) Water. Distilled. (5) \text{ Water. Distilled.} $		
$40 \text{ ml } H_2SO_4 \text{ (Conc., 36 normal)}$ Thus the molality of the solution is $m_4/\text{mol } \text{kg}^{-1} = 0.90 (\text{H}_2SO_4)$ $m_5/\text{mol } \text{kg}^{-1} = 1.76 (\text{Na}_2SO_4)$ $m_5/\text{mol } \text{kg}^{-1} = 1.76 (\text{Na}_2SO_4)$ $\text{AUXILIARY INFORMATION}$ METHOD/APPARATUS/PROCEDURE: The apparatus is described in detail in an earlier paper (1). The apparatus consists of a gas buret, a pressure compensator, and a 200 cm ³ absorption bulb and mercury leveling bulb. The absorption bulb is attached to a shaking mechanism. The solvent and the gas are placed in the absorption bulb. The bulb is shaken until equilibrium is reached. The remaining gas is returned to the buret. The difference in the final and initial volumes is taken as the volume of gas absorbed. $(4,5) \text{ Sulfuric acid and sodium} \text{ sulfate. Sources not given.} Analytical grade. (6) Water. Distilled. (4,5) \text{ Sulfuric acid and sodium} \text{ sulfate. Sources not given.} Analytical grade. (6) Water. Distilled. (5) \text{ Water. Distilled.} $	200 g Na ₂ s	50 ₄ (anhydrous)
Thus the molality of the solution is $m_d/\text{mol } \text{kg}^{-1} = 0.90 (\text{H}_2\text{SO}_4)$ $m_5/\text{mol } \text{kg}^{-1} = 1.76 (\text{Na}_2\text{SO}_4)$ METHOD/APPARATUS/PROCEDURE: The apparatus is described in detail in an earlier paper (1). The appara- tus consists of a gas buret, a pressure compensator, and a 200 cm ³ absorption bulb and mercury leveling bulb. The absorption bulb is attached to a shaking mechanism. The solvent and the gas are placed in the absorption bulb. The bulb is shaken until equilibrium is reached. The remaining gas is returned to the buret. The difference in the final and initial volumes is taken as the volume of gas absorbed. REFERENCES: 1. Kobe, K. A.; Williams, J. S. Ind. Eng. Chem., Anal. Ed.	-	•
$m_{d}/\text{mol } \text{kg}^{-1} = 0.90 (\text{H}_{2}\text{SO}_{4})$ $m_{5}/\text{mol } \text{kg}^{-1} = 1.76 (\text{Na}_{2}\text{SO}_{4})$ AUXILIARY INFORMATION $METHOD/APPARATUS/PROCEDURE:$ The apparatus is described in detail in an earlier paper (1). The appara- tus consists of a gas buret, a pressure compensator, and a 200 cm ³ absorption bulb and mercury leveling bulb. The absorption bulb is attached to a shaking mechanism. The solvent and the gas are placed in the absorption bulb. The bulb is shaken until equilibrium is reached. The remaining gas is returned to the buret. The difference in the 'final and initial volumes is taken as the volume of gas absorbed. $(4,5) \text{ Sulfuric acid and sodium}_{Analytical grade.}$ $(6) \text{ Water. Distilled.}$ $(6) \text{ Water.}$	10 m² m² 200	4
$m_{\tilde{g}}/\text{mol } \text{kg}^{-1} = 1.76 \text{ (Na}_2\text{SO}_4)$ AUXILIARY INFORMATION METHOD/APPARATUS/PROCEDURE: The apparatus is described in detail in an earlier paper (1). The apparatus is described in detail in an earlier paper (1). The apparatus a 200 cm ³ absorption bulb and mercury leveling bulb. The absorption bulb is attached to a shaking mechanism. The solvent and the gas are placed in the absorption bulb. The bulb is shaken until equilibrium is reached. The remaining gas is returned to the burtet. The difference in the final and initial volumes is taken as the volume of gas absorbed. REFERENCES: 1. Kobe, K. A.; Williams, J. S. Ind. Eng. Chem., Anal. Ed.		
$m_5/\text{mol } \text{kg}^{-1} = 1.76 \text{ (Na}_2\text{SO}_4)$ $\text{AUXILIARY INFORMATION}$ $\text{METHOD/APPARATUS/PROCEDURE:}$ The apparatus is described in detail in an earlier paper (1). The appara- tus consists of a gas buret, a pressure compensator, and a 200 cm ³ absorption bulb and mercury leveling bulb. The absorption bulb is attached to a shaking mechanism. The solvent and the gas are placed in the absorption bulb. The bulb is shaken until equilibrium is reached. The remaining gas is returned to the buret. The difference in the Tinal and initial volumes is taken as the volume of gas absorbed. KEFERENCES: 1. Kobe, K. A.; Williams, J. S. Ind. Eng. Chem., Anal. Ed.	Thus the molality of the solution is	
AUXILIARY INFORMATION METHOD/APPARATUS/PROCEDURE: The apparatus is described in detail in an earlier paper (1). The appara- tus consists of a gas buret, a pressure compensator, and a 200 cm ³ absorption bulb and mercury leveling bulb. The absorption bulb is attached to a shaking mechanism. The solvent and the gas are placed in the absorption bulb. The bulb is shaken until equilibrium is reached. The remaining gas is returned to the buret. The difference in the final and initial volumes is taken as the volume of gas absorbed. REFERENCES: 1. Kobe, K. A.; Williams, J. S. Ind. Eng. Chem., Anal. Ed.		
AUXILIARY INFORMATION METHOD/APPARATUS/PROCEDURE: The apparatus is described in detail in an earlier paper (1). The appara- tus consists of a gas buret, a pressure compensator, and a 200 cm ³ absorption bulb and mercury leveling bulb. The absorption bulb is attached to a shaking mechanism. The solvent and the gas are placed in the absorption bulb. The bulb is shaken until equilibrium is reached. The remaining gas is returned to the buret. The difference in the final and initial volumes is taken as the volume of gas absorbed. REFERENCES: 1. Kobe, K. A.; Williams, J. S. Ind. Eng. Chem., Anal. Ed.		$^{-1} = 0.90 (H_2 SO_4)$
METHOD/APPARATUS/PROCEDURE:SOURCE AND FURITY OF MATERIALS:The apparatus is described in detail in an earlier paper (1). The appara- tus consists of a gas buret, a pressure compensator, and a 200 cm³ absorption bulb and mercury leveling bulb. The absorption bulb is attached to a shaking mechanism.SOURCE AND FURITY OF MATERIALS: (1,2,3) Nitrogen, Oxygen, and Carbon dioxide. Source not given. Purity stated to be 99+ per cent.The solvent and the gas are placed in the absorption bulb. The bulb is shaken until equilibrium is reached. The remaining gas is returned to the buret. The difference in the 'final and initial volumes is taken as the volume of gas absorbed.SOURCE AND FURITY OF MATERIALS: (1,2,3) Nitrogen, Oxygen, and Carbon dioxide. Source not given. Purity stated to be 99+ per cent.(4,5) Sulfuric acid and sodium sulfate. Sources not given. Analytical grade.Analytical grade.(6) Water. Distilled.ESTIMATED ERROR: $\delta \alpha/cm^3 = \pm 0.005$ (authors)REFERENCES: l. Kobe, K. A.; Williams, J. S. Ind. Eng. Chem., Anal. Ed.	m ₄ /mol kg ⁻	
METHOD/APPARATUS/PROCEDURE:SOURCE AND FURITY OF MATERIALS:The apparatus is described in detail in an earlier paper (1). The appara- tus consists of a gas buret, a pressure compensator, and a 200 cm³ absorption bulb and mercury leveling bulb. The absorption bulb is attached to a shaking mechanism.SOURCE AND FURITY OF MATERIALS: (1,2,3) Nitrogen, Oxygen, and Carbon dioxide. Source not given. Purity stated to be 99+ per cent.The solvent and the gas are placed in the absorption bulb. The bulb is shaken until equilibrium is reached. The remaining gas is returned to the buret. The difference in the 'final and initial volumes is taken as the volume of gas absorbed.SOURCE AND FURITY OF MATERIALS: (1,2,3) Nitrogen, Oxygen, and Carbon dioxide. Source not given. Purity stated to be 99+ per cent.(4,5) Sulfuric acid and sodium sulfate. Sources not given. Analytical grade.Analytical grade.(6) Water. Distilled.ESTIMATED ERROR: $\delta \alpha/cm^3 = \pm 0.005$ (authors)REFERENCES: l. Kobe, K. A.; Williams, J. S. Ind. Eng. Chem., Anal. Ed.	m ₄ /mol kg ⁻	
METHOD/APPARATUS/PROCEDURE:SOURCE AND FURITY OF MATERIALS:The apparatus is described in detail in an earlier paper (1). The appara- tus consists of a gas buret, a pressure compensator, and a 200 cm³ absorption bulb and mercury leveling bulb. The absorption bulb is attached to a shaking mechanism.SOURCE AND FURITY OF MATERIALS: (1,2,3) Nitrogen, Oxygen, and Carbon dioxide. Source not given. Purity stated to be 99+ per cent.The solvent and the gas are placed in the absorption bulb. The bulb is shaken until equilibrium is reached. The remaining gas is returned to the buret. The difference in the 'final and initial volumes is taken as the volume of gas absorbed.SOURCE AND FURITY OF MATERIALS: (1,2,3) Nitrogen, Oxygen, and Carbon dioxide. Source not given. Purity stated to be 99+ per cent.(4,5) Sulfuric acid and sodium sulfate. Sources not given. Analytical grade.Analytical grade.(6) Water. Distilled.ESTIMATED ERROR: $\delta \alpha/cm^3 = \pm 0.005$ (authors)REFERENCES: l. Kobe, K. A.; Williams, J. S. Ind. Eng. Chem., Anal. Ed.	m ₄ /mol kg ⁻	
METHOD/APPARATUS/PROCEDURE:SOURCE AND PURITY OF MATERIALS:The apparatus is described in detail in an earlier paper (1). The appara- tus consists of a gas buret, a pressure compensator, and a 200 cm³ absorption bulb and mercury leveling bulb. The absorption bulb is attached to a shaking mechanism.SOURCE AND PURITY OF MATERIALS: (1,2,3) Nitrogen, Oxygen, and Carbon dioxide. Source not given. Purity stated to be 99+ per cent.The solvent and the gas are placed in the absorption bulb. The bulb is shaken until equilibrium is reached. The remaining gas is returned to the buret. The difference in the 'final and initial volumes is taken as the volume of gas absorbed.SOURCE AND PURITY OF MATERIALS: (1,2,3) Nitrogen, Oxygen, and Carbon dioxide. Source not given. Purity stated to be 99+ per cent.(4,5) Sulfuric acid and sodium sulfate. Sources not given. Analytical grade.Analytical grade.(6) Water. Distilled.ESTIMATED ERROR: $\delta \alpha/cm^3 = \pm 0.005$ (authors)REFERENCES: l. Kobe, K. A.; Williams, J. S. Ind. Eng. Chem., Anal. Ed.	m ₄ /mol kg ⁻	
METHOD/APPARATUS/PROCEDURE:SOURCE AND PURITY OF MATERIALS:The apparatus is described in detail in an earlier paper (1). The appara- tus consists of a gas buret, a pressure compensator, and a 200 cm³ absorption bulb and mercury leveling bulb. The absorption bulb is attached to a shaking mechanism.SOURCE AND PURITY OF MATERIALS: (1,2,3) Nitrogen, Oxygen, and Carbon dioxide. Source not given. Purity stated to be 99+ per cent.The solvent and the gas are placed in the absorption bulb. The bulb is shaken until equilibrium is reached. The remaining gas is returned to the buret. The difference in the 'final and initial volumes is taken as the volume of gas absorbed.SOURCE AND PURITY OF MATERIALS: (1,2,3) Nitrogen, Oxygen, and Garbon dioxide. Source not given. Purity stated to be 99+ per cent.(4,5) Sulfuric acid and sodium sulfate. Sources not given. Analytical grade.(4,5) Sulfuric acid and sodium sulfate. Sources not given. Analytical grade.(6) Water. Distilled.(6) Water. Distilled.Stimate explored in the remaining gas is taken as the volume of gas absorbed.Sa/cm³ = ±0.005 (authors)REFERENCES: 1. Kobe, K. A.; Williams, J. S. Ind. Eng. Chem., Anal. Ed.	m ₄ /mol kg ⁻	
METHOD/APPARATUS/PROCEDURE:SOURCE AND PURITY OF MATERIALS:The apparatus is described in detail in an earlier paper (1). The appara- tus consists of a gas buret, a pressure compensator, and a 200 cm³ absorption bulb and mercury leveling bulb. The absorption bulb is attached to a shaking mechanism.SOURCE AND PURITY OF MATERIALS: (1,2,3) Nitrogen, Oxygen, and Carbon dioxide. Source not given. Purity stated to be 99+ per cent.The solvent and the gas are placed in the absorption bulb. The bulb is shaken until equilibrium is reached. The remaining gas is returned to the buret. The difference in the 'final and initial volumes is taken as the volume of gas absorbed.SOURCE AND PURITY OF MATERIALS: (1,2,3) Nitrogen, Oxygen, and Garbon dioxide. Source not given. Purity stated to be 99+ per cent.(4,5) Sulfuric acid and sodium sulfate. Sources not given. Analytical grade.(4,5) Sulfuric acid and sodium sulfate. Sources not given. Analytical grade.(6) Water. Distilled.(6) Water. Distilled.Stimate explored in the remaining gas is taken as the volume of gas absorbed.Sa/cm³ = ±0.005 (authors)REFERENCES: 1. Kobe, K. A.; Williams, J. S. Ind. Eng. Chem., Anal. Ed.	m ₄ /mol kg ⁻	
METHOD/APPARATUS/PROCEDURE:SOURCE AND PURITY OF MATERIALS:The apparatus is described in detail in an earlier paper (1). The appara- tus consists of a gas buret, a pressure compensator, and a 200 cm³ absorption bulb and mercury leveling bulb. The absorption bulb is attached to a shaking mechanism.SOURCE AND PURITY OF MATERIALS: (1,2,3) Nitrogen, Oxygen, and Carbon dioxide. Source not given. Purity stated to be 99+ per cent.The solvent and the gas are placed in the absorption bulb. The bulb is shaken until equilibrium is reached. The remaining gas is returned to the buret. The difference in the 'final and initial volumes is taken as the volume of gas absorbed.SOURCE AND PURITY OF MATERIALS: (1,2,3) Nitrogen, Oxygen, and Garbon dioxide. Source not given. Purity stated to be 99+ per cent.(4,5) Sulfuric acid and sodium sulfate. Sources not given. Analytical grade.(4,5) Sulfuric acid and sodium sulfate. Sources not given. Analytical grade.(6) Water. Distilled.(6) Water. Distilled.Stimate explored in the remaining gas is taken as the volume of gas absorbed.Sa/cm³ = ±0.005 (authors)REFERENCES: 1. Kobe, K. A.; Williams, J. S. Ind. Eng. Chem., Anal. Ed.	m ₄ /mol kg ⁻	
The apparatus is described in detail in an earlier paper (1). The appara- tus consists of a gas buret, a pressure compensator, and a 200 cm ³ absorption bulb and mercury leveling bulb. The absorption bulb is attached to a shaking mechanism. The solvent and the gas are placed in the absorption bulb. The bulb is shaken until equilibrium is reached. The remaining gas is returned to the buret. The difference in the 'final and initial volumes is taken as the volume of gas absorbed. $\delta \alpha/cm^3 = \pm 0.005 \text{ (authors)}$	m ₄ /mol kg ⁻ m ₅ /mol kg ⁻	$-^{1} = 1.76 (Na_{2}SO_{4})$
The apparatus is described in detail in an earlier paper (1). The appara- tus consists of a gas buret, a pressure compensator, and a 200 cm ³ absorption bulb and mercury leveling bulb. The absorption bulb is attached to a shaking mechanism. The solvent and the gas are placed in the absorption bulb. The bulb is shaken until equilibrium is reached. The remaining gas is returned to the buret. The difference in the 'final and initial volumes is taken as the volume of gas absorbed. $\delta \alpha/cm^3 = \pm 0.005 \text{ (authors)}$	m ₄ /mol kg ⁻ m ₅ /mol kg ⁻	$-^{1} = 1.76 (Na_{2}SO_{4})$
in an earlier paper (1). The appara- tus consists of a gas buret, a pressure compensator, and a 200 cm ³ absorption bulb and mercury leveling bulb. The absorption bulb is attached to a shaking mechanism. The solvent and the gas are placed in the absorption bulb. The bulb is shaken until equilibrium is reached. The remaining gas is returned to the buret. The difference in the 'final and initial volumes is taken as the volume of gas absorbed. $\delta\alpha/cm^3 = \pm 0.005 \text{ (authors)}$ REFERENCES: 1. Kobe, K. A.; Williams, J. S. Ind. Eng. Chem., Anal. Ed.	m ₄ /mol kg ⁻ m ₅ /mol kg ⁻ AUXILIARY	$^{-1} = 1.76 (Na_2SO_4)$ INFORMATION
tus consists of a gas buret, a pressure compensator, and a 200 cm ³ absorption bulb and mercury leveling bulb. The absorption bulb is attached to a shaking mechanism. The solvent and the gas are placed in the absorption bulb. The bulb is shaken until equilibrium is reached. The remaining gas is returned to the buret. The difference in the 'final and initial volumes is taken as the volume of gas absorbed. $\delta \alpha/cm^3 = \pm 0.005$ (authors) REFERENCES: 1. Kobe, K. A.; Williams, J. S. Ind. Eng. Chem., Anal. Ed.	m ₄ /mol kg ⁻ m ₅ /mol kg ⁻ AUXILIARY METHOD/APPARATUS/PROCEDURE:	<pre>-1 = 1.76 (Na₂SO₄) INFORMATION SOURCE AND PURITY OF MATERIALS:</pre>
pressure compensator, and a 200 cm ³ absorption bulb and mercury leveling bulb. The absorption bulb is attached to a shaking mechanism. The solvent and the gas are placed in the absorption bulb. The bulb is shaken until equilibrium is reached. The remaining gas is returned to the buret. The difference in the 'final and initial volumes is taken as the volume of gas absorbed. $\delta \alpha / cm^3 = \pm 0.005 \text{ (authors)}$ REFERENCES: 1. Kobe, K. A.; Williams, J. S. Ind. Eng. Chem., Anal. Ed.	<pre>m₄/mol kg⁻ m₅/mol kg⁻ MuxiLiAry METHOD/APPARATUS/PROCEDURE: The apparatus is described in detail</pre>	<pre>-1 = 1.76 (Na₂SO₄) INFORMATION Source AND PURITY OF MATERIALS: (1,2,3) Nitrogen, Oxygen, and</pre>
 bulb. The absorption bulb is attached to a shaking mechanism. The solvent and the gas are placed in the absorption bulb. The bulb is shaken until equilibrium is reached. The remaining gas is returned to the buret. The difference in the 'final and initial volumes is taken as the volume of gas absorbed. (6) Water. Distilled. (6) Water. Distilled. (6) Water. Distilled. (7) Water. Distilled. (8) Water. Distilled. (9) Water. Distilled. (1) Water. Distilled. (2) Water. Distilled. (3) Water. Distilled. (4,5) Sulfuric acid and sodium sulfate. Sources not given. Analytical grade. (6) Water. Distilled. (6) Water. Distilled. (7) Water. Distilled. (8) Water. Distilled. (9) Water. Distilled. (9) Water. Distilled. (9) Water. Distilled. (1) Water. Distilled. (2) Water. Distilled. (3) Water. Distilled. (4,5) Sulfuric acid and sodium sulfate. Sources not given. Analytical grade. (6) Water. Distilled. (6) Water. Distilled. (7) Water. Distilled. (8) Water. Distilled. (9) Water. Distilled.<td><pre>m₄/mol kg⁻ m₅/mol kg⁻ MuxiLiARY METHOD/APPARATUS/PROCEDURE: The apparatus is described in detail in an earlier paper (1). The appara-</pre></td><td><pre>-1 = 1.76 (Na₂SO₄) INFORMATION SOURCE AND PURITY OF MATERIALS: (1,2,3) Nitrogen, Oxygen, and Carbon dioxide. Source not</pre></td>	<pre>m₄/mol kg⁻ m₅/mol kg⁻ MuxiLiARY METHOD/APPARATUS/PROCEDURE: The apparatus is described in detail in an earlier paper (1). The appara-</pre>	<pre>-1 = 1.76 (Na₂SO₄) INFORMATION SOURCE AND PURITY OF MATERIALS: (1,2,3) Nitrogen, Oxygen, and Carbon dioxide. Source not</pre>
to a shaking mechanism. The solvent and the gas are placed in the absorption bulb. The bulb is shaken until equilibrium is reached. The remaining gas is returned to the buret. The difference in the 'final and initial volumes is taken as the volume of gas absorbed. $\delta \alpha/cm^3 = \pm 0.005$ (authors) REFERENCES: 1. Kobe, K. A.; Williams, J. S. Ind. Eng. Chem., Anal. Ed.	<pre>m₄/mol kg⁻ m₅/mol kg⁻ AUXILIARY METHOD/APPARATUS/PROCEDURE: The apparatus is described in detail in an earlier paper (1). The appara- tus consists of a gas buret, a pressure compensator, and a 200 cm³</pre>	<pre>-1 = 1.76 (Na₂SO₄) INFORMATION SOURCE AND PURITY OF MATERIALS: (1,2,3) Nitrogen, Oxygen, and Carbon dioxide. Source not given. Purity stated to be</pre>
The solvent and the gas are placed in the absorption bulb. The bulb is shaken until equilibrium is reached. The remaining gas is returned to the buret. The difference in the 'final and initial volumes is taken as the volume of gas absorbed. $\delta \alpha / cm^3 = \pm 0.005 \text{ (authors)}$ REFERENCES: 1. Kobe, K. A.; Williams, J. S. Ind. Eng. Chem., Anal. Ed.	<pre>m₄/mol kg⁻ m₅/mol kg⁻ AUXILIARY METHOD/APPARATUS/PROCEDURE: The apparatus is described in detail in an earlier paper (1). The appara- tus consists of a gas buret, a pressure compensator, and a 200 cm³ absorption bulb and mercury leveling</pre>	<pre>Interval and the second s</pre>
The solvent and the gas are placed in the absorption bulb. The bulb is shaken until equilibrium is reached. The remaining gas is returned to the buret. The difference in the 'final and initial volumes is taken as the volume of gas absorbed. $\delta\alpha/cm^3 = \pm 0.005 \text{ (authors)}$ REFERENCES: 1. Kobe, K. A.; Williams, J. S. Ind. Eng. Chem., Anal. Ed.	<pre>m_d/mol kg⁻ m₅/mol kg⁻ MUXILIARY METHOD/APPARATUS/PROCEDURE: The apparatus is described in detail in an earlier paper (1). The appara- tus consists of a gas buret, a pressure compensator, and a 200 cm³ absorption bulb and mercury leveling bulb. The absorption bulb is attached</pre>	<pre>Interval and sodium</pre>
the absorption bulb. The bulb is shaken until equilibrium is reached. The remaining gas is returned to the buret. The difference in the 'final and initial volumes is taken as the volume of gas absorbed. $\delta\alpha/cm^3 = \pm 0.005 \text{ (authors)}$ REFERENCES: 1. Kobe, K. A.; Williams, J. S. Ind. Eng. Chem., Anal. Ed.	<pre>m_d/mol kg⁻ m₅/mol kg⁻ MUXILIARY METHOD/APPARATUS/PROCEDURE: The apparatus is described in detail in an earlier paper (1). The appara- tus consists of a gas buret, a pressure compensator, and a 200 cm³ absorption bulb and mercury leveling bulb. The absorption bulb is attached</pre>	<pre>INFORMATION SOURCE AND PURITY OF MATERIALS: (1,2,3) Nitrogen, Oxygen, and Carbon dioxide. Source not given. Purity stated to be 99+ per cent. (4,5) Sulfuric acid and sodium sulfate. Sources not given.</pre>
shaken until equilibrium is reached. The remaining gas is returned to the buret. The difference in the 'final and initial volumes is taken as the volume of gas absorbed. $\delta \alpha / cm^3 = \pm 0.005 \text{ (authors)}$ REFERENCES: 1. Kobe, K. A.; Williams, J. S. Ind. Eng. Chem., Anal. Ed.	m_d /mol kg m_5 /mol kg AUXILIARY METHOD/APPARATUS/PROCEDURE: The apparatus is described in detail in an earlier paper (1). The appara- tus consists of a gas buret, a pressure compensator, and a 200 cm ³ absorption bulb and mercury leveling bulb. The absorption bulb is attached to a shaking mechanism.	<pre>INFORMATION SOURCE AND PURITY OF MATERIALS: (1,2,3) Nitrogen, Oxygen, and Carbon dioxide. Source not given. Purity stated to be 99+ per cent. (4,5) Sulfuric acid and sodium sulfate. Sources not given.</pre>
The remaining gas is returned to the buret. The difference in the final and initial volumes is taken as the volume of gas absorbed. $\delta \alpha / cm^3 = \pm 0.005 \text{ (authors)}$ REFERENCES: 1. Kobe, K. A.; Williams, J. S. Ind. Eng. Chem., Anal. Ed.	m_d /mol kg ⁻ m_5 /mol kg ⁻ AUXILIARY METHOD/APPARATUS/PROCEDURE: The apparatus is described in detail in an earlier paper (1). The appara- tus consists of a gas buret, a pressure compensator, and a 200 cm ³ absorption bulb and mercury leveling bulb. The absorption bulb is attached to a shaking mechanism. The solvent and the gas are placed in	<pre>-1 = 1.76 (Na₂SO₄) INFORMATION SOURCE AND PURITY OF MATERIALS: (1,2,3) Nitrogen, Oxygen, and Carbon dioxide. Source not given. Purity stated to be 99+ per cent. (4,5) Sulfuric acid and sodium sulfate. Sources not given. Analytical grade.</pre>
buret. The difference in the final and initial volumes is taken as the volume of gas absorbed. $\delta \alpha / cm^3 = \pm 0.005 \text{ (authors)}$ REFERENCES: 1. Kobe, K. A.; Williams, J. S. Ind. Eng. Chem., Anal. Ed.	m_d /mol kg ⁻ m_5 /mol kg ⁻ AUXILIARY METHOD/APPARATUS/PROCEDURE: The apparatus is described in detail in an earlier paper (1). The appara- tus consists of a gas buret, a pressure compensator, and a 200 cm ³ absorption bulb and mercury leveling bulb. The absorption bulb is attached to a shaking mechanism. The solvent and the gas are placed in the absorption bulb. The bulb is shaken until equilibrium is reached.	<pre>-1 = 1.76 (Na₂SO₄) INFORMATION SOURCE AND PURITY OF MATERIALS: (1,2,3) Nitrogen, Oxygen, and Carbon dioxide. Source not given. Purity stated to be 99+ per cent. (4,5) Sulfuric acid and sodium sulfate. Sources not given. Analytical grade.</pre>
<pre>and initial volumes is taken as the volume of gas absorbed.</pre>	m_d /mol kg ⁻ m_5 /mol kg ⁻ AUXILIARY METHOD/APPARATUS/PROCEDURE: The apparatus is described in detail in an earlier paper (1). The appara- tus consists of a gas buret, a pressure compensator, and a 200 cm ³ absorption bulb and mercury leveling bulb. The absorption bulb is attached to a shaking mechanism. The solvent and the gas are placed in the absorption bulb. The bulb is shaken until equilibrium is reached. The remaining gas is returned to the	<pre>-1 = 1.76 (Na₂SO₄) INFORMATION SOURCE AND PURITY OF MATERIALS: (1,2,3) Nitrogen, Oxygen, and Carbon dioxide. Source not given. Purity stated to be 99+ per cent. (4,5) Sulfuric acid and sodium sulfate. Sources not given. Analytical grade.</pre>
<pre> δα/cm³ = ±0.005 (authors) REFERENCES: 1. Kobe, K. A.; Williams, J. S. Ind. Eng. Chem., Anal. Ed.</pre>	<pre>m_d/mol kg⁻ m₅/mol kg⁻ AUXILIARY METHOD/APPARATUS/PROCEDURE: The apparatus is described in detail in an earlier paper (1). The appara- tus consists of a gas buret, a pressure compensator, and a 200 cm³ absorption bulb and mercury leveling bulb. The absorption bulb is attached to a shaking mechanism. The solvent and the gas are placed in the absorption bulb. The bulb is shaken until equilibrium is reached. The remaining gas is returned to the buret. The difference in the final</pre>	<pre>-1 = 1.76 (Na₂SO₄) INFORMATION SOURCE AND PURITY OF MATERIALS: (1,2,3) Nitrogen, Oxygen, and Carbon dioxide. Source not given. Purity stated to be 99+ per cent. (4,5) Sulfuric acid and sodium sulfate. Sources not given. Analytical grade. (6) Water. Distilled.</pre>
REFERENCES: 1. Kobe, K. A.; Williams, J. S. Ind. Eng. Chem., Anal. Ed.	<pre>m_d/mol kg⁻ m₅/mol kg⁻ AUXILIARY METHOD/APPARATUS/PROCEDURE: The apparatus is described in detail in an earlier paper (1). The appara- tus consists of a gas buret, a pressure compensator, and a 200 cm³ absorption bulb and mercury leveling bulb. The absorption bulb is attached to a shaking mechanism. The solvent and the gas are placed in the absorption bulb. The bulb is shaken until equilibrium is reached. The remaining gas is returned to the buret. The difference in the 'final and initial volumes is taken as the</pre>	<pre>-1 = 1.76 (Na₂SO₄) INFORMATION SOURCE AND PURITY OF MATERIALS: (1,2,3) Nitrogen, Oxygen, and Carbon dioxide. Source not given. Purity stated to be 99+ per cent. (4,5) Sulfuric acid and sodium sulfate. Sources not given. Analytical grade. (6) Water. Distilled.</pre>
l. Kobe, K. A.; Williams, J. S. Ind. Eng. Chem., Anal. Ed.	<pre>m_d/mol kg⁻ m₅/mol kg⁻ AUXILIARY METHOD/APPARATUS/PROCEDURE: The apparatus is described in detail in an earlier paper (1). The appara- tus consists of a gas buret, a pressure compensator, and a 200 cm³ absorption bulb and mercury leveling bulb. The absorption bulb is attached to a shaking mechanism. The solvent and the gas are placed in the absorption bulb. The bulb is shaken until equilibrium is reached. The remaining gas is returned to the buret. The difference in the 'final and initial volumes is taken as the</pre>	<pre>INFORMATION INFORMATION SOURCE AND PURITY OF MATERIALS: (1,2,3) Nitrogen, Oxygen, and Carbon dioxide. Source not given. Purity stated to be 99+ per cent. (4,5) Sulfuric acid and sodium sulfate. Sources not given. Analytical grade. (6) Water. Distilled. ESTIMATED ERROR:</pre>
l. Kobe, K. A.; Williams, J. S. Ind. Eng. Chem., Anal. Ed.	<pre>m_d/mol kg⁻ m₅/mol kg⁻ AUXILIARY METHOD/APPARATUS/PROCEDURE: The apparatus is described in detail in an earlier paper (1). The appara- tus consists of a gas buret, a pressure compensator, and a 200 cm³ absorption bulb and mercury leveling bulb. The absorption bulb is attached to a shaking mechanism. The solvent and the gas are placed in the absorption bulb. The bulb is shaken until equilibrium is reached. The remaining gas is returned to the buret. The difference in the 'final and initial volumes is taken as the</pre>	<pre>INFORMATION INFORMATION SOURCE AND PURITY OF MATERIALS: (1,2,3) Nitrogen, Oxygen, and Carbon dioxide. Source not given. Purity stated to be 99+ per cent. (4,5) Sulfuric acid and sodium sulfate. Sources not given. Analytical grade. (6) Water. Distilled. ESTIMATED ERROR:</pre>
Ind. Eng. Chem., Anal. Ed.	<pre>m_d/mol kg⁻ m₅/mol kg⁻ AUXILIARY METHOD/APPARATUS/PROCEDURE: The apparatus is described in detail in an earlier paper (1). The appara- tus consists of a gas buret, a pressure compensator, and a 200 cm³ absorption bulb and mercury leveling bulb. The absorption bulb is attached to a shaking mechanism. The solvent and the gas are placed in the absorption bulb. The bulb is shaken until equilibrium is reached. The remaining gas is returned to the buret. The difference in the 'final and initial volumes is taken as the</pre>	<pre>INFORMATION INFORMATION SOURCE AND PURITY OF MATERIALS: (1,2,3) Nitrogen, Oxygen, and Carbon dioxide. Source not given. Purity stated to be 99+ per cent. (4,5) Sulfuric acid and sodium sulfate. Sources not given. Analytical grade. (6) Water. Distilled. ESTIMATED ERROR:</pre>
Ind. Eng. Chem., Anal. Ed.	<pre>m_d/mol kg⁻ m₅/mol kg⁻ AUXILIARY METHOD/APPARATUS/PROCEDURE: The apparatus is described in detail in an earlier paper (1). The appara- tus consists of a gas buret, a pressure compensator, and a 200 cm³ absorption bulb and mercury leveling bulb. The absorption bulb is attached to a shaking mechanism. The solvent and the gas are placed in the absorption bulb. The bulb is shaken until equilibrium is reached. The remaining gas is returned to the buret. The difference in the 'final and initial volumes is taken as the</pre>	<pre>-1 = 1.76 (Na₂SO₄) INFORMATION SOURCE AND PURITY OF MATERIALS: (1,2,3) Nitrogen, Oxygen, and Carbon dioxide. Source not given. Purity stated to be 99+ per cent. (4,5) Sulfuric acid and sodium sulfate. Sources not given. Analytical grade. (6) Water. Distilled. ESTIMATED ERROR:</pre>
<u>1935</u> , 7, 37.	<pre>m_d/mol kg⁻ m₅/mol kg⁻ AUXILIARY METHOD/APPARATUS/PROCEDURE: The apparatus is described in detail in an earlier paper (1). The appara- tus consists of a gas buret, a pressure compensator, and a 200 cm³ absorption bulb and mercury leveling bulb. The absorption bulb is attached to a shaking mechanism. The solvent and the gas are placed in the absorption bulb. The bulb is shaken until equilibrium is reached. The remaining gas is returned to the buret. The difference in the 'final and initial volumes is taken as the</pre>	<pre>-1 = 1.76 (Na₂SO₄) INFORMATION SOURCE AND PURITY OF MATERIALS: (1,2,3) Nitrogen, Oxygen, and Carbon dioxide. Source not given. Purity stated to be 99+ per cent. (4,5) Sulfuric acid and sodium sulfate. Sources not given. Analytical grade. (6) Water. Distilled. ESTIMATED ERROR:</pre>
	<pre>m_d/mol kg⁻ m₅/mol kg⁻ AUXILIARY METHOD/APPARATUS/PROCEDURE: The apparatus is described in detail in an earlier paper (1). The appara- tus consists of a gas buret, a pressure compensator, and a 200 cm³ absorption bulb and mercury leveling bulb. The absorption bulb is attached to a shaking mechanism. The solvent and the gas are placed in the absorption bulb. The bulb is shaken until equilibrium is reached. The remaining gas is returned to the buret. The difference in the 'final and initial volumes is taken as the</pre>	$INFORMATION$ $SOURCE AND PURITY OF MATERIALS: (1,2,3) Nitrogen, Oxygen, and Carbon dioxide. Source not given. Purity stated to be 99+ per cent. (4,5) Sulfuric acid and sodium sulfate. Sources not given. Analytical grade. (6) Water. Distilled. ESTIMATED ERROR: \delta \alpha/cm^3 = \pm 0.005 \text{ (authors)} REFERENCES: 1. Kobe, K. A.; Williams, J. S.Ind. Eng. Chem., Anal. Ed.$
	<pre>m_d/mol kg⁻ m₅/mol kg⁻ AUXILIARY METHOD/APPARATUS/PROCEDURE: The apparatus is described in detail in an earlier paper (1). The appara- tus consists of a gas buret, a pressure compensator, and a 200 cm³ absorption bulb and mercury leveling bulb. The absorption bulb is attached to a shaking mechanism. The solvent and the gas are placed in the absorption bulb. The bulb is shaken until equilibrium is reached. The remaining gas is returned to the buret. The difference in the 'final and initial volumes is taken as the</pre>	$INFORMATION$ $SOURCE AND PURITY OF MATERIALS: (1,2,3) Nitrogen, Oxygen, and Carbon dioxide. Source not given. Purity stated to be 99+ per cent. (4,5) Sulfuric acid and sodium sulfate. Sources not given. Analytical grade. (6) Water. Distilled. ESTIMATED ERROR: \delta \alpha/cm^3 = \pm 0.005 \text{ (authors)} REFERENCES: 1. Kobe, K. A.; Williams, J. S.Ind. Eng. Chem., Anal. Ed.$
	<pre>m_d/mol kg⁻ m₅/mol kg⁻ AUXILIARY METHOD/APPARATUS/PROCEDURE: The apparatus is described in detail in an earlier paper (1). The appara- tus consists of a gas buret, a pressure compensator, and a 200 cm³ absorption bulb and mercury leveling bulb. The absorption bulb is attached to a shaking mechanism. The solvent and the gas are placed in the absorption bulb. The bulb is shaken until equilibrium is reached. The remaining gas is returned to the buret. The difference in the 'final and initial volumes is taken as the</pre>	$INFORMATION$ $SOURCE AND PURITY OF MATERIALS: (1,2,3) Nitrogen, Oxygen, and Carbon dioxide. Source not given. Purity stated to be 99+ per cent. (4,5) Sulfuric acid and sodium sulfate. Sources not given. Analytical grade. (6) Water. Distilled. ESTIMATED ERROR: \delta \alpha/cm^3 = \pm 0.005 \text{ (authors)} REFERENCES: 1. Kobe, K. A.; Williams, J. S.Ind. Eng. Chem., Anal. Ed.$
	<pre>m_d/mol kg⁻ m₅/mol kg⁻ AUXILIARY METHOD/APPARATUS/PROCEDURE: The apparatus is described in detail in an earlier paper (1). The appara- tus consists of a gas buret, a pressure compensator, and a 200 cm³ absorption bulb and mercury leveling bulb. The absorption bulb is attached to a shaking mechanism. The solvent and the gas are placed in the absorption bulb. The bulb is shaken until equilibrium is reached. The remaining gas is returned to the buret. The difference in the 'final and initial volumes is taken as the</pre>	$INFORMATION$ $SOURCE AND PURITY OF MATERIALS: (1,2,3) Nitrogen, Oxygen, and Carbon dioxide. Source not given. Purity stated to be 99+ per cent. (4,5) Sulfuric acid and sodium sulfate. Sources not given. Analytical grade. (6) Water. Distilled. ESTIMATED ERROR: \delta \alpha/cm^3 = \pm 0.005 \text{ (authors)} REFERENCES: 1. Kobe, K. A.; Williams, J. S.Ind. Eng. Chem., Anal. Ed.$
	<pre>m_d/mol kg⁻ m₅/mol kg⁻ AUXILIARY METHOD/APPARATUS/PROCEDURE: The apparatus is described in detail in an earlier paper (1). The appara- tus consists of a gas buret, a pressure compensator, and a 200 cm³ absorption bulb and mercury leveling bulb. The absorption bulb is attached to a shaking mechanism. The solvent and the gas are placed in the absorption bulb. The bulb is shaken until equilibrium is reached. The remaining gas is returned to the buret. The difference in the 'final and initial volumes is taken as the</pre>	$INFORMATION$ $SOURCE AND PURITY OF MATERIALS: (1,2,3) Nitrogen, Oxygen, and Carbon dioxide. Source not given. Purity stated to be 99+ per cent. (4,5) Sulfuric acid and sodium sulfate. Sources not given. Analytical grade. (6) Water. Distilled. ESTIMATED ERROR: \delta \alpha/cm^3 = \pm 0.005 \text{ (authors)} REFERENCES: 1. Kobe, K. A.; Williams, J. S.Ind. Eng. Chem., Anal. Ed.$

•

Salt Solutions (Aqueous)

COMPONENTS: ORIGINAL MEASUREMENTS: (1) Nitrogen; N ₂ ; [7727-37-9] Brasted, R. C.; Hirayama, C. (2) Acetic acid; $C_2H_4O_2$; [64-19-7] Brasted, R. C.; Hirayama, C. (3) Sodium acetate; $C_2H_4O_2$ ·Ha; [127-09-3] J. Phys. Chem. 1958, 62, 125-6. (4) Metal (2+) acetates (5) Water; H_2O ; [7732-18-5] VARIABLES:	
(2) Acetic acid; $C_2H_4O_2$; $[64-19-7]$ Brasted, R. C.; Hirayama, C. (3) Sodium acetate; $C_2H_4O_2$ ·Ha; $[127-09-3]$ J. Phys. Chem. 1958, 62, 125-6. (4) Metal (2+) acetates (5) Water; H_2O ; $[7732-18-5]$ VARIABLES:	
(3) Sodium acetate; $C_2H_4O_2 \cdot Ha$; [127-09-3] J. Phys. Chem. 1958, 62, 125-6. (4) Metal (2+) acetates (5) Water; H_2O ; [7732-18-5] VARIABLES: PREPARED BY:	
<pre>(4) Metal (2+) acetates (5) Water; H₂O; [7732-18-5] VARIABLES: PREPARED BY:</pre>	
VARIABLES: PREPARED BY:	
T/K = 298.15 P/kPa = 101.325 P/kPa = 101.325	
P/KFa = 101.525	
EXPERIMENTAL VALUES: All metal acetate solutions are one mol dm ⁻³ acetic acid	•
Temperature $c_{M(C_2H_4O_2)_2}/mol dm^- c_{NaC_2H_4O_2}/mol dm^{-3}$ Ustwald	
$t/^{\circ}C$ T/K Coefficient $L \times 10^2$	1
25.00 298.15 0 0 1.61	
Cobalt (2+) acetate; $Co(C_2H_4O_2)_2$; [71-48-7]	
0.033 0.50 1.28	
0.10 0.50 1.30	
Copper (2+) acetate; $Cu(C_2H_4O_2)_2$; [142-71-2]	
0.050 0.50 1.30 0.157 0.52 1.33	
Manganese (2+) acetate; $Mn(C_2H_4O_2)_2$; [638-38-0]	i
0.050 0.50 1.34	
0.15 0.50 1.34	
Mercury (2+) acetate; $Hg(C_2H_4O_2)_2$; [1600-27-7]	
0.05 0.50 1.45 0.15 0.50 1.36	
Nickel (2+) acetate; Ni $(C_2H_4O_2)_2$; [373-02-4]	
0.051 0.51 1.33	
$\begin{array}{cccc} 0.15 & 0.50 & 1.39 \\ \end{array}$	
Zinc (2+) acetate; $Zn(C_2H_4O_2)_2$; [557-34-6] 0.15 0.50 1.25	
0.15 0.50 1.25	
AUXILIARY INFORMATION	
METHOD/APPARATUS/PROCEDURE: SOURCE AND PURITY OF MATERIALS:	
¹ The authors quote (with an error The chemicals were of reagent grad	le.
carried along) from Lannung (1), the They were used without further definition of the Bunsen coefficient, purification. The source of the	
However, they call it an Ostwald chemicals was not given.	
coefficient. They compare their value of the solubility of N_2 in H_2O	
with a handbook Bunsen coefficient.	
They state they do not understand why their value, 1.61 x 10^{-2} , is	
high. Their value in water agrees	
well with the recommended Ostwald coefficient. The evaluator has	
labelled the result as Ostwald ESTIMATED ERROR:	
coefficient. $\delta L/L = 0.01$ (authors)	
The apparatus was not described. The authors did measure the solution	
vapor pressure in a static vapor	
pressure apparatus.	
All solutions were one molar in 1. Lannung, A.	20
acetic acid. The first entry in the J. Am. Chem. Soc. 1930, 52, 68- table is for pure water.	-00.

76 Mittogen Solubili			
COMPONENTS:	ORIGINAL MEASUREMENTS:		
(1) Nitrogen: N ₂ ; [7727-37-9]	Bikov, M. M.		
(2) Potassium Chloride; KCl; [7447-40-7]	Tr. Voronezhsk. Gos.Lniv. <u>1937</u> , 9, 29-57.		
(3) Water; H ₂ O; [7732-18-5]			
VARIABLES: T/K = 273-510	PREPARED BY:		
P/MPa = 9.81 Concentration	V. Katovic		
EXPERIMENTAL VALUES: Nitrogen	Solubility ^b		
$t/^{\circ}C$ T^{a}/K $H_{2}O$ 0.5	lution/N 1.0 2.0		
Total Pressure of 100 kg/cm ² (9.	Bl MPa)		
0 273 1.254 1.215	0.974 0.629		
25 298 1.013 0.834 50 323 0.746 0.664	0.696 0.478 0.598 0.461		
75 348 0.640 0.629	0.543 0.404		
100 373 0.715 0.656 150 423 0.994 0.885	0.579 0.432 0.685 0.566		
200 473 1.460 1.188	0.975 0.771		
240 513 1.664 1.661	1.342 0.938		
a Calculated by compiler.			
^b Solubility in cm ³ (STP) per l gra	am of solvent.		
	continued on following page		
	INFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS;		
Details of the method and a drawing of the apparatus are given in the	(1) From air.		
paper.	(2) No details given.		
	(3) Distilled.		
	ESTIMATED ERROR:		
	$\delta T/K = \pm 0.2$		
	$\int \int G/g = \pm 0$ 01 semucilence optimate		
	$\delta S/s = \pm 0.01$ compiler's estimate for solubility.		
	references:		
	for solubility.		

.

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Bikov, M. M.
<pre>(2) Potassium Chloride; KCl; [7447-40-7]</pre>	Tr. Voronezhsk. Gos.Univ. <u>1937</u> , 9, 29-57.
(3) Water; H ₂ O; [7732-18-5]	

EXPERIMENTAL VALUES:

		continued Solubility Coefficient ^b				
t/°C	т ^а /К	н ₂ 0	KC1 Solu 0.5	ution/N 1.0	2.0	
0	273	1.587	1.538	1.233	0.796	<u> </u>
25	298	1.282	1.056	0.881	0.605	
50 75	323 348	0.944 0.814	0.841 0.799	0.758 0.690	0.587 0.514	
100 150	373 423	0.914 1.323	0.839 0.176 ⁰	0.741	0.552	
200 240	473 513	2.196 3.195	1.776 3.166	1.456 2.537	1.142 1.746	

^a Calculated by compiler.

.

^b The solubility coefficient in cm³(STP) of nitrogen dissolved per l gram of solution at a nitrogen partial pressure of 100 kg/cm² (9.81 MPa).

^C Probably a typographical error.

.

-		
COMPONENTS:	ORIGINAL MEASUREMENTS:	
(1) Nitrogen; N ₂ ; [7727-37-9]	Morrison, T. J.; Billett, F.	
(2) Potassium Iodide; KI; [7681-11-0]	J. Chem. Soc. <u>1952</u> , 3819-22.	
(3) Water: H ₂ O; [7732-18-5]		
VARIABLES:	PREPARED BY:	
T/K = 285.75 - 344.85 P/kPa = 101.325	H. L. Clever, R. Battino	
	alt Effect Parameters $\log(S^{\circ}/S)^{1}$ (1/m) $\log(x^{\circ}/x)$	
303.15 0.0033 0. 322.55 0.0031 0.	134 0.149 100 0.115 086 0.101 084 0.099	
¹ The authors used (l/c)log(S°/S) with water. For the l-l electrolyte the c m /mol kg ⁻¹ . The nitrogen solubil The salt effect parameters were calcu solubility of nitrogen in water, S°, S. Only the solubility of the nitrog salt effect parameter are given in th	compiler changed the c to an m for ity S is cm ³ (STP) kg ⁻¹ . alated from two measurements. The and in the one molal salt solution, yen in water, and the value of the	
the mole fraction gas solubility rati		
	INFORMATION	
	······································	
METHOD/APPARATUS/PROCEDURE: The degassed solvent flows in a thin film down an absorption helix con- taining the nitrogen gas plus solvent vapor at a total pressure of one atmosphere. The volume of gas	 SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. From a cylinder and from ammonium nitrite gave the same results. (2) Potassium Iodide, "AnalaR" 	
absorbed is measured in an attached buret system (1).	material.(3) Water. No information given.	
	ESTIMATED ERROR:	
	$\delta k = 0.010$	
	REFERENCES: 1. Morrison, T. J.; Billett, F. J. Chem. Soc. <u>1948</u> , 2033-5.	
	1	

Salt Solutions (Aqueous)

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Schröder, W.
(2) Potassium carbonate; K ₂ CO ₃ ; [584-08-7]	; Z. Phys. Chem. (Wiesbaden) <u>1971</u> , 75, 248 - 64.
(3) Water; H ₂ O; [7732-18-5]	
VARIABLES: $T/K = 323.15 - 403.15$ $p_1/MPa = 0.709 - 7.701$ (7-76 atm) $K_2CO_3 c_2/mo1 \text{ dm}^{-3} = 0.5 - 6$	PREPARED BY: H. L. Clever
EXPERIMENTAL VALUES: Temperature Potassin Carbonat t/°C T/K c2/mol c	te Pressure Coefficient
90 363.15 2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
6	$\begin{array}{ccccccc} 40 & 0.0018^{3} \\ 49 & 0.0022^{2} \\ 12 & 0.0060^{2} \\ 14 & 0.0052^{2} \\ 21 & 0.0036^{2} \\ 33 & 0.0021^{2} \\ 42 & 0.0017^{2} \end{array}$
110 383.15 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
130 403.15 1	41 0.0075 ¹ 15 0.0109 ¹
^{1 2} Author's "break point ³ Values from Author's Ta	cs"from Tables 2 and 3, respectively. Able 4. 4 Author's earlier paper (1).
AU	IXILIARY INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The apparatus is described in a earlier paper (1). It is a bubb type autoclave based on the des of Wiebe $et \ al$. (2).In general upper pressure limit was 70 - 8	oling- No information. Sign the
The nitrogen partial pressure we obtained by subtraction of the solvent vapor pressure from the pressure.	
	ESTIMATED ERROR:
The values of the solubility of nitrogen in water, footnote ⁴ , read by the compiler from diagr in the author's earlier paper (They were added to give a basis comparison for the salt effect.	were i. Schröder, W. i. 2. Naturforsch. <u>1969</u> , 24b, 500. i). i of 2. Wiebe, R. ; Gaddy, V. L.;

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Schröder, W.
<pre>(2) Potassium carbonate; K₂CO₃; [584-08-7]</pre>	Z. Phys. Chem. (Wiesbaden) <u>1971</u> , 75, 248 - 64.
(2) Water; H ₂ O; [7732-18-5]	

EXPERIMENTAL VALUES:

The author measured the solubility of nitrogen in aqueous potassium carbonate as a function of temperature, pressure, and salt concentration.

The ranges covered by the experiments are summarized in the table below. Numerical data were not given. Isotherms of the Bunsen coefficient, α , vs. pressure, p_1 /atm, were displayed for the three systems for which the pressure range and number of experimental points are given in the table.

Potassium Carbonate $c_2/mol dm^{-3}$	Isotherm T/K	Pressure Range p ₁ /atm	Number of Experimental Values
0.5	323.15		
1	323.15 343.15 363.15 383.15 403.15	7 - 52 8 - 28	60 33
2	363.15		
4	363.15	7 - 76	61
б	363.15		

The author states that the isotherms can be broken in a maximum of 6 linear regions. He tabulated the Bunsen coefficient and pressure at the "break points" (knickpunkte) where linear regions met. The tabulated values plus some other values from this and from an earlier of the author's publications are given in the table below. The values are not experimental values, but the values read from the diagrams by the author and in some cases the compiler. The values reproduce the isotherms reasonably well.

Tempe	rature	Potassium Carbonate	Nitrogen Pressure	Bunsen Coefficient
t∕°C	T/K	$c_2/\text{mol dm}^{-3}$	p ₁ /atm	α/m^3 (STP) m ⁻³ atm ⁻¹
50	323.15	0.0	10	0.01874
			15	0.01614
			20	0.0146
			30	0.01364
			40	0.0130 3 4
		0.5	40	0.0095^{3}
		1	14.5	0.0102^{1} 0.0075^{1}
			30 40	0.0075 0.0071 ³
		2	40	0.0071 0.0043 ³
70	343.15	1	13	0.0117
			23	0.00861
			38	0.00701
90	363.15	0.0	10	0.01744
			15	0.0158
			20	0.0144
			30	0.01304
			40	0.0123^{3} ⁴
		0.5	40	0.0071^{3} 0.0142^{1} ²
1		1	10 16	0.0142 0.0108^{1} ²
1		1	26	0.0085^{1} 2
			38	0.0072^{1}^{2}
			40	0.00433

COMPONENTS:	EVALUATOR:
(1) Nitrogen; N ₂ ; [7727-37-9]	H. Lawrence Clever Department of Chemistry
(2) Polar Organic Compounds	Emory University
(3) Water; H ₂ O; [7732-18-5]	Atlanta, GA 30322 USA
	1981, December

CRITICAL EVALUATION:

The Solubility of Nitrogen in Mixtures of Polar Organic Compounds + Water

In this section ten nitrogen + polar organic compound + water systems are evaluated. The evaluation is difficult because all but two of the systems were studied at only one laboratory. The two systems studied at more than one laboratory were not studied at the same temperature or composition. Thus direct comparison of results from various laboratories is not possible.

Comparison of the nitrogen solubility in the pure components with the results of other workers can be made, especially for the nitrogen solubility in water, where we have Battino's recommended values to use (this volume, pp 1-3). Most of the papers report nitrogen in water Ostwald coefficients that are within 2 to 3 per cent of the recommended values. Tokunaga's (8) nitrogen in water solubility values are 4 to 5 per cent larger than the recommended values. Kretschmer, Nowakowska, and Wiebe (6) did not report a nitrogen + water solubility.

The solubility studies carried out before 1912 (1-5) used an Ostwald type apparatus. Just (2) gives a detailed description of the apparatus and the technique of the measurement. Both Kretschmer *et al.* (6) and Tokunaga (8) used modifications of the Horiuti apparatus. Kretschmer *et al.* either measured or used literature solvent vapor pressures and applied a correction for the dilation of the solvent due to the dissolved nitrogen. Tokunaga calculated the mixed solvent vapor pressure assuming Racult's law and he did not correct for dilation, assuming the correction to be negligible.

Nitrogen + Methanol [67-56-1] + Water

Tokunaga (8) measured the solubility of nitrogen in the pure liquids and in thirteen methanol + water mixtures at 293.15 and 313.15 K. He made extra measurements in the 0 to 0.1 methanol mole fraction region where he showed there is a maximum in the solubility vs. mole fraction curve at 0.03-0.06 mole fraction methanol. The temperature coefficient of solubility changes from negative to positive as the composition changes from pure water to pure methanol. Similar behavior was reported earlier for argon in aqueous methanol (Solubility Series, Volume 4). Tokunaga's value of the solubility of nitrogen in water is 4 to 5 per cent greater than the recommended value and his nitrogen solubility in methanol is lower than the values reported by most others. The deviation towards high solubility values was also found in an evaluation of his work on oxygen as solute (Solubility Series, Volume 7). The data are classed as tentative.

Nitrogen + Ethanol [64-17-5] + Water

Just (2) measured the solubility of nitrogen in the two pure components and in two mixtures at 298.15 K. Kretschmer *et al.* (6) measured the solubility in ethanol and one mixture of 95 volume per cent ethanol at 298.15 K. The solubilities in the pure components agree well with accepted values and both sets of data are classed as tentative. Tokunaga (8) measured the solubility of nitrogen in the pure components and thirteen ethanol + water mixtures at 293.15 and 313.15 K. The features observed for the aqueous methanol system were also observed for aqueous ethanol. Tokunaga's nitrogen in water solubility values were discussed in the aqueous methanol system above. His solubilities in ethanol appear greater at 293.15 K and less at 313.15 K than the general run of the data of others. The data are classed as tentative.

- COMPONENTS :
 - (1) Nitrogen; N₂; [7727-37-9]
 - (2) Polar Organic Compounds
 - (3) Water; H₂O; [7732-18-5]

EVALUATOR:

H. Lawrence Clever Department of Chemistry Emory University Atlanta, GA 30322 USA

1981, December

CRITICAL EVALUATION:

Nitrogen + 1-Propanol [71-32-8] + Water Nitrogen + 2-Propanol [67-63-0] + Water

Tokunaga (8) measured the solubility of nitrogen in water, 1-propanol, 2-propanol and up to twelve alcohol + water mixtures at 293.15 and 313.15 K. The maximum at low alcohol concentrations and the sign change in the temperature coefficient of solubility observed in the aqueous methanol and ethanol solutions are also observed in these systems. The data are classed as tentative.

Nitrogen + 1,2,3-Propanetriol [56-81-5] + Water

Drucker and Moles (4) measured the solubility of nitrogen in water and in five 1,2,3-propanetriol + water mixtures at 298.15 K. Müller (5) measured the solubility of nitrogen in water and in seven mixtures near 288.15 K. The values of the nitrogen solubility in water are 2.5 and 1.6 per cent, respectively, lower than the recommended value. The two data sets differ in that Müller made more measurements at the large 1,2,3propanetriol compositions where he observed a minimum in the solubility vs. solvent composition curve at about 80 weight per cent alcohol. Both sets of data are classed as tentative.

Nitrogen + Propanoic acid [79-09-4] + Water

Braun (1) measured the solubility of nitrogen in water and in eight acid + water mixtures at concentrations up to 1.7 mol kg^{-1} at five degree intervals between 278.2 and 298.2 K. Braun's values for the solubility of nitrogen in water range from 3.1 per cent greater at 278.2 to 2.4 per cent less at 298.2 K than the recommended values. The data are classed as tentative, but should be used with some caution. See the discussion of Braun's data in the aqueous electrolyte section under barium chloride and sodium chloride.

Nitrogen + 2-Methylpropanoic acid [79-31-2] + Water

Drucker and Moles (4) measured the solubility of nitrogen in water and up to six acid + water mixtures at 296.17 and 302.17 K. The data are classed as tentative.

Nitrogen + 2,2,2-Trichloro-1,1-ethanetriol [302-17-0] + Water

Müller (5) measured the solubility of nitrogen in water and in seven chloral hydrate + water mixtures at temperatures near 288.15 K. In addition to the original data he gives a table of solubility values corrected to 288.15 K. He observed a minimum in the solubility vs. solvent composition curve at about 56 weight per cent chloral hydrate. The data are classed as tentative.

Nitrogen + Acetamide [60-35-5] + Water

Hüfner (3) measured the solubility of nitrogen in water and in one mol dm^{-3} acetamide solution near 293 K. His value for the solubility of nitrogen in water agrees well with the recommended value. The data are classed as tentative.

COMPONENTS:		EVALUATOR:
(1)	Nitrogen; N ₂ ; [7727-37-9]	H. Lawrence Clever Department of Chemistry
(2)	Polar Organic Compounds	Emory University Atlanta, GA 30322 USA
(3)	Water; H ₂ O; [7732-18-5]	1981, December

CRITICAL EVALUATION:

Nitrogen + Detergent + Water

Enns, Scholander, and Bradstreet (7) studied the effect of hydrostatic pressure up to about 10 MPa on the equilibrium pressure of nitrogen dissolved in water and in a solution of an unidentified detergent + water which had a surface tension equal to 30 per cent that of water. The effect of the detergent and the resulting reduced surface tension was negligible. The detergent concentration was not given, but it may be assumed that it was small. Thus, it appears that the bulk properties of water which influence solubility are not effected by the small amounts of detergent.

References:

- 1. Braun, L. Z. Phys. Chem., Stoechiom. Verwandtschaftsl. <u>1900</u>, 33, 721.
- 2. Just, G. Z. Phys. Chem., Stoechiom. Verwandtschaftsl. <u>1901</u>, 37, 342.
- 3. Hüfner, G. Z. Phys. Chem., Stoechiom. Verwandtschaftsl. <u>1907</u>, 57, 611.
- 4. Drucker, K.; Moles, E. Z. Phys. Chem., Stoechiom. Verwandtschaftsl. <u>1910</u>, 75, 405.
- 5. Müller, C., Z. Phys. Chem., Stoechiom. Verwandtschaftsl. <u>1912</u>, 81, 483.
- Kretschmer, C. B.; Nowakowska, J.; Wiebe, R. Ind. Eng. Chem. <u>1946</u>, 38, 506.
- Enns, T.; Scholander, P. F.; Bradstreet, E. D. J. Phys. Chem. <u>1965</u>, 69, 389.
- 8. Tokunaga, J. J. Chem. Eng. Data 1975, 20, 41.

COMPONENTS:			ORIGINAL MEASUREM	ENTS:	
(1) Nitrogen; N_2 ; [7727-37-9]			Tokunaga, J.		
(2) Methanol; CH ₄ O; [67-56-1]					
	(3) Water; H_2O ; [7732-18-5]			. Data. <u>1975</u> ,20,41-6.	
	2 -	-			
1					
VARIABLES:		<u> </u>	PREPARED BY:		
	= 293-313		C.L. Young		
Compo	sition				
EXPERIMENTAL	VALUES:				
т/к	Mole fraction	Ostwald		Mole fraction	
	of alcohol, ^{°CH} 4O	coefficien <i>L</i>		of nitrogen in liquid, **¤ _{N2}	
ł	CH ₄ O		/atm		
293.15	0.0000	0.0179	74500	0.0000134	
	0.0274	0.0188	68800 64100	0.0000145 0.0000156	
	0.0514 0.0670	0.0197	62700	0.0000159	
	0.0967 0.1653	0.0183 0.0202	66000 56000	0.0000152 0.0000179	
	0.2084	0.0217	50200	0.0000199	
	0.2931 0.4050	0.0261 0.0318	38800 28900	0.0000258 0.0000346	
	0.5038	0.0448	19000	0.0000526	
	0.6088 0.6784	0.0598 0.0723	13100 10300	0.0000763 0.0000971	
	0.7630	0.0910	7670	0.0000130	
	0.8973 1.0000	0.118 0.138	5390 4310	0.0000186 0.0000232	
313.15	0.0000	0.0147	96600	0,000104	
	0.0225 0.0478	0.0168 0.0164	82700 82300	0.0000121 0.0000122	
ļ	0.0664	0.0177	73500	0.000136	
}	0.1009 0.2036	0.0186 0.0219	68800 53300	0.0000145 0.0000188	
)	0.2971	0.0279	38400	0.0000260	
	0.4278	0.0433	22200	0.0000450	
		AUXILIARY	INFORMATION		
METHOD /APE	PARATUS/PROCEDURE	:	SOURCE AND PURITY	OF MATERIALS;	
	c apparatus with		(1) High purity	grade sample, purity	
	buret and magne Amount of solut		99.99 mole per cent.		
and gas a	absorbed determin		(2/3) Guarantee	d reagent, further	
	cally. Partial determined from		purified by distillation. Solution degassed by boiling.		
total pre	essure and vapor of solvent solut	ion.			
	in source.		(
ł					
}			ESTIMATED ERROR:		
			$\delta T/K = \pm 0.5;$	$\delta x_{1} = \pm 1 - 2$ %.	
			$\delta T/K = \pm 0.5; \ \delta x_{N_2} = \pm 1 - 2 $		
1			REFERENCES :	<u></u>	
			THE FURTHER		
1					
1					
L					

<pre>(1) Nitrogen; N₂; [7727-37-9] (2) Methanol; CH₄O; [67-56-1] (3) Water; H₂O [7732-18-5]</pre>			Tokunaga, J.			
			J. Chem. Eng. Data. <u>1975</u> ,20,4			
o, wate	1, 120 [7752-18-3			1 ×		
XPERIME	NTAL VALUES :					
т/к	Mole fraction	Ostwald	Henry's	Mole fraction		
	of alcohol, ^x CH ₄ O	coefficient,*	Constant /atm	of nitrogen in liquid,**¤ _{N2}		
313.15	0.5200	0.0534	16700	0.0000599		
	0.6712 0.7074	0.0805 0.0867	9850 8910	0.000102 0.000112		
	0.7897	0.101	7190	0.000139		
	0.8957 1.0000	0.117 0.146	5790 4250	0.000173 0.000235		
	* at 1.01325	5 x 10 ⁵ Pa partia	l pressure			
	** at 1.01325 from the r	5 x 10 ⁵ Pa partia reciprocal of Hen	l pressure (ca ry's Constant)	•		
	** at 1.01325 from the r	5 x 10 ⁵ Pa partia ceciprocal of Hen	l pressure (ca ry's Constant)	•		
	** at 1.01325 from the r	5 x 10 ⁵ Pa partia ceciprocal of Hen	l pressure (ca ry's Constant)	•		
	** at 1.01325 from the r	5 x 10 ⁵ Pa partia ceciprocal of Hen	l pressure (ca ry's Constant)			
	** at 1.01325 from the r	5 x 10 ⁵ Pa partia ceciprocal of Hen	l pressure (ca ry's Constant)	•		
	** at 1.01325 from the r	5 x 10 ⁵ Pa partia ceciprocal of Hen	l pressure (ca ry's Constant)	•		
	** at 1.01325 from the r	5 x 10 ⁵ Pa partia ceciprocal of Hen	l pressure (ca ry's Constant)	•		
	** at 1.01325 from the r	5 x 10 ⁵ Pa partia ceciprocal of Hen	l pressure (ca ry's Constant)	•		
	** at 1.01325 from the r	5 x 10 ⁵ Pa partia ceciprocal of Hen	l pressure (ca ry's Constant)	•		
	** at 1.01325 from the r	5 x 10 ⁵ Pa partia reciprocal of Hen	l pressure (ca ry's Constant)	•		
	** at 1.01325 from the r	5 x 10 ⁵ Pa partia ceciprocal of Hen	l pressure (ca ry's Constant)	•		
	** at 1.01325 from the r	5 x 10 ⁵ Pa partia reciprocal of Hen	l pressure (ca ry's Constant)	•		
	** at 1.01325 from the r	5 x 10 ⁵ Pa partia reciprocal of Hen	l pressure (ca ry's Constant)	•		
	** at 1.01325 from the r	5 x 10 ⁵ Pa partia ceciprocal of Hen	l pressure (ca ry's Constant)	•		
	** at 1.01325 from the r	5 x 10 ⁵ Pa partia reciprocal of Hen	l pressure (ca ry's Constant)	•		
	** at 1.01325 from the r	5 x 10 ⁵ Pa partia reciprocal of Hen	l pressure (ca ry's Constant)	•		
	** at 1.01325 from the r	5 x 10 ⁵ Pa partia ceciprocal of Hen	l pressure (ca ry's Constant)	•		
	** at 1.01325 from the r	5 x 10 ⁵ Pa partia reciprocal of Hen	l pressure (ca ry's Constant)	•		
	** at 1.01325 from the r	5 x 10 ⁵ Pa partia reciprocal of Hen	l pressure (ca ry's Constant)	•		
	** at 1.01325 from the r	5 x 10 ⁵ Pa partia reciprocal of Hen	l pressure (ca ry's Constant)	·		
	** at 1.01325 from the r	5 x 10 ⁵ Pa partia reciprocal of Hen	l pressure (ca ry's Constant)	• .		
	** at 1.01325 from the r	5 x 10 ⁵ Pa partia reciprocal of Hen	l pressure (ca ry's Constant)	• .		
	** at 1.01325 from the r	5 x 10 ⁵ Pa partia reciprocal of Hen	l pressure (ca ry's Constant)	· .		
	** at 1.01325 from the r	5 x 10 ⁵ Pa partia reciprocal of Hen	l pressure (ca ry's Constant)	• .		

COMPONENTS :	ORIGINAL MEASUREMENTS:		
(1) Nitrogen; N ₂ ; [7727-37-9]	Just, G.		
(2) Ethanol; C ₂ H ₆ O; [64-17-5]	Z. Phys. Chem. <u>1901</u> , 37, 342-67.		
(3) Water; H ₂ O; [7732-18-5]			
VARIABLES: T/K = 298.15	PREPARED BY:		
P/kPa = 101.325	M. E. Derrick H. L. Clever		
Ethanol/vol % = 0 - 99.8			
EXPERIMENTAL VALUES:			
-, ,	Bunsen Ostwald efficient Coefficient α L		
	0.01497 0.01634		
	0.01497 0.01634 0.01407 0.01536		
33 (0.01575 0.01719		
99.8 (0.1312 0.1432		
The author measured the	e Ostwald coefficient at		
a pressure of about 746			
assumed the Ostwald coe pendent of pressure, an	nd calculated the mole		
fraction and Bunsen coe	efficient values at		
101.325 kPa (l atm) pa: gas.	tial pressure of the		
-			
AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:		
An Ostwald apparatus as modified by	(1) Nitrogen. Prepared in aqueous		
Timofejew (1), and Steiner (2) is used. The apparatus consists of a	solution by the reaction of sodium nitrite with ammonium		
gas buret, an absorption flask, and	nitrate in the presence of		
a mercury manometer. The system is thermostated with a water jacket.	calcium dichromate.		
	(2) Ethanol. No information		
The gas is introduced into the degassed liquid. The gas volume	(3) Water. Distilled.		
absorbed is determined by the gas	(c) nabel, protition,		
buret. The solvent volume is deter-			
mined at the end of the experiment by pouring the solvent into a graduated			
flask.	ESTIMATED ERROR:		
	$\delta L/L = 0.03$ (compiler)		
	DDDDDDUQUA		
	REFERENCES: 1. Timofejew, W. <i>Z. Physik. Chem.</i> <u>1890</u> , 6, 141-52.		
	2. Steiner, Ann. Phys. (Leipzig) <u>1894</u> , 52, 275.		

Organic Solvents Plus Water

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Kretschmer, C. B.; Nowakowska, J.; Wiebe, R.
<pre>(2) Ethyl Alcohol (Ethanol); C₂H₆O; [64-17-5]; (95% by volume)</pre>	Ind. Eng. Chem. <u>1946</u> , 38, 506-9.
(3) Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
T/K = 248.15 - 323.15 P/kPa = 101.325 Ethanol/vol % = 95	P. L. Long H. L. Clever
EXPERIMENTAL VALUES:	
T/K Bunser Coeffici α	n Ostwald Lent Coefficient L
248.15 0.103	0.0944
273.15 0.105	
298.15 0.106 323.15 0.109	
The Ostwald coefficients were measured (1 atm). The compiler calculated the oxygen partial pressure of 101.325 kPa coefficient was independent of pressur	Bunsen coefficient value for an a. (1 atm) assuming the Ostwald
The solvent is 95 volume percent ethan	nol, 5 volume per cent water.
	TNEADULATAN
	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The apparatus was similar to that of Horiuti (1), it consisted of a gas buret, manometer, and absorption pipet equipped with a magnetic stirrer. All volumes were calibrated by mercury displacement.	 Nitrogen. Commercial, but source not given. Passed through alka- line pyrogallol to remove O₂, passed through Drierite to dry. Ethanol. The alcohol was distilled
The solvent was partly degassed by boiling under reflux. About 40 cm ³ of solvent was admitted into the absorption pipet, and pumped on to complete the degassing. Dry gas, measured in the buret, was admitted,	made 95 per cent by volume by the addition of water. ρ_{\star}^{25} /g cm ⁻³ = 0.80724. (3) Water.
final equilibrium was established after 1 to 3 hours stirring. During the solution process the total pres- sure was kept at one atm by additions of dry gas.	ESTIMATED ERROR: Gas buret $\delta V/cm^3 = 0.005$ Average deviation from the mean 0.3%, maximum deviation 0.9% (authors).
The solubility value was corrected for the increase of solvent volume with gas absorption	REFERENCES: 1. Horiuti, J. J. Sci Papers Inst. Phys. Chem. Res. (Tokyo) <u>1931</u> , 17, 125-256.

[
COMPONENTS:			ORIGINAL MEASUREMENTS:			
(1) Nitrogen; N ₂ ; [7727-37-9]			Tokunaga, J.			
(2) Ethanol; C ₂ H ₆ O; [64-17-5]		J.	Chem. Eng.	Data. <u>1975</u> ,20,41-6.		
(3) Water;	(3) Water; H ₂ O; [7732-18-5]					
	2					
VARIABLES:			PREPA	RED BY:		
T/K	= 293-313		с.	L. Young		
EXPERIMENTAL	L VALUES:					
T/K	Mole fraction	Ostwald		Henry's	Mole fraction	
	of alcohol,	coefficie	nt*,	Constant	of nitrogen	
	^x C ₂ H ₆ O	L		/atm	in liquid, $*x_{N_2}$	
<u></u>	<u></u>					
293.15	0.0000 0.0070	0.0179 0.0193		74500 68100	0.0000134 0.0000147	
	0.0199	0.0200		64100	0.0000156	
1	0.0558	0.0212		56700	0.0000176	
	0.0815 0.1015	0.0214 0.0217		53800 51300	0.0000186 0.0000195	
	0.1558	0.0240		42600	0.0000235	
	0.2757	0.0363		23600	0.0000424	
	0.3206 0.4628	0.0421 0.0622		19100 10900	0.0000524 0.0000917	
	0.5952	0.0846		6930	0.000144	
	0.7130	0.102		5150	0.000194	
	0.8746 0.9140	0.126 0.134		3620 3320	0.000276 0.000301	
	1.0000	0.151		2730	0.000366	
313.15	0.0000	0.0147		96600	0.0000104	
	0.0195	0.0163		84100	0.0000119	
	0.0385 0.0509	0.0161 0.0159		82000 80200	0.0000122 0.0000125	
	0.0574	0.0159		80200	0.0000125	
	0.0734	0.0170		73100	0.0000137 0.0000158	
	0.1087 0.2237	0.0186 0.0278		63100 35200	0.0000284	
		AUXILIARY	INFOR	ATION		
MERLIOD /3D	PARATUS/PROCEDURE:			E AND PURITY C		
MEIHOD / AF	PARATUS/PROCEDURE.					
Volumetr	ic apparatus with b buret and magnet	ia	(1)		grade sample, 9 mole per cent.	
stirrer.	Amount of soluti	on			-	
and gas	absorbed determine	d	(2/3		reagent, further	
volumetr	ically. Partial p ed from total pres	ressure sure and		Solution d	y distillation. egassed by boiling.	
vapor pr	essure of solvent	solution.				
	in source.					
			}			
			ESTIN	ATED ERROR:		
				$\delta T/K = \pm 0.5$; $\delta x_{N_2} = \pm 1 - 2$ %.	
					*** 2	
			L	_		
			REFEF	ENCES:		
			l			
			ļ			
			<u> </u>	·····		

(l) Nitro			ORIGINAL MEASUREMENTS :			
(1) Nitrogen; N ₂ ; [7727-37-9]			Tokunaga, J.			
(2) Etha	nol; C ₂ H ₆ O; [64-]	17-5]	J. Chem. Eng. Data. <u>1975</u> ,20,41-6			
(3) Water; H ₂ O; [7732-18-5]						
EXPERIMEN	NTAL VALUES :					
т/к	Mole fraction of alcohol, ^{°°} C ₂ H ₆ O	Ostwald coefficien <i>L</i>	Henry's t,* Constant /atm	Mole fraction of nitrogen in liquid,**2 _{N2}		
313.15	0.3120 0.4162 0.5061 0.6062 0.6946 0.7751 0.8814 0.9702 1.0000	0.0432 0.0554 0.0707 0.0852 0.100 0.115 0.136 0.151 0.156	20000 13700 9680 7230 5650 4570 3490 2920 2760	0.0000500 0.0000730 0.000103 0.000138 0.000177 0.000219 0.000287 0.000343 0.000362		
	·					

ſ

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Müller, C.
<pre>(2) 2,2,2,-trichloro-1.1-ethanediol (chloral hydrate); C₂H₃ClO₂; [302-17-0]</pre>	Z. Physik. Chem. <u>1912</u> , 81, 483-503.
(3) Nater; H ₂ O [7732-18-5]	
VARIABLES:	PREPARED BY:
T/K = 288-290 P/kPa = 101	R. Battino
EXPERIMENTAL VALUES:	
Weight Percentage ^b T ^a /K Chloral hydrate	Ostwald Coeff. ^C Bunsen Coeff. ^d $10^{2}L$ $10^{2}\alpha$
288.75 15.8 288.55 28.2 289.55 37.25 290.05 47. 290.15 56.52 288.45 71.5 287.95 78.8	1.664 1.574 1.498 1.418 1.365 1.288 1.378 1.260 1.307 1.230 1.494 1.415 1.525 1.447
AUXILIARY	INFORMATION
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
Water is degassed by pumping under vacuum. The absorption vessel is about 600 cm ³ and is separately thermostatted from the buret gas measuring system. Both are connected by a copper capillary tube. Gas uptake is read on the gas burets. The absorption flask volume and all liquid volumes were calibrated using mercury. The original paper contains details of operation and a drawing of the apparatus. Solubilities were also measured in pure water and sucrose.	 Nitrogen - from heating potassium nitrite and ammonium nitrite. Washed with potassium hydroxide solution and sulfuric acid; and finally passed through a glowing copper tube. Chloral hydrate - from Merck or from Münster. Water - no comment by author.

	ilis rius vvalei
COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N2; [7727-37-9]	Hüfner, G.
<pre>(2) Acetamide; C₂H₅NO or CH₃CONH₂; [60-35-5]</pre>	Z. Physik. Chem. <u>1907</u> , 57, 611-24.
(3) Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
T/K = 293.35, 293.40 N ₂ P/kPa = 101.325	H. L. Clever
EXPERIMENTAL VALUES:	
Temperature C _{C2^H5} NO ^{/moldm⁻³ t/°C T/K}	Gas Absorbed Bunse Pressure/ Gas Coefficient mmHg Volume ¹ $\alpha \times 10^2$
20.18 293.33 0.0	1.565 ²
20.20293.351.020.25293.401.0	672.3 5.37 1.481 680.8 5.40 1.470
¹ Volume of gas reduced to 273.15 K a solution at the stated pressure. ² Average of four runs, see Hüfner':	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The apparatus, described in reference (1), was the Bunsen absorption type. It consisted of an absorption flask,	(1) Nitrogen. Source not given. Stated to be argon free.
which holds 409.94 cm ³ of solvent, and gas burets.	
The final partial pressure of the gas ranged between 648.6 and 720.7 mmHg. The author reported both the volume of gas absorbed at the final pressure in 409.94 cm ³ of solvent reduced to	(2) Acetamide. Source not given.(3) Water. Pure.
273.15 K and 760 mmHg, and the Bunsen coefficient, which was calculated	ESTIMATED ERROR:
assuming Henry's law.	δT/K = 0.01
	1
	REFERENCES: 1. Hüfner, G. Archiv. F. Anatomie und Physiologie, Physiolog. Abtly. <u>1894</u> , 5, 191.

Nitrogen Solubilities up to 200 kPa

COMPONENTS:		ORIGINAL MEASUREMENTS:		
(1) Nitrogen; N_2 ; [7	727-37-9]	Braun, L.		
(2) Propanoic acid, (Propionic acid); C ₃ H ₆ O ₂ ; [79-09-4]		Z. Phys. Chem. <u>1900</u> , 33,721- 41 .		
(3) Water; H ₂ O; [7732-18-5]				
VARIABLES:		PREPARED BY:		
T/K = 278-298 Concentration		C.L. Young		
EXPERIMENTAL VALUES:				
T/K	Wt. of acid per 100g soln./g	Bunsen coefficient, α		
278.2	11.220	0.01951		
	11.023	0.01977		
	9.537 9.155	0.02040 0.02026		
	6.066	0.02077		
	5.891	0.02089		
	4.081	0.02095		
	3.816 0.0	0.02087 0.02173		
283.2	11.220	0.01779		
20011	11.023	0.01800		
	9.537	0.01823		
	9.155 6.066	0.01845 0.01855		
	5.891	0.01872		
	4.081	0.01919		
	3.816	0.01915		
288.2	0.0 11.220	0.02003 0.01593		
288.2	11.023	0.01585		
	9.537	0.01634		
	9.155	0.01630		
	6.066 5.891	0.01637 0.01648		
	4.081	0.01688		
	AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDUR	E:	SOURCE AND PURITY OF MATERIALS:		
Ostwald method, using pipet. Measurement of before and after abso pressure of water was assuming Raoult's law degassed. Concentration solution estimated by silver nitrate solut:	of volume of gas orption. Vapor s allowed for w. Solution was tion of salt y titration with	No details given		
		ESTIMATED EDDOD.		
		ESTIMATED ERROR:		
		$\delta \alpha / \alpha = \pm 0.03$		
		REFERENCES:		

	·	
COMPONENTS:		ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [772	27-37-9]	Braun, L.
(2) Propanoic acid, (F C ₃ H ₆ O ₂ ; [79-09-4]	<pre>propionic acid);</pre>	Z. Phys. Chem. <u>1900</u> ,33, 721-41.
(3) Water; H ₂ O; [7732-	18-5]	
EXPERIMENTAL VALUES:		
T/K	Wt. of acid per 100g soln./g	Bunsen coefficient, α
288.2	3.816	0.01674
293.2	0.0 11.220	0.01789 0.01463
298.2	11.023 9.537 9.155 6.066 5.891 4.081 3.816 0.0 11.220 11.023 9.537 9.155 6.066 5.891 4.081 3.816 0.0	0.01447 0.01471 0.01469 0.01476 0.01480 0.01541 0.01547 0.01621 0.01301 0.01295 0.01336 0.01329 0.01335 0.01335 0.01338 0.01365 0.01371 0.01432

COMPONENTS:			ORIGI	NAL MEASU	DEMENTS	•
			ORIGINAL MEASUREMENTS:			
	(1) Nitrogen; N ₂ ; [7727-37-9]			kunaga,		
(2) 1-Propanol; C ₃ H ₈ O; [71-32-8]			J J.	Chem.	Eng.	Data. <u>1975</u> ,20,41-6.
(3) Water;	(3) Water; H ₂ O; [7732-18-5]					
	2					
VARIABLES:	······································		DDDD			
VARIABLES:				RED BY:		
}	Т/К =293-313		c.	L. Youn	g	
	Composition					
EXPERIMENTAL	L VALUES:					
т/к	Mole fraction	Ostwald		Henry'		Mole fraction
		coefficie	nt,*	Consta /atm	nt	of nitrogen in liquid,**
1	^ж СзН _в О					2 N ₂
293.15	0.0000	0.0179		74500		0.0000134
1	0.0247	0.0210		59300		0.0000169
	0.0349	0.0180		67400 54300		0.0000148 0.0000184
	0.0758 0.0987	0.0202 0.0234		54300 44400		0.0000184
	0.1997	0.0371		22500		0.0000444
[0.3020	0.0541		12900		0.0000775
	0.4045	0.0636		9390		0.000106
	0.5014 0.6058	0.0712 0.0846		7380 5490		0.000136 0.000182
	0.7775	0.101		3880		0.000258
	0.8640	0.109		3310		0.000302
	1.0000	0.123		2650		0.000377
313.15	0.0000	0.0147		96600		0.0000104
	0.0247	0.0170		77700		0.0000129
	0.0480 0.0717	0.0163 0.0205		76400 57300		0.0000131 0.0000175
	0.1008	0.0283		38600		0.0000259
	0.1395	0.0365		27300		0.0000366
	0.2903	0.0616		12100		0.000826
	0.4107	0.0798 0.0882		7770		0.000129 0.000159
	0.4955 0.6135	0.0989		6280 4880		0.000205
	0.6993	0.108		4110		0.000243
		AUXILIARY	INFOR	MATION		
METHOD /API	PARATUS/PROCEDURE:		SOURC	E AND PUR	RITY OF	MATERIALS:
			<u> </u>			
	ic apparatus with buret and magnetic	-	(1)			grade sample, purity er cent.
	Amount of solution				ore pe	51 00mt.
	absorbed determined		(2/3)			agent, further
	ically. Partial			purifie	d by d	listillation.
	determined from essure and vapor			SOTUCIO	n uega	assed by boiling.
pressure	of solvent solution	1 .	Ì			
Details i	in source.					
1						
ļ			ESTT	ATED ERRO	DR:	<u></u>
			1	οT/K =	±0.5;	$\delta x_{\rm N_2} = \pm 1 - 2 \%.$
ļ			REFEI	RENCES:		
1						
1						
L			I			

COMPONENTS	ORIGINAL MEASUREMENTS
(1)Nitrogen; N ₂ ; [7727-37-9]	Tokunaga, J.
(2)1-Propanol; C ₃ H ₈ O: [71-23-8]	J. Chem. Eng. Data. <u>1975</u> ,20,41-6.
(3)Water; H ₂ O; [7732-18-5]	

EXPERIMENTAL VALUES :

т/к	Mole fraction	Ostwald	Henry's	Mole fraction
	of alcohol,	coefficient,*	Constant	of nitrogen in
	^x C ₃ H ₀ O	<i>L</i>	/atm	liquid,**x _{N2}
313.15	0.8251 0.8761 1.0000	0.118 0.122 0.132	3310 3050 2570	0.000302 0.000328 0.000389

* at 1.01325 x 10^5 Pa partial pressure

** at 1.01325 x 10^5 Pa partial pressure (calculated trom the reciprocal of Henry's Constant).

•

COMPONENTS:		······································	ORTOT	NAL MEACH	DEMENT	•	
(1) Nitrogen; N_2 ; [7727-37-9]				ORIGINAL MEASUREMENTS: Tokunaga, J.			
(1) Nitrogen; N ₂ ; $[7727-37-9]$ (2) 2-Propanol; C_3H_80 : [67-63-0]			-				
			J.	Chem.	Eng.	Data. <u>1975</u> ,20,41-6.	
(3) Water; H ₂ O;[7732-18-5]							
l							
VARIABLES:			PREPA	RED BY:			
				C.L. Young			
T/K = 293-313 Composition			C.L. Ibung				
EXPERIMENTAL		l					
т/к	Mole fraction	06+142]d		Honryle		Mole fraction	
17K	of alcohol,	coefficien		Constan		of nitrogen	
	^{<i>ж</i>} С ₃ Н ₈ О	L		/atm		in liquid,** ^x _{N2}	
293.15	0.0000	0.0179		74500		0.0000134	
	0.0709	0.0168 0.0246		65900 37100		0.0000152 0.0000270	
	0.1585 0.3288	0.0246		13000		0.0000769	
	0.4000	0.0636		9350		0.000107	
	0.5351 0.6396	0.0773 0.0939		6410 4680		0.000156 0.000214	
	0.7125	0.0986		4130		0.000242	
	0.8147	0.117		3160		0.000316	
	0.9031 1.0000	0.119 0.133		2860 2390		0.000350 0.000418	
313.15	0.0000 0.0480	0.0147 0.0136		96600 91300		0.0000104 0.0000110	
	0.1046	0.0205		52700		0.0000190	
	0.1620	0.0299		31700		0.0000315	
	0.2200 0.3249	0.0395 0.0586		21400 12000		0.0000467 0.0000833	
	0.4174	0.0732		8330		0.000120	
	0.5300 0.6031	0.0921 0.0990		5700 4860		0.000175 0.000206	
	0.8031			<u></u>			
1000 /3 DD	ADAMUG (DDOGEDUDE .	AUXILIARY			1002 00	MARINTAL	
	ARATUS/PROCEDURE:		SOURCE AND PURITY OF MATERIALS:				
Volumetri	c apparatus with buret and magnet:	la	(<u>1</u>)	High pur 99.99 mc	city g ble pe	rade sample, purity	
stirrer.	Amount of solution	on			-		
	bsorbed determined	1	(2/3)Guaranteed reagent, further purified by distillation.				
pressure	cally. Partial determined from to	otal		Solution	ı dega	ssed by boiling.	
pressure	and vapor pressure	e l					
	t solution. Deta:	ils					
in source	•						
			DORT	1.mn=			
				ATED ERRO			
				$\delta T/K = \pm$:0.5;	$\delta x_{N_2} = \pm 1 - 2 $	
			REFER	ENCES:			

Organic Solvents Plus Water

COMPONENTS:		ORIGINAL MEASUREMENTS: Tokunaga, J.					
 Nitrogen; N₂; [7727-37-9] 2-Propanol; C₃H₈O; [67-63-0] Water; H₂O; [7732-18-5] 							
			J. Chem. Eng. Data. <u>1975</u> ,20,41				
EXPERIME	NTAL VALUES :						
т/к	Mole fraction of alcohol, ^x C ₃ H ₈ O	Ostwald coefficie L	Henry's nt,* Constant /atm	Mole fraction of nitrogen in liquid,**x _{N2}			
313.15	0.7743 0.8487 0.9535 1.0000	0.117 0.126 0.140 0.146	3420 2970 2450 2210	0.000292 0.000337 0.000408 0.000452			
	* at 1.01325	5 x 10 ⁵ Pa p	artial pressure.				
	** at 1.01325 x 10 ⁵ Pa partial pressure (calculated from the reciprocal of Henry's Constant).						
		-					

99

.

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Drucker, K.; Moles, E.
(2) 1,2,3-Propanetriol (Glycerol); C ₃ H ₈ O ₃ ; [56-81-5]	Z. Physik. Chem. <u>1910</u> , 75, 405-36,
(3) Water; H ₂ O; [7732-18-5]	
VARIABLES: $T/K = 298$	PREPARED BY:
Wt. fraction of 1,2,3-Propanetriol	C. L. Young
EXPERIMENTAL VALUES:	
Wt. fraction of p/mmH T/K 1,2,3-Propanetriol p/mmH	Ostwald Ratio of g p/kPa coefficient, density of L soln./density of H ₂ O
298.2 0.0 760	101 0.0156 1.0
0.16 598.4 915.5	
0.297 556.5	74.2 0.0067 1.0744
846.5 0.489 617.7	82.4 0.0052 1.1263
859.8 0.745 588.5	114.6 0.0051
0.841 637.3	85.0 0.0024 1.2213
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Volumetric method using an Ostwald type gas buret and pipet. Solvent	 From cylinder, passed through concentrated alkali, alkaline pyrogallol and concentrated
degassed before being admitted to	sulfuric acid then over hot copper.
buret. Density of solution	(2) Pure sample, purity about 98
determined using a Sprengel	mole per cent.
pyknometer.	(3) Distilled.
	ESTIMATED ERROR:
	$\delta L/L = \pm 1 - 3$ % for dil. soln.;
	$\pm 5-7$ % for conc. soln.
	REFERENCES:

COMPONENTS: ORIGINAL MEASUREMENTS: (1) Nitrogen, N ₂ ; [7727-37-9] Miller, C. (2) 1,2,3-propanetrial (glycerol); C_3l_003; [56-81-5] Z. Physik. Chem. 1912, \$1, 483-503. (3) Water; H ₂ 0; [7732-18-5] Z. Physik. Chem. 1912, \$1, 483-503. VARIABLES: PREPARED EY: T/K = 287-291 R. Battino P/KPa = 101.325 Yeight Percentare Glycerolb Ostwald Coeff. ^C Bunsen Coeff. ^d 289.25 25. 1.313 1.240 289.35 90.5 0.630 0.570 293.15 95. 0.616 0.578 293.15 95. 0.616 0.578 a Temperature reported to 0.1°C. b 1,2,3-propanetrial. Source AND FURITY OF MATERIALS: "Atter is degassed by pumping under vacuum. The absorption vessel is about 600 cm ² and is orgarately thermostatted from the buret gas measuring system. Solth are connected by a copper capillary tube. Gas solution, forrous sulfate solution, forrous sulfate solution, forrous sulfate solution, forrous sulfate solution, forrous sulfate solution, forrous sulfate solution, sulfate Massertus. Golibilities were also measuring system. Solth are connected by a copper capillary tube. Gas and chloral hydrate. (2) Glycerol - from Yerck. (3) Water - no comment by author. (3) Water - no comment by author. (4) a		Organic Solver	nts Plus Water	10'
(2) 1,2,3-propanetriol(glycerol); $C_{3}H_{6}O_{3}$; [56-21-5]2. Physik. Chem. <u>1912</u> , \$1, 483-503.(3) Water; H_{2}O; [7732-18-5]7. Physik. Chem. <u>1912</u> , \$1, 483-503.VARIABLES: T/K = 287-291 P/KFa = 101.325R. BattinoT/K = 287-291 P/KFa = 101.325R. Battino289.25 288.05 288.05 289.05 289.05 299.15 299.15 95.0.540 0.741 0.703 299.15 95.0.540 0.616 0.576a Temperature reported to 0.1°C. b 1,2,3-propanetriol. C ostwald coefficient calculated by compiler. Bunsen coefficient.SOURCE AND FURITY OF MATERIALS: VALENT is degassed by pumping under vacuun. The absorption vessel is about 600 cm ³ and is separately thermostatted from the burtet gas measuring system. Soth are connected by a copper capillary tube. Gas uptake is read on the gaburets. The absorption flask volume and all inguivalues vester calibrated using mercury. The original paper contains measured in pure water, sucrose, and chloral hydrate.SOURCE AND FURITY OF MATERIALS: VALENT is connected by a copper capillary tube. Gas uptake is of operation and a darking of the apparatue. Solubilities were also measured in pure water, sucrose, and chloral hydrate.SOURCE AND FURITY OF MATERIALS: (2) Glycerol - from Meatine potassium nitrite and amonium nitrite. Vashed with potassium hydroxide solution, ferrous sulfate solution, ferrous sulfate solution, ferrous sulfate solution, ferrous sulfate solution, ferrous dubard dubard (3) Water - no comment by author.EXTENDERNOR: data = t0.01, estimated by compiler.	COMPONENTS:		ORIGINAL MEASUREMENTS:	
$C_{3}\pi_{8}O_{3}, [56-81-5]$ (3) Water; H ₂ O; [7732-18-5] VARIABLES: T/K = 287-291 P/KPa = 101.325 EXPERIMENTAL VALUES: T T T T T T T T T T T T T	(1) Nitrogen; N ₂	; [7727-37-9]	Müller, C.	
VARIABLES: PREPARED BY: T/K = 287-291 R. Battino P/KPa = 101.325 R. Battino T ^A /K Glycerol ^b Ostwald Coeff. ^c 289.25 25. 1.0 ² L 289.25 25. 1.033 289.25 5.0.0 0.421 289.25 5.0.0 0.421 289.25 5.0.0 0.421 289.25 90. 0.604 289.35 90. 0.604 291.15 95. 0.616 1,2,3-propanetriol. C Ostwald coefficient calculated by compiler. d Bunsen coefficient. SOURCE AND PURITY OF MATERIALS; Metrix is degased by jumping under . d bunsen coefficient. SOURCE AND PURITY OF MATERIALS; Metrix is degased by jumping under . d bunsen coefficient. SOURCE AND PURITY OF MATERIALS; Metrix is degased by jumping under . The absorption flass separately . Metrix is degased by pumping under . The absorption flass separately . Mater is degased by pumping under . </td <td></td> <td></td> <td>Z. Physik. Chem. <u>1</u></td> <td><u>912</u>, <i>81</i>, 483-503.</td>			Z. Physik. Chem. <u>1</u>	<u>912</u> , <i>81</i> , 483-503.
T/K = 287-291 P/KPa = 101.325R. BattinoTark in the procentage GlycerolbOstwald Coeff. ^C Bunsen Coeff. ^d 10 ³ LTark in the procentage GlycerolbOstwald Coeff. ^C Bunsen Coeff. ^d 10 ³ LTark in the procentage Coeff.Tark in the procentage Coeff.AUXILIARY INFORMATIONAUXILIARY INFORMATION <t< td=""><td>(3) Water; H₂O;</td><td>[7732-18-5]</td><td></td><td></td></t<>	(3) Water; H ₂ O;	[7732-18-5]		
$P/kPa = 101.325$ EXPERIMENTAL VALUES: T^{a}/K GlycerolbOstwald Coeff. ^C 10 ² LBunsen Coeff. ^d 10 ² L289.2525.1.3131.240288.0551.50.8000.759288.0558.00.7410.703289.0580.250.5500.520291.1595.0.6160.578a Temperature reported to 0.1°C.b 1,2,3-yropanetriol.0C Ostwald coefficient calculated by compiler.dBunsen coefficient.0METHOD/APPARATUS/PROCEDURE:SOURCE AND PURITY OF MATERIALS;Nater is decassed by pumping under vacuun. The absorption vessel is about 600 cm ² and is separately thermostated from the buret gas measuring system. Both are connected by a copper capillary tube. Gas uptake is read on the gas burets. the absorption laks volume and all liqid volumes were calibrated using mercury. The original paper contains details of operation and a drawing of the apsarted. Solubilities were also measured in pure water, sucrose, and chloral hydrate.(1) Water - no comment by author. ESTIMATED ERROR: $\delta \alpha/a = \pm 0.01$, estimated by compiler.	VARIABLES:		PREPARED BY:	
Weight Percentage Glycerolb Ostwald Coeff. ^C 10 ² L Bunsen Coeff. ^d 10 ² a 289.25 25. 1.313 1.240 289.25 51.5 0.800 0.739 289.05 50.0 0.741 0.703 289.05 50.0 0.604 0.570 291.15 95. 0.616 0.578 a Temperature reported to 0.1°C. 1.2,3-propanetriol. 0.616 0.578 Costwald coefficient calculated by compiler. 0 0.616 0.578 Bunsen coefficient. Source AND PURITY OF MATERIALS: Nater is degassed by jumping under vacuun. The absorption vessel is about 600 cm ³ and is separately thermostated from the buret gas measuring system. Both are connected by a copper capillary tube. Gas uptake is read on the gas burets. The absorption flak volume and all liquid volumes were calibrated using mercury. The original paper contains details of operation and a drawing of the apparatus. Solubilities were also neasured in pure water, sucrose, and chloral hydrate. Source and oli, estimated by compiler.			R. Battino	
T^4/K Glycerolb 10^2L $10^2\alpha$ 289.2525.1.3131.240289.2525.1.0530.996287.8551.50.8000.759289.0580.250.5500.520289.3590.0.6040.570291.1595.0.6040.578a Temperature reported to 0.1°C.b1,2,3-propanetriol.c Ostwald coefficient calculated by compiler.d Bunsen coefficient.AUXILIARY INFORMATIONMETHOD/APPARATUS/PROCEDURE:Vater is degassed by pumping under vacuun. The absorption vessel is about 600 cm³ and is separately thermostated from the buret gas measuring system. Both are connected by a copper capillary tube. Gas uptake is read on the gas burets. The absorption flak volume and all liquid volumes were calibrated using mercury. The original paper contains details of operation and a drawing of the apsaratus. Solubilities were also neasured in pure water, sucrose, and chloral hydrate.(3) Water - no comment by author.ESTIMATED ERROR: $da/a = t0.01$, estimated by compiler.	EXPERIMENTAL VALUES:			
228.7542.21.0530.996287.8551.50.8000.7759288.0558.00.7410.703289.0580.250.5500.520289.3590.0.6040.570291.1595.0.6160.578a Temperature reported to 0.1°C.1.2.3-propanetriol. \circ c Ostwald coefficient calculated by compiler. d Bunsen coefficient.AUXILIANY INFORMATIONAUXILIANY INFORMATIONSUPRITY OF MATERIALS:Intro	T ^a /K	Weight Percentage Glycerol ^b		Bunsen Coeff. ^d 10 ² α
 METHOD/APPARATUS/PROCEDURE: Water is degassed by pumping under vacuum. The absorption vessel is about 600 cm³ and is separately thermostatted from the buret gas measuring system. Both are connected by a copper capillary tube. Gas uptake is read on the gas burets. The absorption flask volume and all liquid volumes were calibrated using mercury. The original paper contains details of operation and a drawing of the apparatus. Solubilities were also measured in pure water, sucrose, and chloral hydrate. SOURCE AND PURITY OF MATERIALS: 	288.75 287.85 288.05 289.05 289.35 291.15	42.2 51.5 58.0 80.25 90. 95. reported to 0.1°C. etriol. ficient calculated by	1.053 0.800 0.741 0.550 0.604 0.616	0.996 0.759 0.703 0.520 0.570
Water is degassed by pumping under vacuum. The absorption vessel is about 600 cm ³ and is separately thermostatted from the buret gas measuring system. Both are connected by a copper capillary tube. Gas uptake is read on the gas burets. The absorption flask volume and all liquid volumes were calibrated using mercury. The original paper contains details of operation and a drawing of the apparatus. Solubilities were also measured in pure water, sucrose, and chloral hydrate. (1) Hitrogen - from heating potassium nitrite and annonium nitrite. Uashed with potassium hydroxide solution, ferrous sulfate solution and sulfuric acid; and finally passed through a glowing copper tube. (2) Glycerol - from Merck. (3) Water - no comment by author. ESTIMATED ERROR: $\delta \alpha / \alpha = \pm 0.01$, estimated by compiler.	<u> </u>	AUXILIARY	INFORMATION	
vacuum. The absorption vessel is about 600 cm ³ and is separately thermostatted from the buret gas measuring system. Both are connected by a copper capillary tube. Gas uptake is read on the gas burets. The absorption flask volume and all liquid volumes were calibrated using mercury. The original paper contains details of operation and a drawing of the apparatus. Solubilities were also measured in pure water, sucrose, and chloral hydrate. $\delta \alpha / \alpha = \pm 0.01$, estimated by compiler.	METHOD/APPARATUS/PROC	CEDURE :	SOURCE AND PURITY OF M	ATERIALS:
	vacuum. The absorbed about 600 cm ³ and thermostatted from measuring system by a copper capil uptake is read on The absorption fil liquid volumes we mercury. The ord details of operat the apparatus. So also measured in	protion vessel is is separately om the buret gas Both are connected llary tube. Gas h the gas burets. lask volume and all ere calibrated using iginal paper contains tion and a drawing of Solubilities were pure water, sucrose,	<pre>nitrite and am Vashed with po solution, ferr solution and s finally passed copper tube. (2) Glycerol - fro (3) Water - no com ESTIMATED ERROR: δα/α = ±0.01, est</pre>	monium nitrite. tassium hydroxide ous sulfate ulfuric acid; and through a glowing m Merck. ment by author.

•

COMPONENTS:		ORIGINAL MEASUREMENTS	:
(1) Nitrogen; N ₂ ; [7727-37-9]		Hammel, A. von	
(2) 1,2,3-Propanetriol (gly C ₃ H ₈ O ₃ ; [56-81-5]	cerine);	Z. Physik. Chem.	<u>1915</u> , 90, 121-5.
(3) Water; H ₂ O; [7732-18-5]			н. 1
4			
VARIABLES:		PREPARED BY:	
T/K = 288			
Concentration		R. Battino	
EXPERIMENTAL VALUES:	<u></u>		
wt. % (2)	10 ² L ^a	wt. % (2)	$10^2 L^a$
wc. 5 (2)	15°C		
0	1.707	72.8	0.552
0 15.7	1.708 1.425	74.7 77.0	0.597 0.527
15.7	1.376	85.1	0.482
29.9	1.087	87.3	0.492
46.6 57.6	0.840 0.698	88.5 99.25	0.536 0.524
67.1	0.635		
^a Ostwald coefficient.			
			ĺ
,			
		<u>.</u>	
	AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE:		SOURCE AND PURITY OF	MATERIALS:
The Ostwald apparatus as mo	dified by		
Geffcken (1) was used.		No details o	jiven.
		ESTIMATED ERROR:	
		$0L/L = \pm 0.03$, Co	ompiler's estimate
1		REFERENCES:	
		1. Geffcken, G.	Z. Physik. Chem.
		<u>1904</u> , 49, 257-	-302.
			*

.

				103
COMPONENTS:		•	ORIGINAL MEASURE	MENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]		Drucker, K.;	Moles, E.	
	- lpropanoic acid;		Z. Physik. (Chem. <u>1910</u> , 75, 405-36.
<pre>(3) Water;</pre>	H ₂ O; [7732-18-	-5]		
	= 296-302 Pa = 31-116	,	PREPARED BY: C	. L. Young
EXPERIMENTAL V	VALUES:	<u> </u>	1	······································
	Solvent	t contained	37.5% component	nt 2.
T/K	p/mmHg	p/kPa	Ostwald Coefficient, L	Ratio of density of soln./density of H ₂ O at 298.15 K
296.17	246.2 492.2 563.6	32.82 65.62 75.14 111.5	0.0393 0.0393 0.0393	0.9984
302.17	836.3 867.3 231 468.4 480.7 536	111.5 115.6 30.80 62.45 64.09 71.46	0.0384 0.0383	
	656 720	87.46 95.99		
	-	AUXILIARY	INFORMATION	
METHOD/APPARAT	TUS/PROCEDURE:		SOURCE AND PURIT	TY OF MATERIALS:
type gas b	method using ar uret and pipet. efore being admi	Solvent	concentra pyrogallo	nder, passed through ted alkali, alkaline 1, concentrated sulfuric over hot copper.
pipet. Density of solution determined using a Sprengel		(2) From Kahll times. (3) Distilled	baum, distilled four	
pyknometer	•			•
			ESTIMATED ERROR	
			$\delta L/L = \pm 1 - 3 $	for dil. soln.;
			±5-7% for com	nc. soln.
			REFERENCES:	
			L	

 Nitrogen; N₂; [7727-37-9]
 3) Binary Component Organic Solvent

EVALUATOR:

H. Lawrence Clever Department of Chemistry Emory University Atlanta, GA 30322 USA

1981, December

CRITICAL EVALUATION:

The Solubility of Nitrogen in Binary Organic Solvents

The solubility of nitrogen in binary organic solvents is reported in three papers (1, 2, 3). Seven systems were studied. No system was studied by more than one laboratory. Thus, no direct comparison of the data from different sources can be made and the data are all classed as tentative.

Kretschmer, Nowakowska, and Wiebe (1) measured the solubility of nitrogen at just one mole fraction and in the pure components at three temperatures. Thus, their data are of only limited value in giving information on the solubility of nitrogen in mixed solvents. Wiebe and co-workers are well known for reliable work. They used the technique and apparatus of the type first described by Horiuti. They either measured or used literature solvent vapor pressures and they corrected for dilation. Their results are classed as tentative.

Nitta, Katayama and co-workers (2, 3) also used a modified Horiuti apparatus and technique. They assumed Raoult's law valid to calculate the mixed solvent vapor pressures. They considered the solvent dilation correction too small to be significant. The binary solvents were stated to change composition less than 0.7 per cent on degassing and through the solubility procedure. The mole fraction solubilities are for a nitrogen partial pressure of 101.325 kPa (1 atm). Their work appears to have been carried out carefully and the data are classed as tentative.

The systems studied are listed below.

1. Nitrogen + Cyclohexane [110-82-7] + 2,2,4-Trimethylpentane [540-84-1]

Nitta, Tatsuishi, and Katayama (2) measured the solubility of nitrogen in nine mixtures and the two pure components at 298.15 K.

2. Nitrogen + Ethanol [64-17-5] + 2,2,4-Trimethylpentane [540-84-1]

Kretschmer, Nowakowska, and Wiebe (1) measured the solubility of nitrogen in the pure components and one mixture 0.739 mole fraction ethanol at 273.15, 298.15, and 323.15 K.

3. Nitrogen + 1-Propanol [71-23-8] + 2,2,4-Trimethylpentane [540-84-1]

Nitta, Tatsuishi, and Katayama (2) measured the solubility of nitrogen in the pure components and nine mixtures at 298.15 K.

4. Nitrogen + Ethanol [64-17-5] + Benzene [71-43-2]

Nitta, Fujio, and Katayama (3) measured the solubility of nitrogen in the pure components and nine mixtures at 298.15 K.

COMPON	ENTS:	EVALUATOR:		
	Nitrogen; N ₂ ; [7727-37-9] 3) Binary Component Organic Solvent	H. Lawrence Clever Department of Chemistry Emory University Atlanta, GA 30322 USA 1981, December		
CRITIC	AL EVALUATION:			
5.	Nitrogen + Ethanol [64-17-5] + 1	,l'-Oxybisethane [60-29-7]		
	Nitta, Fujio, and Katayama nitrogen in the pure components	(3) measured the solubility of and nine mixtures at 273.15 K.		
6.	Nitrogen + Ethanol [64-17-5] + 2	-Propanone [67-64-1]		
	of nitrogen in the two pure comp	Wiebe (1) measured the solubility conents and one mixture of 0.558 stures of 273.15, 298.15 and 323.15 K.		
7.	Nitrogen + Ethanol [64-17-5] + A	cetic acid, ethyl ester [141-78-6]		
	Nitta, Fujio, and Katayama (3) measured the solubility of nitrogen in the two pure components and nine mixtures at 298.15 K.			
Reie	erences:			
	 Kretschmer, C. B.; Nowakowsk Ind. Eng. Chem. <u>1946</u>, 38, 50 			
	 Nitta, T.; Tatsuishi, A.; Katayama, T. J. Chem. Eng. Japan <u>1973</u>, 6, 475. 			
	 Nitta, T.; Fujio, J.; Kataya J. Chem. Eng. Data <u>1978</u>, 23, 			
		**		

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Kretschmer, C. B.; Nowakowska, J.;
<pre>(2) Ethanol or Ethyl Alcohol; C₂H₆O; [64-17-5]</pre>	Wiebe, R. Ind. Eng. Chem. <u>1946</u> , 38, 506-9.
(3) 2-Propanone; C ₃ H ₆ O; [67-64-1]	
VARIABLES:	PREPARED BY:
$T/K = 273.15 - 323.15$ $p/kPa = 101.325$ $C_2H_6O/x_2 = 0.558$	D. G. T. Thornhill
EXPERIMENTAL VALUES:	
T/K Ethanol Mol Fraction M ^x 2	Nitrogen Nitrogen ol Fraction Ostwald $10^{4}x$ Coefficient $L_{7}/\text{cm}^{3}\text{cm}^{-3}$
273.15 0.558 298.15 0.558 323.15 0.558	4.05 0.1427 4.30 0.1609 4.65 0.1829
Smoothing equation:	
$\Delta G_{1}^{\circ}/J \text{ mol}^{-1} = -RT \ln x_{1}/J \text{ mol}^{-1} = A + 1$	BT/K.
Coefficients in the smoothing equation	h, $A = \Delta H_1^o / J \text{ mol}^{-1}$ and
$-B = S_1^{\circ}/J \text{ mol}^{-1} \text{ K}^{-1}$, and standard dev	viation, $\sigma_{d}^{}$, were determined by
least-squares analysis.	-
$\sigma_{d} = \left\{ \Sigma \left(\Delta G_{1}^{\circ}(calc) - \Delta G_{1}^{\circ} \right)^{2} / (N - 1) \right\}^{\frac{1}{2}},$	N being the number of experimental values.
$\Delta H_1^{\circ}/J \text{ mol}^{-1} = 2042 \qquad \Delta S_1^{\circ}/J \text{ mol}^{-1} \text{ K}^{\circ}$	$\sigma_d / J \mod^{-1} = 22$
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Saturation of degassed solvent with dry gas. Solubilities were calculated from appropriate determinations of gas pressures and volumes, and of solvent volumes and vapour pressures. The apparatus was similar to that of	(1) Nitrogen. Commercial nitrogen was freed of oxygen by passage through alkaline pyrogallol. Dried thoroughly by passage through CaSO ₄ .
Horiuti (1). Solvent was initially degassed by boiling it under reflux. Then it was transferred to the evacu- ated absorption vessel, and degassing completed by pumping on it under vacuum. Mercury was now added to the	 (2) Ethanol. Fractionated and dried with Mg. ρ₂(298.15 K)/kg m⁻³ = 785.08. (3) 2-Propanone. Treated with Ag₂O, dried with CaSO₄ ("Drierite"), and fractionated.
vessel until it was completely filled. An accurately measured amount of gas was then added to the vessel from a	329.25 - 329.29.
buret until the mercury was displaced to a calibrated mark. The volume of displaced mercury equalled the gas phase volume. Subtraction of this	ESTIMATED ERROR: Average deviation of individual measurements from mean was 0.3%; maximum deviation was 0.9%. $\delta x_1/x_1 = \pm$ 0.005 (evaluator).
latter value from the total volume of the absorption vessel yielded the volume of solvent. Gas and solvent were mixed by agitation with a stir-	REFERENCES: 1. Horiuti, J. Sci. Papers Inst. Phys. Chem. Research (Tokyo) <u>1931</u> , 17, 125.
rer, and intermittently fresh aliquots During dissolution of gas care was tak solvent vapour from the absorption ves was achieved after 1-3 hours. Correct volume with gas absorption.	of gas were added to the vessel. en to avoid diffusion of wet gas and sel to the buret. Final equilibrium

Mixed Organic Solvents

		Mixed Orga	nic Solvents	107
COMPONENTS:			ORIGINAL MEASUREMENTS:	
(1)Nitroge	en; N ₂ ; [7727-37-9]		Nitta, T.; Fujio, J.; H	Katayama, T.;
(2) Ethanol	L; C ₂ H ₆ O; [64-17-5]		J. Chem. Eng. Data. <u>19</u> 7	78,23,157-9.
	acid, ethyl ester, acetate); C4HgO2; 3-6]			
VARIABLES:			PREPARED BY:	<u></u>
T/K	= 313		C.L. Young , D. G. T. T	horphill
Comp	position			MOT MITT +
EXPERIMENTAL	L VALUES:			
т/к	Mole fraction of of alcohol in mixture (before adsorption of nitrogen), x ₂	Ostwa coeffic L	ient, Constant of ni	fraction ^a trogen N ₂
	0.0 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000 1.0 lated by compiler. duces the nitrogen s		2 1297 0.0 0 1382 0.0 3 1465 0.0 3 1559 0.0 3 1677 0.0 3 1810 0.0 1 1979 0.0 7 2190 0.0 3 2437 0.0	-
		AUXILIARY	INFORMATION	
METHOD/APPA	RATUS/PROCEDURE:		SOURCE AND PURITY OF MATERIA	LS;
dry gas. calculat mination volumes. to those (1), Kre Tokunaga mixed so was dega it boile solvent absorpti mercury complete measured added to and the calibrat displace latter v	on of degassed solve Solubilities were ed from approximate s of gas pressures a The apparatus was described by Horiu tschmer et al., (2) et al., (3). Init. lvent of known comp ssed by pumping on d under reflux. De was then transferred on vessel and degas added until the vess ly filled. An accur amount of gas was the vessel from a t mercury displaced t ad mark. The volum d mercury equalled alue from the total bsorption vessel yin	deter- and similar ti and ially osition it while gassed d to the sed sel was rately now buret, o a e of of this volume	 (1) Osaka Oxygen super-p purity 99.99 mole per (2) Spectral grade from (3) Merck Uvasol grade. ESTIMATED ERROR: δT/K = ±0.1; δx_{N2}/x_{N2} REFERENCES: (1) Horiuti, J. Sci. Pa Chem. Research (Toky 17, 125. (2) Nitta, T.; Tatsuishi Katayama, T. J. Che 	<pre>pr cent. Nakarai. = ±0.008 pers Phys. (0) <u>1931</u>, (1) A.;</pre>
cont	inued on following	page	Jap. <u>1973</u> , 6, 475. continued on foll	

COMPONENTS: (1) Nitrogen; N₂; [7727-37-9] (2) Ethanol; C₂H₆O; [64-17-5]

(3) Acetic acid, ethyl ester, (Ethyl acetate); C₄H₈O₂; [141-78-6] ORIGINAL MEASUREMENTS: Nitta, T.; Fujio, J.; Katayama, T. J. Chem. Eng. Data. <u>1978</u>, 23, 157-9.

METHOD/APPARATUS/PROCEDURE:

continued

the volume of solvent. Gas and solvent were mixed by agitation with stirrer bar, and intermittently fresh aliguots of gas were added to the vessel. During dissolution of gas care was taken to avoid diffusion of wet gas and solvent vapour from the absorption vessel to the buret. Final equilibrium was achieved after 1-1½ hours. Corrections were made for increased solvent volume with gas absorption.

REFERENCES:

continued

Katayama, T.; Nitta, T.
 J. Chem. Eng. Data <u>1976</u>, 21, 194.

Mixed Organic Solvents

•

COMPONENTS:	en; N ₂ ; [7727-37-9]	i	ORIGINAL MEASUREMENTS	: , J.; Katayama, T.
				ta 1978, 23,157-9.
(3) 1,1'-	1; $C_{2}H_{6}O$; [64-17-5] oxybisethane hyl ether); $C_{4}H_{10}O$; 9-7]		J. Chem. Eng. Da	. <u>1976</u> , 28,137-9.
VARIABLES:			PREPARED BY:	
	T/K = 273 Composition		C.L. Young, D. G	. T. Thornhill
EXPERIMENTA	L VALUES:			
т/К	Mole fraction of alcohol in mixture (before adsorption of nitrogen), x ₂	coeffic	ld Henry's ient, Constant /atm	Mole fraction ^a of nitrogen x _{N2}
273.15	0.0 0.1000 0.2000 0.3000 0.4000 0.50000	0.266 0.256 0.242 0.233 0.218 0.218	2 909.0 9 1004 0 1099 0 1236	0.001197 0.001100 0.0009960 0.0009099 0.0008091 0.0007185
	0.6000 0.7000 0.8000 0.9000 1.0	0.1923 0.1778 0.163 0.1500 0.1378	B 1797 7 2081 0 2431	0.0006398 0.0005565 0.0004805 0.0004114 0.0003512
	$5 \times 10^{-4} x_2$ reproduce iation of 2.7%.	s the hit	rogen sorubility w	
		AUXILIARY	INFORMATION	
Saturat: dry gas calculat mination volumes to those (1), Kre Tokunaga mixed so was dega it boil solvent absorpt: mercury complete measure	e described by Horiut. etschmer et al., (2) a a et al., (3). Initia olvent of known compo- assed by pumping on i ed under reflux. Deg was then transferred ion vessel and degass added until the vess ely filled. An accur d amount of gas was n	deter- nd similar i and ally sition t while assed to the ed el was ately ot	<pre>SOURCE AND PURITY OF (1) Osaka Oxygen s purity 99.99 r (2) Spectral grade (3) Nakarai sample fractionated. ESTIMATED ERROR: &T/K = ±0.1; δx_{N2}</pre>	super-pure grade, mole per cent. e from Nakarai. e, dried and
and the calibra displace	o the vessel from a b mercury displaced to ted mark. The volume ed mercury equalled o value from the total absorption vessel yie	a of f this volume	125. 2. Nitta. T.: Tats	(Tokyo) <u>1931</u> , 17,

COMPONENTS: (1) Nitrogen; N₂; [7727-37-9]

- (2) Ethanol; C₂H₆O; [64-17-5]
- (3) 1,1'-oxybisethane
 (diethyl ether); C₄H₁₀O;
 [60-29-7]

ORIGINAL MEASUREMENTS: Nitta, T.; Fujio, J.; Katayama, T. J. Chem. Eng. Data <u>1978</u>, 23, 157-9.

METHOD/APPARATUS/PROCEDURE:

continued

the volume of solvent. Gas and solvent were mixed by agitation with stirrer bar, and intermittently fresh aliquots of gas were added to the vessel. During dissolution of gas care was taken to avoid diffusion of wet gas and solvent vapour from the absorption vessel to the buret. Final equilibrium was achieved after 1-1½ hours. Corrections were made for increased solvent volume with gas absorption.

REFERENCES:

continued

 Katayama, T.; Ilitta, T. J. Chem. Eng. Data <u>1976</u>, 21, 194. Mixed Organic Solvents

COMPONENTS:				NAL MEASUREMENTS	
(1) Nitrogen	; N ₂ ; [7727-37-9]		Nit	ta, T.; Fujio	, J.; Katayama, T.
(2) Ethanol;	C ₂ H ₆ O; [64-17-5]		J.	Chem. Eng. Da	ta. <u>1978</u> , 23, 157-9.
(3)Benzene;	C ₆ H ₆ ; [71-43-2]				•
VARIABLES:			PREPA	RED BY:	
i .	т/к = 298		l		G. T. Thornhill
	Composition			·	
EXPERIMENTAL VA	ALUES:		L		
т/к	Mole fraction of alcohol in mixture (before adsorption of nitrogen), x ₂	Ostwa coeffic L		Henry's Constant /atm	Mole fraction ^a of nitrogen ^x N ₂
			2 4 9 7 0 6 9 9 3 4 4 ation	-	0.0004523 0.0004454 0.0004373 0.0004292 0.0004153 0.0003903 0.0003824 0.0003636 0.0003580 $10^{-4} - 1.00 \times 10^{-4}x_2$ deviation of 0.6%.
		AUXILIARY	INFORM	1ATION	
METHOD /APPAR	ATUS/PROCEDURE		SOURC	E AND PURITY OF	MATERIALS:
Saturation dry gas. S calculated minations of volumes. T to those de (1), Kretso Tokunaga et mixed solve was degasse it boiled u solvent was absorption mercury add completely measured an added to th and the mer calibrated displaced m latter valu	of degassed solve Solubilities were from approximate of gas pressures a The apparatus was escribed by Horiut chmer et al., (2) t al., (3). Initia ent of known compo ed by pumping on i under reflux. Deg s then transferred vessel and degass ded until the vess filled. An accur mount of gas was n the vessel from a b ccury displaced to	deter- nd similar i and lly sition t while assed to the ed el was ately ot uret, a of f this volume	δT/ REFEF (1)	purity 99.99 Spectral grad Merck Uvasol Marck Uvasol K = $\pm 0.1; \delta x_{N};$ Mences: Horiuti, J. Chem. Research 17, 125.	2/x _{N2} =±0.008 Sci. Papers Phys. 2h (Tokyo) <u>1931</u> ,
	aed on following p		(2)	Nitta, T.; Ta	J. Chem. Eng. Jap.

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1)Nitrogen; N ₂ ; [7727-37-9]	ORIGINAL MEASUREMENTS: Nitta, T.; Fujio, J.; Katayama, T.
(2)Ethanol; C ₂ H ₆ O; [64-17-5]	J. Chem. Eng. Data. <u>1978</u> , 23, 157-9.
(3)Benzene; C ₆ H ₆ ; [71-43-2]	

METHOD/APPARATUS/PROCEDURE

continued

the volume of solvent. Gas and solvent were mixed by agitation with stirrer bar, and intermittently fresh aliquots of gas were added to the vessel. During dissolution of gas care was taken to avoid diffusion of wet gas and solvent vapour from the absorption vessel to the buret. Final equilibrium was achieved after 1-1½ hours. Corrections were made for increased solvent volume with gas absorption.

REFERENCES:

continued

Katayama, T.; Nitta, T.
 J. Chem. Eng. Data <u>1976</u>, 21, 194.

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Kretschmer, C. B.; Nowakowska, J.; Wiebe, R.
<pre>(2) Ethanol or Ethyl Alcohol; C₂H₆O; [64-17-5]</pre>	Ind. Eng. Chem. <u>1946</u> , 38, 506-9.
(3) 2,2,4-Trimethylpentane; C ₈ H ₁₈ ; [540-84-1]	
VARIABLES: $T/K = 273.15 - 323.15$ p/kPa = 101.325 $C_2H_6O/x_2 = 0.739$	PREPARED BY: D. G. T. Thornhill
EXPERIMENTAL VALUES: T/K Ethanol Mol Fraction Mo $\frac{x_2}{273.15}$ 0.739 298.15 0.739	NitrogenNitrogenNitrogenOstwald 10^4x_1 Coefficient $\frac{1}{L_1/\text{cm}^3\text{cm}^{-3}}$ 6.710.17856.870.1939
323.15 0.739	7.06 0.2100
Smoothing equation: $\Delta G_1^{\circ}/J \mod^{-1} = - \operatorname{RT} \ln x_1/J \mod^{-1} = A + Coefficients in the smoothing equation$	
$-B = \Delta S_1^{\circ}/J \text{ mol}^{-1} K^{-1}$, and standard de	
by least-squares analysis.	a
$\Delta H_1^{\circ}/J \text{ mol}^{-1} = 749$ $\Delta S_1^{\circ}/J \text{ mol}^{-1} \text{ K}^{-1} = -58.0$ $\sigma_d/J \text{ mol}^{-1} = 9$	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: Saturation of degassed solvent with dry gas. Solubilities were calculate from appropriate determinations of ga pressures and volumes, and of solvent volumes and vapour pressures. The apparatus was similar to that of Horiuti (1). Solvent was initially degassed by boiling it under reflux. Then it was transferred to the evacu- ated absorption vessel, and degassing completed by pumping on it under vacuum. Mercury was now added to the vessel until it was completely filled An accurately measured amount of gas was then added to the vessel from a buret until the mercury was displaced to a calibrated mark. The volume of displaced mercury equalled the gas phase volume. Subtraction of this latter value from the total volume of the absorption vessel yielded the vol- ume of solvent. Gas and solvent were nixed by agitation with a stirrer, and intermittently fresh aliquots of gas	 s through alkaline pyrogallol. Dried thoroughly by passage through CaSO₄. (2) Ethanol. Fractionated and dried with Mg. p₂(298.15 K)/kg m⁻³ = 785.08. (3) 2,2,4-Trimethypentane. Certified material dried with CaSO₄, and fractionated. p₃(298.15 K)/kg m⁻³ = 687.74. Boiling point (760 mmHg)/K=372.39. ESTIMATED ERROR: Average deviation of individual measurements from mean was 0.3%; maximum deviation was 0.9%. δx₁/x₁ = ± 0.005 (evaluator). REFERENCES: 1. Horiuti, J. Sci. Papers Inst. Phys. Chem.
	solution of gas care was taken to avoid

Parameter and a second	
COMPONENTS: (1) Nitrogen; N ₂ ; [7727-37-9] (2) 2-Propanone or acetone; C ₃ H ₆ O; [67-64-1] (2) Etherel: C H O: [64-17.5]	ORIGINAL MEASUREMENTS: Kretschmer, C. B.; Nowakowska, J.; Wiebe, R. Ind. Eng. Chem. <u>1946</u> , 38, 506-9.
(3) Ethanol; C ₂ H ₆ O; [64-17-5] VARIABLES:	PREPARED BY:
T/K = 273.15 - 323.15 P/kPa = 101.325 Ethanol/vol % = 50	P. L. Long H. L. Clever
EXPERIMENTAL VALUES:	
T/K Bunsen Coefficie α	Ostwald ent Coefficient L
273.15 0.1427 298.15 0.1474 323.15 0.1546	
The Ostwald coefficients were measured (l atm). The compiler calculated the oxygen partial pressure of lol.325 kPa coefficient was independent of pressure	Bunsen coefficient value for an a (l atm) assuming the Ostwald
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: The apparatus was similar to that of Horiuti (1), it consisted of a gas buret, manometer, and absorption pipet equipped with a magnetic stirrer. All volumes were calibrated by mercury displacement. The solvent was partly degassed by boiling under reflux. About 40 cm ³ of solvent was admitted into the absorption pipet, and pumped on to complete the degassing. Dry gas, measured in the buret, was admitted, final equilibrium was established after 1 to 3 hours stirring. During the solution process the total pres- sure was kept at one atm by additions of dry gas. The solubility value was corrected for the increase of solvent volume with gas absorption	 SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Commercial, but source not given. Passed through alka- line pyrogallol to remove O₂, passed through Drierite to dry. (2) 2-Propanone. Source not given. Treated with Ag₂O, dried over CaSO₄, distilled, b.p. (760 mmHg)/°C 56.10-56.14, density, p²⁵/g cm⁻³ 0.78490 (3) Ethanol. Source not given. Dried with Mg. Density, p/g cm⁻³ 0.78508. ESTIMATED ERROR: Gas buret δV/cm³ = 0.005 Average deviation from the mean 0.3%, maximum deviation 0.9% (authors). REFERENCES: 1. Horiuti, J. J. Sci Papers Inst. Phys. Chem. Res. (Tokyo) 1931, 17, 125-256.
······································	

,

	ORIG	INAL MEASUREMENTS:	
en; N ₂ ; [7727-37-9]	Ni		hi. A.;
anol; C ₃ H ₈ O; [71-23-8]			
e, 2,2,4-trimethyl-, [540-84-1]	J.	Chem. Eng. Japa	in <u>1973</u> , 6,475-80.
	-		
T/K = 298 Composition			T. Thornhill
VALUES:		<u> </u>	
1-propanol in soln. coeffi	cient	Henry's Law , Constant /atm	Mole fraction ^a of nitrogen ^x N ₂
0.1000 0.22 0.2000 0.21 0.3000 0.22 0.4000 0.26 0.5000 0.15 0.6000 0.16 0.7000 0.17 0.8000 0.14 1.0000 0.13	207 57 10 552 73 74 53 522 74 12	766.7 834.6 918.7 1028 1170 1363 1616 1971 2482	$\begin{array}{c} 0.001530\\ 0.001416\\ 0.001304\\ 0.001198\\ 0.001088\\ 0.0009727\\ 0.0008547\\ 0.0007336\\ 0.0006188\\ 0.0005073\\ 0.0006188\\ 0.0005073\\ 0.0004029\\ \end{array}$
iation of 0.6%.			
		RMATION	
ARATUS/PROCEDURE			
		RCE AND PURITY OF MA	TERIALS;
ion of degassed solvent wit . Solubilities were cal-	h	Osaka Oxygen su	per-pure grade of
ion of degassed solvent wit . Solubilities were cal- from approximate deter- ns of gas pressures and . The apparatus was simila e described by Horiuti	h (1)	Osaka Oxygen su purity 99.9995 Nakarai Chemica	per-pure grade of
ion of degassed solvent wit . Solubilities were cal- from approximate deter- ns of gas pressures and . The apparatus was simila e described by Horiuti etschmer et al., (2) and a et al., (3). Initially olvent of known composition assed by pumping on it t boiled under reflux. d solvent was then trans-	h (1) r (2) (3)	Osaka Oxygen su purity 99.9995 Nakarai Chemica fractionated, p mole per cent. Nakarai Chemica	per-pure grade of mole per cent. 1 sample dried and urity about 99.9 1 sample dried and urity better than
ion of degassed solvent wit . Solubilities were cal- from approximate deter- ns of gas pressures and . The apparatus was simila e described by Horiuti etschmer et al., (2) and a et al., (3). Initially olvent of known composition assed by pumping on it t boiled under reflux. d solvent was then trans- to the absorption vessel assed mercury added until	h (1) r (2) (3)	Osaka Oxygen su purity 99.9995 Nakarai Chemica fractionated, p mole per cent. Nakarai Chemica fractionated, p	per-pure grade of mole per cent. 1 sample dried and urity about 99.9 1 sample dried and urity better than
ion of degassed solvent wit . Solubilities were cal- from approximate deter- ns of gas pressures and . The apparatus was simila e described by Horiuti etschmer et al., (2) and a et al., (3). Initially olvent of known composition assed by pumping on it t boiled under reflux. d solvent was then trans- to the absorption vessel assed mercury added until sel was completely filled. rately measured amount of not added to the vessel	h (1) r (2) (3) EST	Osaka Oxygen su purity 99.9995 Nakarai Chemica fractionated, p mole per cent. Nakarai Chemica fractionated, p 99.98 mole per	<pre>per-pure grade of mole per cent. 1 sample dried and urity about 99.9 1 sample dried and urity better than cent = ±1%</pre>
ion of degassed solvent wit . Solubilities were cal- from approximate deter- ns of gas pressures and . The apparatus was simila e described by Horiuti etschmer et al., (2) and a et al., (3). Initially olvent of known composition assed by pumping on it t boiled under reflux. d solvent was then trans- to the absorption vessel assed mercury added until sel was completely filled. rately measured amount of not added to the vessel buret, and the mercury	h (1) r (2) (3) EST (e	Osaka Oxygen su purity 99.9995 Nakarai Chemica fractionated, p mole per cent. Nakarai Chemica fractionated, p 99.98 mole per	<pre>per-pure grade of mole per cent. 1 sample dried and urity about 99.9 1 sample dried and urity better than cent = ±1%</pre>
ion of degassed solvent wit . Solubilities were cal- from approximate deter- ns of gas pressures and . The apparatus was simila e described by Horiuti etschmer et al., (2) and a et al., (3). Initially olvent of known composition assed by pumping on it t boiled under reflux. d solvent was then trans- to the absorption vessel assed mercury added until sel was completely filled. rately measured amount of not added to the vessel buret, and the mercury ed to a calibrated mark. ume of displaces mercury d of this latter value from	h (1) (2) (3) EST (e REFI	Osaka Oxygen su purity 99.9995 Nakarai Chemica fractionated, p mole per cent. Nakarai Chemica fractionated, p 99.98 mole per MATED ERROR: /K = ± 0.05 ; $\delta x/x$ stimated by comp ERENCES: Horiuti, J. Sc. Phys. Chem. Res	<pre>per-pure grade of mole per cent. 1 sample dried and urity about 99.9 1 sample dried and urity better than cent = ±1% iler.) i. Papers Inst.</pre>
ion of degassed solvent wit . Solubilities were cal- from approximate deter- ns of gas pressures and . The apparatus was simila e described by Horiuti etschmer et al., (2) and a et al., (3). Initially olvent of known composition assed by pumping on it t boiled under reflux. d solvent was then trans- to the absorption vessel assed mercury added until sel was completely filled. rately measured amount of not added to the vessel buret, and the mercury ed to a calibrated mark. ume of displaces mercury	h (1) (2) (3) EST (e REF) (1)	Osaka Oxygen su purity 99.9995 Nakarai Chemica fractionated, p mole per cent. Nakarai Chemica fractionated, p 99.98 mole per MATED ERROR: /K = ±0.05; $\delta x/x$ stimated by comp ERENCES: Horiuti, J. Sc. Phys. Chem. Res 17, 125. Kretschmer, C.	<pre>per-pure grade of mole per cent. 1 sample dried and urity about 99.9 1 sample dried and urity better than cent = ±1% iler.)</pre>
	panol; C ₃ H ₈ O; [71-23-8] pe, 2,2,4-trimethyl-, [540-84-1] T/K = 298 Composition VALUES: Mole fraction of Ostw 1-propanol in soln. coeffi before saturation. I X ₂ 0.0000 0.22 0.1000 0.22 0.1000 0.22 0.2000 0.22 0.3000 0.22 0.3000 0.22 0.4000 0.22 0.5000 0.19 0.6000 0.18 0.7000 0.17 0.8000 0.16 0.9000 0.14 1.0000 0.13 culated by compiler. The e 35 x 10 ⁻³ x ₂ reproduces the iation of 0.6%.	panol; $C_{3}H_{8}O$; $[71-23-8]$ J. F(x) = 298 Composition T/K = 298 Composition T/K = 298 Composition T/K = 298 C. VALUES: Mole fraction of Ostwald 1-propanol in soln. coefficient before saturation. L x_2 0.0000 $0.22550.1000$ $0.22570.2000$ $0.21570.3000$ $0.21100.4000$ $0.20520.5000$ $0.19730.6000$ $0.17530.8000$ $0.16220.9000$ $0.14741.0000$ $0.1312culated by compiler. The equation35 \times 10^{-3}x_2 reproduces the nitro$	$Panol; C_3H_8O; [71-23-8]$ Katayama, T. $Panol; C_3H_8O; [71-23-8]$ J. Chem. Eng. Japa $Prepared Free Pared Fre$

116

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Nitta, T.; Tatsuishi, A.; Katayama, T.
(2) 1-Propanol; C ₃ H ₈ O; [71-23-8]	J. Chem. Eng. Japan <u>1973</u> , 6, 475-80.
(3) Pentane, 2,2,4-trimethyl-, C ₈ H ₁₈ ; [540-84-1]	, , , , , , , , , , , , , , , , ,

METHOD/APPARATUS/PROCEDURE:

continued

volume of solvent. Gas and solvent were mixed by agitation with stirrer bar, and intermittently fresh aliquots of gas were added to the vessel. During dissolution of gas care was taken to avoid diffusion of wet gas and solvent vapour from the absorption vessel to the buret. Final equilibrium was achieved after 1-1½ hours. Corrections were made for increased solvent volume with gas absorption.

REFERENCES:

continued

 Tokunaga, J.; Nitta, T.; Katayama, T. Kagaku Kogaku <u>1969</u>, 33, 775. **Mixed Organic Solvents**

COMPONENTS:	ORIGINAL MEASUREMENTS:
(l) Nitrogen; N ₂ ; [7727-37-9]	Nitta, T.; Tatsuishi, A.; Katayama, T.
(2) Cyclohexane; C ₆ H ₁₂ ; [110-82-7]	Aubuj una (1)
<pre>(3) Pentane, 2,2,4-trimethyl-; C₈H₁₈; [540-84-1]</pre>	J. Chem. Eng. Japan <u>1973</u> ,6,475-80.
VARIABLES:	PREPARED BY:
- <i>(</i> 2, 000	
T/K = 298	C.L. Young , D. G. T. Thornhill
Composition	L
EXPERIMENTAL VALUES:	
T/K Mole fraction of Ostwa cyclohexane in coeffic soln. before L saturation,x2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6 689.0 0.001451 8 730.4 0.001369 1 771.6 0.001296 4 820.2 0.001145 0 873.1 0.001145 4 936.8 0.001067 3 1010 0.000990 7 1096 0.0009124 0 1201 0.0008326
7.70 x 10^{-4} x ₂ reproduces the raverage deviation of 0.1%.	· · ·
AUXILIARY	INFORMATION
METHOD /APPARATUS/PROCEDURE	SOURCE AND PURITY OF MATERIALS:
Saturation of degassed solvent with dry gas. Solubilities were	(1) Osaka Oxygen super-pure grade of purity 99.9995 mole per cent.
calculated from approximate deter- minations of gas pressures and	(2) Wako Pure Chemical sample, purity better than 99.9 mole per cent.
volumes. The apparatus was similar to those described by Horiuti (1), Kretschmer et al., (2) and Tokunaga et al., (3).Initially mixed solvent of known composition was degassed by pumping on it while it boiled under reflux. Degassed solvent was then transferred to the	(3) Nakarai Chemical sample dried and fractionated, purity better than 99.98 mole per cent.
absorption vessel and decassed	ESTIMATED ERROR:
mercury added until the vessel was	$\delta T/K = \pm 0.05; \ \delta x/x = \pm 1\%$
completely filled. An accurately measured amount of gas was now	(estimated by compiler).
added to the vessel from a buret, and the mercury displaced to a calibrated mark. The volume of displaced mercury equalled of this latter value from the total volume of the absorption vessel yielded continued on following page	<pre>REFERENCES: 1. Horiuti, J. Sci. Papers Inst. Phys. Chem. Research (Tokyo) 1931, 17, 125. 2. Kretschmer, C.B.; Nowakowska, J. Wiebe, R. Ind. Eng. Chem. 1946, 38, 506. continued on following page</pre>

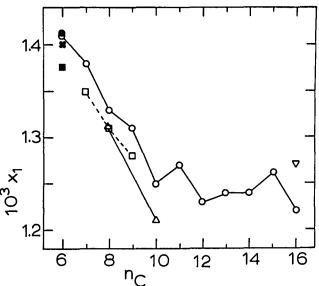
COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Nitta, T.; Tatsuishi, A.; Katayma, T.
(2) Cyclohexane; C ₆ H ₁₂ ; [110-82-7]	J. Chem. Eng. Japan <u>1973</u> , 6, 475-80.
(3) Pentane, 2,2,4-trimethyl-; C ₈ H ₁₈ ; [540-84-1]	

METHOD/APPARATUS/PROCEDURE

continued

the volume of solvent. Gas and solvent were mixed by agitation with stirrer bar, and intermittently fresh aliquots of gas were added to the vessel. During dissolution of gas care was taken to avoid diffusion of wet gas and solvent vapour from the absorption vessel to the buret. Final equilibrium was achieved after 1-1½ hours. Corrections were made for increased solvent volume with gas absorption.

REFERENCES:


continued

 Tokunaga, J.; Nitta, T.; Katayama, T. Kagaku Kogaku <u>1969</u>, 33, 775.

COMPONENTS:	EVALUATOR:
 Nitrogen; N₂; [7727-37-9] n-Alkanes and 2,2,4-Trimethylpentane 	Rubin Battino Department of Chemistry Wright State University Dayton, Ohio 45435 U.S.A.
	December 1981

CRITICAL EVALUATION:

The solubility of nitrogen in saturated hydrocarbons has been studied by a number of workers at pressures below two bars. (For critical evaluations of these systems at higher pressures see the high pressure section.) The figure below shows the data of Makranczy, et al. (1)- O_i Gjaldbaek and Hildebrand (2)- χ ; Patyi, et al. (3)- \oplus ; Thomsen and Gjaldbaek (4)- \Box ; Wilcock, et al. (5)- Δ ; Katayama and Nitta (6)- \blacksquare ; and Tremper and Prausnitz (7)- ∇ for the n-alkanes. For carbon numbers six through ten the Makranczy, et al., values are significantly higher than those of other workers. (The data of Guerry (8) and Ijams (9) were very low and/or erratic and were not graphed.) Obviously, these systems await a definitive study.

The data for the individual n-alkanes and 2,2,4-trimetnylpentane (isooctane)will be discussed individually below.

Nitrogen in n-Hexane

The solubility of nitrogen in n-hexane was determined by five groups (1,2,3,6,8) but Guerry's datum (8) was much too low to be considered. We used the data of the other four groups, rejecting the 313.15 K value from reference 1 to end up with nine points in the temperature range 213.15 to 298.15 K. These data were smoothed to yield

$$\ln x_1 = -6.39422 - 0.553875/(T/100K)$$

(1)

The standard deviation in lnx₁ was 0.016. Smoothed recommended values at 10 K intervals are given below.

T/K	10 ³ ×1	T/K	10 ³ x1
213.15	1.29	263.15	1.35
223.15	1.30	273.15	1.36
233.15	1.32	283.15	1.37
243.15	1.33	293.15	1.38
253.15	1.34	298-15	1.39

continued on following page

COMPONENTS:	EVALUATOR:
(1) Nitrogen; N ₂ ; [7727-37-9]	Rubin Battino
	Department of Chemistry
(2) n-Alkanes and	Wright State University Dayton, Ohio 45435
2,2,4-Trimethylpentane	U.S.A.
	December 1981
CRITICAL EVALUATION:	
conti	nued
The thermodynamic properties are $\Delta \overline{H}^{\circ}$ and are independent of temperature.	461 J mol ⁻¹ and ∆3 [~] -53 J K ⁻¹ mol ⁻¹
Nitrogen in n-Heptane	
The solubility of nitrogen in n	-heptane was determined by four
groups (1,4,8,9) but we selected the as being the most reliable. The smo range 298 to 308 K are given by:	work of Thomsen and Gjaldbaek (4)
$\ln x_1 = -6.04777 - 1.66951/(T/1)$	00K) (2)
The standard deviation in lnx1 was 0	
at 298.15 K is 1.35×10^{-3} . The the	rmodynamic properties are $\Delta \overline{H}$ °=1388 J
mol^{-1} and $\Delta \overline{S}^{\circ} = -50$ J K ⁻¹ mol ⁻¹ .	
Nitrogen in n-Octane	
This system was studied by four obtained by Thomsen and Gjaldbaek (4 selected as the most reliable. Smoo 298 to 308K yielded:	workers (1,4,5,9) and the results) and Wilcock et al., (5) were thing these results in the range
$\ln x_1 = -5.98284 - 1.94827/(T/1)$	00K) (3)
The standard deviation in ln x, was	0.0053. $\Delta \overline{H}^{\circ} = 1620 \text{ J mol}^{-1} \text{ and } \Delta \overline{S}^{\circ} = -49$
$J K^{-1} mol^{-1}$.	
Nitrogen in n-Nonane	
The Thomsen and Gjaldbaek (4) day reliable, but they only determined to average of the values is $x_1 = 1.28 x_2$	ta were the only ones which we considered he solubility at 299.15 K. The 10^{-3} . The Makranczy, et al.,
(1) values show too great a temperat	ure dependence when compared with
other workers and are to be treated checks are made.	as tentative until further
Nitrogen in n-Decane	
Wilcock, et al.'s values (5) ar The other two sets of results (1,9) Wilcock, et al's three points yields	e the most reliable for this system. were not used. Smoothing of :
$\ln x_1 = -6.82876 + 0.340428/(T/$	100K) (4)
This is for the range 283 to 31 ln x_1 is 0.00052. Smoothed values a $\Delta \overline{H}^\circ = -283 \text{ J mol}^{-1}$ and $\Delta \overline{S}^\circ = -56.8 \text{ J K}^{-1}$	t 5K intervals follow.
	continued on following page

.

COMPONENTS:		EVALUATOR:	<u> </u>	
 (1) Nitrogen; N₂; [(2) n-Alkanes and 2,2,4-Trimethyl 		Rubin Battino Department of Ch Wright State Uni Dayton, Ohio 45 U.S.A.	versity	
		December 1981		
CRITICAL EVALUATION	:			
	cor	itinued		
T/K	10 ³ ×1	T/K	10 ³ x1	
283.15 283.15 293.15 298.15	1.220 1.218 1.215 1.213	303.15 308.15 313.15	1.211 1.209 1.206	
Nitrogen in 2,2,4-T	rimethylpentane	3		
-	m we used the r iel (11) reject	esults of Kretschme ing Ijams single va	lue (9). Over	
$\ln x_1 = -6.306$	91 - 0.503860/	(T/100K)	(5)	
with a standard dev intervals follow.	iation of 0.014	in ln x ₁ . Smoothe	ed values at 10K	
т/к	10 ³ x1	T/K	10 ³ ×1	
248.15 258.15 268.15 278.15 288.15	1.49 1.50 1.51 1.52 1.53	298.15 308.15 318.15 328.15	1.54 1.55 1.56 1.56	•
$\Delta \overline{H}^{\circ} = -419 \text{ J mol}^{-1} \text{ an}$		mol ⁻¹ .		
Nitrogen in n-Hexad	ecane			
The data repor the most reliable h The smoothing equat	ere; that of Ma	and Prausnitz (7) a kranczy, et. al., (re considered 1) not being used	đ.
$\ln x_1 = -5.545$	57 - 3.45285/(1	Y/100K)	(5)	
with a standard dev intervals for the r K^{-1} mol ⁻¹ .	iation of 0.019 ange 300 to 475) in ln x _l . Smoothe 6 Κ. ΔH°=2871 J mol	d values are at 25 -1 and $\Delta S^\circ = -46$ J	δK
т/к	10 ³ x ₁	Т/К	10 ³ ×1	
300 325 350 375	1.24 1.35 1.46 1.55	400 425 450 475	1.65 1.73 1.81 1.89	
Beferences				
		Mrs. K.; Rusz, L.;	Patyi, L.	
Hung. J. Ind. C 2. Gjaldbaek, J. C 3147-50.		J. H. J. Am. Ch	eem. Soc. <u>1949</u> , 7	1,
3. Patyi, L.; Furm Stepanova, Z. G	er, I. E.; Makı .; Berengarten,	Canczy, J.; Sadilenk M. G. Zh. Prikl.	co, A. S.; Khim. <u>1978</u> , 51,	
1296-1300.		continued on f	following page	_

•

COMPONENTS	:

- (1) Nitrogen; N₂; [7727-37-9]
- (2) n-Alkanes and 2,2,4-Trimethylpentane

EVALUATOR:

December 1981

Rubin Battino Department of Chemistry Wright State University Dayton, Ohio 45435 U.S.A.

CRITICAL EVALUATION:

continued

- 4. Thomsen, E. S.; Gjaldbaek, J. C. Acta. Chem. Scand. <u>1963</u>, 17, 127-33.
- 5. Wilcock, R. J.; Battino, R.; Danforth, W. F.; Wilhelm, E. J. Chem. Thermodyn. <u>1978</u>, 10, 817-22.
- 6. Katayama, T.; Nitta, T. J. Chem. Eng. Data 1976, 21, 194-6.
- 7. Tremper, K. K.; Prausnitz, J. M. J. Chem. Eng. Data 1976, 21, 295-9.
- Guerry, D. Jr. Ph. D. Thesis <u>1944</u>, Vanderbilt University, Nashville, TN.
- 9. Ijams, C. C. Ph. D. Thesis <u>1941</u>, Vanderbilt University, Nashville, TN.
- Kretschmer, C. B.; Nowakowska, J.; Wiebe, R. Ind. Eng. Chem. <u>1946</u>, 38, 506-9.
- 11. Baldwin, R. R.; Daniel, S. G. J. Appl. Chem. <u>1952</u>, 2, 161-5; J. Inst. Petrol., London <u>1953</u>, 39, 105-24.

Hydr	ocarbons 123
COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Makranczy, J.; Megyery-Balog,Mrs. K;
2	Rusz, L.; Patyi, L.
(2) Pentane; C ₅ H ₁₂ ; [109-66-0]	
	Hung. J. Ind. Chem. <u>1976</u> , 4(2), 269-280.
VARIABLES:	PREPARED BY:
T/K = 298.15 -	S. A. Johnson
Total $P/kPa = 101.325$	H. L. Clever
EXPERIMENTAL VALUES:	
T/K Mol Fraction Bunsen	Coefficient Ostwald Coefficient
$x_1 \times 10^3$	α L
313.15 1.23 0.	232 0.266
Smoothed Data: $\Delta G^{O}/J \text{ mol}^{-1} = -RT 1$	n X ₁ = -8,516 + 82.91T
	<pre></pre>
Mol Fractions and Bunsen Coefficient	s were calculated by the compiler at a kPa (1 atm) with the assumption that
the Ostwald coefficient is independe	nt of pressure.
AUXILIAR	Y INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Volumetric method, described in	Analytical grade reagents of Hungariar
detail in reference (1).	and foreign origin were used (both
	liquids and gases). No further information.
	ESTIMATED ERROR:
	$\delta x_1 / x_1 = 0.03$
	REFERENCES:
	1. Bodor, E.; Bor, Gy.; Mohai, B.;
	Sipos, G.
	Veszpremi Vegyip. Egy. Kozl. 1957, 1, 55.
	ول ل و ح و د ب ب ب ب
	Chem. Abstr. 1961, 55, 3175h.

t

COMPONENTS: ORIGINAL MEASUREMENTS: (1) Nitrogen; N ₂ ; [7727-37-9] Gjaldbaek, J. C.; Hildebrand, J. (2) Hexane; C ₆ H ₁₄ ; [110-34-3] J. Am. Chem. Soc. <u>1949</u> , 71, 3147	н.
2	1
0 14	-50.
	1
VARIABLES: PREPARED BY:	
T/K = 298.10 - 298.45 J Chr. Gialdback	
Total P/kPa = 101.325	
EXPERIMENTAL VALUES:	
T/K Mol Fraction Bunsen Ostwald $X_1 \times 10^3$ Coefficient Coefficient	
298.10 1.40 0.241 0.263	
298.45 1.39 0.237 0.259	
One value from the paper was rejected.	
The mole fraction and Ostwald solubility values were calculated by the	
compiler.	
·	
•	
	1
AUXILIARY INFORMATION	
METHOD/APPARATUS/PROCEDURE: SOURCE AND PURITY OF MATERIALS:	
A calibrated all-glass combined man- (1) Nitrogen. Stuart Oxygen Co. ometer and bulb was enclosed in an 99.996 percent N ₂ .	
air thermostat and shaken until equilibrium. Mercury was used for (2) Hexane. Phillips Petroleum	
calibration and as the confining Co. Research grade.	
liquid. The solvents were degassed in the apparatus. Details are in	
references 1 and 2.	
The absorped volume of gas was cal- culated from the initial and final	
amounts, both saturated with solvent vapor. The amount of solvent was	
determined by the weight of displaced ESTIMATED ERROR:]
mercury. $\delta T/K = 0.05$]
The saturation of the liquid with the $\delta x_1/x_1 = 0.015$ gas was carried out close to atmos-	
pheric pressure. The solubility values were reported for one atmos-	
phere gas pressure assuming Henry's law is obeyed. 1. Lannung, A. J. Am. Chem. Soc. <u>1930</u> , 52, 6	8.
2. Gjaldbaek, J. C. Acta Chem. Scand. <u>1952</u> , 6, 62	3

		Hydroc	arbons			12
COMPONENTS:			ORIGINAL MEAS	UREMENTS:		
(1) Nitrog	en; N ₂ ; [7727-37-9]		Katavama.	T.; Nitta, 1	Γ.	
			_			01 304 6
(2) Hexane	; C ₆ H ₁₄ ; [110-54-3]		J. Chem. {	Eng. Data.	<u>1976</u> ,	21,194-6.
VARIABLES:			PREPARED BY:			
	- 010 000					
176	= 213-298		C.L. Young	J		
EXPERIMENTAL	VALUES:					
т/к	Ostwald H coefficient,L		Constant itm	Mole fra nitroger ^x N	n in li	
		<u> </u>				
298.15	0.256	727	,	0.001	376	
273.15	0.235	749)	0.001	335	
253.15	0.219	764	ł	0.001	309	
233.15	0.206	766	;	0.001	305	
213.15	0.195	758	ł	0.001	319	
,						
	AU	XILIARY	INFORMATION			
METHOD /APP	ARATUS/PROCEDURE:		SOURCE AND PL	JRITY OF MATERI	ALS:	
		1	(l)Osaka Ox	ygen Co. sam	ple, p	ourity
cell of ap Magnetic s degassed.	apparatus with equili proximately 0.08 litre tirrer. Solvent caref Equilibrium establish ours. Details in ref.	es. Eully ned		mole per cen asol spectra		le sample.
			•	0.12 at T =		-
			at other	temperature	s; δx _Ν	= ±1%
			REFERENCES:		" .	
			· · · · · · · · · · · · · · · · · · ·	T.; Tatsuish Ma, T. <i>J. Ch</i> 7,475.		

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ;[7727-37-9]	Makranczy, J.; Megyery-Balog, Mrs.K;
(2) Hexane; C ₆ H ₁₄ ; [110-54-3]	Rusz, L.; Patyi, L.
0 14	
	Hung. J. Ind. Chem. <u>1976</u> , 4(2), 269-280.
VARIABLES:	PREPARED BY:
T/K = 298.15 - 313.15 Total P/kPa = 101.325	S. A. Johnson H. L. Clever
EXPERIMENTAL VALUES:	
T/K Mol Fraction Bunsen Co	pefficient Ostwald Coefficient
$x_1 \times 10^3$ α	L
298.15 1.41 0.24	40 0.262
313.15 1.17 0.19	95 0.223
Smoothed Data: $\Delta G^{O}/J \text{ mol}^{-1} = -RT \ln I$	$x_1 = -9,655 + 86.96T$
Both the data and the e	quation are classed as tentative.
Mol Fractions and Bunsen Coefficients nitrogen partial pressure of 101.325 the Ostwald coefficient is independer	s were calculated by the compiler at a kPa (l atm) with the assumption that at of pressure.
	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
in reference (1).	Analytical grade reagents of Hungarian and foreign origin were used (both liquids and gases). No further information.
	ESTIMATED ERROR:
	$\delta x_1 / x_1 = 0.03$
	REFERENCES:
	1. Bodor, E.; Bor, Gy.; Mohai, B.;
	Sipos, G. Veszpremi Vegyip. Egy. Kozl.
	1957, <i>l</i> , 55.
	<i>Chem</i> , <i>Abstr</i> , <u>1961</u> , <i>55</i> , 3175h.

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Nitrogen; N₂; [7727-37-9] (2) Hexane; C₆H₁₄; [110-54-3]</pre>	<pre>Patyi, L; Furmer, I. E.; Makranczy, J.; Sadilenko, A. S.; Stepanova, Z. G.; Berengarten, Zh. Prikl. Khim. 1978, 51, 1296- 1300.</pre>
VARIABLES:	PREPARED BY:
т/к = 298	C. L. Young
EXPERIMENTAL VALUES:	
T/K α [*] Mole fra	action of nitrogen at a partial pressure of 101.325 kPa
298.15 0.241	0.001411
AUXILIARY	INFORMATION
Volumetric method. Pressure measured when known amounts of gas were added, in increments, to a known amount of liquid in a vessel of known dimensions. Corrections were made for the partial pressure of solvent. Details in ref. (1).	<pre>SOURCE AND PURITY OF MATERIALS: Purity better than 99 mole per cent as determined by gas chromatography. ESTIMATED ERROR:</pre>
	<u>1957</u> , 1, 55.

127

120 Millogen Solubilit		
COMPONENTS :	ORIGINAL MEASUREMENTS:	
(1) Nitrogen; N ₂ ; [7727-37-9]	Guerry, D. Jr.	
(2) Alkanes; C ₆ H ₁₄ and C ₇ H ₁₆	Ph.D. thesis, <u>1944</u> Vanderbilt University Nashville, TN	
VARIABLES:	PREPARED BY:	
T/K = 293.15, 298.15 P/kPa = 101.325	H. L. Clever	
EXPERIMENTAL VALUES:		
T/K Mol Fraction $x_1 \times 10^4$ Co	Bunsen Ostwald Defficient Coefficient α L	
Hexane; C ₆ H ₁₄ ; [11	0-54-3]	
293.15 12.6 298.15 12.5	0.217 0.233 0.213 0.232	
Heptane; C ₇ H ₁₆ ; [1-	42-82-5]	
293.15 12.3 298.15 12.4	0.189 0.203 0.189 0.206	
AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE: A Van Slyke-Neill Manometric Appara- tus manufactured by the Eimer and Amend Co. was used. The procedure of Van Slyke (1) for pure liquids was modified (2) so that small solvent samples (2 cm ³) could be used with almost complete	SOURCE AND PURITY OF MATERIALS: Hexane. Eastman Kodak Co. B.p. (760.3 mmHg) t/°C 68.85 - 68.90. Heptane. B.p. (753.9 mmHg) t/°C 98.27 - 98.28 (corr.).	
recovery of the sample. An improved temperature control system was used.		
SOURCE AND PURITY OF MATERIALS:		
(1) Nitrogen. Ohio Chemical Co.	ESTIMATED ERROR:	
 Oil pumped, 99.8 per cent pure. (2) Alkanes. Distilled from sodium in air. In addition to the solubility data the thesis con- tains data of the refractive index, density, vapor pressure, and b.p. 	δT/K = 0.05 REFERENCES: 1. Van Slyke, D. D. <i>J. Biol. Chem.</i> <u>1939</u> , 130, 545.	
	2. Ijams, C. C. Ph.D. thesis, <u>1941</u> Vanderbilt University	

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Thomsen, E. S.; Gjaldbaek, J. C.
(2) Heptane; C ₇ H ₁₆ ; [142-82-5]	Acta Chem. Scand. <u>1963</u> , 17, 127-33.
· · ·	
	·
VARIABLES:	PREPARED BY:
T/K = 298.15 - 308.35 Total P/kPa = 101.325	E. S. Thomsen
EXPERIMENTAL VALUES:	
• T/K Mol-Fraction $X_1 \times 10^3$	Bunsen Ostwald. Coefficient Coefficient αL
298.15 1.35 298.15 1.36	0.205 0.224 0.207 0.226
298.15 1.36	0.204 0.223
298.25 1.35	0.205 0.224
308.15 1.38 308.35 1.37	0.207 0.223 0.206 0.232
The mole fraction and Ostwald solubil:	
compiler.	
Smoothed Data: $\Delta G^{O}/J \text{ mol}^{-1} = -RT$ in :	К ₁ = 1398.1 + 50.250 т
Std. dev. G ⁰ = 13.3,	Coef. Corr. = 0.9938
	$\Delta s^{\circ}/J x^{-1} mol^{-1} = -50.250.$
	$\Delta G^{O}/J \text{ mol}^{-1}$
x ₁ × :	L0 ³
298.15 1.3 303.15 1.3	
303.15 1.30 308.15 1.31	
	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
A calibrated all-glass combined man- ometer and bulb was enclosed in an	(1) Nitrogen. Contained 0.2 percent Ar, but no 02.
air thermostat and shaken until	2
equilibrium. Mercury was used for calibration and as the confining	(2) Heptane. Merck Co. Distillation range 0.09 K.
liquid. The solvents were degassed	
in the apparatus. Details are in references 1 and 2.	
The absorped volume of gas was cal-	
culated from the initial and final	
amounts, both saturated with solvent vapor. The amount of solvent was	
determined by the weight of displaced	ESTIMATED ERROR:
mercury.	$\delta T/K = 0.05$
The saturation of the liquid with the gas was carried out close to atmos-	$\delta x_{1}/x_{1} = 0.015$
pheric pressure. The solubility	
values were reported for one atmos-	REFERENCES:
phere gas pressure assuming Henry's law is obeyed.	l. Lannung, A. J. Am. Chem. Soc. <u>1930</u> , 52, 68.
-	
	2. Gjaldbaek, J. C. Acta Chem. Scand. 1952, 6, 623.

COMPONENTS :	ORIGINAL MEASUREMENTS:
	Makranczy, J.; Megyery-Balog,
(1) Nitrogen; N ₂ ;[7727-37-9]	Mrs. K.; Rusz, L.; Patyi, L.
(2) Heptane; C ₇ H ₁₆ ; [142-82-5]	
	Hung. J. Ind. Chem. <u>1976</u> , 4(2), 269-80.
VARIABLES:	PREPARED BY:
T/K = 298.15 - 313.15	S. A. Johnson
Total P/kPa = 101.325	H. L. Clever
EXPERIMENTAL VALUES:	
T/K Mol Fraction Bunse	n Coefficient Ostwald Coefficient
$x_1 \times 10^3$	α · L
298.15 1.38 0	.210 0.229
313.15 1.05 0	.157 0.180
Smoothed Data: $\Delta G^{O}/J \text{ mol}^{-1} = -RT$	$\ln x_1 = -14,143 + 102.19T$
	equation are classed as tentative.
Mol Fractions and Bunsen Coefficients	were calculated by the compiler at a kPa (l atm) with the assumption that
the Ostwald coefficient is independen	t of pressure.
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS: Analytical grade reagents of
Volumetric method, described in detail in reference (1).	Analytical grade reagents of Hungarian and foreign origin were used (both liquids and gases). No further information.
	ESTIMATED ERROR:
	$\delta x_{1} / x_{1} = 0.03$
	REFERENCES:
	1, Bodor, E.; Bor, Gy.; Mohai, B.;
	Sipos, G.
	Veszpremi Vegyip. Egy. Kozl. 1957, l, 55.
	<i>Chem</i> , <i>Abstr</i> , <u>1961</u> , <i>55</i> , 3175h.

COMPONENTS: (1) Nitrogen; N ₂ ; [7727-37-9]	ORIGINAL MEASUREMENTS: Ijams, C. C.
(2) Alkanes; C_7H_{16} , C_8H_{18} , and $C_{10}H_{22}$	Ph.D. thesis, <u>1941</u> Vanderbilt University Nashville, TN
VARIABLES: T/K = 298.15 P/kPa = 101.325	PREPARED BY: H. L. Clever
EXPERIMENTAL VALUES:	L
$\begin{array}{c} \mbox{T/K} & \mbox{Mol Fraction} \\ & \mbox{x_1 \times 10^3$} & \mbox{C} \\ \hline & \mbox{Heptane; C_7H_{16}; [1]} \\ \mbox{298.15} & \mbox{1.22} \\ & \mbox{Octane; C_8H_{18}; [11]} \\ \mbox{298.15} & \mbox{1.14} \\ & \mbox{2,2,4-Trimethylpen} \\ & \mbox{C_8H_{18}$; [540-84-1]} \\ \mbox{298.15} & \mbox{1.48} \\ & \mbox{Decane; $C_{10}H_{22}$; [1]} \end{array}$	0.186 0.203 1-65-9] 0.157 0.171 tane or isooctane; 0.200 0.218 24-18-5] 0.141 0.154 wald coefficient values
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: A Van Slyke-Neill Manometric Apparatus manufactured by the Eimer and Amend Co. was used. The procedure of Van Slyke (1) for pure liquids was modified so that small solvent sample (2 cm ³) could be used with almost 100 per cent recovery of the solvent. An improved temperature control system was used.	<pre>SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Air Reduction Co. Purity 99.5 per cent. (2) Alkanes. Purified. Vapor pressure and boiling point also reported in the thesis. ESTIMATED ERROR:</pre>

COMPONENTS: ORIGINAL MEASUREMENTS: (1) Nitrogen; N₂; [7727-37-9] Thomsen, E. S.; Gjaldbaek, J. C. Acta Chem. Scand. 1963, 17,127-33. (2) Octane; C₉H₁₈; [111-65-9] VARIABLES: PREPARED BY: т/к = 298.15 - 308.05 E. S. Thomsen Total P/kPa = 101.325EXPERIMENTAL VALUES: Ostwald T/K Mol Fraction Bunsen Coefficient Coefficient $x_{1} \times 10^{3}$ Τ. α 1.31 0.196 0.180 298.15 298.25 1.29 0.177 0.193 1.32 0.181 0.198 298.25 298.25 1.32 0.181 0.198 0.178 0.194 1.30 298.45 1.34 0.182 0.205 308.05 The mole fraction and Ostwald solubility values were calculated by the compiler. Smoothed Data: $\Delta G^{\circ}/J \text{ mol}^{-1} = -RT \ln X_1 = 1961.0 + 48.628 T$ $\Delta H^{\circ}/J \text{ mol}^{-1} = 1961.0, \ \Delta S^{\circ}/J \text{ K}^{-1} \text{ mol}^{-1} = -48.628$ T/K Mol Fraction $\Delta G^{O}/J$ mol $x_1 \times 10^3$ 16,459 16,702 298.15 1.31 303.15 1.32 <u>308.</u>15 1.34 16,946 AUXILIARY INFORMATION METHOD/APPARATUS/PROCEDURE: SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Contained 0.2 percent A calibrated all-glass combined man-Ar, but no 02. ometer and bulb was enclosed in an air thermostat and shaken until (2) Octane. British Drug House. equilibrium. Mercury was used for calibration and as the confining Fractionated, distillation range 0.02 K. About 1 percent liquid. The solvents were degassed in the apparatus. Details are in references 1 and 2. impurity. The absorped volume of gas was calculated from the initial and final amounts, both saturated with solvent vapor. The amount of solvent was determined by the weight of displaced ESTIMATED ERROR: mercury. $\delta T/K = 0.05$ $\delta X_1/X_1 = 0.015$ The saturation of the liquid with the gas was carried out close to atmospheric pressure. The solubility **REFERENCES:** values were reported for one atmos- Lannung, A. J. Am. Chem. Soc. 1930, 52, 68. phere gas pressure assuming Henry's law is obeyed. 2. Gjaldbaek, J. C. Acta Chem. Scand. <u>1952</u>, 6, 623.

		пуштос	arbons 133
COMPONENTS :			ORIGINAL MEASUREMENTS:
	N ₂ ; [7727-37-9 H ₁₈ ; [111-65-9]		Makranczy, J.; Megyery-Balog, Mrs.K.; Rusz, L.; Patyi, L.
			Hung. J. Ind. Chem. <u>1976</u> , 4(2),269-80.
VARIABLES:		<u></u>	PREPARED BY:
T/K = 2 Total P/kPa = 2	298.15 - 313.19 101.325	5	S. A. Johnson H. L. Clever
EXPERIMENTAL VALUE	S:		
т/к	Mol Fraction $x_1 \times 10^3$	Bunsen α	Coefficient Ostwald Coefficient L
298.15	1.33	0.1	.82 0.199
313.15	1.04	0.1	.40 0.161
Smoothed Data:			$X_1 = -12,728 + 97.75T$ equation are classed as tentative.
			-
		AUXILIARY	INFORMATION
METHOD/APPARATUS/P	ROCEDURE :	AUXILIARY	INFORMATION SOURCE AND PURITY OF MATERIALS;
METHOD/APPARATUS/P Volumetric meth detail in refer	od, described	······	-

.

COMPONENTS:			
	ORIGINAL MEASUREMENTS:		
(1) Nitrogen; N ₂ ; [7727-37-9]	Wilcock, R. J.; Battino, R.;		
(2) Octano, $C H = [111-65-9]$	Danforth, W. F.; Wilhelm, E.		
(2) Octane; C ₈ H ₁₈ ; [111-65-9]	J. Chem. Thermodyn. 1978, 10, 817-22.		
VARIABLES: T/K = 298.25	PREPARED BY: A. L. Cramer		
P/kPa = 101.325	A. D. Crumer		
EXPERIMENTAL VALUES:			
T/K Mol Fraction			
$x_1 \times 10^3$	Coefficient Coefficient α L		
298.25 1.311	0.1800 0.1965		
250.25 1.511			
AUXILIA			
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:		
METHOD/APPARATUS/PROCEDURE: The solubility apparatus is based o	SOURCE AND PURITY OF MATERIALS: n (1) Nitrogen. Matheson Co., Inc.		
METHOD/APPARATUS/PROCEDURE: The solubility apparatus is based o the design of Morrison and Billett	SOURCE AND PURITY OF MATERIALS: n (1) Nitrogen. Matheson Co., Inc. 99.999 per cent.		
METHOD/APPARATUS/PROCEDURE: The solubility apparatus is based o the design of Morrison and Billett (1) and the version used is describ	SOURCE AND PURITY OF MATERIALS: n (1) Nitrogen. Matheson Co., Inc. 99.999 per cent. ed (2) Octane. Phillips Petroleum Co.		
METHOD/APPARATUS/PROCEDURE: The solubility apparatus is based o the design of Morrison and Billett (1) and the version used is describ by Battino, Evans, and Danforth (2)	SOURCE AND PURITY OF MATERIALS: n (1) Nitrogen. Matheson Co., Inc. 99.999 per cent. ed (2) Octane. Phillips Petroleum Co. 99 mol %, distilled, density		
METHOD/APPARATUS/PROCEDURE: The solubility apparatus is based o the design of Morrison and Billett (1) and the version used is describ	SOURCE AND PURITY OF MATERIALS: n (1) Nitrogen. Matheson Co., Inc. 99.999 per cent. ed (2) Octane. Phillips Petroleum Co. 99 mol %, distilled, density 0		
METHOD/APPARATUS/PROCEDURE: The solubility apparatus is based o the design of Morrison and Billett (1) and the version used is describ by Battino, Evans, and Danforth (2) The degassing apparatus is that described by Battino, Banzhof, Boga and Wilhelm (3).	<pre>SOURCE AND PURITY OF MATERIALS: n (1) Nitrogen. Matheson Co., Inc. 99.999 per cent. ed (2) Octane. Phillips Petroleum Co. 99 mol %, distilled, density p_{298.15} = 0.6988.</pre>		
METHOD/APPARATUS/PROCEDURE: The solubility apparatus is based o the design of Morrison and Billett (1) and the version used is describ by Battino, Evans, and Danforth (2) The degassing apparatus is that described by Battino, Banzhof, Boga and Wilhelm (3).	<pre>SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Matheson Co., Inc. 99.999 per cent. (2) Octane. Phillips Petroleum Co. 99 mol %, distilled, density p298.15 = 0.6988. + ESTIMATED ERROR:</pre>		
METHOD/APPARATUS/PROCEDURE: The solubility apparatus is based o the design of Morrison and Billett (1) and the version used is describ by Battino, Evans, and Danforth (2) The degassing apparatus is that described by Battino, Banzhof, Boga and Wilhelm (3). Degassing. Up to 500 cm ³ of solven	<pre>SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Matheson Co., Inc. 99.999 per cent. (2) Octane. Phillips Petroleum Co. 99 mol %, distilled, density ^p298.15 = 0.6988. t ESTIMATED ERROR:</pre>		
METHOD/APPARATUS/PROCEDURE: The solubility apparatus is based o the design of Morrison and Billett (1) and the version used is describ by Battino, Evans, and Danforth (2) The degassing apparatus is that described by Battino, Banzhof, Boga and Wilhelm (3). Degassing. Up to 500 cm ³ of solven is placed in a flask of such size	SOURCE AND PURITY OF MATERIALS: n (1) Nitrogen. Matheson Co., Inc. 99.999 per cent. ed (2) Octane. Phillips Petroleum Co. 99 mol %, distilled, density $\rho_{298.15} = 0.6988.$ t ESTIMATED ERROR: $\delta T/K = 0.02$ $\delta P/mmHg = 0.5$		
METHOD/APPARATUS/PROCEDURE: The solubility apparatus is based o the design of Morrison and Billett (1) and the version used is describ by Battino, Evans, and Danforth (2) The degassing apparatus is that described by Battino, Banzhof, Boga and Wilhelm (3). Degassing. Up to 500 cm ³ of solven is placed in a flask of such size that the liquid is about 4 cm deep. The liquid is rapidly stirred, and	SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Matheson Co., Inc. 99.999 per cent. (2) Octane. Phillips Petroleum Co. 99 mol %, distilled, density $\rho_{298.15} = 0.6988.$ t ESTIMATED ERROR: $\delta T/K = 0.02$		
METHOD/APPARATUS/PROCEDURE: The solubility apparatus is based o the design of Morrison and Billett (1) and the version used is describ by Battino, Evans, and Danforth (2) The degassing apparatus is that described by Battino, Banzhof, Boga and Wilhelm (3). Degassing. Up to 500 cm ³ of solven is placed in a flask of such size that the liquid is about 4 cm deep. The liquid is rapidly stirred, and vacuum is intermittently applied	SOURCE AND PURITY OF MATERIALS: n (1) Nitrogen. Matheson Co., Inc. 99.999 per cent. ed (2) Octane. Phillips Petroleum Co. 99 mol %, distilled, density $\rho_{298.15} = 0.6988.$ t ESTIMATED ERROR: $\delta T/K = 0.02$ $\delta P/mmHg = 0.5$		
METHOD/APPARATUS/PROCEDURE: The solubility apparatus is based o the design of Morrison and Billett (1) and the version used is describ by Battino, Evans, and Danforth (2) The degassing apparatus is that described by Battino, Banzhof, Boga and Wilhelm (3). Degassing. Up to 500 cm ³ of solven is placed in a flask of such size that the liquid is about 4 cm deep. The liquid is rapidly stirred, and vacuum is intermittently applied through a liquid N ₂ trap until the	SOURCE AND PURITY OF MATERIALS: n (1) Nitrogen. Matheson Co., Inc. 99.999 per cent. ed (2) Octane. Phillips Petroleum Co. 99 mol %, distilled, density $\rho_{298.15} = 0.6988.$ t ESTIMATED ERROR: $\delta T/K = 0.02$ $\delta P/mmHg = 0.5$		
METHOD/APPARATUS/PROCEDURE: The solubility apparatus is based o the design of Morrison and Billett (1) and the version used is describ by Battino, Evans, and Danforth (2) The degassing apparatus is that described by Battino, Banzhof, Boga and Wilhelm (3). Degassing. Up to 500 cm ³ of solven is placed in a flask of such size that the liquid is about 4 cm deep. The liquid is rapidly stirred, and vacuum is intermittently applied through a liquid N ₂ trap until the permanent gas residual pressure	SOURCE AND PURITY OF MATERIALS: n SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Matheson Co., Inc. 99.999 per cent. (2) Octane. Phillips Petroleum Co. 99 mol %, distilled, density $\rho_{298.15} = 0.6988.$ t ESTIMATED ERROR: $\delta T/K = 0.02$ $\delta P/mmHg = 0.5$ $\delta X_1/X_1 = 0.01$ REFERENCES:		
METHOD/APPARATUS/PROCEDURE: The solubility apparatus is based o the design of Morrison and Billett (1) and the version used is describ by Battino, Evans, and Danforth (2) The degassing apparatus is that described by Battino, Banzhof, Boga and Wilhelm (3). Degassing. Up to 500 cm ³ of solven is placed in a flask of such size that the liquid is about 4 cm deep. The liquid is rapidly stirred, and vacuum is intermittently applied through a liquid N ₂ trap until the permanent gas residual pressure drops to 5 microns.	SOURCE AND PURITY OF MATERIALS: n (1) Nitrogen. Matheson Co., Inc. 99.999 per cent. (2) Octane. Phillips Petroleum Co. 99 mol %, distilled, density $\rho_{298.15} = 0.6988.$ t ESTIMATED ERROR: $\delta T/K = 0.02$ $\delta P/mmHg = 0.5$ $\delta X_1/X_1 = 0.01$ REFERENCES: 1. Morrison, T. J.; Billett, F.		
METHOD/APPARATUS/PROCEDURE: The solubility apparatus is based o the design of Morrison and Billett (1) and the version used is describ by Battino, Evans, and Danforth (2) The degassing apparatus is that described by Battino, Banzhof, Boga and Wilhelm (3). Degassing. Up to 500 cm ³ of solven is placed in a flask of such size that the liquid is about 4 cm deep. The liquid is rapidly stirred, and vacuum is intermittently applied through a liquid N ₂ trap until the permanent gas residual pressure drops to 5 microns. Solubility Determination. The de-	SOURCE AND PURITY OF MATERIALS: n SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Matheson Co., Inc. 99.999 per cent. (2) Octane. Phillips Petroleum Co. 99 mol %, distilled, density $\rho_{298.15} = 0.6988.$ t ESTIMATED ERROR: $\delta T/K = 0.02$ $\delta P/mmHg = 0.5$ $\delta X_1/X_1 = 0.01$ REFERENCES: 1. Morrison, T. J.; Billett, F. J. Chem. Soc. 1948, 2033.		
METHOD/APPARATUS/PROCEDURE: The solubility apparatus is based o the design of Morrison and Billett (1) and the version used is describ by Battino, Evans, and Danforth (2) The degassing apparatus is that described by Battino, Banzhof, Boga and Wilhelm (3). Degassing. Up to 500 cm ³ of solven is placed in a flask of such size that the liquid is about 4 cm deep. The liquid is rapidly stirred, and vacuum is intermittently applied through a liquid N ₂ trap until the permanent gas residual pressure drops to 5 microns. Solubility Determination. The de- gassed solvent is passed in a thin	SOURCE AND PURITY OF MATERIALS: n SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Matheson Co., Inc. 99.999 per cent. (2) Octane. Phillips Petroleum Co. 99 mol %, distilled, density $\rho_{298.15} = 0.6988.$ t ESTIMATED ERROR: $\delta T/K = 0.02$ $\delta P/mmHg = 0.5$ $\delta X_1/X_1 = 0.01$ REFERENCES: 1. Morrison, T. J.; Billett, F. J. Chem. Soc. 1948, 2033. 2. Battino, R.; Evans, F. D.;		
METHOD/APPARATUS/PROCEDURE: The solubility apparatus is based o the design of Morrison and Billett (1) and the version used is describ by Battino, Evans, and Danforth (2) The degassing apparatus is that described by Battino, Banzhof, Boga and Wilhelm (3). Degassing. Up to 500 cm ³ of solven is placed in a flask of such size that the liquid is about 4 cm deep. The liquid is rapidly stirred, and vacuum is intermittently applied through a liquid N ₂ trap until the permanent gas residual pressure drops to 5 microns. Solubility Determination. The de- gassed solvent is passed in a thin film down a glass helical tube con-	SOURCE AND PURITY OF MATERIALS: n (1) Nitrogen. Matheson Co., Inc. 99.999 per cent. (2) Octane. Phillips Petroleum Co. 99 mol %, distilled, density $\rho_{298.15} = 0.6988.$ t ESTIMATED ERROR: $\delta T/K = 0.02$ $\delta P/mmHg = 0.5$ $\delta X_1/X_1 = 0.01$ REFERENCES: 1. Morrison, T. J.; Billett, F. J. Chem. Soc. <u>1948</u> , 2033. 2. Battino, R.; Evans, F. D.; Danforth, W. F.		
METHOD/APPARATUS/PROCEDURE: The solubility apparatus is based o the design of Morrison and Billett (1) and the version used is describ by Battino, Evans, and Danforth (2) The degassing apparatus is that described by Battino, Banzhof, Boga and Wilhelm (3). Degassing. Up to 500 cm ³ of solven is placed in a flask of such size that the liquid is about 4 cm deep. The liquid is rapidly stirred, and vacuum is intermittently applied through a liquid N ₂ trap until the permanent gas residual pressure drops to 5 microns. Solubility Determination. The de- gassed solvent is passed in a thin film down a glass helical tube con- taining solute gas plus the solvent	SOURCE AND PURITY OF MATERIALS: n (1) Nitrogen. Matheson Co., Inc. 99.999 per cent. (2) Octane. Phillips Petroleum Co. 99 mol %, distilled, density $\rho_{298.15} = 0.6988.$ t ESTIMATED ERROR: $\delta T/K = 0.02$ $\delta P/mmHg = 0.5$ $\delta X_1/X_1 = 0.01$ REFERENCES: 1. Morrison, T. J.; Billett, F. J. Chem. Soc. 1948, 2033. 2. Battino, R.; Evans, F. D.; Danforth, W. F. J. Am. Oil Chem. Soc. 1968,		
METHOD/APPARATUS/PROCEDURE: The solubility apparatus is based o the design of Morrison and Billett (1) and the version used is describ by Battino, Evans, and Danforth (2) The degassing apparatus is that described by Battino, Banzhof, Boga and Wilhelm (3). Degassing. Up to 500 cm ³ of solven is placed in a flask of such size that the liquid is about 4 cm deep. The liquid is rapidly stirred, and vacuum is intermittently applied through a liquid N ₂ trap until the permanent gas residual pressure drops to 5 microns. Solubility Determination. The de- gassed solvent is passed in a thin film down a glass helical tube con- taining solute gas plus the solvent vapor at a total pressure of one at	SOURCE AND PURITY OF MATERIALS: n SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Matheson Co., Inc. 99.999 per cent. (2) Octane. Phillips Petroleum Co. 99 mol %, distilled, density $\rho_{298.15} = 0.6988.$ t ESTIMATED ERROR: $\delta T/K = 0.02$ $\delta P/mmHg = 0.5$ $\delta X_1/X_1 = 0.01$ REFERENCES: 1. Morrison, T. J.; Billett, F. J. Chem. Soc. <u>1948</u> , 2033. 2. Battino, R.; Evans, F. D.; Danforth, W. F. J. Am. Oil Chem. Soc. <u>1968</u> , 45, 830.		
METHOD/APPARATUS/PROCEDURE: The solubility apparatus is based o the design of Morrison and Billett (1) and the version used is describ by Battino, Evans, and Danforth (2) The degassing apparatus is that described by Battino, Banzhof, Boga and Wilhelm (3). Degassing. Up to 500 cm ³ of solven is placed in a flask of such size that the liquid is about 4 cm deep. The liquid is rapidly stirred, and vacuum is intermittently applied through a liquid N ₂ trap until the permanent gas residual pressure drops to 5 microns. Solubility Determination. The de- gassed solvent is passed in a thin film down a glass helical tube con- taining solute gas plus the solvent vapor at a total pressure of one at The volume of gas absorbed is found	SOURCE AND PURITY OF MATERIALS: n SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Matheson Co., Inc. 99.999 per cent. (2) Octane. Phillips Petroleum Co. 99 mol %, distilled, density $\rho_{298.15} = 0.6988.$ t ESTIMATED ERROR: $\delta T/K = 0.02$ $\delta P/mmHg = 0.5$ $\delta X_1/X_1 = 0.01$ REFERENCES: 1. Morrison, T. J.; Billett, F. J. Chem. Soc. 1948, 2033. 2. Battino, R.; Evans, F. D.; Danforth, W. F. J. Am. Oil Chem. Soc. 1968, 45, 830. 3. Battino, R.; Banzhof, M.;		
METHOD/APPARATUS/PROCEDURE: The solubility apparatus is based o the design of Morrison and Billett (1) and the version used is describ by Battino, Evans, and Danforth (2) The degassing apparatus is that described by Battino, Banzhof, Boga and Wilhelm (3). Degassing. Up to 500 cm ³ of solven is placed in a flask of such size that the liquid is about 4 cm deep. The liquid is rapidly stirred, and vacuum is intermittently applied through a liquid N ₂ trap until the permanent gas residual pressure drops to 5 microns. Solubility Determination. The de- gassed solvent is passed in a thin film down a glass helical tube con- taining solute gas plus the solvent vapor at a total pressure of one at The volume of gas absorbed is found by difference between the initial a final volumes in the buret system.	SOURCE AND PURITY OF MATERIALS: n SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Matheson Co., Inc. 99.999 per cent. (2) Octane. Phillips Petroleum Co. 99 mol %, distilled, density $\rho_{298.15} = 0.6988.$ t ESTIMATED ERROR: $\delta T/K = 0.02$ $\delta P/mmHg = 0.5$ $\delta X_1/X_1 = 0.01$ REFERENCES: 1. Morrison, T. J.; Billett, F. J. Chem. Soc. <u>1948</u> , 2033. 2. Battino, R.; Evans, F. D.; Danforth, W. F. J. Am. Oil Chem. Soc. <u>1968</u> , 45, 830. 3. Battino, R.; Banzhof, M.; Bogan, M.; Wilhelm, E. Amed. Chem. 1971 43 806		
METHOD/APPARATUS/PROCEDURE: The solubility apparatus is based o the design of Morrison and Billett (1) and the version used is describ by Battino, Evans, and Danforth (2) The degassing apparatus is that described by Battino, Banzhof, Boga and Wilhelm (3). Degassing. Up to 500 cm ³ of solven is placed in a flask of such size that the liquid is about 4 cm deep. The liquid is rapidly stirred, and vacuum is intermittently applied through a liquid N ₂ trap until the permanent gas residual pressure drops to 5 microns. Solubility Determination. The de- gassed solvent is passed in a thin film down a glass helical tube con- taining solute gas plus the solvent vapor at a total pressure of one at The volume of gas absorbed is found by difference between the initial a final volumes in the buret system. The solvent is collected in a tared	SOURCE AND PURITY OF MATERIALS: n SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Matheson Co., Inc. 99.999 per cent. (2) Octane. Phillips Petroleum Co. 99 mol %, distilled, density $\rho_{298.15} = 0.6988.$ t ESTIMATED ERROR: $\delta T/K = 0.02$ $\delta P/mmHg = 0.5$ $\delta X_1/X_1 = 0.01$ REFERENCES: 1. Morrison, T. J.; Billett, F. J. Chem. Soc. <u>1948</u> , 2033. 2. Battino, R.; Evans, F. D.; Danforth, W. F. J. Am. Oil Chem. Soc. <u>1968</u> , 45, 830. 3. Battino, R.; Banzhof, M.; Bogan, M.; Wilhelm, E. Amed. Chem. <u>1971</u> 43 806		
METHOD/APPARATUS/PROCEDURE: The solubility apparatus is based o the design of Morrison and Billett (1) and the version used is describ by Battino, Evans, and Danforth (2) The degassing apparatus is that described by Battino, Banzhof, Boga and Wilhelm (3). Degassing. Up to 500 cm ³ of solven is placed in a flask of such size that the liquid is about 4 cm deep. The liquid is rapidly stirred, and vacuum is intermittently applied through a liquid N ₂ trap until the permanent gas residual pressure drops to 5 microns. Solubility Determination. The de- gassed solvent is passed in a thin film down a glass helical tube con- taining solute gas plus the solvent vapor at a total pressure of one at The volume of gas absorbed is found by difference between the initial a final volumes in the buret system.	SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Matheson Co., Inc. 99.999 per cent. (2) Octane. Phillips Petroleum Co. 99 mol %, distilled, density $\rho_{298.15} = 0.6988.$ t ESTIMATED ERROR: $\delta T/K = 0.02$ $\delta P/mmHg = 0.5$ $\delta X_1/X_1 = 0.01$ REFERENCES: 1. Morrison, T. J.; Billett, F. J. Chem. Soc. <u>1948</u> , 2033. 2. Battino, R.; Evans, F. D.; Danforth, W. F. J. Am. Oil Chem. Soc. <u>1968</u> , 45, 830. 3. Battino, R.; Banzhof, M.; Bogan, M.; Wilhelm, E. Amal. Chem. 1971, 43, 806		

Hydrod	carbons 13
COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Kretschmer, C. B.; Nowakowaska, J.; Wiebe, R.
(2) 2,2,4-Trimethylpentane or iso- octane; C ₈ H ₁₈ ; [540-84-1]	Ind. Eng. Chem. <u>1946</u> , 38, 506-9.
VARIABLES: T/K = 248.15 - 323.15 P/kPa = 101.325	PREPARED BY: P. L. Long H. L. Clever
EXPERIMENTAL VALUES:	
$x_1 \times 10$	Bunsen Ostwald oefficient Coefficient αL
248.15 1.496 273.15 1.503 298.15 1.533 323.15 1.583	0.2139 0.1943 0.2083 0.2088 0.2069 0.2258 0.2073 0.2452
The Ostwald coefficients were measured (1 atm). The compiler calculated the values for an oxygen partial pressure Ostwald coefficient was independent of	Bunsen coefficient and mole fraction of 101.325 kPa (1 atm) assuming the f pressure.
Smoothed Data: $\ln x_1 = -6.2753 - 0.53$	
Standard error about	the regression line = 1.84×10^{-5}
T/K I	Mol Fraction
	$x_1 \times 10^3$
253.15 263.15 273.15 283.15 293.15 298.15	1.491 1.505 1.517 1.529 1.540 1.545
303.15 313.15 323.15	1.550 1.559 1.569
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: The apparatus was similar to that of Horiuti (1), it consisted of a gas buret, manometer, and absorption pipet equipped with a magnetic stirrer. All volumes were calibrated by mercury displacement. The solvent was partly degassed by boiling under reflux. About 40 cm ³ of solvent was admitted into the absorption pipet, and pumped on to complete the degassing. Dry gas, measured in the buret, was admitted, final equilibrium was established after 1 to 3 hours stirring. During the solution process the total pres- sure was kept at one atm by additions of dry gas. The solubility value was corrected for the increase of solvent volume with gas absorption, and for the nitrogen impurity in the oxygen.	SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Commercial, but source not given. Passed through alka- line pyrogallol to remove O_2 , passed through Drierite to dry. (2) 2,2,4-Trimethylpentane. "Certi- fied material," source not given. Dried over CaSO ₄ , distilled, b.p. (760 mmHg)/°C 99.24, density, $p_4^{25}/g \text{ cm}^{-3}$ 0.68774. ESTIMATED ERROR: Gas buret $\delta V/\text{cm}^3 = 0.005$ Average deviation from the mean 0.3%, maximum deviation 0.9% (authors). REFERENCES: 1. Horiuti, J. J. Sci Papers Inst. Phys. Chem. Res. (Tokyo) <u>1931</u> , 17, 125.

۰.

	lies up to 200 kPa
COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Baldwin, R. R.; Daniel, S. G.;
(2) 2,2,4-Trimethylpentane	J. Appl. Chem. <u>1952</u> , 2(Apr.), 161-5.
(Isooctane); $C_8^{H}_{18}$;	
[540-84-1]	J. Inst. Petrol. London <u>1953</u> , 39, 105-124.
VARIABLES:	PREPARED BY:
T/K = 293.15	P. L. Long H. L. Clever
P/kPa = 101.325	**
EXPERIMENTAL VALUES:	
T/K Mol Fraction	Bunsen Ostwald Coefficient Coefficient
$x_1 \times 10^3$	α L
293.15 1.55	0.211 0.226
	0.211 0.220
The mole fraction solubility wa	s calculated by the compiler.
r	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The method consists of two opera-	(1) Nitrogen. From commercial cylin-
tions: Saturation of the liquid	ders, and gas analysis on a Bone
with the gas under consideration;	and Wheeler apparatus shows it to
and determination of the amount of	be at least 99.5% pure; no source
dissolved gas in the liquid saturated with the gas. All gases were passed	given.
through a liquid air trap to remove	(2) 2, 2, 4-Trimethylpentane. No
water and CO ₂ vapors before passage	information given.
through the liquid. All gases were	
passed through a long coil, thermo-	
stated, before the saturation pro-	
cess.	
Oil or similar liquid is deaerated	ESTIMATED ERROR:
by passing it through a continuously	$\delta P/P = 0.01$
evacuated vessel. Gas is then passed through the liquid to saturation.	$\delta P/P = 0.01$
Liquid is then degassed, and trans-	Juju - 0.01
fered to a storage burette, discon-	REFERENCES :
nected from the degassing apparatus,	INTERFICED;
thermostated, and saturated with the	
desired gas. Burette is now con-	
nected to another degassing appara- tus, portions of the oil degassed and	
gas collected.	1
-	

Пуагос		13/
COMPONENTS:	ORIGINAL MEASUREMENTS:	
(1) Nitrogen; N ₂ ; [7727-37-9]	Thomsen, E. S.; Gjaldbaek, J. C.	
(2) Nonane; C ₉ H ₂₀ ; [111-84-2]	Acta Chem. Scand. <u>1963</u> , 17, 127-33.	
VARIABLES:	PREPARED BY:	
T/K = 298.15 - 298.25 Total P/kPa = 101.325	E. S. Thomsen	
EXPERIMENTAL VALUES: T/K Mol Fraction $X_1 \times 10^3$	Bunsen Ostwald Coefficient Coefficient αL	
298.151.28298.151.28298.151.29298.251.28	0.160 0.175 0.160 0.175 0.161 0.176 0.160 0.175	
The mole fraction and were calculated by the	Ostwald solubility values e compiler.	
	-	
AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
A calibrated all-glass combined man- ometer and bulb was enclosed in an air thermostat and shaken until	<pre>(1) Nitrogen. Contained 0.2 percent Ar, but no 02.</pre>	
equilibrium. Mercury was used for calibration and as the confining liquid. The solvents were degassed in the apparatus. Details are in references 1 and 2.	(2) Nonane. Fluka "purum". Frac- tionated, distillation range 0.08 K.	
The absorped volume of gas was cal- culated from the initial and final amounts, both saturated with solvent vapor. The amount of solvent was determined by the weight of displaced	ESTIMATED ERROR:	
mercury. The saturation of the liquid with the	$\delta T/K = 0.05$ $\delta X_1/X_1 = 0.015$	
gas was carried out close to atmos- pheric pressure. The solubility values were reported for one atmos- phere gas pressure assuming Henry's law is obeyed.	REFERENCES: 1. Lannung, A. J. Am. Chem. Soc. 1930, 52, 68,	
	J. Am. Chem. Soc. <u>1930</u> , 52, 68. 2. Gjaldbaek, J. C. Acta Chem. Scand. <u>1952</u> , 6, 623.	

,

COMPONENTS:	ORIGINAL MEASUREMENTS:		
(1) Nitrogen; N ₂ ; [7727-37-9]	Makranczy, J.; Megyery-Balog, Mrs.K;		
(2) Nonane; C ₉ H ₂₀ ; [111-84-2]	Rusz, L.; Patyi, L.		
$(2)^{-1}$ Nomence, $e_{9}^{-1}2_{0}^{-1}$, $(212, 0.4, 2)^{-1}$			
	Hung. J. Ind. Chem. <u>1976</u> , 4(2), 269-80.		
	203 00.		
VARIABLES:	PREPARED BY:		
T/K = 298.15 - 313.15 Total P/kPa = 101.325	S. A. Johnson H. L. Clever		
10041 1/114 - 1010010			
EXPERIMENTAL VALUES:			
	Coefficient Ostwald Coefficient		
$x_1 \times 10^3$	x L		
298.15 1.31 0.	163 0.178		
313.15 1.03 0.	0.145		
Smoothed Data: $\Delta G^{O}/J \text{ mol}^{-1} = -RT \ln$	$X_{1} = -12,446 + 96.93T$		
	equation are classed as tentative.		
Mol Fractions and Bunsen Coefficient	s were calculated by the compiler at a kPa (1 atm) with the assumption that		
the Ostwald coefficient is independent	at of pressure.		
AUXILIARY	INFORMATION		
AUXILIARY METHOD/APPARATUS/PROCEDURE:	INFORMATION SOURCE AND PURITY OF MATERIALS:		
METHOD/APPARATUS/PROCEDURE: Volumetric method, described in	SOURCE AND PURITY OF MATERIALS:		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS: Analytical grade reagents of Hungarian and foreign origin were		
METHOD/APPARATUS/PROCEDURE: Volumetric method, described in	SOURCE AND PURITY OF MATERIALS: Analytical grade reagents of Hungarian and foreign origin were used (both liquids and gases).		
METHOD/APPARATUS/PROCEDURE: Volumetric method, described in	SOURCE AND PURITY OF MATERIALS: Analytical grade reagents of Hungarian and foreign origin were		
METHOD/APPARATUS/PROCEDURE: Volumetric method, described in	SOURCE AND PURITY OF MATERIALS: Analytical grade reagents of Hungarian and foreign origin were used (both liquids and gases).		
METHOD/APPARATUS/PROCEDURE: Volumetric method, described in	SOURCE AND PURITY OF MATERIALS: Analytical grade reagents of Hungarian and foreign origin were used (both liquids and gases).		
METHOD/APPARATUS/PROCEDURE: Volumetric method, described in	SOURCE AND PURITY OF MATERIALS: Analytical grade reagents of Hungarian and foreign origin were used (both liquids and gases).		
METHOD/APPARATUS/PROCEDURE: Volumetric method, described in	SOURCE AND PURITY OF MATERIALS: Analytical grade reagents of Hungarian and foreign origin were used (both liquids and gases).		
METHOD/APPARATUS/PROCEDURE: Volumetric method, described in	SOURCE AND PURITY OF MATERIALS: Analytical grade reagents of Hungarian and foreign origin were used (both liquids and gases).		
METHOD/APPARATUS/PROCEDURE: Volumetric method, described in	SOURCE AND PURITY OF MATERIALS: Analytical grade reagents of Hungarian and foreign origin were used (both liquids and gases). No further information.		
METHOD/APPARATUS/PROCEDURE: Volumetric method, described in	SOURCE AND PURITY OF MATERIALS: Analytical grade reagents of Hungarian and foreign origin were used (both liquids and gases).		
METHOD/APPARATUS/PROCEDURE: Volumetric method, described in	SOURCE AND PURITY OF MATERIALS: Analytical grade reagents of Hungarian and foreign origin were used (both liquids and gases). No further information.		
METHOD/APPARATUS/PROCEDURE: Volumetric method, described in	SOURCE AND PURITY OF MATERIALS: Analytical grade reagents of Hungarian and foreign origin were used (both liquids and gases). No further information.		
METHOD/APPARATUS/PROCEDURE: Volumetric method, described in	SOURCE AND PURITY OF MATERIALS: Analytical grade reagents of Hungarian and foreign origin were used (both liquids and gases). No further information. ESTIMATED ERROR: $\delta X_1/X_1 = 0.03$		
METHOD/APPARATUS/PROCEDURE: Volumetric method, described in	SOURCE AND PURITY OF MATERIALS: Analytical grade reagents of Hungarian and foreign origin were used (both liquids and gases). No further information.		
METHOD/APPARATUS/PROCEDURE: Volumetric method, described in	SOURCE AND PURITY OF MATERIALS: Analytical grade reagents of Hungarian and foreign origin were used (both liquids and gases). No further information. ESTIMATED ERROR: $\delta x_1/x_1 = 0.03$ REFERENCES:		
METHOD/APPARATUS/PROCEDURE: Volumetric method, described in	SOURCE AND PURITY OF MATERIALS: Analytical grade reagents of Hungarian and foreign origin were used (both liquids and gases). No further information. ESTIMATED ERROR: $\delta x_1/x_1 = 0.03$ REFERENCES: 1. Bodor, E.; Bor, Gy.; Mohai, B.; Sipos, G.		
METHOD/APPARATUS/PROCEDURE: Volumetric method, described in	SOURCE AND PURITY OF MATERIALS: Analytical grade reagents of Hungarian and foreign origin were used (both liquids and gases). No further information. ESTIMATED ERROR: $\delta X_1/X_1 = 0.03$ REFERENCES: 1. Bodor, E.; Bor, Gy.; Mohai, B.; Sipos, G. Vesspremi Vegyip. Egy. Kozl.		
METHOD/APPARATUS/PROCEDURE: Volumetric method, described in	SOURCE AND PURITY OF MATERIALS: Analytical grade reagents of Hungarian and foreign origin were used (both liquids and gases). No further information. ESTIMATED ERROR: $\delta X_1/X_1 = 0.03$ REFERENCES: 1. Bodor, E.; Bor, Gy.; Mohai, B.; Sipos, G. Vesspremi Vegyip. Egy. Kozl. 1957, 1, 55.		
METHOD/APPARATUS/PROCEDURE: Volumetric method, described in	SOURCE AND PURITY OF MATERIALS: Analytical grade reagents of Hungarian and foreign origin were used (both liquids and gases). No further information. ESTIMATED ERROR: $\delta X_1/X_1 = 0.03$ REFERENCES: 1. Bodor, E.; Bor, Gy.; Mohai, B.; Sipos, G. Vesspremi Vegyip. Egy. Kozl.		

Hydrocarbons 139		
COMPONENTS:	ORIGINAL MEASUREMENTS:	
(1) Nitrogen; N ₂ ; [7727-37-9]	Makranczy, J.; Megyery-Balog, Mrs.K; Rusz, L.; Patyi, L.	
(2) Decane; C ₁₀ H ₂₂ ; [124-18-5]		
	Hung. J. Ind. Chem. <u>1976</u> , 4(2), 269-80.	
VARIABLES:	PREPARED BY:	
T/K = 298.15 - 313.15 Total P/kPa = 101.325	S. A. Johnson H. L. Clever	
EXPERIMENTAL VALUES:		
T/K Mol Fraction Bunsen $x_1 \times 10^3$	Coefficient Ostwald Coefficient α L	
298.15 1.25 0.	143 0.156	
313.15 1.02 0.	0.131	
Smoothed Data: $\Delta G^{\circ}/J \text{ mol}^{-1} = -RT \text{ lr}$	$x_1 = -10,525 + 90.88T$	
Both the data and the	equation are classed as tentative.	
Mol Fractions and Bunsen Coefficient nitrogen partial pressure of 101.325 the Ostwald coefficient is independe	s were calculated by the compiler at a kPa (1 atm) with the assumption that	
the Ostward Coefficient is independe		
,		
AUXILIAR	(INFORMATION	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS;	
Volumetric method, described in	Analytical grade reagents of Hungarian and foreign origin were	
detail in reference (1).	used (both liquids and gases). No	
	further information.	
	ESTIMATED ERROR:	
	$\delta x_{1}/x_{1} = 0.03$	
	DEPEDENCUC.	
	REFERENCES:	
	1. Bodor, E.; Bor, Gy.; Mohai, B.; Sipos, G.	
	Veszpremi Vegyip. Egy. Kozl. 1957, l, 55.	
	<i>Chem. Abstr.</i> <u>1961</u> , <i>55</i> , 3175h.	

COMPONENTS:		ORIGINAL MEASUREMENTS:	
(1)Nitrogen; N ₂ ;		Wilcock, R. J.; Battino, R.; Danforth, W. F.; Wilhelm, E.	
(2) Decane; C ₁₀ H	22; [124-18-5]	J. Chem. Thermodyn. <u>1978</u> , 10, 817-22.	
VARIABLES:		PREPARED BY:	
T/K = 28 $P/kPa = 10$	83.18 - 313.19 01.325	H. L. Clever A. L. Cramer	
EXPERIMENTAL VALUES	S:		
	T/K Mol Fraction X ₁ x 10 ³	Bunsen Ostwald Coefficient Coefficient α L	
	283.181.220298.111.214313.191.206	0.1419 0.1471 0.1391 0.1518 0.1360 0.1559	
	The Bunsen coefficients were calculated by the compiler. The solubility values were adjusted to 101.325 kPa (1 atm) assuming		
Smoothed Data:	$\Delta G^{O}/J \text{ mol}^{-1} = -RT \ln X$	$x_1 = -284.6 + 56.782 \text{ T}$	
l	Std. Dev. $\Delta G^{O} = 1.6$, C	Coef. Corr. = 0.9999	
	$\Delta H^{O}/J mol^{-1} = -284.6,$	$\Delta s^{O}/J \kappa^{-1} mol^{-1} = -56.782$	
	T/K Mol Frac	tion $\Delta G^{O}/J \text{ mol}^{-1}$	
	$x_1 \times 10^3$		
	278.15 1.22		
	288.15 1.22 298.15 1.21		
	308.15 1.21 318.15 1.20	17,213	
	AUXILIARY	INFORMATION	
METHOD APPAPATUS /PI	AUXILIARY INFORMATION METHOD/APPARATUS/PROCEDURE: SOURCE AND PURITY OF MATERIALS:		
The solubility a the design of Mo	apparatus is based on orrison and Billett	SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Matheson Co., Inc. 99.999 per cent.	
	sion used is described ns, and Danforth (2).	<pre>(2) Decane. Phillips Petroleum Co. 99 mol % distilled, density,</pre>	
described by Bat	ctino, Banzhof, Bogan,	$\rho_{298.15} = 0.7264.$	
and Wilhelm (3). Degassing, Up t	co 500 cm ³ of solvent	ESTIMATED ERROR:	
is placed in a f	Elask of such size that	$\delta T/K = 0.02$ $\delta P/mmHg = 0.5$	
the liquid is about 4 cm deep. The liquid is rapidly stirred, and vacuum is intermittently applied through a liquid N_2 trap until the permanent gas residual pressure drops to 5 microns.		$\delta x_1 / x_1 = 0.01$	
		DEFEDENCES.	
		REFERENCES: 1. Morrison, T. J.; Billett, F.	
Solubility Deter		J. Chem. Soc, <u>1948</u> , 2033.	
gassed solvent is passed in a thin film down a glass helical tube con- taining solute gas plus the solvent		2. Battino, R.; Evans, F. D.; Danforth, W. F. J. Am. Oil Chem. Soc. 1968, 45, 830.	
The volume of ga difference betwe	l pressure of one atm. as absorbed is found by een the initial and h the buret system.	 Battino, R.; Banzhof, M.; Bogan, M.; Wilhelm, E. 	
	collected in a tared	Anal. Chem. <u>1971</u> , 43, 806.	

Hyuro	carbons 14	
COMPONENTS:	ORIGINAL MEASUREMENTS:	
(1) Nitrogen; N ₂ ; [7727-37-9]	Makranczy, J.; Megyery-Balog, Mrs. K; Rusz, L.; Patyi, L.	
(2) Undecane; C ₁₁ H ₂₄ ; [1120-21-4]	Hung. J. Ind. Chem. <u>1976</u> , 4, 269-80.	
VARIABLES:	PREPARED BY:	
T/K = 298.15 - 313.15 Total P/kPa = 101.325	S. A. Johnson H. L. Clever	
EXPERIMENTAL VALUES:		
3	Coefficient Ostwald Coefficient	
298.15 1.27 0.	0.146	
313.15 1.02 0.	0.122	
Smoothed Data: $\Delta G^{O}/J \text{ mol}^{-1} = -RT \ln$	$X_1 = -11,346 + 93.50T$	
Both the data and the	equation are classed as tentative.	
Mol Fractions and Bunsen Coefficients were calculated by the compiler at a nitrogen partial pressure of 101.325 kPa (1 atm) with the assumption that the Oswald coefficient is independent of pressure.		
AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
Volumetric method, described in detail in reference (1).	Analytical grade reagents of Hungarian and foreign origin were used (both liquids and gases). No further information.	
	ESTIMATED ERROR:	
	$\delta x_1 / x_1 = 0.03$	
	REFERENCES: 1. Bodor, E.; Bor, Gy.; Mohai, B.; Sipos, G.	

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen, N ₂ ; [7727-37-9]	Makranczy, J.; Megyery-Balog, Mrs. K; Rusz, L.; Patyi, L.
(2) Dodecane; C ₁₂ H ₂₆ ; [112-40-3]	
	Hung. J. Ind. Chem. <u>1976</u> , 4(2), 269-80.
VARIABLES: T/K = 298.15 - 313.15 Total P/kPa = 101.325	PREPARED BY: S. A. Johnson H. L. Clever
EXPERIMENTAL VALUES:	
T/K Mol Fraction Bunsen C X ₁ x 10 ³ α	oefficient Ostwald Coefficient L
298.15 1.23 0.1	21 0.132
313.15 0.95 0.0	92 0.105
Smoothed Data: $\Delta G^{O}/J \text{ mol}^{-1} = -RT \ln I$	$X_1 = -13,367 + 100.55T$
	equation are classed as tentative.
Mol Fractions and Bunsen Coefficients nitrogen partial pressure of 101.325 I the Ostwald coefficient is independent	(Pa (1 atm) with the assumption that
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Volumetric method, described in detail in reference (1).	Analytical grade reagents of Hungarian and foreign origin were used (both liquids and gases). No further information.
	ESTIMATED ERROR:
	$\delta x_{1}/x_{1} = 0.03$
	<pre>REFERENCES: 1. Bodor, E.; Bor, Gy.; Mohai, B.; Sipos, G. Veszpremi Vegyip. Egy. Kozl. <u>1957</u>, l, 55. Chem. Abstr. <u>1961</u>, 55, 3175h.</pre>

Tyulocabons 14		
COMPONENTS:		ORIGINAL MEASUREMENTS:
(1) Nitrog	en; N ₂ ; [7727-37-9]	Makranczy, J.; Megyery-Balog, Mrs. K;
	2	Rusz, L.; Patyi, L.
(2) Tridec	ane; C ₁₃ H ₂₈ ; [629-50-5]	
		Hung. J. Ind. Chem. <u>1976</u> , 4(2), 269-80.
VARIABLES:		PREPARED BY:
	K = 298.15 - 313.15 a = 101.325	S. A. Johnson H. L. Clever
EXPERIMENTAL	VALUES:	
Т	- 3	Coefficient Ostwald Coefficient
298	.15 1.24 0.	0.124
313	.15 0.97 0.	0.100
Smoothed Da	ta: $\Delta G^{O}/J \text{ mol}^{-1} = -RT \ln In$	$X_1 = -12,708 + 98.27T$
		+ equation are classed as tentative.
nitrogen pa	ons and Bunsen Coefficient	s were calculated by the compiler at a kPa (1 atm) with the assumption that
	AUXILIARY	INFORMATION
METHOD/APPARA	TUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
	method, described in reference (1).	Analytical grade reagents of Hungarian and foreign origin were used (both liquids and gases). No further information.
-	-	ESTIMATED ERROR:
		STIRID BROK
		$\delta x_{1}/x_{1} = 0.03$
		REFERENCES:
		<pre>1. Bodor, E.; Bor, Gy.; Mohai, B.; Sipos, G. Veszpremi Vegyip. Egy. Kozl. <u>1957</u>, l, 55. Chem. Abstr. <u>1961</u>, 55, 3175h.</pre>

· . •

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ;[7727-37-9]	Makranczy, J.; Megyery-Balog, Mrs. K;
(2) Tetradecane; C ₁₄ H ₃₀ ;[629-59-4]	Rusz, L.; Patyi, L.
	Hung. J. Ind. Chem. <u>1976</u> , 4(2), 269-20.
VARIABLES:	PREPARED BY:
T/K = 298.15 - 313.15	S. A. Johnson
Total P/kPa = 101.325	H. L. Clever
EXPERIMENTAL VALUES:	
	Coefficient Ostwald Coefficient
$x_1 \times 10^3$	ιL
	106 0.116
313.15 0.95 0.	080 0.092
Smoothed Data: $\Delta G^{O}/J \text{ mol}^{-1} = -RT \ln$	$X_1 = -13,785 + 101.88T$
Both the data and the e	equation are classed as tentative.
Mol Fractions and Bunsen Coefficients	were calculated by the compiler for
a nitrogen partial pressure of 101.32	25 kPa (1 atm) with the assumption that
the Ostwald coefficient was independe	ent of pressure.
1	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Volumetric method, described in	Analytical grade reagents of
detail in reference (1).	Hungarian and foreign origin were
	used (both liquids and gases). No further information.
	ESTIMATED ERROR:
	$\delta x_1 / x_1 = 0.03$
	REFERENCES:
	1. Bodor, E.; Bor, Gy.; Mohai, B.;
	Sipos, G. Veszpremi Vegyip. Egy. Kozl.
	1957, <i>l</i> , 55.
	<i>Chem. Abstr.</i> <u>1961</u> , <i>55</i> , 3175h.

.

Hyd	lrocarbons	
-----	------------	--

· · · · · · · · · · · · · · · · · · ·	140		
COMPONENTS:	ORIGINAL MEASUREMENTS:		
 Nitrogen; N₂; [7727-37-9] Pentadecane; C₁₅H₃₂; [629-62-9] 	Makranczy, J.; Megyery-Balog, Mrs. K; Rusz, L.; Patyi, L.		
	Hung. J. Ind. Chem. <u>1976</u> , 4(2), 269-80.		
VARIABLES:	PREPARED BY:		
T/K = 298.15 - 313.15 Total P/kPa = 101.325	S. A. Johnson H. L. Clever		
EXPERIMENTAL VALUES:			
T/K Mol Fraction Bunsen C X ₁ x 10 ³ a	oefficient Ostwald Coefficient L		
298.15 1.26 0.	102 0.111		
313.15 0.93 0.	074 0.085		
Smoothed Data: $\Delta G^{\circ}/J \text{ mol}^{-1} = -RT \ln$	X ₁ = -15,717 + 108.23T		
	equation are classed as tentative.		
Mol Fractions and Bunsen Coefficient nitrogen partial pressure of 101.325 the Ostwald coefficient was independ	s were calculated by the compiler at a kPa (l atm) with the assumption that ent of pressure.		
	INFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:		
Volumetric method, described in detail in reference (1).	Analytical grade reagents of Hungarian and foreign origin were used (both liquids and gases). No further information.		
	ESTIMATED ERROR:		
	$\delta x_{1}/x_{1} = 0.03$		
	REFERENCES:		
	<pre>1. Bodor, E.; Bor, Gy.; Mohai, B.; Sipos, G. Veszpremi Vegyip. Egy. Kozl. 1957, l, 55. Chem. Abstr. 1961, 55, 3175h.</pre>		

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Makranczy, J.; Megyery-Balog, Mrs. K; Rusz, L.; Patyi, L.
(2) Hexadecane; C ₁₆ H ₃₄ ; [544-76-3]	
	Hung. J. Ind. Chem. <u>1976</u> , 4(2), 269-80.
VARIABLES: T/K = 298.15 - 313.15	PREPARED BY: S. A. Johnson
Total $P/kPa = 101.325$	H. L. Clever
EXPERIMENTAT VALUES:	
T/K Mol Fraction Bunsen C X ₁ x 10 ³ α	oefficient Ostwald Coefficient L
298.15 1.22 0.0	93 0.102
313.15 0.94 0.0	71 0.081
Smoothed Data: $\Delta G^{O}/J \text{ mol}^{-1} = -RT 1$	$n X_1 = -13.492 + 101.03T$
The data and the eq	uation are classed as tentative.
Mol Fractions and Bunsen Coefficients nitrogen partial pressure of 101.325 the Ostwald coefficient was independe	
the Ostwald Coefficient was independe	nt of pressure.
	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Volumetric method, described in detail in reference (1).	Analytical grade reagents of Hungarian and foreign origin were used (both liquids and gases). No further information.
	ESTIMATED ERROR:
	$\delta x_{1}/x_{1} = 0.03$
· · · ·	REFERENCES:
	<pre>1. Bodor, E.; Bor, Gy.; Mohai, B.; Sipos, G. Veszpremi Vegyip. Egy. Kozl. 1957, 1, 55. Chem. Abstr. 1961, 55, 3175h.</pre>

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Tremper, K.K.; Prausnitz, J.M.
(2) Hexadecane; C ₁₆ H ₃₄ ; [544-76-3]	J. Chem.Eng. Data <u>1976</u> , 21, 295-9.
VARIABLES:	
VARIABLES;	PREPARED BY:
T/K = 300-475	C.L. Young
EXPERIMENTAL VALUES:	
T/K Henry's Con /atm	stant ^a Mole fraction ^b of nitrogen at 1 atm partial pressure, ^x N ₂
300 790.0	0.00127
325 743.0	0.00135
350 701.0	0.00143
375 661.0	0.00151
400 618.0	0.00162
425 576.0	0.00174
450 546.0	0.00183
475 517.0	0.00193
between mole fraction an	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE Volumetric apparatus similar to that described by Dymond and Hildebrand (1) Pressure measured with a null detector and precision gauge. Details in ref. (2).	SOURCE AND PURITY OF MATERIALS: Solvent degassed, no other details given.
	ESTIMATED ERROR:
	$\delta T/K = \pm 0.1; \ \delta x_{N_2} = \pm 1$
	REFERENCES: 1. Dymond, J.; Hildebrand, J.H. Ind. Eng. Chem. Fundam. 1967, 6, 130 2. Cukor, P.M.; Prausnitz, J.M. Ind. Eng. Chem. Fundam. 1971, 10, 638

N&A - G

Nitrogen Solubilities up to 200 kPa

COMPONENTS:	EVALUATOR:
(1) Nitrogen, N ₂ ; [7727-37-9]	Rubin Battino Department of Chemistry
(2) Cyclohexane; C ₆ H ₁₂ ; [110-82-7]	Wright State University Dayton, OH 45435 U.S.A.
	December 1981

CRITICAL EVALUATION:

There are seven groups that determined the solubility of nitrogen in cyclohexane (1-7). Guerry's two points (7) are much too low when compared with more reliable measurements. The single points obtained by Gjaldbaek and Hildebrand (1) and Patyi, et al. (5), are in good agreement but again are lower than the recommended values. The results obtained by Wild, et al. (6), are a special case inasmuch as their results were obtained via two methods (which show good internal agreement). at partial pressures of nitrogen up to 1.9 MPa, and over a wide tempera-ture range - 300 to 443 K. However, the mole fraction solubilities calculated at 101 kPa partial pressure of nitrogen are almost double the results obtained by other workers and also show an opposite slope with respect to temperature dependence. We classify the Wild, et al. (6), values as tentative over the temperature range they covered.

For smoothing we used the data from three papers (2,3,4) covering a temperature range of 283 to 307 K at a nitrogen partial pressure of 101 kPa. The smoothing equation is:

 $\ln x_1 = -6.14235 - 3.06839/(T/100K)$

(1)

with a standard deviation of 0.004l in $\ln x_1$. $\Delta \overline{H}^\circ = 2552 \text{ J mol}^{-1}$ and $\Delta \overline{S}^\circ = -51 \text{ J K}^{-1} \text{ mol}^{-1}$. The smoothed mole fractions which are recommended values at 5K intervals follow.

т/:	к 10) ⁴ × ₁		т/к	10 ⁴ × ₁	
28	3.15	7.27		298.15	7.68	
28	8.15	7.41	,	303.15	7.81	
29	3.15	7.55		308.15	7.94	

There is not sufficient comparative work reported on other cyclic hydrocarbons to warrant further comment,

References

- 1. Gjaldbaek, J. C.; Hildebrand, J. H. J. Am. Chem. Soc. 1949, 71, 3147-50.
- Dymond, J. H. J. Phys. Chem. <u>1967</u>, 71, 1829-31.
 Dymond, J. H.; Hildebrand, J. H. Ind. Eng. Chem., Fundam. <u>1967</u>, 6, 130-1.
- 4. Wilhelm, E.; Battino, R. J. Chem. Thermodyn. <u>1973</u>, 5, 117-20. 5. Patyi, L.; Furmer, I. E.; Makranczy, J.; Sadilenko, A. S.; Stepanova, Z. G.; Berengarten, M. G. Ah. Prikl. Khim. <u>1978</u>, 51, 1296-1300.
- Wild, J. D.; Sridhar, J.; Potter, O. E. Chem. Eng. J. 1978, 15, 209-14.
 Guerry, D. Jr. Ph.D. Thesis 1944, Vanderbilt University, Nashville, TN.

,

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Gjaldbaek, J. C.; Hildebrand, J. H.
(2) Cyclohexane; C ₆ H ₁₂ ; [110-82-7]	J. Am. Chem. Soc. <u>1949</u> , 71, 3147- 50.
VARIABLES: T/K = 298.13 Total P/kPa = 101.325	PREPARED BY: J. Chr. Gjaldbaek
EXPERIMENTAL VALUES:	
T/K Mol Fraction X ₁ x 10 ³	Bunsen Ostwald Coefficient Coefficient α L
298.13 0.755	0.156 0.170
298.13 0.752	0.155 0.169
The mole fraction and Ostwald solubil compiler.	ity values were calculated by the .
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
A calibrated all-glass combined man- ometer and bulb was enclosed in an air thermostat and shaken until equilibrium. Mercury was used for calibration and as the confining liquid. The solvents were degassed in the apparatus. Details are in references 1 and 2.	 Nitrogen. Stuart Oxygen Co. 99.996 percent N₂. Cyclohexane. Paragon Testing Laboratories. Boiling point 80.63 - 80.66^OC at 755.7 mmHg.
The absorped volume of gas was cal- culated from the initial and final amounts, both saturated with solvent vapor. The amount of solvent was	
determined by the weight of displaced mercury. The saturation of the liquid with the gas was carried out close to atmos-	0.05
pheric pressure. The solubility values were reported for one atmos- phere gas pressure assuming Henry's law is obeyed.	 REFERENCES: 1. Lannung, A. J. Am. Chem. Soc. <u>1930</u>, 52, 68. 2. Gjaldbaek, J. C. Acta Chem. Scand. <u>1952</u>, 6, 623.

COMPONENTS: (1) Nitrogen; N ₂ ; [7727-37-9]	ORIGINAL MEASUREMENTS: Dymond, J. H.
(2) Cyclohexane; C ₆ H ₁₂ ; [110-82-7]	J. Phys. Chem. <u>1967</u> , 71, 1829-31.
VARIABLES:	PREPARED BY:
T/K = 291.00 - 306.52 P/kPa = 101.325	M. E. Derrick H. L. Clever
EXPERIMENTAL VALUES:	
Temperature Mol Fra t/°C T/K x ₁ x	action Bunsen Ostwald 10^4 Coefficient Coefficient α L
17.85 291.00 7.	
25.45 298.60 7. 30.70 303.85 7.5	70 0.159 0.174 37 0.161 0.179
33.37 306.52 7.1	
The Bunsen and Ostwald coefficien	ts were calculated by the compiler.
Smoothed Data: $\ln x_1 = -6.196 - 3$	2.8998/(T/100)
т/1	
	$x_1 \times 10^4$
293.1	15 7.57
298.	15 7.70
303. 308.	
	JARY INFORMATION
METHOD/APPARATUS/PROCEDURE: The liquid is saturated with the o at a gas partial pressure of 1 at	
The apparatus is that described by Dymond and Hildebrand (1). The apparatus uses an all-glass pumpir system to spray slugs of degassed solvent into the gas. The amount gas dissolved is calculated from t initial and final gas pressure.	Coleman and Bell chromato- quality reagent. Dried and fractionally frozen. of m.p. 6.45°C.
	ESTIMATED ERROR:
	$\delta x_1 / x_1 = 0.01$
	REFERENCES :
	<pre>I. Dymond, J.; Hildebrand, J. H. Ind. Eng. Chem. Fundam. <u>1967</u>, 6, 130.</pre>

Hydrod	Carbons 15
COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Dymond, J.; Hildebrand, J. H.
(2) Cyclohexane; C ₆ H ₁₂ ; [110-82-7]	Ind. Eng. Chem., Fundam. <u>1967</u> , 6, 130-1.
VARIABLES:	PREPARED BY:
T/K = 298.15 Total P/kPa = 101.325	A. L. Cramer H. L. Clever
EXPERIMENTAL VALUES:	······································
	unsen Ostwald fficient Coefficient α L
298.15 7.68 0	0.158 0.173
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The apparatus consists of an all- glass buret system and a two bulb ab- sorption vessel. A magnetic pump forces solvent from the lower bulb over the wall of the upper bulb which contains the gas. The solvent flow back to the lower bulb. Pumping is continued until there is no further pressure change.	No details given.
The amount of gas absorbed is calculated from the initial and final gas pressure.	ESTIMATED ERROR: $\delta T/K = \pm 0.05$ $\delta x_1/x_1 \pm 0.01$ or less. REFERENCES:

.

COMPONENTS:	ORIGINAL MEASUREMENTS:	
(1) Nitrogen; N ₂ ; [7727-37-9]	Wilhelm, E.; Battino, R.	
(2) Cyclohexane; C ₆ H ₁₂ ; [110-82-7]	J. Chem. Thermodyn. 1973, 5, 117-20.	
0 12	·, · · ·	
VARIABLES: T/K = 283.39 - 297.59	PREPARED BY:	
P/kPa = 101.325	H. L. Clever	
EXPERIMENTAL VALUES:		
	unsen Ostwald fficient Coefficient	
	<u>α L</u>	
	0.152 0.158 0.153 0.159	
	0.157 0.171	
The solubility values ware adducted t	a a nitrogan partial management of	
The solubility values were adjusted t 101.325 kPa (l atm) by Henry's law.	o a microyen parcial pressure or	
Smoothed Data: $\Delta G^{O}/J \mod^{-1} = -RT \ln$	Х ₁ = 2135.2 + 52.541 т	
Std. Dev. $\Delta G^{\circ} = 3.5$,	-	
_		
$\Delta H^{0}/J \text{ mol}^{-1} = 2135.2,$	$\Delta s^{\circ}/J \ \kappa^{-1} \ mol^{-1} = -52.541$	
	ction $\Delta G^{O}/J \text{ mol}^{-1}$	
X ₁ x	10 ³	
283.15 0.7	27 17,012	
288.15 0.7 293.15 0.7		
293.15 0.7 298.15 0.7		
AUXTLARY	INFORMATION	
·		
METHOD/APPARATUS/PROCEDURE: The solubility apparatus is based on	SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Matheson Co., Inc.	
the design of Morrison and Billett	Minimum purity 99.99 mole	
(1) and the version used is described by Battino, Evans, and Danforth (2).	per cent.	
The degassing apparatus is that	(2) Cyclohexane. Phillips Petroleum	
described by Battino, Banzhof, Bogan, and Wilhelm (3).	Co. Pure Grade. Distilled.	
Degassing. Up to 500 cm ³ of solvent		
is placed in a flask of such size that the liquid is about 4 cm deep.		
The liquid is rapidly stirred, and		
vacuum is intermittently applied through a liquid N ₂ trap	ESTIMATED ERROR:	
until the permanent gas residual	$\delta T/K = 0.03$ $\delta P/mmHg = 0.5$	
pressure drops to 5 microns.	$\delta x_1 / x_1 = 0.005$	
Solubility Determination. The de- gassed solvent is passed in a thin	± ±	
film down a glass spiral tube con- taining solute gas plus the solvent	REFERENCES: 1. Morrison, T. J.; Billett, F.	
vapor at a total pressure of one atm.	J. Chem. Soc. 1948, 2033.	
The volume of gas absorbed is found by difference between the initial and	2. Battino, R.; Evans, F. D.; Danforth, W. F. J. Am. Oil	
final volumes in the buret system.	Chem. Soc. 1968, 45, 830.	
The solvent is collected in a tared flask and weighed.	3. Battino, R.; Banzhof, M.; Bogan, M.; Wilhelm, E.	
	Anal. Chem. 1971 43, 806.	

COMPONENTS: (1) Nitrogen; N ₂ ; [7727-37-9]		
	ORIGINAL MEASUREMENTS:	
(2) Cyclohexane; C ₆ H ₁₂ ; [110-	Makranczy, J.; Sadilenko, Stepanova, Z. G.; Berengar	rten,
VARIABLES:	PREPARED BY:	
T/K = 298	C. L. Young	
EXPERIMENTAL VALUES:		
τ/κ α*	Mole fraction of nitrogen at a par pressure of 101.325 kPa	tial
298.15 0.155	0.000755	
AU;	JXILIARY INFORMATION	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS;	
Volumetric method. Pressure measured when known amounts of	Purity better than 99 mole cent as determined by gas to chromatography.	

• •

COMPONENTS: (1) Nitrogen; N ₂ ; [7727-37-9]	ORIGINAL MEASUREMENTS: Guerry, D. Jr.		
<pre>(2) Cyclic hydrocarbons; C₆H₁₀ and C₆H₁₂</pre>	Ph.D. thesis, <u>1944</u> Vanderbilt University Nashville, TN		
VARIABLES: T/K = 293.15, 298.15 P/kPa = 101.325	PREPARED BY: H. L. Clever		
EXPERIMENTAL VALUES:			
T/K Mol Fraction $x_1 \times 10^4$	Bunsen Ostwald Coefficient Coefficient α L		
Cyclohexene; C ₆ ^H 10	; [110-83-8]		
293.15 6.10 298.15 6.22	0.135 0.145 0.137 0.150		
Cyclohexane; C ₆ H ₁₂	2; [110-82-7]		
293.15 7.22 298.15 7.22	0.150 0.161 0.149 0.163		
AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDURE: A Van Slyke-Neill Manometric Appara- tus manufactured by the Eimer and Amend Co. was used. The procedure of Van Slyke (1) for pure liquids was modified (2) so that small solvent samples (2 cm ³) could be used with almost complete recovery of the sample. An improved temperature control	SOURCE AND PURITY OF MATERIALS: Cyclohexene. B.p. (756.6 mmHg) t/°C 82.35 - 82.50 (corr.). Cyclohexane. B.p. (760.7 mmHg) t/°C 80.90 (corr.). Data on density, refractive index and vapor pressure are in the thesis.		
system was used.			
 SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Ohio Chemical Co. Oil pumped, 99.8 per cent pure. (2) Hydrocarbons. Both were Eastman Kodak Co. products. 	ESTIMATED ERROR: $\delta T/K = 0.05$ REFERENCES:		
They were purified by standard methods, and distilled from Na in a nitrogen atm.	 Van Slyke, D. D. <i>J. Biol. Chem.</i> <u>1939</u>, 130, 545. Ijams, C. C. Ph.D. thesis, <u>1941</u> Vanderbilt University 		

- --

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Field, L. R.; Wilhelm, E.; Battino, R.
(2) Methylcyclohexane; C ₇ H ₁₄ ; [108-87-2]	J. Chem. Thermodyn. <u>1974</u> , 6, 237-43.
VARIABLES: T/K = 284.29 - 313.27 P/kPa = 101.325	PREPARED BY: H. L. Clever
EXPERIMENTAL VALUES:	
T/K Mol Fraction $x_1 \times 10^3$	Bunsen Ostwald Coefficient Coefficient α L
284.29 0.849 298.18 0.946 313.27 0.988	0.1508 0.1569 0.1653 0.1804 0.1697 0.1946
The gas solubility values were adjuste 101.325 kPa (l atm) by Henry's law.	ed to a nitrogen partial pressure of
The Bunsen coefficients were calculate	ed by the compiler.
Smoothed Data: $\Delta G^{O}/J \text{ mol}^{-1} = -RT \ln A$	х ₁ = 3824.9 + 45.244 т
Std. Dev. $\Delta G^{O} = 45.6$,	- Coef. Corr. = 0.9977
$\Delta H^{O} / J mol^{-1} = 3824.9,$	$\Delta s^{o}/J K^{-1} mol^{-1} = -45.244$
T/K Mol Frac	etion $\Delta G^{O}/J \text{ mol}^{-1}$
2,	
293.15 0.90	17,088
303.15 0.95 313.15 0.99	
	· · · · · · · · · · · · · · · · · · ·
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The solubility apparatus is based on the design of Morrison and Billett	(1) Nitrogen. Matheson Co., Inc. Minimum purity 99.99 mole per cent.
(1) and the version used is described by Battino, Evans, and Danforth (2). The degassing apparatus is that described by Battino, Banzhof, Bogan,	(2) Methylcyclohexane. Phillips Petroleum Co. Pure Grade. Distilled.
and Wilhelm (3). Degassing. Up to 500 cm ³ of solvent is placed in a flask of such size that the liquid is about 4 cm deep. The liquid is rapidly stirred, and vacuum	
is applied intermittently through a liquid N ₂ trap until the permanent gas residual pressure drops to 5 microns.	ESTIMATED ERROR: $\delta T/K = 0.03$ $\delta P/mmHg = 0.5$ $\delta X_1/X_1 = 0.005$
Solubility Determination. The de- gassed solvent is passed in a thin	
film down a glass spiral tube con- taining solute gas plus the solvent vapor at a total pressure of one atm. The volume of gas absorbed is found by difference between the initial and	<pre>REFERENCES: 1. Morrison, T. J.; Billett, F. J. Chem. Soc. 1948, 2033. 2. Battino, R.; Evans, F. D.; Danforth, W. F. J. Am. Oil Chem. Soc. 1969, 45, 830.</pre>
final volumes in the buret system. The solvent is collected in a tared flask and weighed.	Chem. Soc. <u>1968</u> , 45, 830. 3. Battino, R.; Banzhof, M.; Bogan, M.; Wilhelm, E. Anal. Chem. 1971, 43, 806.

•

'n

	100 up to 200 ki u	
COMPONENTS:	ORIGINAL MEASUREMENTS:	
(1) Nitrogen; N ₂ ; [7727-37-9]	Wilcock, R. J.; Battino, R.;	
(2) Cyclooctane; C ₈ H ₁₆ ; [292-64-8]	Wilhelm, E.	
$(2) \text{ Cyclobe calle}, \text{ C}_8^{-16}, [252, 54, 5]$	J. Chem. Thermodyn. <u>1977</u> , 9,	
	111-5.	
VARIABLES:	PREPARED BY:	
T/K = 289.04 - 313.52	H. L. Clever	
P/kPa = 101.325	A. L. Cramer	
EXPERIMENTAL VALUES:		
T/K Mol Fraction	Bunsen Ostwald	
,	Coefficient Coefficient	
	α <u>L</u>	
289.04 0.570 298.26 0.598	0.0955 0.1011 0.0994 0.1085	
313.52 0.660	0.1081 0.1241	
The Bunsen coefficients were calculate	ed by the compiler.	
The solubility values were adjusted to		
101.325 kPa (1 atm) by Henry's law.		
Smoothed Data: $\Delta G^{O}/J \mod^{-1} = -RT \ln 3$	$K_1 = 4564.0 + 46.351 \text{ T}$	
Std. Dev. $\Delta G^{O} = 14.3$,	Coef. Corr. = 0.9999	
	$\Delta s^{\circ}/J \ \kappa^{-1} \ mol^{-1} = -46.351$	
	•	
	etion $\Delta G^{O}/J \text{ mol}^{-1}$	
x ₁ x 1	L0 ³	
288.15 0.56	54 17,920	
293.15 0.583 18,152		
298.15 0.602 18,384 303.15 0.620 18,615		
308.15 0.639 18,847		
313.15 0.65	57 19,079	
AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS;	
The solubility apparatus is based on	(1) Nitrogen. Matheson Co., Inc. minimum purity 99.99 mol per cent.	
the design of Morrison and Billett (1) and the version used is described	(2) Cyclooctane. Chemical Samples	
by Battino, Evans, and Danforth (2).	Co. 99 mol percent, distilled,	
The degassing apparatus is that described by Battino, Banzhof, Bogan,	refractive index (NaD, 298.15 K)	
and Wilhelm (3).	1.4562.	
Degassing. Up to 500 cm ³ of solvent	ESTIMATED ERROR: $\delta T/K = 0.03$	
is placed in a flask of such size that the liquid is about 4 cm deep. The	$\delta P/mmHg = 0.5$	
liquid is rapidly stirred, and vacuum		
is applied intermittently through a liquid N2 trap until the	REFERENCES:	
permanent gas residual pressure drops	1. Morrison, T. J.; Billett, F. J. Chem. Soc. <u>1948</u> , 2033.	
to 5 microns.		
Solubility Determination. The de- gassed solvent is passed in a thin	2. Battino, R.; Evans, F. D.; Danforth, W. F.	
film down a glass spiral tube con-	J. Am. Oil Chem. Soc. <u>1968</u> ,	
taining solute gas plus the solvent vapor at a total pressure of one atm.	45, 830.	
The volume of gas absorbed is found	3. Battino, R.; Banzhof, M.;	
by difference between the initial and final volumes in the buret system.	Bogan, M.; Wilhelm, E. Anal. Chem. 1971, 43, 806.	
The solvent is collected in a tared		
flask and weighed.		

COMPONENTS:	ORIGINAL MEASUREMENTS:	
(1) Nitrogen; N ₂ ; [7727-37-9]	Geller, E. B.; Battino, R.; Wilhelm, E.	
(2) cis-Dimethylcyclohexane; C ₈ H ₁₆ ; [2207-01-4]	J. Chem. Thermodyn. <u>1976</u> , 8, 197-202.	
WADTARY RO		
VARIABLES: T/K = 297.97 - 312.97 P/kPa = 101.325	PREPARED BY: H. L. Clever A. L. Cramer	
EXPERIMENTAL VALUES:		
$x_1 \times 10$	Bunsen Ostwald Coefficient Coefficient α L α L	
297.97 0.884 312.97 0.923	0.1401 0.1528 0.1440 0.1650	
The Bunsen coefficient was calculated		
The solubility values were adjusted to 101.325 kPa (l atm) by Henry's law.	o a nitrogen partial pressure of	
and should be used wit		
$\Delta G^{O}/J \text{ mol}^{-1} = -RT \ln J$	$K_1 = 2223.5 + 50.996 \text{ T}$	
	$\Delta s^{\circ}/J K^{-1} mol^{-1} = -50.996$	
T/K Mol Fraction $\Delta G^{O}/J \text{ mol}^{-1}$ $X_1 \times 10^3$		
303.15 0.89 308.15 0.91	98 17,683	
313.15 0.92		
AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE: The solubility apparatus is based on the design of Morrison and Billett (1) and the version used is described by Battino, Evans, and Danforth (2). The degassing apparatus is that described by Battino, Banzhof, Bogan, and Wilhelm (3).	 SOURCE AND PURITY OF MATERIALS; (1) Nitrogen. Either Air Products & Chemicals, Inc. or Matheson Co., Inc. 99 mol per cent or better. (2) cis-1,2-Dimethylcyclohexane. Chemical Samples Co. Fractionally distilled and stored in dark. Refractive index (NaD, 298.15 K) 	
Degassing. Up to 500 cm ³ of solvent is placed in a flask of such size that the liquid is about 4 cm deep. The liquid is rapidly stirred, and	1.4337. ESTIMATED ERROR: $\delta T/K = 0.03$	
applied through a liquid N ₂ trap until the permanent gas residual	$\delta P/mmHg = 0.5$ $\delta x_1/x_1 = 0.005$ REFERENCES:	
pressure drops to 5 microns. Solubility Determination. The de-	1. Morrison, T. J.; Billett, F. J. Chem. Soc. <u>1948</u> , 2033.	
gassed solvent is passed in a thin film down a glass spiral tube con- taining solute gas plus the solvent	2. Battino, R.; Evans, F. D.; Danforth, W. F.	
vapor at a total pressure of one atm. The volume of gas absorbed is found by difference between the initial and	J. Am. Oil Chem. Soc. <u>1968</u> , 45, 830.	
final volumes in the buret system. The solvent is collected in a tared	 Battino, R.; Banzhof, M.; Bogan, M.; Wilhelm, E. Anal. Chem. 1971, 43, 806. 	
flask and weighed.		

Nitrogen Solubilities up to 200 kPa			
COMPONENTS:	ORIGINAL MEASUREMENTS:		
(1) Nitrogen; N ₂ : [7727-37-9]	Geller, E. B.; Battino, R.;		
(2) trans-1,2-Dimethylcyclohexane;	Wilhelm, E.		
C ₈ H ₁₆ ; [6876-23-9]	J. Chem. Thermodyn. <u>1976</u> , 8, 197-202.		
VARIABLES: T/K = 298.25 - 313.01	PREPARED BY: H. L. Clever		
P/kPa = 101.325	A. L. Cramer		
EXPERIMENTAL VALUES:			
T/K Mol Fraction	Bunsen Ostwald		
× ₁ × 10 ³	Coefficient Coefficient α L		
298.25 1.001	0.1545 0.1687		
313.01 1.016	0.1544 0.1770		
The Bunsen coefficients were calcula	ated by the compiler.		
The solubility values were adjusted	-		
101.325 kPa (1 atm) by Henry's law.			
Smoothed Data: The Gibbs energy equipoints and should be	ation is based on only two pair of a used with caution.		
$\Delta G^{O}/J \text{ mol}^{-1} = -RT \text{ li}$	$\Delta G^{O}/J \text{ mol}^{-1} = -RT \ln X_{1} = 785.05 + 54.793 T$		
	$(\Lambda s^{O} / \tau \kappa^{-1} m o)^{-1} = -54.793$		
	5, $\Delta s^{\circ}/J \ \kappa^{-1} \ mol^{-1} = -54.793$		
	5, $\Delta S^{O}/J K^{-1} mol^{-1} = -54.793$		
	5, $\Delta S^{O}/J K^{-1} mol^{-1} = -54.793$		
	5, $\Delta S^{O}/J K^{-1} mol^{-1} = -54.793$		
	5, $\Delta S^{0}/J K^{-1} mol^{-1} = -54.793$		
	5, ΔS ^O /J K ⁻¹ mol ⁻¹ = -54.793		
	5, ΔS ^O /J K ⁻¹ mol ⁻¹ = -54.793		
	5, ΔS ^O /J K ⁻¹ mol ⁻¹ = -54.793		
ΔH ⁰ /J mol ⁻¹ = 785.0	S, $\Delta S^{O}/J K^{-1} mol^{-1} = -54.793$ RY INFORMATION		
ΔH ⁰ /J mol ⁻¹ = 785.0			
ΔH ^O /J mol ⁻¹ = 785.0 AUXILIA METHOD/APPARATUS/PROCEDURE:	RY INFORMATION SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Either Air Products &		
ΔH ^O /J mol ⁻¹ = 785.09 AUXILIA	RY INFORMATION SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Either Air Products & Chemicals Inc., or Matheson Co.,		
ΔH ^O /J mol ⁻¹ = 785.0 AUXILIA METHOD/APPARATUS/PROCEDURE: The solubility apparatus is based on the design of Morrison and Billett (1) and the version used is described by Battino, Evans, and Danforth (2)	RY INFORMATION SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Either Air Products & Chemicals Inc., or Matheson Co., Inc. 99 mol per cent or better. (2) trans-1,2-Dimethylcyclohexane.		
ΔH ^O /J mol ⁻¹ = 785.0 AUXILIA METHOD/APPARATUS/PROCEDURE: The solubility apparatus is based on the design of Morrison and Billett (1) and the version used is described by Battino, Evans, and Danforth (2). The degassing apparatus is that described by Battino, Banzhof, Bogan	<pre>RY INFORMATION SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Either Air Products & Chemicals Inc., or Matheson Co., Inc. 99 mol per cent or better. (2) trans-1,2-Dimethylcyclohexane. Chemical samples Co. Fraction-</pre>		
ΔH ^O /J mol ⁻¹ = 785.05 AUXILIA METHOD/APPARATUS/PROCEDURE: The solubility apparatus is based on the design of Morrison and Billett (1) and the version used is described by Battino, Evans, and Danforth (2). The degassing apparatus is that described by Battino, Banzhof, Bogan and Wilhelm (3).	<pre>RY INFORMATION SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Either Air Products & Chemicals Inc., or Matheson Co., Inc. 99 mol per cent or better. (2) trans-1,2-Dimethylcyclohexane. Chemical samples Co. Fraction- ally distilled and stored in dark. Refractive index (NaD.</pre>		
ΔH ^O /J mol ⁻¹ = 785.0 AUXILIA METHOD/APPARATUS/PROCEDURE: The solubility apparatus is based on the design of Morrison and Billett (1) and the version used is described by Battino, Evans, and Danforth (2). The degassing apparatus is that described by Battino, Banzhof, Bogan	<pre>RY INFORMATION SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Either Air Products & Chemicals Inc., or Matheson Co., Inc. 99 mol per cent or better. (2) trans-1,2-Dimethylcyclohexane. Chemical samples Co. Fraction- ally distilled and stored in dark. Refractive index (NaD, 298.15 K) 1.4248.</pre>		
AUXILIA METHOD/APPARATUS/PROCEDURE: The solubility apparatus is based on the design of Morrison and Billett (1) and the version used is described by Battino, Evans, and Danforth (2). The degassing apparatus is that described by Battino, Banzhof, Bogan and Wilhelm (3). Degassing. Up to 500 cm ³ of solvent is placed in a flask of such size that the liquid is about 4 cm deep.	<pre>RY INFORMATION SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Either Air Products & Chemicals Inc., or Matheson Co., Inc. 99 mol per cent or better. (2) trans-1,2-Dimethylcyclohexane. Chemical samples Co. Fraction- ally distilled and stored in dark. Refractive index (NaD.</pre>		
AUXILIA METHOD/APPARATUS/PROCEDURE: The solubility apparatus is based on the design of Morrison and Billett (1) and the version used is describe by Battino, Evans, and Danforth (2). The degassing apparatus is that described by Battino, Banzhof, Bogar and Wilhelm (3). Degassing. Up to 500 cm ³ of solvent is placed in a flask of such size that the liquid is about 4 cm deep. The liquid is rapidly stirred, and vacuum is intermittently	RY INFORMATION SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Either Air Products & Chemicals Inc., or Matheson Co., Inc. 99 mol per cent or better. (2) $trans-1, 2$ -Dimethylcyclohexane. Chemical samples Co. Fraction- ally distilled and stored in dark. Refractive index (NaD, 298.15 K) 1.4248. ESTIMATED ERROR: $\delta T/K = 0.03$ $\delta P/mmHq = 0.5$		
AUXILIA METHOD/APPARATUS/PROCEDURE: The solubility apparatus is based on the design of Morrison and Billett (1) and the version used is described by Battino, Evans, and Danforth (2). The degassing apparatus is that described by Battino, Banzhof, Bogan and Wilhelm (3). Degassing. Up to 500 cm ³ of solvent is placed in a flask of such size that the liquid is about 4 cm deep. The liquid is rapidly stirred, and vacuum is intermittently applied through a liquid N ₂ trap	RY INFORMATION SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Either Air Products & Chemicals Inc., or Matheson Co., Inc. 99 mol per cent or better. (2) $trans-1, 2$ -Dimethylcyclohexane. Chemical samples Co. Fraction- ally distilled and stored in dark. Refractive index (NaD, 298.15 K) 1.4248. ESTIMATED ERROR: $\delta T/K = 0.03$ $\delta P/mmHg = 0.5$ $\delta X_1/X_1 = 0.005$		
AUXILIA METHOD/APPARATUS/PROCEDURE: The solubility apparatus is based on the design of Morrison and Billett (1) and the version used is describe by Battino, Evans, and Danforth (2). The degassing apparatus is that described by Battino, Banzhof, Bogar and Wilhelm (3). Degassing. Up to 500 cm ³ of solvent is placed in a flask of such size that the liquid is about 4 cm deep. The liquid is rapidly stirred, and vacuum is intermittently	RY INFORMATION SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Either Air Products & Chemicals Inc., or Matheson Co., Inc. 99 mol per cent or better. (2) trans-1,2-Dimethylcyclohexane. Chemical samples Co. Fraction- ally distilled and stored in dark. Refractive index (NaD, 298.15 K) 1.4248. ESTIMATED ERROR: $\delta T/K = 0.03$ $\delta P/mmHg = 0.5$ $\delta X_1/X_1 = 0.005$ REFERENCES:		
AUXILIA METHOD/APPARATUS/PROCEDURE: The solubility apparatus is based on the design of Morrison and Billett (1) and the version used is describe by Battino, Evans, and Danforth (2). The degassing apparatus is that described by Battino, Banzhof, Bogar and Wilhelm (3). Degassing. Up to 500 cm ³ of solvent is placed in a flask of such size that the liquid is about 4 cm deep. The liquid is rapidly stirred, and vacuum is intermittently applied through a liquid N ₂ trap until the permanent gas residual pressure drops to 5 microns. Solubility Determination. The de-	RY INFORMATION SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Either Air Products & Chemicals Inc., or Matheson Co., Inc. 99 mol per cent or better. (2) trans-1,2-Dimethylcyclohexane. Chemical samples Co. Fraction- ally distilled and stored in dark. Refractive index (NaD, 298.15 K) 1.4248. ESTIMATED ERROR: $\delta T/K = 0.03$ $\delta P/mmHg = 0.5$ $\delta X_1/X_1 = 0.005$ REFERENCES: 1. Morrison, T. J.; Billett, F. J. Chem. Soc. <u>1948</u> , 2033.		
AUXILIA METHOD/APPARATUS/PROCEDURE: The solubility apparatus is based on the design of Morrison and Billett (1) and the version used is described by Battino, Evans, and Danforth (2). The degassing apparatus is that described by Battino, Banzhof, Bogan and Wilhelm (3). Degassing. Up to 500 cm ³ of solvent is placed in a flask of such size that the liquid is about 4 cm deep. The liquid is rapidly stirred, and vacuum is intermittently applied through a liquid N ₂ trap until the permanent gas residual pressure drops to 5 microns. Solubility Determination. The de- gassed solvent is passed in a thin film down a glass helical tube con-	RY INFORMATION SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Either Air Products & Chemicals Inc., or Matheson Co., Inc. 99 mol per cent or better. (2) trans-1,2-Dimethylcyclohexane. Chemical samples Co. Fraction- ally distilled and stored in dark. Refractive index (NaD, 298.15 K) 1.4248. ESTIMATED ERROR: $\delta T/K = 0.03$ $\delta P/mmHg = 0.5$ $\delta X_1/X_1 = 0.005$ REFERENCES: 1. Morrison, T. J.; Billett, F.		
AUXILIA METHOD/APPARATUS/PROCEDURE: The solubility apparatus is based on the design of Morrison and Billett (1) and the version used is described by Battino, Evans, and Danforth (2). The degassing apparatus is that described by Battino, Banzhof, Bogan and Wilhelm (3). Degassing. Up to 500 cm ³ of solvent is placed in a flask of such size that the liquid is about 4 cm deep. The liquid is rapidly stirred, and vacuum is intermittently applied through a liquid N ₂ trap until the permanent gas residual pressure drops to 5 microns. Solubility Determination. The de- gassed solvent is passed in a thin film down a glass helical tube con- taining solute gas plus the solvent	RY INFORMATION SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Either Air Products & Chemicals Inc., or Matheson Co., Inc. 99 mol per cent or better. (2) trans-1,2-Dimethylcyclohexane. Chemical samples Co. Fraction- ally distilled and stored in dark. Refractive index (NaD, 298.15 K) 1.4248. ESTIMATED ERROR: $\delta T/K = 0.03$ $\delta P/mmHg = 0.5$ $\delta X_1/X_1 = 0.005$ REFERENCES: 1. Morrison, T. J.; Billett, F. J. Chem. Soc. 1948, 2033. 2. Battino, R.; Evans, F. D.; Danforth, W. F. J. Am. Oil Chem. Soc. 1968,		
AUXILIA METHOD/APPARATUS/PROCEDURE: The solubility apparatus is based on the design of Morrison and Billett (1) and the version used is described by Battino, Evans, and Danforth (2). The degassing apparatus is that described by Battino, Banzhof, Bogan and Wilhelm (3). Degassing. Up to 500 cm ³ of solvent is placed in a flask of such size that the liquid is about 4 cm deep. The liquid is rapidly stirred, and vacuum is intermittently applied through a liquid N ₂ trap until the permanent gas residual pressure drops to 5 microns. Solubility Determination. The de- gassed solvent is passed in a thin film down a glass helical tube con- taining solute gas plus the solvent vapor at a total pressure of one atm The volume of gas absorbed is found	RY INFORMATION SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Either Air Products & Chemicals Inc., or Matheson Co., Inc. 99 mol per cent or better. (2) trans-1,2-Dimethylcyclohexane. Chemical samples Co. Fraction- ally distilled and stored in dark. Refractive index (NaD, 298.15 K) 1.4248. ESTIMATED ERROR: $\delta T/K = 0.03$ $\delta P/mmHg = 0.5$ $\delta X_1/X_1 = 0.005$ REFERENCES: 1. Morrison, T. J.; Billett, F. J. Chem. Soc. <u>1948</u> , 2033. 2. Battino, R.; Evans, F. D.; Danforth, W. F. J. Am. Oil Chem. Soc. <u>1968</u> , 45, 830. 3. Battino, R.; Banzhof, M.;		
AUXILIA METHOD/APPARATUS/PROCEDURE: The solubility apparatus is based on the design of Morrison and Billett (1) and the version used is described by Battino, Evans, and Danforth (2). The degassing apparatus is that described by Battino, Banzhof, Bogan and Wilhelm (3). Degassing. Up to 500 cm ³ of solvent is placed in a flask of such size that the liquid is about 4 cm deep. The liquid is rapidly stirred, and vacuum is intermittently applied through a liquid N ₂ trap until the permanent gas residual pressure drops to 5 microns. Solubility Determination. The de- gassed solvent is passed in a thin film down a glass helical tube con- taining solute gas plus the solvent vapor at a total pressure of one atm The volume of gas absorbed is found by difference between the initial an	RY INFORMATION SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Either Air Products & Chemicals Inc., or Matheson Co., Inc. 99 mol per cent or better. (2) trans-1,2-Dimethylcyclohexane. Chemical samples Co. Fraction- ally distilled and stored in dark. Refractive index (NaD, 298.15 K) 1.4248. ESTIMATED ERROR: $\delta T/K = 0.03$ $\delta P/mmHg = 0.5$ $\delta X_1/X_1 = 0.005$ REFERENCES: 1. Morrison, T. J.; Billett, F. J. Chem. Soc. <u>1948</u> , 2033. 2. Battino, R.; Evans, F. D.; Danforth, W. F. J. Am. Oil Chem. Soc. <u>1968</u> , 45, 830. 3. Battino, R.; Banzhof, M.; Bogan, M.; Wilhelm, E.		
AUXILIA METHOD/APPARATUS/PROCEDURE: The solubility apparatus is based on the design of Morrison and Billett (1) and the version used is described by Battino, Evans, and Danforth (2). The degassing apparatus is that described by Battino, Banzhof, Bogan and Wilhelm (3). Degassing. Up to 500 cm ³ of solvent is placed in a flask of such size that the liquid is about 4 cm deep. The liquid is rapidly stirred, and vacuum is intermittently applied through a liquid N ₂ trap until the permanent gas residual pressure drops to 5 microns. Solubility Determination. The de- gassed solvent is passed in a thin film down a glass helical tube con- taining solute gas plus the solvent vapor at a total pressure of one atm The volume of gas absorbed is found	RY INFORMATION SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Either Air Products & Chemicals Inc., or Matheson Co., Inc. 99 mol per cent or better. (2) trans-1,2-Dimethylcyclohexane. Chemical samples Co. Fraction- ally distilled and stored in dark. Refractive index (NaD, 298.15 K) 1.4248. ESTIMATED ERROR: $\delta T/K = 0.03$ $\delta P/mmHg = 0.5$ $\delta X_1/X_1 = 0.005$ REFERENCES: 1. Morrison, T. J.; Billett, F. J. Chem. Soc. 1948, 2033. 2. Battino, R.; Evans, F. D.; Danforth, W. F. J. Am. Oil Chem. Soc. 1968, 45, 830. 3. Battino, R.; Banzhof, M.;		

Hydrod	arbons 159
COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Geller, E. B.; Battino, R.; Wilhelm, E.
(2) <i>cis</i> -1,4-Dimethylcyclohexane, 70 mol %; C ₈ H ₁₆ ; [624-29-3]	J. Chem. Thermodyn. <u>1976</u> , 8, 197-202.
<pre>(3) trans-1,4-Dimethylcyclohexane, 30 mol %; C₈H₁₆; [2207-04-7]</pre>	197-202.
VARIABLES:	PREPARED BY:
T/K = 298.17 - 313.15 P/kPa = 101.325	H. L. Clever A. L. Cramer
EXPERIMENTAL VALUES:	
T/K Mol Fraction X ₁ × 10 ³	Bunsen Ostwald Coefficient Coefficient α L
298.17 0.997 313.15 1.029	0.1539 0.1681 0.1565 0.1794
The Bunsen coefficients were calculate	ed by the compiler.
The solubility values were adjusted to 101.325 kPa (1 atm) by Henry's law.	
	tion is based on only two pair of It should be used with caution. x = 1689 1 + 51 802 T
	$\Delta s^{\circ}/J \ \kappa^{-1} \ mol^{-1} = -51.802$
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The solubility apparatus is based on the design of Morrison and Billett (1) and the version used is described by Battino, Evans, and Danforth (2). The degassing apparatus is that	 (1) Nitrogen. Either Air Products & Chemicals, Inc., or Matheson Co., Inc. 99 mol per cent or better. (2) cis-1,4-Dimethylcyclohexane.
described by Battino, Banzhof, Bogan, and Wilhelm (3). Degassing. Up to 500 cm ³ of solvent is placed in a flask of such size	<pre>(3) trans-1,4-Dimethylcyclohexane. Chemical Samples Co. The binary mixture used as received. Composition determined by refrac- tive index by authors.</pre>
that the liquid is about 4 cm deep. The liquid is rapidly stirred, and vacuum is intermittently applied through a liquid N ₂ trap until the permanent gas residual pres-	ESTIMATED ERROR: $\delta T/K = 0.03$ $\delta P/mmHg = 0.5$
sure drops to 5 microns. Solubility Determination. The de- gassed solvent is passed in a thin film down a glass spiral tube con- taining solute gas plus the solvent vapor at a total pressure of one atm. The volume of gas absorbed is found	 REFERENCES: 1. Morrison, T. J.; Billett, F. J. Chem. Soc. 1948, 2033. 2. Battino, R.; Evans, F. D.; Danforth, W. F. J. Am. Oil Chem. Soc. 1968,
by difference between the initial and final volumes in the buret system. The solvent is collected in a tared flask and weighed.	45, 830. 3. Battino, R.; Banzhof, M.; Bogan, M.; Wilhelm, E. Anal. Chem. 1971, 43, 806.

COMPONENTS:	ORIGINAL MEASUREMENTS:	
(1) Nitrogen; N ₂ ; [7727-37-9]	Geller, E. B.; Battino, R.;	
(2) cis-1, 3-Dimethylcyclohexane,	Wilhelm, E.	
59 mol %; C ₈ H ₁₆ ; [638-04-0]	J. Chem. Thermodyn. <u>1976</u> , 8, 197-202.	
(3) trans-1,3-Dimethylcyclohexane,		
41 mol %; C ₈ H ₁₆ ; [2207-03-6]		
VARIABLES: T/K = 298.07 - 313.01	PREPARED BY: H. L. Clever	
P/kPa = 101.325	A. L. Cramer	
EXPERIMENTAL VALUES:		
T/K Mol Fraction	Bunsen Ostwald	
$x_1 \times 10^3$	Coefficient Coefficient	
	<u>α L</u>	
298.07 1.005 313.01 1.043	0.1547 0.1688 0.1580 0.1811	
	0.1300 0.1011	
The Bunsen coefficients were calculate	d by the compiler.	
The solubility values were adjusted to		
101.325 kPa (1 atm) by Henry's law.	a metoyen paretar pressure or	
Smoothed Data: The Gibbs energy equat	ion is based on only two pair of	
experimental values ar	d should be used with caution.	
$\Delta G^{O}/J \text{ mol}^{-1} = -RT \ln \lambda$	с, = 1924.2 + 50.937 т	
	$\Delta s^{\circ}/J \kappa^{-1} mol^{-1} = -50.937$	
$\Delta H / J mol = 1924.2,$	$\Delta S / J K mol = -50.937$	
AUXILIARY	INFORMATION	
AUXILIARY METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS;	
METHOD/APPARATUS/PROCEDURE: The solubility apparatus is based on	SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Either Air Products &	
METHOD/APPARATUS/PROCEDURE: The solubility apparatus is based on the design of Morrison and Billett	SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Either Air Products & Chemicals, Inc., or Matheson Co.,	
METHOD/APPARATUS/PROCEDURE: The solubility apparatus is based on the design of Morrison and Billett (1) and the version used is described	SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Either Air Products & Chemicals, Inc., or Matheson Co., Inc. 99 mol per cent or better.	
METHOD/APPARATUS/PROCEDURE: The solubility apparatus is based on the design of Morrison and Billett	 SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Either Air Products & Chemicals, Inc., or Matheson Co., Inc. 99 mol per cent or better. (2) cis-1,4-Dimethylcyclohexane. 	
METHOD/APPARATUS/PROCEDURE: The solubility apparatus is based on the design of Morrison and Billett (1) and the version used is described by Battino, Evans, and Danforth (2). The degassing apparatus is that described by Battino, Banzhof, Bogan,	 SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Either Air Products & Chemicals, Inc., or Matheson Co., Inc. 99 mol per cent or better. (2) cis-1,4-Dimethylcyclohexane. (3) trans-1,4-Dimethylcyclohexane. 	
METHOD/APPARATUS/PROCEDURE: The solubility apparatus is based on the design of Morrison and Billett (1) and the version used is described by Battino, Evans, and Danforth (2). The degassing apparatus is that described by Battino, Banzhof, Bogan, and Wilhelm (3).	 SOURCE AND PURITY OF MATERIALS; (1) Nitrogen. Either Air Products & Chemicals, Inc., or Matheson Co., Inc. 99 mol per cent or better. (2) cis-1,4-Dimethylcyclohexane. (3) trans-1,4-Dimethylcyclohexane. Chemical Samples Co. Binary 	
METHOD/APPARATUS/PROCEDURE: The solubility apparatus is based on the design of Morrison and Billett (1) and the version used is described by Battino, Evans, and Danforth (2). The degassing apparatus is that described by Battino, Banzhof, Bogan, and Wilhelm (3). Degassing. Up to 500 cm ³ of solvent	 SOURCE AND PURITY OF MATERIALS; (1) Nitrogen. Either Air Products & Chemicals, Inc., or Matheson Co., Inc. 99 mol per cent or better. (2) cis-1,4-Dimethylcyclohexane. (3) trans-1,4-Dimethylcyclohexane. Chemical Samples Co. Binary mixture used as received. Authors analyzed mixture by 	
METHOD/APPARATUS/PROCEDURE: The solubility apparatus is based on the design of Morrison and Billett (1) and the version used is described by Battino, Evans, and Danforth (2). The degassing apparatus is that described by Battino, Banzhof, Bogan, and Wilhelm (3). Degassing. Up to 500 cm ³ of solvent is placed in a flask of such size that	 SOURCE AND PURITY OF MATERIALS; (1) Nitrogen. Either Air Products & Chemicals, Inc., or Matheson Co., Inc. 99 mol per cent or better. (2) cis-1,4-Dimethylcyclohexane. (3) trans-1,4-Dimethylcyclohexane. Chemical Samples Co. Binary mixture used as received. Authors analyzed mixture by 	
METHOD/APPARATUS/PROCEDURE: The solubility apparatus is based on the design of Morrison and Billett (1) and the version used is described by Battino, Evans, and Danforth (2). The degassing apparatus is that described by Battino, Banzhof, Bogan, and Wilhelm (3). Degassing. Up to 500 cm ³ of solvent is placed in a flask of such size that the liquid is about 4 cm deep. The	 SOURCE AND PURITY OF MATERIALS; (1) Nitrogen. Either Air Products & Chemicals, Inc., or Matheson Co., Inc. 99 mol per cent or better. (2) cis-1,4-Dimethylcyclohexane. (3) trans-1,4-Dimethylcyclohexane. Chemical Samples Co. Binary mixture used as received. Authors analyzed mixture by refractive index. 	
METHOD/APPARATUS/PROCEDURE: The solubility apparatus is based on the design of Morrison and Billett (1) and the version used is described by Battino, Evans, and Danforth (2). The degassing apparatus is that described by Battino, Banzhof, Bogan, and Wilhelm (3). Degassing. Up to 500 cm ³ of solvent is placed in a flask of such size that the liquid is about 4 cm deep. The liquid is rapidly stirred, and vacuum	 SOURCE AND PURITY OF MATERIALS; (1) Nitrogen. Either Air Products & Chemicals, Inc., or Matheson Co., Inc. 99 mol per cent or better. (2) cis-1,4-Dimethylcyclohexane. (3) trans-1,4-Dimethylcyclohexane. Chemical Samples Co. Binary mixture used as received. Authors analyzed mixture by refractive index. ESTIMATED ERROR: 	
METHOD/APPARATUS/PROCEDURE: The solubility apparatus is based on the design of Morrison and Billett (1) and the version used is described by Battino, Evans, and Danforth (2). The degassing apparatus is that described by Battino, Banzhof, Bogan, and Wilhelm (3). Degassing. Up to 500 cm ³ of solvent is placed in a flask of such size that the liquid is about 4 cm deep. The liquid is rapidly stirred, and vacuum is applied intermittently through a liquid N ₂ trap until the	<pre>SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Either Air Products & Chemicals, Inc., or Matheson Co., Inc. 99 mol per cent or better. (2) cis-1,4-Dimethylcyclohexane. (3) trans-1,4-Dimethylcyclohexane. Chemical Samples Co. Binary mixture used as received. Authors analyzed mixture by refractive index. ESTIMATED ERROR:</pre>	
METHOD/APPARATUS/PROCEDURE: The solubility apparatus is based on the design of Morrison and Billett (1) and the version used is described by Battino, Evans, and Danforth (2). The degassing apparatus is that described by Battino, Banzhof, Bogan, and Wilhelm (3). Degassing. Up to 500 cm ³ of solvent is placed in a flask of such size that the liquid is about 4 cm deep. The liquid is rapidly stirred, and vacuum is applied intermittently through a liquid N ₂ trap until the permanent gas residual pressure drops	<pre>SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Either Air Products & Chemicals, Inc., or Matheson Co., Inc. 99 mol per cent or better. (2) cis-1,4-Dimethylcyclohexane. (3) trans-1,4-Dimethylcyclohexane. Chemical Samples Co. Binary mixture used as received. Authors analyzed mixture by refractive index. ESTIMATED ERROR:</pre>	
METHOD/APPARATUS/PROCEDURE: The solubility apparatus is based on the design of Morrison and Billett (1) and the version used is described by Battino, Evans, and Danforth (2). The degassing apparatus is that described by Battino, Banzhof, Bogan, and Wilhelm (3). Degassing. Up to 500 cm ³ of solvent is placed in a flask of such size that the liquid is about 4 cm deep. The liquid is rapidly stirred, and vacuum is applied intermittently through a liquid N ₂ trap until the permanent gas residual pressure drops to 5 microns.	<pre>SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Either Air Products & Chemicals, Inc., or Matheson Co., Inc. 99 mol per cent or better. (2) cis-1,4-Dimethylcyclohexane. (3) trans-1,4-Dimethylcyclohexane. Chemical Samples Co. Binary mixture used as received. Authors analyzed mixture by refractive index. ESTIMATED ERROR:</pre>	
METHOD/APPARATUS/PROCEDURE: The solubility apparatus is based on the design of Morrison and Billett (1) and the version used is described by Battino, Evans, and Danforth (2). The degassing apparatus is that described by Battino, Banzhof, Bogan, and Wilhelm (3). Degassing. Up to 500 cm ³ of solvent is placed in a flask of such size that the liquid is about 4 cm deep. The liquid is rapidly stirred, and vacuum is applied intermittently through a liquid N ₂ trap until the permanent gas residual pressure drops to 5 microns. Solubility Determination. The de-	<pre>SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Either Air Products & Chemicals, Inc., or Matheson Co., Inc. 99 mol per cent or better. (2) cis-1,4-Dimethylcyclohexane. (3) trans-1,4-Dimethylcyclohexane. Chemical Samples Co. Binary mixture used as received. Authors analyzed mixture by refractive index. ESTIMATED ERROR:</pre>	
METHOD/APPARATUS/PROCEDURE: The solubility apparatus is based on the design of Morrison and Billett (1) and the version used is described by Battino, Evans, and Danforth (2). The degassing apparatus is that described by Battino, Banzhof, Bogan, and Wilhelm (3). Degassing. Up to 500 cm ³ of solvent is placed in a flask of such size that the liquid is about 4 cm deep. The liquid is rapidly stirred, and vacuum is applied intermittently through a liquid N ₂ trap until the permanent gas residual pressure drops to 5 microns. Solubility Determination. The de- gassed solvent is passed in a thin	<pre>SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Either Air Products & Chemicals, Inc., or Matheson Co., Inc. 99 mol per cent or better. (2) cis-1,4-Dimethylcyclohexane. (3) trans-1,4-Dimethylcyclohexane. Chemical Samples Co. Binary mixture used as received. Authors analyzed mixture by refractive index. ESTIMATED ERROR:</pre>	
METHOD/APPARATUS/PROCEDURE: The solubility apparatus is based on the design of Morrison and Billett (1) and the version used is described by Battino, Evans, and Danforth (2). The degassing apparatus is that described by Battino, Banzhof, Bogan, and Wilhelm (3). Degassing. Up to 500 cm ³ of solvent is placed in a flask of such size that the liquid is about 4 cm deep. The liquid is rapidly stirred, and vacuum is applied intermittently through a liquid N ₂ trap until the permanent gas residual pressure drops to 5 microns. Solubility Determination. The de- gassed solvent is passed in a thin film down a glass helical tube con- taining solute gas plus the solvent	SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Either Air Products & Chemicals, Inc., or Matheson Co., Inc. 99 mol per cent or better. (2) cis -1,4-Dimethylcyclohexane. (3) $trans$ -1,4-Dimethylcyclohexane. Chemical Samples Co. Binary mixture used as received. Authors analyzed mixture by refractive index. ESTIMATED ERROR: $\delta T/K = 0.03$ $\delta P/mmHg = 0.5$ $\delta x_1/X_1 = 0.005$ REFERENCES: 1. Morrison, T. J.; Billett, F. J. Chem. Soc. <u>1948</u> , 2033.	
METHOD/APPARATUS/PROCEDURE: The solubility apparatus is based on the design of Morrison and Billett (1) and the version used is described by Battino, Evans, and Danforth (2). The degassing apparatus is that described by Battino, Banzhof, Bogan, and Wilhelm (3). Degassing. Up to 500 cm ³ of solvent is placed in a flask of such size that the liquid is about 4 cm deep. The liquid is rapidly stirred, and vacuum is applied intermittently through a liquid N ₂ trap until the permanent gas residual pressure drops to 5 microns. Solubility Determination. The de- gassed solvent is passed in a thin film down a glass helical tube con- taining solute gas plus the solvent vapor at a total pressure of one atm.	SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Either Air Products & Chemicals, Inc., or Matheson Co., Inc. 99 mol per cent or better. (2) cis -1,4-Dimethylcyclohexane. (3) $trans$ -1,4-Dimethylcyclohexane. Chemical Samples Co. Binary mixture used as received. Authors analyzed mixture by refractive index. ESTIMATED ERROR: $\delta T/K = 0.03$ $\delta P/mmHg = 0.5$ $\delta X_1/X_1 = 0.005$ REFERENCES: 1. Morrison, T. J.; Billett, F. J. Chem. Soc. <u>1948</u> , 2033. 2. Battino, R.; Evans, F. D.;	
METHOD/APPARATUS/PROCEDURE: The solubility apparatus is based on the design of Morrison and Billett (1) and the version used is described by Battino, Evans, and Danforth (2). The degassing apparatus is that described by Battino, Banzhof, Bogan, and Wilhelm (3). Degassing. Up to 500 cm ³ of solvent is placed in a flask of such size that the liquid is about 4 cm deep. The liquid is rapidly stirred, and vacuum is applied intermittently through a liquid N ₂ trap until the permanent gas residual pressure drops to 5 microns. Solubility Determination. The de- gassed solvent is passed in a thin film down a glass helical tube con- taining solute gas plus the solvent vapor at a total pressure of one atm. The volume of gas absorbed is found by	SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Either Air Products & Chemicals, Inc., or Matheson Co., Inc. 99 mol per cent or better. (2) cis -1,4-Dimethylcyclohexane. (3) $trans$ -1,4-Dimethylcyclohexane. Chemical Samples Co. Binary mixture used as received. Authors analyzed mixture by refractive index. ESTIMATED ERROR: $\delta T/K = 0.03$ $\delta P/mmHg = 0.5$ $\delta X_1/X_1 = 0.005$ REFERENCES: 1. Morrison, T. J.; Billett, F. J. Chem. Soc. <u>1948</u> , 2033. 2. Battino, R.; Evans, F. D.; Danforth, W. F.	
METHOD/APPARATUS/PROCEDURE: The solubility apparatus is based on the design of Morrison and Billett (1) and the version used is described by Battino, Evans, and Danforth (2). The degassing apparatus is that described by Battino, Banzhof, Bogan, and Wilhelm (3). Degassing. Up to 500 cm ³ of solvent is placed in a flask of such size that the liquid is about 4 cm deep. The liquid is rapidly stirred, and vacuum is applied intermittently through a liquid N ₂ trap until the permanent gas residual pressure drops to 5 microns. Solubility Determination. The de- gassed solvent is passed in a thin film down a glass helical tube con- taining solute gas plus the solvent vapor at a total pressure of one atm. The volume of gas absorbed is found by difference between the initial and	SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Either Air Products & Chemicals, Inc., or Matheson Co., Inc. 99 mol per cent or better. (2) cis -1,4-Dimethylcyclohexane. (3) $trans$ -1,4-Dimethylcyclohexane. Chemical Samples Co. Binary mixture used as received. Authors analyzed mixture by refractive index. ESTIMATED ERROR: $\delta T/K = 0.03$ $\delta P/mmHg = 0.5$ $\delta X_1/X_1 = 0.005$ REFERENCES: 1. Morrison, T. J.; Billett, F. J. Chem. Soc. <u>1948</u> , 2033. 2. Battino, R.; Evans, F. D.;	
METHOD/APPARATUS/PROCEDURE: The solubility apparatus is based on the design of Morrison and Billett (1) and the version used is described by Battino, Evans, and Danforth (2). The degassing apparatus is that described by Battino, Banzhof, Bogan, and Wilhelm (3). Degassing. Up to 500 cm ³ of solvent is placed in a flask of such size that the liquid is about 4 cm deep. The liquid is rapidly stirred, and vacuum is applied intermittently through a liquid N ₂ trap until the permanent gas residual pressure drops to 5 microns. Solubility Determination. The de- gassed solvent is passed in a thin film down a glass helical tube con- taining solute gas plus the solvent vapor at a total pressure of one atm. The volume of gas absorbed is found by difference between the initial and final volumes in the buret system.	SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Either Air Products & Chemicals, Inc., or Matheson Co., Inc. 99 mol per cent or better. (2) cis -1,4-Dimethylcyclohexane. (3) $trans$ -1,4-Dimethylcyclohexane. Chemical Samples Co. Binary mixture used as received. Authors analyzed mixture by refractive index. ESTIMATED ERROR: $\delta T/K = 0.03$ $\delta P/mmHg = 0.5$ $\delta X_1/X_1 = 0.005$ REFERENCES: 1. Morrison, T. J.; Billett, F. J. Chem. Soc. <u>1948</u> , 2033. 2. Battino, R.; Evans, F. D.; Danforth, W. F. J. Am. Oil Chem. Soc. <u>1968</u> , 45, 830. 3. Battino, R.; Banzhof, M.;	
METHOD/APPARATUS/PROCEDURE: The solubility apparatus is based on the design of Morrison and Billett (1) and the version used is described by Battino, Evans, and Danforth (2). The degassing apparatus is that described by Battino, Banzhof, Bogan, and Wilhelm (3). Degassing. Up to 500 cm ³ of solvent is placed in a flask of such size that the liquid is about 4 cm deep. The liquid is rapidly stirred, and vacuum is applied intermittently through a liquid N ₂ trap until the permanent gas residual pressure drops to 5 microns. Solubility Determination. The de- gassed solvent is passed in a thin film down a glass helical tube con- taining solute gas plus the solvent vapor at a total pressure of one atm. The volume of gas absorbed is found by difference between the initial and	SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Either Air Products & Chemicals, Inc., or Matheson Co., Inc. 99 mol per cent or better. (2) cis -1,4-Dimethylcyclohexane. (3) $trans$ -1,4-Dimethylcyclohexane. Chemical Samples Co. Binary mixture used as received. Authors analyzed mixture by refractive index. ESTIMATED ERROR: $\delta T/K = 0.03$ $\delta P/mmHg = 0.5$ $\delta X_1/X_1 = 0.005$ REFERENCES: 1. Morrison, T. J.; Billett, F. J. Chem. Soc. <u>1948</u> , 2033. 2. Battino, R.; Evans, F. D.; Danforth, W. F. J. Am. Oil Chem. Soc. <u>1968</u> , 45, 830.	

ORIGINAL MEASUREMENTS:	
Tremper, K.K.; Prausnitz, J.M.	
J. Chem. Eng. Data <u>1976</u> , 21,295-9.	
PREPARED BY:	
C.L. Young	
nstant ^a Mole fraction ^b of nitrogen at 1 atm partial pressure, ^x N ₂	
0.0007435	
0.0007849	
0.0008333	
0.0008905	
0.0009606	
0.001058	
0.001206	
0.001397 .	
assuming linear relationship nd pressure	
INFORMATION	
SOURCE AND PURITY OF MATERIALS:	
Solvent degassed, no other details given.	
ESTIMATED ERROR: $\delta T/K = \pm 0.1; \ \delta x_{N_2} = \pm 1$ %. REFERENCES: 1. Dymond, J.; Hildebrand, J.H. Ind. Eng. Chem. Fundam. <u>1967</u> , 6, 130. 2. Cukor, P.M.; Prausnitz, J.M. Ind. Eng. Chem. Fundam. <u>1971</u> , 10, 638.	

COMPONENTS:

(1) Nitrogen; N₃; [7727-37-9] (2) Benzene; C₆H₆; [71-43-2] (2') Toluene; C₇H₈; [108-88-3]

EVALUATOR: Rubin Battino Department of Chemistry Wright State University Dayton, Ohio 45435 U.S.A.

December 1981

CRITICAL EVALUATION:

Benzene

Five papers (1-5) report on the solubility of nitrogen in benzene. Just's two points (1) were significantly lower and Patyi, et al.'s, single point (5) significantly higher than the other three papers' values. Thus, the recommended values were obtained from smoothing the data in references 2,3, and 4. This yielded

 $\ln x_1 = -6.05445 - 4.95673/(T/100K)$ (1)with a standard deviation in ln x_1 of 0.0090. $\Delta \overline{H}^\circ = 4121 \text{ J mol}^{-1}$, $\Delta \overline{S}^\circ =$ -50 J K⁻¹ mol⁻¹. Smoothed values at 5K intervals follow.

Т/К	lo ⁴ × _l	T/K	10 ⁴ × ₁
278.15	3.95	308.15	4.70
283.15	4.08	313.15	4.82
288.15	4.20	318.15	4.94
293.15	4.33	323.15	5.06
298.15	4.45	328.15	5.18
303.15	4.58	333.15	5.30

Toluene

The nitrogen/toluene system was studied by Just (1) and Field, et al., (2). Both sets of data were combined for smoothing but due to the variation in the data the smoothed values may only considered to be tentative. The smoothing equation is

 $\ln x_1 = -6.27576 - 3.71675/(T/100K)$

(2)

with a standard deviation in $\ln x_1$ of 0.030. $\Delta \overline{H}^\circ = 3090 \text{ J mol}^{-1}$ and $\Delta \overline{S}^{\circ} = -52 \text{ J K}^{-1} \text{ mol}^{-1}$. Smoothed values follow.

т/к	lo ⁴ × _l	T/K	10 ⁴ ×1
283.15	5.06	303.15	5.52
288.15	5.18	308.15	5.63
293.15	5.29	313.15	5.74
298.15	5.41		

References

- 1. Just, G. Z. Phys. Chem. 1901, 37, 342-67.
- 2. Horiuti, J. Sci. Pap. Inst. Phys. Chem. Res. (Jpn) 1931/32, 17, 125-256.
- 3. Gjaldbaek, J.C.; Hildebrand, J.H. J. Am. Chem. Soc. <u>1949</u>, 71, 3147-50. 4. Byrne, J.E.; Battino, R.; Danforth, W.F. J. Chem. Thermodyn. <u>1974</u>, 6, 245-50.
- 5. Patyi, L.; Furmer, I. E.; Makranczy, J.; Sadilenko, A. S.; Stepanova, Z. G.; Berengarten, M. G. Zh. Prikl. Khim. 1978, 51, 1296-1300.
 6. Field, L. R.; Wilhelm, E.; Battino, R. J. Chem. Thermodyn. 1974, 6,
- 237-43.

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Just, G.
(2) Benzene; C ₆ H ₆ ; [71-43-2]	Z. Phys. Chem. <u>1901</u> , 37, 342-67.
VARIABLES:	PREPARED BY:
T/K = 293 - 298	M. E. Derrick
P/kPa = 101.325	H. L. Clever
EXPERIMENTAL VALUES:	L
T/K Mol Fraction	Bunsen Ostwald
$x_1 \times 10^4$ C	pefficient Coefficient α L
293.15 4.12 298.15 4.24	0.1038 0.1114 0.1062 0.1159
The author measured the O pressure of about 746 mmH	
the Ostwald coefficient to pressure, and calculated	
Bunsen coefficient values	at 101.325 kPa (l atm)
partial pressure of the g	as.
· ·	
	-
	- ·
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
An Ostwald apparatus as modified by Timofejew (1), and Steiner (2) is	(1) Nitrogen. Prepared by the reaction of sodium nitrite and
used. The apparatus consists of a	ammonium nitrate in aqueous
gas buret, an absorption flask, and a mercury manometer. The system is	solution in the presence of calcium dichromate.
thermostated with a water jacket.	(2) Benzene. No information.
The gas is introduced into the de-	(2) Benzene. No information.
gassed liquid. The gas volume absorbed is determined by the gas	
buret. The solvent volume is deter- mined at the end of the experiment by	
pouring the solvent into a graduated	ESTIMATED ERROR:
flask.	
	$\delta L/L = 0.03$ (compiler)
	REFERENCES:
	l. Timofejew, W. Z. Physik. Chem. <u>1890</u> , 6, 141.
	 Steiner, Ann. Phys. (Leipzig) <u>1894</u>, 52, 275.

.

Nitrogen Solubilities up to 200 kPa

Nittogen boldom	
COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Horiuti, J.
(2) Benzene; C ₆ H ₆ ; [71-43-2]	Sci. Pap. Inst. Phys. Chem. Res.
66	(Jon) <u>1931/32</u> , 17, 125-256.
VARIABLES:	PREPARED BY:
T/K = 280.25 - 333.15	M. E. Derrick
Total P/kPa = 101.325	H. L. Clever
EXPERIMENTAL VALUES: T/K Mol Fraction	Bunsen Ostwald
	Coefficient Coefficient
	α L
280.25 0.4045 293.15 0.4292	0.1036 0.1063 0.1083 0.1162
313.15 0.4799	0.1182 0.1355
333.15 0.5374	
Smoothed Data: $\ln x_1 = -17.9801 + 12$.1852/(T/100) + 5.646 ln (T/100)
	<i>c</i>
Standard error about the regression 1	ine = 1.55×10^{-6}
T/K Mol Fraction	T/K Mol Fraction
$x_1 \times 10^3$	$x_1 \times 10^3$
283.15 0.4096	313.15 0.4789
293.15 0.4303	323.15 0.5071
<u>303.15</u> 0.4534 If the gas and solution are assumed to	<u>333.15</u> 0.5378
the following thermodynamic values.	o be ideal the littled equation gives
	1 0 1 1 0 1 1
T/K AG/KJ MOL AH/J MOL	$\Delta s^{\circ}/J \kappa^{-1} mol^{-1} \Delta c_p^{\circ}/J \kappa^{-1} mol^{-1}$
283.15 18.363 3161 298.15 19.150 3865	-53.69 46.95 -51.27 46.95
The Ostwald coefficient was measured	at a total pressure of one atm. The
Bunsen coefficient and the mole fract:	ion solubility values were calculated
by the compiler for a gas pressure of ideally and the Ostwald coefficient to	one atm assuming the gas to behave be independent of pressure.
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The apparatus consists of a gas	(1)Nitrogen. Prepared in the labora-
buret, a solvent reservoir, and an absorption pipet. The volume of the	tory by heating sodium azide (Kahlbaum, recrystalized and
pipet was determined at various	dried). Gas dried over phospho-
miniscus heights by weighing a quan-	rous pentoxide.
tity of water. The miniscus height was read with a cathetometer.	(2)Benzene. Merck. Extra pure,
The dry gas introduced into the	free from sulfur sample refluxed with sodium amalgam. Normal
degassed solvent. The gas and sol-	boiling point 80.18°C.
vent are mixed with a magnetic stir-	POTITING POTUE 80.18 C.
rer until saturation. Care taken to prevent solvent vapor from mixing	
with the solute gas in the gas buret.	ESTIMATED ERROR:
The volume of gas was determined	
from a gas buret reading, the volume of the solvent was determined from	$\delta T/K = 0.05$
the miniscus height in the absorp-	
tion pipet.	

Hydroc	carbons 165
COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Gjaldbaek, J. C.; Hildebrand, J. H.
(2) Benzene; C ₆ H ₆ ; [71-43-2]	J. Am. Chem. Soc. <u>1949</u> , 71, 3147-50.
VARIABLES:	PREPARED BY:
T/K = 298.15 Total P/kPa = 101.325	J. Chr. Gjaldbaek
EXPERIMENTAL VALUES: T/K Mol Fraction $X_1 \times 10^3$	Bunsen Ostwald Coefficient Coefficient α L
298.15 0.448	0.124 0.135
	-
AUXILIARY INFORMATION	
METHOD/APPARATUS/PROCEDURE: A calibrated all-glass combined man- ometer and bulb was enclosed in an air thermostat and shaken until equilibrium. Mercury was used for calibration and as the confining liquid. The solvents were degassed in the apparatus. Details are in references 1 and 2. The absorbed volume of gas was cal- culated from the initial and final amounts, both saturated with solvent vapor. The amount of solvent was determined by the weight of displaced mercury. The saturation of the liquid with the gas was carried out close to atmos-	$\delta T/K = 0.05$
pheric pressure. The solubility values were reported for one atmos- phere gas pressure assuming Henry's law is obeyed.	<pre>REFERENCES: 1. Lannung, A. J. Am. Chem. Soc. <u>1930</u>, 52, 68. 2. Gjaldbaek, J. C. Acta Chem. Scand. <u>1952</u>, 6, 623.</pre>

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Yen, L. C.; McKetta, J. J.
(2) Benzene; C ₆ H ₆ ; [71-43-2]	J. Chem. Eng. Data <u>1962</u> , 7, 288-9.
VARIABLES:	PREPARED BY:
T/K = 301	R. Battino
EXPERIMENTAL VALUES:	
t/°C (3	
Run	α^{a}/cm^{3} (STP) cm ⁻³ atm ⁻¹
N-2	0.118
N-3	0.115
N-4	0.116
N-6	0.113
N-7	0.118
N-8	0.113
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Used a modified version of the solubility apparatus of Markham and	(1) No details given.
Kobe (1).	-
	(2) J. T. Baker Chemical Co., Baker analyzed grade, distilled.
	ESTIMATED ERROR:
	$\delta \alpha / \alpha = \pm 0.016$
1	REFERENCES :
	 Markham, A. E.; Kobe, K. A. J. Am. Chem. Soc. <u>1941</u>, 63, 449.

Hydrocarbons 16/		
COMPONENTS:	ORIGINAL MEASUREMENTS:	
(1) Nitrogen; N ₂ ; [7727-37-9]	Byrne, J. E.; Battino, R.; Danforth, W. F.	
(2) Benzene; C ₆ H ₆ ; [71-43-2]	J. Chem. Thermodyn. <u>1974</u> , 6, 245-50.	
VARIABLES:	PREPARED BY:	
T/K = 310.64, 310.69 P/kPa = 101.325	H. L. Clever	
EXPERIMENTAL VALUES:		
T/K Mol Fraction $X_1 \times 10^3$ Co	Bunsen Ostwald Defficient Coefficient α L	
310.64 0.471 310.69 0.473	0.1163 0.1323 0.1168 0.1328	
	~	
AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
The solubility apparatus is based on the design of Morrison and Billett (1) and the version used is described by Battino, Evans, and Danforth (2). The degassing apparatus is that described by Battino, Banzhof, Bogan, and Wilhelm (3).	 Nitrogen. Matheson Co., Inc. Minimum purity 99.99 mole per cent. Benzene. Baker Analyzed Reagent Grade. Thiophene free, 99.9 mol 	
Degassing. Up to 500 cm ³ of solvent is placed in a flask of such size that the liquid is about 4 cm deep. The liquid is rapidly stirred, and vacuum is intermittently applied through a liquid N ₂ trap until the permanent gas residual pressure drops to 5 microns. Solubility Determination. The de- gassed solvent is passed in a thin film down a glass spiral tube con- taining solute gas plus the solvent vapor at a total pressure of one atm. The volume of gas absorbed is found	ESTIMATED ERROR: $\delta T/K = 0.03$ $\delta P/mmHg = 0.5$ $\delta X_1/X_1 = 0.005$ REFERENCES: 1. Morrison, T. J.; Billett, F. J. Chem. Soc. <u>1948</u> , 2033. 2. Battino, R.; Evans, F. D.;	

COMPONENTS:	ORIGINAL MEASUREMENTS:	
(1) Nitrogen; N ₂ ; [7727-37-9]	Patyi, L.; Furmer, I. E.; Makranczy, J; Sadilenko, A. S.;	
(2) Benzene; C ₆ H ₆ ; [71-43-2]	Stepanova, Z. G.; Berengarten, M.G. Zh. Prikl. Khim. <u>1978</u> , 51, 1296-1300.	
VARIABLES:	PREPARED BY:	
т/к = 298	C. L. Young	
EXPERIMENTAL VALUES:		
T/K α [*] Mole fr	action of nitrogen at a partial pressure of 101.325 kPa	
298.15 0.124	0.000495	
* volume of gas (measured at 101.325 kPa and 273.15 K) dissolved by one volume of benzene.		
AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS;	
Volumetric method. Pressure measured when known amounts of gas were added, in increments, to a known amount of liquid in a vessel of known dimensions. Corrections were made for the partial pressure of solvent.	Purity better than 99 mole per cent as determined by gas chromatography.	
Details in ref. (1).	ESTIMATED ERROR:	
	δT/K = ±0.1; δα = ±4% or less. REFERENCES: Bodor, E.; Bor, G. J.; Mohai, B.; Sipos, G. Vesspremi. Vegyip. Egy. Kosl. 1957, 1, 55. 	

.

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Just, G.
<pre>(2) Methyl benzene or toluene; C₇H₈; [108-88-3]</pre>	Z. Phys. Chem. <u>1901</u> , 37, 342-67.
VARIABLES:	PREPARED BY:
T/K = 293.15, 298.15 P/kPa = 101.325	M. E. Derrick H. L. Clever
EXPERIMENTAL VALUES:	
T/K Mol Fraction x ₁ × 10 ⁴ Co	Bunsen Ostwald Defficient Coefficient α L
293.155.24298.155.39	0.1105 0.1186 0.1131 0.1235
The author measured the Ospressure of about 746 mmHo the Ostwald coefficient to pressure, and calculated t Bunsen coefficient values partial pressure of the ga	g. The compiler assumed b be independent of the mole fraction and at 101.325 kPa (1 atm)
-	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
An Ostwald apparatus as modified by Timofejew (1), and Steiner (2) is used. The apparatus consists of a gas buret, an absorption flask, and a mercury manometer. The system is thermostated with a water jacket. The gas is introduced into the degassed liquid. The gas volume absorbed is determined by the gas buret. The solvent volume is deter- mined at the end of the experiment	 Nitrogen. Prepared by the reaction of sodium nitrite and ammonium nitrate in aqueous solution in the presence of calcium dichromate. Methyl benzene. No information.
by pouring the solvent into a gradu-	ESTIMATED ERROR:
ated flask.	$\delta L/L = 0.03$ (compiler)
	<pre>REFERENCES: 1. Timofejew, W. Z. Physik. Chem. <u>1890</u>, 6, 141. 2. Steiner, Ann. Phys. (Leipzig) <u>1894</u>, 52, 275.</pre>

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Field, L. R.; Wilhelm, E.; Battino, R.
(2) Methylbenzene or Toluene; C ₇ H ₈ ; [108-88-3]	J. Chem. Thermodyn. <u>1974,</u> 6, 237-43.
VARIABLES:	PREPARED BY:
T/K = 283.39 - 313.28 P/kPa = 101.325	H. L. Clever
EXPERIMENTAL VALUES:	
T/K Mol Fraction X ₁ × 10 ³	Bunsen Ostwald Coefficient Coefficient α L
283.39 0.497 298.29 0.574 313.28 0.560	0.1061 0.1101 0.1204 0.1315 0.1158 0.1328
The gas solubility values were adjuste 101.325 kPa (1 atm) by Henry's law.	d to a nitrogen partial pressure of
The Bunsen coefficients were calculate	d by the compiler.
Smoothed Data: $\Delta G^{O}/J \text{ mol}^{-1} = -RT \ln X$	- = 2875.7 + 52.860 т
Std. Dev. $\Delta G^{\circ} = 116.8$,	-
$\Delta H^{0}/J \text{ mol}^{-1} = 2875.7, \Delta S^{0}/J \text{ K}^{-1} \text{ mol}^{-1} = -52.860$	
T/K Mol Fraction $\Delta G^{O}/J$ mol ⁻¹	
$x_1 \times 10^3$	
283.15 0.51 293.15 0.53 303.15 0.55 313.15 0.57	3 18,372 4 18,900
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: The solubility apparatus is based on the design of Morrison and Billett (1) and the version used is described by Battino, Evans, and Danforth (2). The degassing apparatus is that described by Battino, Banzhof, Bogan, and Wilhelm (3).	 SOURCE AND PURITY OF MATERIALS; (1) Nitrogen. Matheson Co., Inc. Minimum purity 99.99 mole per cent. (2) Toluene. Phillips Petroleum Pure Grade. Distilled.
Degassing. Up to 500 cm ³ of solvent is placed in a flask of such size that the liquid is about 4 cm deep. The liquid is rapidly stirred, and vacuum is intermittently applied through a liquid N ₂ trap until the permanent gas residual pressure drops to 5 microns.	ESTIMATED ERROR: $\delta T/K = 0.03$
Solubility Determination. The de- gassed solvent is passed in a thin film down a glass spiral tube con- taining solute gas plus the solvent vapor at a total pressure of one atm. The volume of gas absorbed is found by	$\delta P/mmHg = 0.5$ $\delta X_1/X_1 = 0.005$ REFERENCES: 1. Morrison, T. J.; Billett, F. J. Chem. Soc. 1948, 2033. 2. Battino, R.; Evans, F. D.;
difference between the initial and final volumes in the buret system. The solvent is collected in a tared flask and weighed.	 Battino, R.; Evans, F. D.; Danforth, W. F. J. Am. Oil Chem. Soc. 1968, 45, 830. Battino, R.; Banzhof, M.; Bogan, M.; Wilhelm, E. Anal. Chem. 1971, 43, 806.

COMPONENTS:	
	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Just, G.
(2) Dimethylbenzene or xylene; C ₈ H ₁₀ ; [1330-20-7]	Z. Phys. Chem. <u>1901</u> , 37, 342-67.
VARIABLES:	PREPARED BY:
T/K = 293.15, 298.15 P/kPa = 101.325	M. E. Derrick H. L. Clever
EXPERIMENTAL VALUES:	
T/K Mol Fraction $x_1 \times 10^4$	Bunsen Ostwald Coefficient Coefficient α L
293.15 6.03 298.15 6.12	0.1104 0.1185 0.1115 0.1217
The author measured the opressure of about 746 mm the Ostwald coefficient the ostwald coefficient the pressure, and calculated Bunsen coefficient values partial pressure of the operation	Ig. The compiler assumed to be independent of the mole fraction and at 101.325 kPa (1 atm) gas.
The compiler assumed the mixture of 40 per cent 1, 20 per cent each of 1,2-c dimethylbenzene, and ethy J. A.; Bunger, W. B. Org Wiley-Interscience, New Y	3-dimethylbenzene, and dimethylbenzene, 1,4- vlbenzene. See Riddick, ganic Solvents, 3rd Ed.,
	INFORMATION
	INFORMATION
METHOD/APPARATUS/PROCEDURE: An Ostwald apparatus as modified by Timofejew (1), and Steiner (2) is used. The apparatus consists of a gas buret, an absorption flask, and a mercury manometer. The system is thermostated with a water jacket.	INFORMATION SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Prepared by the reaction of sodium nitrite and ammonium nitrate in aqueous solution in the presence of calcium dichromate.
An Ostwald apparatus as modified by Timofejew (1), and Steiner (2) is used. The apparatus consists of a gas buret, an absorption flask, and a mercury manometer. The system is thermostated with a water jacket. The gas is introduced into the de- gassed liquid. The gas volume absorbed is determined by the gas buret. The solvent volume is deter- mined at the end of the experiment by	 SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Prepared by the reaction of sodium nitrite and ammonium nitrate in aqueous solution in the presence of calcium dichromate. (2) Dimethylbenzene. No information given.
An Ostwald apparatus as modified by Timofejew (1), and Steiner (2) is used. The apparatus consists of a gas buret, an absorption flask, and a mercury manometer. The system is thermostated with a water jacket. The gas is introduced into the de- gassed liquid. The gas volume absorbed is determined by the gas buret. The solvent volume is deter-	 SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Prepared by the reaction of sodium nitrite and ammonium nitrate in aqueous solution in the presence of calcium dichromate. (2) Dimethylbenzene. No information given.
An Ostwald apparatus as modified by Timofejew (1), and Steiner (2) is used. The apparatus consists of a gas buret, an absorption flask, and a mercury manometer. The system is thermostated with a water jacket. The gas is introduced into the de- gassed liquid. The gas volume absorbed is determined by the gas buret. The solvent volume is deter- mined at the end of the experiment by pouring the solvent into a graduated	 SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Prepared by the reaction of sodium nitrite and ammonium nitrate in aqueous solution in the presence of calcium dichromate. (2) Dimethylbenzene. No information given.
An Ostwald apparatus as modified by Timofejew (1), and Steiner (2) is used. The apparatus consists of a gas buret, an absorption flask, and a mercury manometer. The system is thermostated with a water jacket. The gas is introduced into the de- gassed liquid. The gas volume absorbed is determined by the gas buret. The solvent volume is deter- mined at the end of the experiment by pouring the solvent into a graduated	 SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Prepared by the reaction of sodium nitrite and ammonium nitrate in aqueous solution in the presence of calcium dichromate. (2) Dimethylbenzene. No information given.

	Nitrogen Solubili	ties up to 200 kPa
		ORIGINAL MEASUREMENTS:
en; N2; [7]	727-37-9]	Tremper, K.K.; Prausnitz, J.M.
	ethyl; C ₁₁ H ₁₀ ;	J. Chem. Eng. Data <u>1976</u> , 21,295-9
		PREPARED BY:
T/K = 300-	475	C.L. Young
VALUES:		
Т/К	Henry's Con: /atm	stant ^a Mole fraction ^b of nitrogen at 1 atm partial pressure, ^x N ₂
300	2970.0	0.0003367
325	2729.0	0.0003664
350	2481.0	0.0004031
375	2222.0	0.0004500
400	1949.0	0.0005131
425	1655.0	0.0006042
450	1338.0	0.0007474
475	1108.0	0.0009025
b. Calcu	lated by compiler a	assuming linear relationship
<u></u>	AUXILIARY	INFORMATION
apparatus by Dymond a easured with nd precisio	similar to that and Hildebrand (1). th a null	SOURCE AND PURITY OF MATERIALS: Solvent degassed, no other details given.
		ESTIMATED ERROR: $\delta T/K = \pm 0.1; \ \delta x_{N_2} = \pm 1$ %. REFERENCES: 1. Dymond, J.; Hildebrand, J.H. Ind. Eng. Chem. Fundam. <u>1967</u> , 6, 130. 2. Cukor, P.M.; Prausnitz, J.M. Ind. Eng. Chem. Fundam. <u>1971</u> , 10, 638
	Alene, 1-ma -0] T/K = 300- VALUES: T/K 300 325 350 375 400 425 450 475 a. Author press within b. Calcul between ATUS/PROCE by Dymond a leasured within by Dymond a	ren; N ₂ ; [7727-37-9] malene, 1-methyl; C ₁₁ H ₁₀ ; -0] T/K = 300-475 VALUES: T/K Henry's Cons /atm 300 2970.0 325 2729.0 350 2481.0 375 2222.0 400 1949.0 425 1655.0 450 1338.0 475 1108.0 a. Authors stated measuremme pressures and values of within the Henry's-Law b. Calculated by compiler a between mole fraction and AUXILIARY RATUS/PROCEDURE apparatus similar to that by Dymond and Hildebrand (1). reasured with a null and precision gauge. Details

.

•

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Tremper, K.K.; Prausnitz, J.M.
<pre>(2) Benzene, l, l'-methylenebis- (Diphenylmethane); C₁₃H₁₂; [101-81-5]</pre>	J. Chem. Eng. Data <u>1976</u> , 21,295-9.
VARIABLES:	PREPARED BY:
T/K = 300-475	C.L. Young
EXPERIMENTAL VALUES:	<u>1</u>
T/K Henry's Con /atm	stant ^a Mole fraction ^b of nitrogen at 1 atm partial pressure, ^x N ₂
300 2937.0	0.0003405
325 2570.0	
350 2304.0	0.0004340
375 2081.0	0.0004805
400 1890.0	0.0005291
425 1717.0	0.0005824
450 1553.0	0.0006439
475 1421.0	0.0007037
b. Calculated by compiler between mole fraction a	assuming linear relationship nd pressure.
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE Volumetric apparatus similar to that described by Dymond and Hildebrand (1). Pressure measured with a null detector and precision gauge. Details in ref. (2).	SOURCE AND PURITY OF MATERIALS: Solvent degassed, no details given.
	ESTIMATED ERROR: $\delta T/K = \pm 0.1; \ \delta x_{N_2} = \pm 1$ %. REFERENCES: 1. Dymond, J.; Hildebrand, J.H. Ind. Eng.Chem. Fundam. <u>1967</u> , 6, 130. 2. Cukor, P.M.; Prausnitz, J.M. Ind. Eng. Chem.Fundam. <u>1971</u> , 10,638.

COMPONENTS:	EVALUATOR:
(l) Nitrogen; N ₂ ; [7727-37-9] (2) Alcohols	Rubin Battino Department of Chemistry Wright State University Dayton, Ohio 45435 U.S.A.
	December 1981

CRITICAL EVALUATION:

In this section we will do a critical evaluation of the 1-alkanols from C_1 to C_{12} , 2-propanol, and 2-methyl-1-propanol (isobutanol) First we will discuss the data for the individual alcohols and then discuss the data at 298.15K for the 1-alkanols.

Methanol

The nitrogen/methanol system was studied by five groups (1-5). Just's data (1) were rejected for being too low and Makranczy, et al's, datum (5) for being too high. The remaining three sets of data were smoothed to yield.

$$\ln x_{1} = -8.17081 - 6.97967 \times 10^{-2} / (T/100K)$$
(1)

in the range 213 to 323 K with a standard deviation of 0.019 in ln x₁. Smoothed recommended values at 10 K intervals follow. $\Delta \overline{H}^\circ$ = 5803 J mol⁻¹ and $\Delta \overline{S}^\circ$ = 68 J K⁻¹ mol⁻¹.

т/к	10 ⁴ × ₁	T/K	10 ⁴ × ₁	T/K	10 ⁴ × ₁
213.15	2.74	253.15	2.75	293.15	2.76
223.15	2.74	263.15	2.75	298.15	2.76
233.15	2.74	273.15	2.76	303.15	2.76
243.15	2.75	283.15	2.76	313.15	2.77
				323.15	2.77

Ethanol

This system was studied by six groups (1-6) with Just's (1) and Metschl's (6) values being too low and Makranczy, et al.'s (5), value being too high. The smoothing equation obtained from references 2,3, and 4 gave

$$\ln x_1 = -7.95312 + 4.43802 \times 10^{-2} / (T/100K)$$
(2)

in the range 213 to 323 K with a standard deviation in $\ln x_1$ of 0.016. Smoothed recommended values at 10 K intervals follow. $\Delta \overline{H}^\circ = -37 \text{ J mol}^{-1}$ $\Delta \overline{S}^\circ = -66 \text{ J K}^{-1} \text{ mol}^{-1}$.

т/к	10 ⁴ x _l	т/к	10 ⁴ × ₁	T/K	10 ⁴ x ₁
213.15	3.59	253.15	3.58	293.15	3.57
223.15	3.59	263.15	3.58	298.15	3.57
233.15	3.58	273.15	3.57	303.15	3.57
243.15	3.58	283.15	3.57	313.15	3.57
				323.15	3.56

1-Propanol

The nitrogen/l-propanol system was studied by four groups (3,4,5,7). Again, Makranczy, et al.'s (5), value was too high to use. Also the 308 K value of Boyer and Bircher (3) was anomalously high. The remaining data from references 3,4, and 7 gave

$$\ln x_1 = -7.90598 + 0.257433/(T/100K)$$

in the range 213 to 298 K with a standard deviation of 0.015 in ln x_1 . Smoothed values at 10K intervals follow, $\Delta \overline{H}^\circ = 214 \text{ J mol}^{-1}$ and $\Delta \overline{S}^\circ = -62 \text{ J K}^{-1} \text{ mol}^{-1}$.

continued on following page

<u> </u>	- M	•			
COMPONEN	NTS:		EVALUATOR:		
(1) 1	Nitrogen; N ₂ ; [7727-37·	-9]	Rubin Batt		• .
(2) 1	Alcohols		Department Wright Sta		
·-,	10011015		Dayton, Ol		
			U.S.A.		
			December 1	1981	
CRITICAL	L EVALUATION:		<u> </u>		
		continu	ued		
	T/K 10 ⁴ x ₁	т/к 10	0 ⁴ x ₁	т/к	10 ⁴ x ₁
	213.15 4.16	243.15		273.15 283.15	4.05 4.04
	223.15 4.14 233.15 4.12	253.15 263.15	4.08 4.06	283.15	4.04 4.02
			····	298.15	
2-Pro	opanol				
	This system was studie	ed by Kre	tschmer, et al	1. (2), a	and Katayama and
Nitta	a (4). Smoothing their				
	$\ln x_1 = -7.63455 - 0.2$	110188/(т,	/100K)		(4)
with	a standard deviation of			- table !	helow gives
	thed recommended values				
	= -63 J K ⁻¹ mol ⁻¹ .	S LUL LILL	3 System		Inot and
40 -					
	<u>T/K 10⁴ x₁</u>	т/к 10	0 ⁴ × ₁	т/к	10 ⁴ ×1
		253.15		293.15	
İ	223.15 4.60 233.15 4.61	263.15 273.15		298.15	4.66
	233.15 4.61 243.15 4.62		4.74 4.75	303.15 313.15	
	243.LJ 4.V2	203.14	4.75	323.15	
	- -				
1-Buc	tanol				
	Four groups (2-5) stud			e used al	ll of their
data	to obtain the followir	ng smoothi	ing equation:		
	$\ln x_1 = -7.64505 - 0.1$	111660/(T/	/100K)		(5)
	The standard deviation	n in ln x.	is 0.026 and		as t mol ⁻¹
and /	$\Delta \overline{S}^\circ = -64 \text{ J K}^{-1} \text{ mol}^{-1}.$				
	the range 213 to 323 K.		I VATUED US	J K 1	LVAIS IVIIV
	T/K 10 ⁴ x ₁		0 ⁴ × ₁	т/к	10 ⁴ x ₁
l	$\frac{1}{1}$				
	213.15 4.54		4.58	293.15	4.61
l	223.15 4.55 233.15 4.56	263.15 273.15	4.59 4.59	298.15 303.15	4.61 4.61
ĺ	243.15 4.56 243.15 4.57	273.15	4.59	313.15	4.62
				323.15	4.62
2-Met	thyl-l-Propanol (Isobut	tanol)			
274 t	This system was only s to 328 K. The smoothin	studied by ng equatic	/ Battino, et on is:	al. (8),	, in the range
	$\ln x_{1} = -7.69430 + 0.1$				(6)
with	a standard deviation c	of 0.014 j	in ln x ₁ . Smc	oothed re	ecommended
	es at 5 K intervals fol	llow. ∆H:	${\stackrel{\scriptstyle \mathrm{L}}{\stackrel{\scriptstyle \mathrm{L}}{1}}}=-149$ J mol	1^{-1} and i	∆ຮົ° = −64 K ^{−1}
_1	_1 +				÷

mol⁻¹.

continued on following page

COMPONENTS:	EVALUATOR:
(l) Nitrogen; N ₂ ; [7727-37-9] (2) Alcohols	Rubin Battino Department of Chemistry Wright State University Dayton, Ohio 45435 U.S.A.
	December 1981
CRITICAL EVALUATION:	ntinued
T/K 10 ⁴ x ₁ . T/F	10 ⁴ x ₁ T/K 10 ⁴ x ₁
278.15 4.86 298 283.15 4.85 303	.15 4.84 313.15 4.82 .15 4.84 318.15 4.82 .15 4.83 323.15 4.81 .15 4.83 328.15 4.81
l-Pentanol	

The nitrogen/l-pentanol system was studied by four groups (1,3,5, 7) but with widely varying results. Thus, the smoothed values based on a least squares fit of the data must be regarded as tentative pending a more definitive study. The smoothing equation in the range 293 to 308K is:

$$\ln x_1 = -6.0966 - 4.3302/(T/100K)$$

with a standard deviation of 0.047 in ln \mathbf{x}_{l} . Smoothed values at 5K intervals follow.

т/к	10 ⁴ x ₁	T/K	10 ⁴ x ₁
293.15		303.15	
298.15	5.27	308.15	5.52

1-Octanol

This system was investigated by four groups (3,5,9,10). Makranczy, et al.'s, value (5) was significantly high and was not used. Smoothing of the remaining values in the range 283 to 314 K gave

 $\ln x_1 = -6.18842 - 3.49654/(T/100K)$

(8)

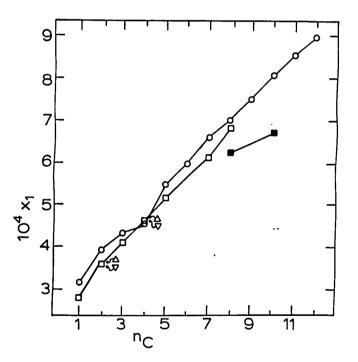
(7)

with a standard deviation in ln x_1 of 0.044. This is a rather large error and the smoothed results should be considered tentative.

т/к	10 ⁴ × ₁	T/K J	.0 ⁴ × ₁
283.15	5.97	298.15	6.35
288.15	6.10	303.15	6.48
293.15	6.23	308.15	6.60
		313.15	6.72

1-Decanol

Makranczy, et al. (5), and Wilcock, et al. (10), both studied this system, but the former's result was judged to be too high. A least squares fitting of Wilcock, et al.'s, three points in the range 283 to 313 K gave


$$\ln x_1 = -6.65033 - 1.98173/(T/100K)$$
(9)

with a standard deviation of 0.0029 in ln x₁. Smoothed recommended values follow. $\Delta \overline{H}^{\circ} = 1648 \text{ J mol}^{-1} \text{ and } \Delta \overline{S}^{\circ} = -55 \text{ J K}^{-1} \text{ mol}^{-1}$ for this system.

COMPONENTS	:		EVALUATOR:	
(1) Nitroge	en; N ₂ ; [7727-37-9 Ls]	Wright Sta Dayton, Oh	of Chemistry te University
CRITICAL EV	ALUATION:	continued		
T/K	10 ⁴ × ₁		T/K	10 ⁴ x ₁
	6.42 6.50 6.58		298.15 303.15 308.15 313.15	6.65 6.73 6.80 6.87

1-Alkanols

The figure below shows the results for Boyer and Bircher $(3) \square$, and Makranczy, et al. $(5), \bigcirc$. At a glance it is obvious that the Makranczy, et al. (5), values appear to be always significantly higher than the results for other workers. We do not know the reason for this. As an aid we list below the figure the recommended values at 298.15 K for the l-alkanols up through l-decanol. A least-squares

For the above figure the solid squares are for Wilcock et al. (10), the triangles for Katayama and Nitta $(\overline{4})$, and the inverted triangles for Kretschmer at al. (2).

continued on following page

Nitrogen Solubilities up to 200 kPa				
COMPONENTS: (1) Nitrogen; N ₂ ; [7727-37-9] (2) Alcohols	EVALUATOR: Rubin Battino Department of Chemistry Wright State University Dayton, Ohio 45435 U.S.A. December 1981			
CRITICAL EVALUATION: contin	nued			
298.	15 K			
Solvent	10 ⁴ x ₁			
methanol ethanol l-propanol l-butanol l-pentanol l-hexanol l-heptanol l-octanol l-decanol	2.76 3.57 4.02 4.61 5.27 5.84 6.10 6.35 6.65			
fitting of the mole fraction solubility versus carbon number, n, yields: $x_1 = 2.2725 \times 10^{-4} + 4.4885 \times 10^{-5} n$ (10) with a standard deviation in x_1 of 3.0 x 10^{-5} . (The smoothed values from equation (10) are obviously different from the recommended values listed in the table.)				
References				
 Just, G. Z. Phys. Chem. <u>1901</u>, 37, 342-67. Kretschmer, C. B.; Nowakowska, J.; Wiebe, R. Ind. Eng. Chem. <u>1946</u>, 38, 506-9. Boyer, F. L.; Bircher, L. J. J. Phys. Chem. <u>1960</u>, 64, 1330-1. Katayama, T.; Nitta, T. J. Chem. Eng. Data <u>1976</u>, 21, 194-6. Makranczy, J.; Rusz, L.; Balog-Megyery, K. Hung. J. Ind. Chem. <u>1979</u>, 7, 41-6. Metschl, J. J. Phys. Chem. <u>1924</u>, 28, 417-37. Gjaldbaek, J.C.; Niemann, H. Acta Chem. Scand. <u>1958</u>, 12, 1015-23. Battino, R.; Evans, F. D.; Danforth, W. F.; Wilhelm, E. J. Chem. Thermodyn. <u>1971</u>, 3, 743-51. Ijams, C. C. Ph.D. Thesis <u>1941</u>, Vanderbilt University, Nashville, TN. Wilcock, R. J.; Battino, R.; Danforth, W. F.; Wilhelm, E. J. Chem. J. Chem. Thermodyn. <u>1978</u>, 10, 817-22. 				
J. Cnem. Inermodyn. <u>1978</u> , 10, 817-22.				

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Just, G.
(2) Methanol; CH ₄ O; [67-56-1]	Z. Phys. Chem. <u>1901</u> , 37, 342-67.
VARIABLES: T/K = 293-298 P/kPa = 101.325	PREPARED BY: M. E. Derrick H. L. Clever
EXPERIMENTAL VALUFS:	I
T/K Mol Fraction $x_1 \times 10^4$ C	Bunsen Ostwald oefficient Coefficient α L
293.15 2.27 298.15 2.36	0.1256 0.1348 0.1296 0.1415
pressure of about 746 mmH the Ostwald coefficient t pressure, and calculated Bunsen coefficient values partial pressure of the g	O be independent of the mole fraction and at 101.325 kPa (1 atm)
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
An Ostwald apparatus as modified by Timofejew (1), and Steiner (2) is used. The apparatus consists of a gas buret, an absorption flask, and a mercury manometer. The system is thermostated with a water jacket. The gas is introduced into the de- gassed liquid. The gas volume absorbed is determined by the gas buret. The solvent volume is determined at the end of the experi- ment by pouring the solvent into a graduated flask.	 (1) Nitrogen. Prepared by the reaction of sodium nitrite and ammonium nitrate in aqueous solution in the presence of calcium dichromate. (2) Methanol. No information. ESTIMATED ERROR: δL/L = 0.03 (compiler)
	(compiler)
	<pre>REFERENCES: 1. Timofejew, W. Z. Physik. Chem. <u>1890</u>, 6, 141. 2. Steiner, Ann. Phys. (Leipzig) <u>1894</u>, 52, 275.</pre>

iou introgen Solubilit	
COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Kretschmer, C. B.; Nowakowska, J.; Wiebe, R.
(2) Methanol; CH ₄ O; [67-56-1]	Ind. Eng. Chem. <u>1946</u> , 38, 506-9.
VARIABLES: $m/r = 240$ le 202 le	PREPARED BY:
T/K = 248.15 - 323.15 P/kPa = 101.325	P. L. Long H. L. Clever
EXPERIMENTAL VALUES:	
T/K Mol Fraction $x_1 \times 10^3$ Co	Bunsen Ostwald Defficient Coefficient αL
248.15 0.2708 273.15 0.2703	0.1580 0.1435 0.1532 0.1532
298.15 0.2739	0.1507 0.1645
323.15 0.2795	0.1492 0.1765
The Ostwald coefficients were measured (1 atm). The compiler calculated the values for an oxygen partial pressure Ostwald coefficient was independent of Smoothed Data: $\ln x_1 = -8.0863 - 0.33$	Bunsen coefficient and mole fraction of 101.325 kPa (1 atm) assuming the f pressure.
	the regression line = 2.52×10^{-6}
	Mol Fraction
	$x_1 \times 10^3$
253.15	0.270
263.15	0.271
273.15 283.15	0.272 0.274
293.15	0.275
298.15	0.275
303.15 313.15	0.276 0.277
	0.278
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The apparatus was similar to that of Horiuti (1), it consisted of a gas	(1) Nitrogen. Commercial, but source not given. Passed through
buret, manometer, and absorption	alkaline pyrogallol to remove 02,
pipet equipped with a magnetic stirrer. All volumes were calibrated	passed through Drierite to dry.
by mercury displacement.	(2) Methanol. Source not given.
The solvent was partly degassed by	Distilled, dried with metallic Al, b.p. (760 mmHg)/°C 64.50, density,
boiling under reflux. About 40 cm ³ of solvent was admitted into the	$\rho_{\mu}^{25}/g \text{ cm}^{-3} 0.78650.$
absorption pipet, and pumped on to	
complete the degassing. Dry gas, measured in the buret, was admitted,	
final equilibrium was established after 1 to 3 hours stirring.	ESTIMATED ERROR: Gas buret $\delta V/cm^3 = 0.005$
During the solution process the	Average deviation from the mean 0.3%,
total pressure was kept at one atm by additions of dry gas.	maximum deviation 0.9% (authors).
The solubility value was corrected	REFERENCES :
for the increase of solvent volume	1. Horiuti, J.
with gas absorption, and for the nitrogen impurity in the oxygen.	J. Sci Papers Inst. Phys. Chem. Res. (Tokyo) <u>1931</u> , 17, 125.

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Boyer, F. L.; Bircher, L. J.
(2) Methanol; _{CH4} 0; [67-56-1]	J. Phys. Chem. 1960, 64, 1330-1.
VARIABLES: T/K = 298.15 P/kPa = 101.325	PREPARED BY: M. E. Derrick
EXPERIMENTAL VALUES:	
T/K Mol Fraction $X_1 \times 10^3$ C	Bunsen Ostwald coefficient Coefficient α L
298.15 0.279	0.153 0.167 + 0.003
The Bunsen coefficient was calculated The observed mole fraction solubility (2).	
The Dissertation gives the equations	log X ₁ = -3.594 + 0.449 log C at
298.15 K where C is the number of car fraction solubility given in the orig 298.15 K equation.	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Commercial Van Slyke blood gas apparatus (E. H. Sargent Co.) was modified by the authors for their use. The total pressure of gas and solvent vapor in the solution chamber was adjusted to a pressure of one atm. The pressure was maintained at one atm during the solution process. The saturated solution was trans- ferred to a bulb below the lower stopcock of the extraction vessel	 Nitrogen. Air Reduction Co. 99.7 per cent nitrogen. Methanol. Source not given. Treated by standard methods to
and sealed off. The gas and solvent vapor were then brought to volume over mercury. See (1) for details of the extraction procedure.	ESTIMATED ERROR: $\delta T/K = 0.01$ $\delta L/cm^3 = 0.003$
	<pre>REFERENCES: 1. Peters, J. P.; Van Slyke, D. D. "Quantitative Clinical Chemistry" Williams and Wilkins Co., Baltimore, MD, 1932, Volume II. 2. Boyer, F. L. Ph.D. Dissertation Vanderbilt U., 1959, Nashville,TN</pre>

•

•			ORIGINAL MEAS	UREMENTS :	
(a) Mathanal (N ₂ ; [7727-37-9	1	Katayama,	T.; Nitta,	т.
(2) Methanol; (CH4O; [67-56-1]	J. Chem.Er	ıg. Data	<u>1976</u> ,21,194-6.
VARIABLES:			PREPARED BY:	<u></u>	<u> </u>
T/K = 213-	-298		C.L. Young	T	
1/1 215			-		
EXPERIMENTAL VALU	ES:				
T/K (coe:	Ostwald fficient, L	Henry's Co /atm	onstant	Mole fract nitrogen i ^x N ₂	
298.15	0.164	3660		0.00027	3
273.15	0.152	3720		0.00026	9
253.15	0.145	3700		0.00027	0
233.15	0.139	3640		0.00027	5
213.15	0.134	3520		0.00028	4

		AUXILIARY	INFORMATION		
METHOD /APPARAT	US/PROCEDURE:		SOURCE AND PL	JRITY OF MATE	
Volumetric app cell of approx Magnetic stirr					RIALS;
degassed. Equ in 1-1.5 hours	imately 0.08 l er. Solvent c ilibrium estab	itres. arefully lished	99.9995 (2)Nakarai	mole per ce	ample, purity
degassed. Equi	imately 0.08 l er. Solvent c ilibrium estab	itres. arefully lished	99.9995 (2)Nakarai	mole per co Chemicals : e per cent	ample, purity ent.
degassed. Equi	imately 0.08 l er. Solvent c ilibrium estab	itres. arefully lished ref. (1).	99.9995 (2) Nakarai 99.9 mol ESTIMATED ERF δT/K = ±0.1	mole per co Chemicals : e per cent ROR: 2 at T= 213	ample, purity ent.
degassed. Equi	imately 0.08 l er. Solvent c ilibrium estab	itres. arefully lished ref. (1).	99.9995 (2) Nakarai 99.9 mol ESTIMATED ERF δT/K = ±0.1	mole per co Chemicals : e per cent ROR: 2 at T= 213	ample, purity ent. sample, purity, 3.15K, ±0.05
degassed. Equi	imately 0.08 l er. Solvent c ilibrium estab	itres. arefully lished ref. (1).	99.9995 (2) Nakarai 99.9 mol ESTIMATED ERF &T/K = ±0.1 at other te	mole per ca Chemicals : e per cent ROR: 2 at T= 21: mperatures	ample, purity ent. sample, purity, $3.15K, \pm 0.05;$ $\delta x_{N_2} = \pm 1\%$
degassed. Equi	imately 0.08 l er. Solvent c ilibrium estab	itres. arefully lished ref. (1).	<pre>99.9995 (2) Nakarai 99.9 mol ESTIMATED ERF δT/K = ±0.1 at other te REFERENCES: 1. Nitta, T</pre>	mole per co Chemicals : e per cent ROR: 2 at T= 21: mperatures;	ample, purity ent. sample, purity, $3.15K, \pm 0.05;$ $\delta x_{N_2} = \pm 18$

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Makranczy, J.; Rusz, L.; Balog-Megyery, K.
(2) Methanol; CH ₄ O; [67-56-1]	
	Hung. J. Ind. Chem. <u>1979</u> , 7, 41-6.
VARIABLES :	PREPARED BY:
	C.L. Young
T/K = 298	
EXPERIMENTAL VALUES:	L
$T/K P^+/kPa$ Ostwald coef	ficient Mole fraction of
	nitrogen*, x _{N2}
	A
298.15 101.3 0.186	0.0003096
* calculated by compi	ler
+ partial pressure of	nitrogen.
	· · · · · · · · · · · · · · · · · · ·
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Volumetric method. The apparatus	No details given.
of Bodor, Bor, Mohai, and Sipos (1)	de details given.
was used.	
	ESTIMATED ERROR:
	$\delta x_{N_2} = \pm 3\%.$
	**2
	REFERENCES:
	1. Bodor, E.; Bor, Gy.; Mohai, B.;
	Sipos, G. Veszpremi Vegyip. Egy. Kozl.
	<u>1957</u> , 1, 55, Chem. Abstr. <u>1961</u> , 55, 3175h
1	

COMPONENTS: (1) Nitrogen; N ₂ ; [7727-37-9]	ORIGINAL MEASUREMENTS: Gjaldbaek, J. C.; Niemann, H.
<pre>(2) 1,2-Ethanediol or Ethylene glycol; C₂H₅O₂; [107-21-1]</pre>	Acta Chem. Scand. <u>1958</u> , 12, 1015-23.
VARIABLES:	PREPARED BY: J. Chr. Gjaldbaek
EXPERIMENTAL VALUES: T/K Mol Fraction $X_1 \times 10^3$	BunsenOstwaldCoefficientCoefficient α L
298.16 0.0342	0.01374 0.01500
298.17 0.0356	0.01428 0.01559
The mole fraction and Ostwald solubil compiler.	ity values were calculated by the
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: A calibrated all-glass combined man- ometer and bulb was enclosed in an air thermostat and shaken until equilibrium. Mercury was used for calibration and as the confining liquid. The solvents were degassed in the apparatus. Details are in references 1 and 2. The absorped volume of gas was cal- culated from the initial and final amounts, both saturated with solvent vapor. The amount of solvent was determined by the weight of dis- placed mercury. The saturation of the liquid with the gas was carried out close to atmos- pheric pressure. The solubility values were reported for one atmos- phere gas pressure assuming Henry's law is obeyed.	SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Dansk Ilt-og Brint Fabrik. Contained less than 0.13 percent oxygen. (2) 1,2-Ethanediol. Fractionated in a column at low pressure. Normal boiling point 197.30 - 197.42°C, refractive index at 20°C, n _D = 1.4320. ESTIMATED ERROR: $\delta T/K = 0.05$ $\delta X_1/X_1 = 0.015$ REFERENCES: 1. Lannung, A. J. Am. Chem. Soc. 1930, 52, 68. 2. Gjaldbaek, J. C. Acta Chem. Scand. 1952, 6, 623.

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Just, G.
(2) Ethanol; C ₂ H ₆ O; [64-17-5]	Z. Phys. Chem. <u>1901</u> , 37, 342 - 367.
2 0	
VADIARIEC.	
VARIABLES:	PREPARED BY:
T/K = 293.15, 298.15 P/kPa = 101.325	M. E. Derrick H. L. Clever
EXPERIMENTAL VALUES:	L
T/K Mol Fraction	Bunsen Ostwald
	oefficient Coefficient
L	α L
293.15 3.40 298.15 3.44	0.1304 0.1400 0.1312 0.1432
The author measured the O pressure of about 746 mmH	
the Ostwald coefficient to	b be independent of
pressure, and calculated Bunsen coefficient values	
partial pressure of the g	
· · · · · · · · · · · · · · · · · · ·	
	INFORMATION
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
An Ostwald apparatus as modified by Timofejew (1), and Steiner (2) is	(1) Nitrogen. Prepared by the reaction of sodium nitrite and
used. The apparatus consists of a	ammonium nitrate in aqueous solution in the presence of
gas buret, an absorption flask, and a mercury manometer. The system is	calcium dichromate.
thermostated with a water jacket.	(2) Ethanol. No information.
The gas is introduced into the	
degassed liquid. The gas volume absorbed is determined by the gas	
buret. The solvent volume is	
determined at the end of the experi- ment by pouring the solvent into a	ESTIMATED ERROR:
graduated flask.	
	$\delta L/L = 0.03$ (compiler)
	REFERENCES:
	l. Timofejew, W.
	Z. Physik. Chem. <u>1890</u> , 6, 141.
	2. Steiner,
	Ann. Phys. (Leipzig) 1894, 52,
	275. <i>Letp2tg</i> / <u>1894</u> , 52,

•

COMPONENTS :	ODICINAL MEACUDENEENEE
	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Metschl, J.
(2) Ethanol; C ₂ H ₆ O; [64-17-5]	J. Phys. Chem. 1924, 28, 417-37.
2 6	
VARIABLES:	PREPARED BY:
T/K = 298.15 P/kPa = 101.325	M. E. Derrick H. L. Clever
17x14 - 101.525	
EXPERIMENTAL VALUES:	
T/K Mol Fraction	
$x_1 \times 10^4$ C	coefficient Coefficient
	L .
298.15 3.40	0.130 0.142
	to male function and
The compiler calculated t Ostwald coefficient value	
AUXILIARY	INFORMATION
METHOD / APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
The degassed solvent is saturated	(1) Nitrogen. Prepared by the
with nitrogen at 6 to 10 different	reaction of sodium nitrite and
pressures between 1.5 and 4.5 atm.	ammonium nitrate in the presence
-	of calcium dichromate in aqueous
The pressure is reduced to one atm,	solution.
and the "supersaturated gas" is shaken out of the solvent and	(2) Ethanol. Treated with metallic
measured.	sodium and distilled. Specific
	gravity 0.7992 at 15°C. About
The slope of a plot of the volume of	98 per cent pure.
gas reduced to standard conditions	· · ·
shaken out of 100 cm^3 of solvent vs. the pressure of saturation is nearly	
identical to the solubility-pressure	ESTIMATED ERROR:
graph (Henry's law). The slope of the	
curve is used to obtain the Bunsen	
coefficient. From the method of calculation the value represents the	
volume of gas shaken out of the	REFERENCES:
solvent when the pressure is reduced	
from 2 to 1 atm.	

ŧ

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Kretschmer, C. B.; Nowakowska, J.;
(2) E^{+}	Wiebe, R.
(2) Ethanol; C ₂ H ₆ O; [64-17-5]	Ind. Eng. Chem. 1946, 38, 506-9.
VARIABLES:	PREPARED BY:
T/K = 248.15 - 323.15 P/kPa = 101.325	P. L. Long H. L. Clever
-,	
EXPERIMENTAL VALUES:	
T/K Mol Fraction	Bunsen Ostwald
$x_1 \times 10^3$ Co	efficient Coefficient
248.15 0.3498	α L 0.1409 0.1280
273.15 0.3545	0.1391 0.1391
298.15 0.3572 323.15 0.3655	0.1364 0.1489 0.1358 0.1606
The Ostwald coefficients were measured (1 atm). The compiler calculated the	Bunsen coefficient and mole fraction
values for an oxygen partial pressure	of 101.325 kPa (1 atm) assuming the
Ostwald coefficient was independent of	-
Smoothed Data: $\ln x_1 = -7.7832 - 0.43$	
Standard error about t	the regression line = 2.18×10^{-6}
	lol Fraction
	$x_1 \times 10^3$
253.15	0.350
263.15	0.3525
273.15 283.15	0.355 0.357
293.15	0.359
298.15	0.3595
303.15	0.360
313.15	0.362
	0.364
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The apparatus was similar to that of	(1) Nitrogen. Commercial, but source
Horiuti (1), it consisted of a gas buret, manometer, and absorption	not given. Passed through alkaline pyrogallol to remove O_2 ,
pipet equipped with a magnetic	4
stirrer. All volumes were calibrated	passed through Drierite to dry.
by mercury displacement.	(2) Ethanol. Source not given. Dried
The solvent was partly degassed by	with Mg. Density, p/g cm ⁻³
boiling under reflux. About 40 cm ³ of solvent was admitted into the	0.78508.
absorption pipet, and pumped on to	
Complete the degassing. Dry gas,	
measured in the buret, was admitted, final equilibrium was established	ESTIMATED ERROR:
after 1 to 3 hours stirring. During	Gas buret $\delta V/cm^3 = 0.005$
the solution process the total pres-	Average deviation from the mean 0.3%, maximum deviation 0.9% (authors).
sure was kept at one atm by additions of dry gas.	maximum deviation 0.95 (authors).
The solubility value was corrected	REFERENCES :
for the increase of solvent volume	1. Horiuti, J.
with gas absorption, and for the	J. Sci Papers Inst. Phys. Chem.
nitrogen impurity in the oxygen.	Res. (Tokyo) <u>1931</u> , 17, 125.

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Boyer, F. L.; Bircher, L. J.
(2) Ethanol; C ₂ H ₆ O; [64-17-5]	J. Phys. Chem. <u>1960</u> , 64, 1330-1.
VARIABLES:	PREPARED BY:
T/K = 298.15	M. E. Derrick
P/kPa = 101.325	M. E. Dellick
EXPERIMENTAL VALUES:	
T/K Mol Fraction	Bunsen Ostwald oefficient Coefficient α L
298.15 0.359	0.136 0.149 <u>+</u> 0.002
The Bunsen coefficient was calculated	by the compiler.
The observed mole fraction solubility (2).	
The Dissertation gives the equations	log X _l = -3.594 + 0.449 log C at
298.15 K where C is the number of car fraction solubility given in the orig 298.15 K equation.	
	·
AUXILIARY	INFORMATION
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS;
Commercial Van Slyke blood gas	(1) Nitrogen. Air Reduction Co.
apparatus (E. H. Sargent Co.) was modified by the authors for their	99.7 per cent nitrogen.
use.	(2) Ethanol. Source not given.
	Treated by standard methods to
The total pressure of gas and solvent	remove aldehydes and ketones,
vapor in the solution chamber was	remove aldehydes and ketones
	remove aldehydes and ketones,
vapor in the solution chamber was adjusted to a pressure of one atm. The pressure was maintained at one atm during the solution process.	remove aldehydes and ketones,
vapor in the solution chamber was adjusted to a pressure of one atm. The pressure was maintained at one	remove aldehydes and ketones,
vapor in the solution chamber was adjusted to a pressure of one atm. The pressure was maintained at one atm during the solution process. The saturated solution was trans- ferred to a bulb below the lower stopcock of the extraction vessel	remove aldehydes and ketones,
vapor in the solution chamber was adjusted to a pressure of one atm. The pressure was maintained at one atm during the solution process. The saturated solution was trans- ferred to a bulb below the lower stopcock of the extraction vessel and sealed off. The gas and solvent vapor were then brought to volume	remove aldehydes and ketones, then dried and distilled. ESTIMATED ERROR: $\delta T/K = 0.01$
vapor in the solution chamber was adjusted to a pressure of one atm. The pressure was maintained at one atm during the solution process. The saturated solution was trans- ferred to a bulb below the lower stopcock of the extraction vessel and sealed off. The gas and solvent	remove aldehydes and ketones, then dried and distilled. ESTIMATED ERROR:
vapor in the solution chamber was adjusted to a pressure of one atm. The pressure was maintained at one atm during the solution process. The saturated solution was trans- ferred to a bulb below the lower stopcock of the extraction vessel and sealed off. The gas and solvent vapor were then brought to volume over mercury. See (1) for details	remove aldehydes and ketones, then dried and distilled. ESTIMATED ERROR: $\delta T/K = 0.01$ $\delta L/cm^3 = 0.002$
vapor in the solution chamber was adjusted to a pressure of one atm. The pressure was maintained at one atm during the solution process. The saturated solution was trans- ferred to a bulb below the lower stopcock of the extraction vessel and sealed off. The gas and solvent vapor were then brought to volume over mercury. See (1) for details	remove aldehydes and ketones, then dried and distilled. ESTIMATED ERROR: $\delta T/K = 0.01$ $\delta L/cm^3 = 0.002$ REFERENCES: 1. Peters, J. P.; Van Slyke, D. D.
vapor in the solution chamber was adjusted to a pressure of one atm. The pressure was maintained at one atm during the solution process. The saturated solution was trans- ferred to a bulb below the lower stopcock of the extraction vessel and sealed off. The gas and solvent vapor were then brought to volume over mercury. See (1) for details	remove aldehydes and ketones, then dried and distilled. ESTIMATED ERROR: $\delta T/K = 0.01$ $\delta L/cm^3 = 0.002$ REFERENCES: 1. Peters, J. P.; Van Slyke, D. D. "Quantitative Clinical Chemistry"
vapor in the solution chamber was adjusted to a pressure of one atm. The pressure was maintained at one atm during the solution process. The saturated solution was trans- ferred to a bulb below the lower stopcock of the extraction vessel and sealed off. The gas and solvent vapor were then brought to volume over mercury. See (1) for details	remove aldehydes and ketones, then dried and distilled. ESTIMATED ERROR: $\delta T/K = 0.01$ $\delta L/cm^3 = 0.002$ REFERENCES: 1. Peters, J. P.; Van Slyke, D. D. "Quantitative Clinical Chemistry" Williams and Wilkins Co., Baltimore, M.D., 1932, Volume II.
vapor in the solution chamber was adjusted to a pressure of one atm. The pressure was maintained at one atm during the solution process. The saturated solution was trans- ferred to a bulb below the lower stopcock of the extraction vessel and sealed off. The gas and solvent vapor were then brought to volume over mercury. See (1) for details	<pre>remove aldehydes and ketones, then dried and distilled. ESTIMATED ERROR:</pre>
vapor in the solution chamber was adjusted to a pressure of one atm. The pressure was maintained at one atm during the solution process. The saturated solution was trans- ferred to a bulb below the lower stopcock of the extraction vessel and sealed off. The gas and solvent vapor were then brought to volume over mercury. See (1) for details	remove aldehydes and ketones, then dried and distilled. ESTIMATED ERROR: $\delta T/K = 0.01$ $\delta L/cm^3 = 0.002$ REFERENCES: 1. Peters, J. P.; Van Slyke, D. D. "Quantitative Clinical Chemistry" Williams and Wilkins Co., Baltimore, M.D., 1932, Volume II.

0.01/0.01		
COMPONENTS:		ORIGINAL MEASUREMENTS:
(1) Nitrogen	; N ₂ ; [7727-37-9]	Katayama, T.; Nitta, T.
(2) Ethanol;	C ₂ H _b O; [64-17-5]	J. Chem.Eng. Data <u>1976</u> , 21,194-6.
VARIABLES:		PREPARED BY:
17K	= 213-298	C.L. Young
EXPERIMENTAL V	ALUES:	
т/К		5 Constant Mole fraction* of /atm nitrogen in liquid, ^x N ₂
298.15	0.149 2800	0.000357
273.15	0.138 2840	0.000352
253.15	0.131 2830	0.000353
233.15	0.125 2800	
213.15	0.121 2700	0.000370
	AUXILIARY	INFORMATION
Volumetric a cell of appr Magnetic sti degassed. E	ATUS/PROCEDURE: pparatus with equilibrium oximately 0.08 litres. rrer. Solvent carefully quilibrium established rs. Details in ref. (1).	(2) Nakarai Chemicals sample, purity 99.9 mole per cent. ESTIMATED ERROR: $\delta T/K = \pm 0.12$ at T = 213.15K, ± 0.05 at other temperatures; $\delta x_{N_2} = \pm 1$ % REFERENCES: 1. Nitta, T.; Tatsuishi, A.; Katayama, T. J. Chem.Eng.Jpn. <u>1973</u>
		6,475.

,

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Makranczy, J.; Rusz, L.;
(2) Ethanol; C_2H_6O ; [64-17-5]	Balog-Megyery, K.
	Hung. J. Ind. Chem. <u>1979</u> , 7, 41-6.
VARIABLES:	PREPARED BY:
T/K = 298	C.L. Young
EXPERIMENTAL VALUES:	
T/K P ⁺ /kPa Ostwald coef	ficient Mole fraction of
	nitrogen*, $x_{ m N_2}$
298.15 101.3 0.164	0.000393
* calculated by comp	ilar
+ partial pressure o	f nitrogen
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Volumetric method. The apparatus of Bodor, Bor, Mohai, and Sipos (1)	No details given.
was used.	
	ESTIMATED ERROR:
	$\delta x_{\rm N_2} = \pm 3\%.$
	N 2
	REFERENCES:
	1. Bodor, E.; Bor, Gy.; Mohai, B.;
	Sipos, G.
	Veszpremi Vegyip. Egy. Kozl.
	<u>1957</u> , 1,55. <i>Chem. Abstr.</i> <u>1961</u> , 55, 3175h
	onem. Abour. 1901, 00, 91/51

DRIGINAL MEASUREMENTS: Gjaldbaek, J. C.; Niemann, H. Acta Chem. Scand. 1958, 12, 1015-23. PREPARED BY: J. Chr. Gjaldbaek Bunsen Ostwald Coefficient Coefficient α L 0.1209 0.1319 0.1208 0.1318 .ty values were calculated by the
Acta Chem. Scand. <u>1958</u> , 12, 1015-23. PREPARED BY: J. Chr. Gjaldbaek Bunsen Ostwald Coefficient Coefficient α L 0.1209 0.1319 0.1208 0.1318
PREPARED BY: J. Chr. Gjaldbaek Bunsen Ostwald Coefficient Coefficient α L 0.1209 0.1319 0.1208 0.1318
J. Chr. Gjaldbaek Bunsen Ostwald Coefficient Coefficient α L 0.1209 0.1319 0.1208 0.1318
J. Chr. Gjaldbaek Bunsen Ostwald Coefficient Coefficient α L 0.1209 0.1319 0.1208 0.1318
Coefficient Coefficient α L 0.1209 0.1319 0.1208 0.1318
0.1208 0.1318
ty values were calculated by the
INFORMATION
SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Dansk Ilt-og Brint Fabrik. Contained less than 0.13 percent oxygen. (2) 1-Propanol. Dried and frac- tionated, boiling point 97.1 - 97.4°C, refractive index at 20°C, n _D = 1.3856. ESTIMATED ERROR: $\delta T/K = 0.05$ $\delta x_1/X_1 = 0.015$ REFERENCES: 1. Lannung, A. J. Am. Chem. Soc. <u>1930</u> , 52, 68. 2. Gjaldbaek, J. C. Acta Chem. Scand. <u>1952</u> , 6, 623.
S

· ·	103 up to 200 ki a
COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Boyer, F. L.; Bircher, L. J.
(2) l-Propanol; C ₃ H ₈ O; [71-23-8]	J. Phys. Chem. <u>1960</u> , 64, 1330-1.
VARIABLES:	PREPARED BY:
T/K = 298 - 308	M. E. Derrick
P/kPa = 101.325	;
EXPERIMENTAL VALUES: T/K Mol Fraction $X_1 \times 10^3$ C	Bunsen Ostwald oefficient Coefficient α L
298.15 0.409 308.15 0.437	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
The Bunsen coefficients were calculat The observed mole fraction solubiliti dissertation (2).	
The Dissertation gives the equations	log X _l = -3.594 + 0.449 log C at
298.15 K and log $X_1 = -3.576 + 0.452$	log C at 308.15 K where C is the
number of carbon atoms in the alcohol in the original paper was calculated	
Smoothed Data: $\Delta G^{O}/J \text{ mol}^{-1} = -RT \ln J$	X ₁ = 5016.1 + 48.040 T
The equation is tenta	1
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Commercial Van Slyke blood gas apparatus (E. H. Sargent Co.) was modified by the authors for their use. The total pressure of gas and solvent vapor in the solution chamber was adjusted to a pressure of one atm. The pressure was maintained at one atm during the solution process. The saturated solution was trans-	 (1)Nitrogen. Air Reduction Co. 99.7 per cent nitrogen. (2)1-Propanol. Source not given. Treated by standard methods to remove aldehydes and ketones, then dried and distilled.
ferred to a bulb below the lower stopcock of the extraction vessel and sealed off. The gas and solvent vapor were then brought to volume over mercury. See (1) for details of the extraction procedure.	ESTIMATED ERROR: $\delta T/K = 0.01$ $\delta L/cm^3 = 0.002$
	<pre>REFERENCES: 1. Peters, J. P.; Van Slyke, D. D. "Quantitative Clinical Chemistry" Williams and Wilkins Co., Baltimore, MD, <u>1932</u>, Volume II. 2. Boyer, F. L. Ph.D. Dissertation Vanderbilt U., <u>1959</u>, Nashville,TN</pre>

		ORIGINAL MEASUREM	ENTS:
(1) Nitrog	en; N ₂ ; [7727-37-9]	Katayama, T.;	Nitta, T.
(2) 1- Pro	panol; C₃H₀O; [71-23-8]	J. Chem. Eng.	Data. <u>1976</u> ,21,194-6
VARIABLES:		PREPARED BY:	
т/к =	213-298	C.L. Young	
EXPERIMENTAL	VALUES:	L	
т/к		Constant atm	Mole fraction* of nitrogen in liquid, ^x N ₂
298.15 273.15 253.15 233.15 213.15	0.131 24 0.121 25 0.115 25 0.111 24 0.107 23 * at partial pressure	20 00 50 60	0.000402 0.000397 0.000400 0.000408 0.000424
	AUXILIARY	INFORMATION	
Volumetric cell of ap Magnetic s	ARATUS/PROCEDURE:	SOURCE AND PURTTY	
	apparatus with equilibrium proximately 0.08 litres. tirrer. Solvent carefully Equilibrium established in s. Details in ref. (1).	(1) Osaka Oxygei 99.9995 mole (2) Nakarai Cher	-

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Makranczy, J.; Rusz, L.;
(2) 1-Propanol; C ₃ H ₈ O; [71-2-8]	Balog-Megyery, K.
	Hung. J. Ind. Chem. <u>1979</u> , 7, 41-6.
VARIABLES:	PREPARED BY:
T/K = 298	C.L. Young.
171 - 270	
EXPERIMENTAL VALUES:	
T/K P^+/kPa Ostwald coeff	icient Mole fraction of
$T/K P^{+}/kPa$ Ostwald coeff	nitrogen*, x _{N2}
	- N 2
298.15 101.3 0.141	0,000433
* calculated by compi	ler
+ partial pressure of	
f partial pressure of	nitiogen
AUXILIARY	INFORMATION
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
Volumetric method. The apparatus of	
Bodor, Bor, Mohai, and Sipos (1) was	No details given.
used.	
	ESTIMATED ERROR:
	$\delta x_{N_2} = \pm 3 \vartheta$
	REFERENCES :
	1. Bodor, E.; Bor, Gy.; Mohai, B.;
	Sipos, G.
	Veszpremi Vegyip. Egy. Kozl. <u>195</u> 7, 1, 55.
	<i>Chem. Abstr.</i> <u>1961</u> , 55, 3175h.
1	

COMPONENTS:	ORIGINAL MEASUREMENTS:
	Kretschmer, C. B.; Nowakowska, J.;
(1) Nitrogen; N ₂ ; [7727-37-9]	Wiebe, R.
(2) 2-Propanol; C ₃ H ₈ O; [67-63-0]	Ind. Eng. Chem. 1946, 38, 506-9.
	1na. Bhg. chem. <u>1946</u> , 00, 500-5.
VARIABLES: T/K = 273.15 - 323.15	PREPARED BY: P. L. Long
P/kPa = 101.325	H. L. Clever
EXPERIMENTAL VALUES:	
T/K Mol Fraction	Bunsen Ostwald oefficient Coefficient
	α L
273.15 0.4523 298.15 0.4607	0.1353 0.1353 0.1342 0.1465
323.15 0.4821	0.1367 0.1617
values for an oxygen partial pressure Ostwald coefficient was independent o Smoothed Data: $\ln x_1 = -7.2995 - 1.1$	Bunsen coefficient and mole fraction of 101.325 kPa (1 atm) assuming the f pressure. 105/(T/100K)
Standard error about	the regression line = 6.13 x 10^{-6}
T/K I	Mol Fraction
	$x_1 \times 10^3$
273.15	0.450
283.15 293.15	0.457 - 0.463
298.15	0.466
303.15	0.469
313.15 323.15	0.474 0.479
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The apparatus was similar to that of	(1) Nitrogen. Commercial, but source
Horiuti (1), it consisted of a gas buret, manometer, and absorption	not given. Passed through alkaline pyrogallol to remove O2,
pipet equipped with a magnetic	passed through Drierite to dry.
stirrer. All volumes were calibrated by mercury displacement.	(2) 2-Propanol. Source not given.
The solvent was partly degassed by	Distilled, dried with metallic Al,
boiling under reflux. About 40 cm ³	b.p. $(760 \text{ mmHg})/^{\circ}C$ 82.24, density, $\rho_{h}^{25}/\text{g cm}^{-3}$ 0.78081.
of solvent was admitted into the absorption pipet, and pumped on to	$\rho_{\frac{1}{4}}/g \ cm \ 0.78081.$
complete the degassing. Dry gas,	
measured in the buret, was admitted, final equilibrium was established	ESTIMATED ERROR:
after 1 to 3 hours stirring. During	Gas buret $\delta V/cm^3 = 0.005$ Average deviation from the mean 0.3%,
the solution process the total pres- sure was kept at one atm by additions	maximum deviation 0.9% (authors).
of dry gas.	
The solubility value was corrected for the increase of solvent volume	REFERENCES: 1. Horiuti, J.
with gas absorption, and for the	J. Sci. Papers Inst. Phys. Chem.
nitrogen impurity in the oxygen.	Res. (Tokyo) <u>1931</u> , 17, 125.
	l

.

<pre>(2) 2-Propan VARIABLES: T/K = EXPERIMENTAL V. T/K</pre>	; N ₂ ; [7727-37-9] ol; C ₃ H ₈ O; [67-63 213-298	-0]	-	C.; Nitta, T. 2g. Data. <u>1976</u> ,21,194-6.
VARIABLES: T/K = EXPERIMENTAL V. T/K				ng. Data. <u>1976</u> ,21 ,194-6 .
T/K = EXPERIMENTAL V. T/K	213-298	;	PREPARED BY:	
EXPERIMENTAL V. T/K	213-298			
T/K			C.L. Young.	
	ALUES:			
	Ostwald coefficient,L	Henry's /at	Constant tm	Mole fraction* of nitrogen in liquid, ${}^{x}N_{2}$
298.15	0.147	21'	70	0.000461
273.15	0.135	22	10	0.000452
253.15	0.128	223	10	0.000452
233.15	0.121	219		0.000457
213.15	0.118	209	90	0.000478
		AUXILIARY	INFORMATION	
METHOD /APPAF	RATUS/PROCEDURE:			ITY OF MATERIALS;
	pparatus with equ coximately 0.08 li			gen Co. sample, purity
Magnetic sti	rrer, Solvent ca	arefully	99.9995 m	ole per cent.
in 1-1.5 hou	Equilibrium establ nrs. Details in r	ref. (1).		Chemicals sample, purity a per cent.
			ESTIMATED ERRO	R:
			1	0.12 at T = 213.15K, ±0.05 temperatures; $\delta_{x_{N_2}} = \pm 1$ %
			REFERENCES: 1. Nitta, T.	

COMPONENTS:	OPTOTNAL NELCURRYENDO
	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Kretschmer, C. B.; Nowakowska, J.; Wiebe, R.
(2) 1-Butanol; C ₄ H ₁₀ O; [71-36-3]	
	Ind. Eng. Chem. <u>1946</u> , 38, 506-9.
VARIABLES:	PREPARED BY:
T/K = 273.15 - 323.15 P/kPa = 101.325	P. L. Long H. L. Clever
EXPERIMENTAL VALUES:	
T/K Mol Fraction	Bunsen Ostwald
$x_1 \times 10^3$ C	oefficient Coefficient α L
273.15 0.4312	0.1075 0.1075
298.15 0.4605 323.15 0.4821	0.1122 0.1225 0.1148 0.1358
The Ostwald coefficients were measure	
	Bunsen coefficient and mole fraction
Ostwald coefficient was independent o	f pressure.
Smoothed Data: $\ln x_1 = -7.0243 - 1.9$	
Standard error about	the regression line = 1.98×10^{-6}
т/к м	ol Fraction
	$x_1 \times 10^3$
273.15	0.4319
283.15 293.15	0.4431
	0.4537
298.15	0.4589
303.15 313.15	0.4639 0.4737
323.15	0.4830
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The apparatus was similar to that of	(1) Nitrogen. Commercial, but source
Horiuti (1), it consisted of a gas	not given. Passed through
buret, manometer, and absorption pipet equipped with a magnetic	alkaline pyrogallol to remove 02,
stirrer. All volumes were calibrated	
by mercury displacement.	(2) 1-Butanol. Source not given. Distilled, dried with metallic Al,
The solvent was partly degassed by	b.p. (760 mmHg)/°C 117.67,
boiling under reflux. About 40 cm ³ of solvent was admitted into the	density, ρ_{\pm}^{25}/g cm ⁻³ 0.80573.
absorption pipet, and pumped on to	
complete the degassing. Dry gas, measured in the buret, was admitted,	
final equilibrium was established	ESTIMATED ERROR:
after 1 to 3 hours stirring. During	Gas buret $\delta V/cm^3 = 0.005$ Average deviation from the mean 0.3%,
the solution process the total pres- sure was kept at one atm by additions	maximum deviation 0.9% (authors).
of dry gas.	
The solubility value was corrected	REFERENCES :
for the increase of solvent volume	1. Horiuti, J.
with gas absorption, and for the nitrogen impurity in the oxygen.	J. Sci Papers Inst. Phys. Chem. Res. (Tokyo) <u>1931</u> , 17, 125.
	1

	1165 UP 10 200 KT d
COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Boyer, F. L.; Bircher, L. J.
(2) 1-Butanol; C ₄ H ₁₀ O; [71-36-3]	J. Phys. Chem. <u>1960</u> , 64, 1330-1.
VARIABLES:	PREPARED BY:
T/K = 298-308 P/kPa = 101.325	M. E. Derrick
EXPERIMENTAL VALUES:	
T/K Mol Fraction $x_1 \times 10^3$ C	Bunsen Ostwald Coefficient Coefficient
298.15 0.460 308.15 0.473	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
The Bunsen coefficients were calculat	ed by the compiler.
The observed mole fraction solubiliti dissertation (2).	es were taken from Boyer's
The Dissertation gives the equations	log X ₁ = -3.594 + 0.449 log C at
298.15 K and log $X_1 = -3.576 + 0.452$	
number of carbon atoms in the alcohol in the original paper was calculated	from the 298.15 K equation.
Smoothed Data: $\Delta G^{O}/J \text{ mol}^{-1} = -RT \ln I$	X ₁ = 2085.8 + 56.891 T
The equation is tenta	tive.
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Commercial Van Slyke blood gas apparatus (E. H. Sargent Co.) was modified by the authors for their	(1)Nitrogen. Air Reduction Co. 99.7 per cent nitrogen.
use.	(2) 1-Butanol. Source not given.
The total pressure of gas and solvent	
vapor in the solution chamber was adjusted to a pressure of one atm.	then dried and distilled.
The pressure was maintained at one	
atm during the solution process. The saturated solution was trans-	
ferred to a bulb below the lower	
stopcock of the extraction vessel and sealed off. The gas and solvent	ESTIMATED ERROR:
vapor were then brought to volume over mercury. See (1) for details	$\delta T/K = 0.01$
of the extraction procedure.	$\delta L/cm^3 = 0.001$
	REFERENCES:
	l. Peters, J. P.; Van Slyke, D. D. "Quantitative Clinical Chemistry"
	Williams and Wilkins Co.,
	Baltimore, MD, <u>1932</u> , Volume II. 2. Boyer, F. L. Ph.D. Dissertation
	Vanderbilt U., <u>1959</u> , Nashville,TN

COMPONENTS:	- ·····			
		ORIGINAL MEASUREM		
(1) Nitrogen; N ₂ ; [7	/2/-3/-9]	Katayama, T.;	Nitta, T.	
(2) 1-Butanol; $C_4 H_{10} O$; [71-36-3]	J. Chem. Eng.	. Data. <u>1976</u> , 21,19	94-6.
VARIABLES:		PREPARED BY:		
T/K = 213-298		C.L. Young.		
EXPERIMENTAL VALUES:	-	I		
T/K Ostwa coefficio		Constant atm	Mole fraction* of nitrogen in liquid, ^x N ₂	,
298.15 0.123	21	70	0.000461	
273.15 0.114	21		0.000457	
253.15 0.107			0.000455	
233.15 0.101	21		0.000459	
213.15 0.0954			0.000465	
* at	a partial pressur			-
u	a partiai pressa			-
		INFORMATION		-
METHOD /APPARATUS/PRO	AUXILIARY	INFORMATION SOURCE AND PURITY	OF MATERIALS;	-
	AUXILIARY	SOURCE AND PURITY		
METHOD /APPARATUS/PRO Volumetric apparatus	AUXILIARY CEDURE: with equilibrium	SOURCE AND PURITY	n Co. sample, purit	
METHOD /APPARATUS/PRO Volumetric apparatus cell of approximately	AUXILIARY CEDURE: with equilibrium y 0.08 litres.	SOURCE AND PURITY (1)Osaka Oxyge: 99.9995 mold	n Co. sample, purit e per cent.	_
METHOD /APPARATUS/PRO Volumetric apparatus cell of approximatel Magnetic stirrer. S degassed. Equilibri	AUXILIARY CEDURE: with equilibrium y 0.08 litres. olvent carefully um established	SOURCE AND PURITY (1)Osaka Oxyge 99.9995 mol (2)Nakarai Cher	n Co. sample, purit e per cent. micals sample, dist	_
METHOD /APPARATUS/PRO Volumetric apparatus cell of approximately Magnetic stirrer. S	AUXILIARY CEDURE: with equilibrium y 0.08 litres. olvent carefully um established	SOURCE AND PURITY (1)Osaka Oxyge 99.9995 mol (2)Nakarai Cher	n Co. sample, purit e per cent.	_
METHOD /APPARATUS/PRO Volumetric apparatus cell of approximatel Magnetic stirrer. S degassed. Equilibri	AUXILIARY CEDURE: with equilibrium y 0.08 litres. olvent carefully um established	SOURCE AND PURITY (1)Osaka Oxyge 99.9995 mol (2)Nakarai Cher	n Co. sample, purit e per cent. micals sample, dist	_
METHOD /APPARATUS/PRO Volumetric apparatus cell of approximatel Magnetic stirrer. S degassed. Equilibri	AUXILIARY CEDURE: with equilibrium y 0.08 litres. olvent carefully um established	SOURCE AND PURITY (1)Osaka Oxyge 99.9995 mol (2)Nakarai Cher	n Co. sample, purit e per cent. micals sample, dist	_
METHOD /APPARATUS/PRO Volumetric apparatus cell of approximatel Magnetic stirrer. S degassed. Equilibri	AUXILIARY CEDURE: with equilibrium y 0.08 litres. olvent carefully um established	SOURCE AND PURITY (1) Osaka Oxyge: 99.9995 mol (2) Nakarai Cher ed purity 99 ESTIMATED ERROR:	n Co. sample, purit e per cent. micals sample, dist	i11-
METHOD /APPARATUS/PRO Volumetric apparatus cell of approximatel Magnetic stirrer. S degassed. Equilibri	AUXILIARY CEDURE: with equilibrium y 0.08 litres. olvent carefully um established	SOURCE AND PURITY (1) Osaka Oxyger 99.9995 mold (2) Nakarai Cher ed purity 99 ESTIMATED ERROR: δT/K = ±0.12	n Co. sample, purit e per cent. micals sample, dist 9.9 mole per cent.	ill- 0.05
METHOD /APPARATUS/PRO Volumetric apparatus cell of approximatel Magnetic stirrer. S degassed. Equilibri	AUXILIARY CEDURE: with equilibrium y 0.08 litres. olvent carefully um established	<pre>SOURCE AND PURITY (1) Osaka Oxyge: 99.9995 mold (2) Nakarai Cher ed purity 9! ESTIMATED ERROR:</pre>	n Co. sample, purit e per cent. micals sample, dist 9.9 mole per cent. 2 at T = 213.15K, ± nperatures; & _{N2} = ±	ill- 0.05
METHOD /APPARATUS/PRO Volumetric apparatus cell of approximatel Magnetic stirrer. S degassed. Equilibri	AUXILIARY CEDURE: with equilibrium y 0.08 litres. olvent carefully um established	<pre>SOURCE AND PURITY (1) Osaka Oxyge: 99.9995 mold (2) Nakarai Cher ed purity 9! ESTIMATED ERROR:</pre>	n Co. sample, purit e per cent. micals sample, dist 9.9 mole per cent. 2 at T = 213.15K, ± nperatures; & N ₂ = ± Fatsuishi. A.;	ill- 0.05 1%
METHOD /APPARATUS/PRO Volumetric apparatus cell of approximatel Magnetic stirrer. S degassed. Equilibri	AUXILIARY CEDURE: with equilibrium y 0.08 litres. olvent carefully um established	<pre>SOURCE AND PURITY (1) Osaka Oxyge: 99.9995 mold (2) Nakarai Cher ed purity 9! ESTIMATED ERROR:</pre>	n Co. sample, purit e per cent. micals sample, dist 9.9 mole per cent. 2 at T = 213.15K, ± nperatures; & _{N2} = ±	ill- 0.05 1%
METHOD /APPARATUS/PRO Volumetric apparatus cell of approximatel Magnetic stirrer. S degassed. Equilibri	AUXILIARY CEDURE: with equilibrium y 0.08 litres. olvent carefully um established	<pre>SOURCE AND PURITY (1) Osaka Oxyge: 99.9995 mold (2) Nakarai Cher ed purity 9! ESTIMATED ERROR:</pre>	n Co. sample, purit e per cent. micals sample, dist 9.9 mole per cent. 2 at T = 213.15K, ± nperatures; & N ₂ = ± Fatsuishi. A.;	ill- 0.05 1%

COMPONENTS:	OPICINAL MEACUDEMENTS.
	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Makranczy, J.; Rusz, L.;
(2) 1-Butanol; C ₄ H ₁₀ O; [71-36-3]	Balog-Megyery, K.
	Hung. J. Ind. Chem. <u>1979</u> , 7, 41-6.
VARIABLES:	PREPARED BY:
T/K = 298	C.L. Young
EXPERIMENTAL VALUES:	
$T/K P^+/kPa$ Ostwald coef	ficient Mole fraction of
	nitrogen*, $x_{\rm N_2}$
298.15 101.3 0.12	0 0.000451
* calculated by comp	iler
+ partial pressure o	f nitrogen.
	INFORMATION
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
Volumetric method. The apparatus	
of Bodor, Bor, Mohai, and Sipos (1) was used.	No details given.
	ESTIMATED ERROR:
	$\delta x_{N_2} = \pm 3\%$
	N 2
	DEFENSIVE.
	REFERENCES:
	<pre>l. Bodor, E.; Bor, Gy.; Mohai, B.; Sipos, G.</pre>
	Veszpremi Vegyip. Egy. Kozl.
	<u>1957</u> , 1, 55, Chem. Abstr.1 <u>961</u> , 55, 3175h

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Battino, R.; Evans, F. D.; Danforth, W. F.; Wilhelm, E.
(2) 2-Methyl-1-propanol or Isobutanol; C ₄ H ₁₀ O; [78-83-1]	J. Chem. Thermodyn. <u>1971</u> , 3, 743-51.
VARIABLES:	PREPARED BY:
T/K = 274.02 - 327.96 P/kPa = 101.325	H. L. Clever
EXPERIMENTAL VALUES: T/K Mol Fraction	Bunsen Ostwald
r -	Coefficient Coefficient α L
274.02 0.477	0.118 0.118
282.78 0.490	0.119 0.124
295.83 0.495	0.120 0.130
298.41 0.482	0.116 0.127
312.77 0.484	0.115 0.132
327.96 0.475	0.112 0.134
The Bunsen coefficients were calculate The solubility values were adjusted to 101.325 kPa (1 atm) by Henry's law.	a nitrogen partial pressure of
Smoothed Data: $\Delta G^{O}/J \text{ mol}^{-1} = -RT \ln J$	$X_1 = -216.5 + 64.195 \text{ T}$
Std. Dev. $\Delta G^{\circ} = 36.1$,	
$\Delta H^{\circ}/J \text{ mol}^{-1} = -216.5,$	$\Delta S^{\circ}/J K^{-1} mol^{-1} = -64.195$
	1^{-1}
T/K Mol Frac	tion $\Delta G^{O}/J \text{ mol}^{-1}$
x ₁ x 1	.0 ³
278,15 0,48	
288.15 0.48	•
298.15 0.48	•
308.15 0.48	
318.15 0.48	•
328.15 0.48	
	<u></u>
-	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The solubility apparatus is based on the design of Morrison and Billett	<pre>(1) Nitrogen. Matheson Co., Inc. 99.999 per cent.</pre>
(1) and the version used is described	(2) 2-methyl-l-propanol. Fisher Co.
by Battino, Evans, and Danforth (2).	Certified grade (99 mole
The degassing apparatus is that	per cent).
described by Battino, Banzhof,	
Bogan, and Wilhelm (3).	ESTIMATED ERROR:
Degassing. Up to 500 cm ³ of solvent	$\delta T/K = 0.03$
is placed in a flask of such size that	$\delta P/mmHg = 0.5$
the liquid is about 4 cm deep. The	$\delta x_1 / x_1 = 0.01$
liquid is rapidly stirred, and vacuum	* *
is intermittently applied through a	REFERENCES:
liquid N ₂ trap until the permanent	
gas residual pressure drops to	1. Morrison, T. J.; Billett, F.
5 microns.	J. Chem. Soc. <u>1948</u> , 2033.
Solubility Determination. The de-	2. Battino, R.; Evans, F. D.;
gassed solvent is passed in a thin	Danforth, W. F.
film down a glass helical tube con-	J. Am. Oil Chem. Soc. 1968,
taining solute gas plus the solvent	45, 830.
vapor at a total pressure of one atm.	3. Battino, R.; Banzhof, M.;
The volume of gas absorbed is found	Bogan, M.; Wilhelm, E.
by difference between the initial and	Anal. Chem. 1971, 43, 806.
final volumes in the buret system.	
	Anat. chem. <u>1971</u> , 45, 808.
The solvent is collected in a tared	Anat. Chem. <u>1971</u> , 48, 806.
	Anat. chem. <u>1971</u> , 43, 800.

,

, }

COMPONENTS:	
	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Just, G.
(2) l-Pentanol; C ₅ H ₁₂ O; [71-41-0]	Z. Phys. Chem. <u>1901</u> , 37, 342-67.
VARIABLES:	PREPARED BY:
T/K = 293-298 P/kPa = 101.325	M. E. Derrick H. L. Clever
EXPERIMENTAL VALUES:	
T/K Mol Fraction $x_1 \times 10^4$ C	Bunsen Ostwald Defficient Coefficient α L
293.15 5.43 298.15 5.44	0.1126 0.1208 0.1122 0.1225
Bunsen coefficient values partial pressure of the g	
AUXILIARY	INFORMATION
AUXILIARY METHOD/APPARATUS/PROCEDURE:	INFORMATION SOURCE AND PURITY OF MATERIALS:
METHOD/APPARATUS/PROCEDURE: An Ostwald apparatus as modified by Timofejew (1), and Steiner (2) is used. The apparatus consists of a gas buret, an absorption flask, and a mercury manometer. The system is thermostated with a water jacket. The gas is introduced into the de- gassed liquid. The gas volume absorbed is determined by the gas	
METHOD/APPARATUS/PROCEDURE: An Ostwald apparatus as modified by Timofejew (1), and Steiner (2) is used. The apparatus consists of a gas buret, an absorption flask, and a mercury manometer. The system is thermostated with a water jacket. The gas is introduced into the de- gassed liquid. The gas volume absorbed is determined by the gas buret. The solvent volume is deter- mined at the end of the experiment	 SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Prepared by the reaction of sodium nitrite and ammonium nitrate in aqueous solution in the presence of calcium dichromate. (2) 1-Pentanol. No information.
METHOD/APPARATUS/PROCEDURE: An Ostwald apparatus as modified by Timofejew (1), and Steiner (2) is used. The apparatus consists of a gas buret, an absorption flask, and a mercury manometer. The system is thermostated with a water jacket. The gas is introduced into the de- gassed liquid. The gas volume absorbed is determined by the gas buret. The solvent volume is deter-	 SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Prepared by the reaction of sodium nitrite and ammonium nitrate in aqueous solution in the presence of calcium dichromate. (2) 1-Pentanol. No information.
METHOD/APPARATUS/PROCEDURE: An Ostwald apparatus as modified by Timofejew (1), and Steiner (2) is used. The apparatus consists of a gas buret, an absorption flask, and a mercury manometer. The system is thermostated with a water jacket. The gas is introduced into the de- gassed liquid. The gas volume absorbed is determined by the gas buret. The solvent volume is deter- mined at the end of the experiment by pouring the solvent into a gradu-	 SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Prepared by the reaction of sodium nitrite and ammonium nitrate in aqueous solution in the presence of calcium dichromate. (2) 1-Pentanol. No information.
METHOD/APPARATUS/PROCEDURE: An Ostwald apparatus as modified by Timofejew (1), and Steiner (2) is used. The apparatus consists of a gas buret, an absorption flask, and a mercury manometer. The system is thermostated with a water jacket. The gas is introduced into the de- gassed liquid. The gas volume absorbed is determined by the gas buret. The solvent volume is deter- mined at the end of the experiment by pouring the solvent into a gradu-	 SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Prepared by the reaction of sodium nitrite and ammonium nitrate in aqueous solution in the presence of calcium dichromate. (2) 1-Pentanol. No information.
METHOD/APPARATUS/PROCEDURE: An Ostwald apparatus as modified by Timofejew (1), and Steiner (2) is used. The apparatus consists of a gas buret, an absorption flask, and a mercury manometer. The system is thermostated with a water jacket. The gas is introduced into the de- gassed liquid. The gas volume absorbed is determined by the gas buret. The solvent volume is deter- mined at the end of the experiment by pouring the solvent into a gradu-	<pre>SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Prepared by the reaction of sodium nitrite and ammonium nitrate in aqueous solution in the presence of calcium dichromate. (2) 1-Pentanol. No information. ESTIMATED ERROR:</pre>

COMPONENTS:	
	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Gjaldbaek, J. C.; Niemann, H.
(2) 1-Pentanol; C ₅ H ₁₂ O; [71-41-0]	Acta Chem. Scand. <u>1958</u> , 12, 1015-23.
	,
VARIABLES:	
VARIABLES: T/K = 298.06 - 298.15	PREPARED BY:
Total P/kPa = 101.325	J. Chr. Gjaldbaek
EXPERIMENTAL VALUES: T/K Mol Fraction	Bunsen Ostwald
$x_1 \times 10^3$	Coefficient Coefficient
298.06 0.491	0.1021 0.1114
298.15 0.495	0.1013 0.1106
The mole fraction and Ostwald solubil	ity values were calculated by the
compiler.	
	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS;
METHOD/APPARATUS/PROCEDURE: A calibrated all-glass combined man-	SOURCE AND PURITY OF MATERIALS; (1) Nitrogen. Dansk Ilt-og Brint
METHOD/APPARATUS/PROCEDURE: A calibrated all-glass combined man- ometer and bulb was enclosed in an	SOURCE AND PURITY OF MATERIALS; (1) Nitrogen. Dansk Ilt-og Brint Fabrik. Contained less than
METHOD/APPARATUS/PROCEDURE: A calibrated all-glass combined man-	SOURCE AND PURITY OF MATERIALS; (1) Nitrogen. Dansk Ilt-og Brint
METHOD/APPARATUS/PROCEDURE: A calibrated all-glass combined man- ometer and bulb was enclosed in an air thermostat and shaken until equilibrium. Mercury was used for calibration and as the confining	 SOURCE AND PURITY OF MATERIALS; (1) Nitrogen. Dansk Ilt-og Brint Fabrik. Contained less than 0.13 percent oxygen. (2) 1-Pentanol. Fractionated at
METHOD/APPARATUS/PROCEDURE: A calibrated all-glass combined man- ometer and bulb was enclosed in an air thermostat and shaken until equilibrium. Mercury was used for calibration and as the confining liquid. The solvents were degassed	 SOURCE AND PURITY OF MATERIALS; (1) Nitrogen. Dansk Ilt-og Brint Fabrik. Contained less than 0.13 percent oxygen. (2) 1-Pentanol. Fractionated at about 115 mmHg. Normal boiling
METHOD/APPARATUS/PROCEDURE: A calibrated all-glass combined man- ometer and bulb was enclosed in an air thermostat and shaken until equilibrium. Mercury was used for calibration and as the confining	 SOURCE AND PURITY OF MATERIALS; (1) Nitrogen. Dansk Ilt-og Brint Fabrik. Contained less than 0.13 percent oxygen. (2) 1-Pentanol. Fractionated at about 115 mmHg. Normal boiling point 137.83 - 137.90°C. Refrac-
METHOD/APPARATUS/PROCEDURE: A calibrated all-glass combined man- ometer and bulb was enclosed in an air thermostat and shaken until equilibrium. Mercury was used for calibration and as the confining liquid. The solvents were degassed in the apparatus. Details are in	 SOURCE AND PURITY OF MATERIALS; (1) Nitrogen. Dansk Ilt-og Brint Fabrik. Contained less than 0.13 percent oxygen. (2) 1-Pentanol. Fractionated at about 115 mmHg. Normal boiling
METHOD/APPARATUS/PROCEDURE: A calibrated all-glass combined man- ometer and bulb was enclosed in an air thermostat and shaken until equilibrium. Mercury was used for calibration and as the confining liquid. The solvents were degassed in the apparatus. Details are in references 1 and 2. The absorped volume of gas was cal- culated from the initial and final	 SOURCE AND PURITY OF MATERIALS; (1) Nitrogen. Dansk Ilt-og Brint Fabrik. Contained less than 0.13 percent oxygen. (2) 1-Pentanol. Fractionated at about 115 mmHg. Normal boiling point 137.83 - 137.90°C. Refrac-
METHOD/APPARATUS/PROCEDURE: A calibrated all-glass combined man- ometer and bulb was enclosed in an air thermostat and shaken until equilibrium. Mercury was used for calibration and as the confining liquid. The solvents were degassed in the apparatus. Details are in references 1 and 2. The absorped volume of gas was cal- culated from the initial and final amounts, both saturated with solvent	 SOURCE AND PURITY OF MATERIALS; (1) Nitrogen. Dansk Ilt-og Brint Fabrik. Contained less than 0.13 percent oxygen. (2) 1-Pentanol. Fractionated at about 115 mmHg. Normal boiling point 137.83 - 137.90°C. Refrac-
METHOD/APPARATUS/PROCEDURE: A calibrated all-glass combined man- ometer and bulb was enclosed in an air thermostat and shaken until equilibrium. Mercury was used for calibration and as the confining liquid. The solvents were degassed in the apparatus. Details are in references 1 and 2. The absorped volume of gas was cal- culated from the initial and final amounts, both saturated with solvent vapor. The amount of solvent was	 SOURCE AND PURITY OF MATERIALS; (1) Nitrogen. Dansk Ilt-og Brint Fabrik. Contained less than 0.13 percent oxygen. (2) 1-Pentanol. Fractionated at about 115 mmHg. Normal boiling point 137.83 - 137.90°C. Refrac-
METHOD/APPARATUS/PROCEDURE: A calibrated all-glass combined man- ometer and bulb was enclosed in an air thermostat and shaken until equilibrium. Mercury was used for calibration and as the confining liquid. The solvents were degassed in the apparatus. Details are in references 1 and 2. The absorped volume of gas was cal- culated from the initial and final amounts, both saturated with solvent	 SOURCE AND PURITY OF MATERIALS; (1) Nitrogen. Dansk Ilt-og Brint Fabrik. Contained less than 0.13 percent oxygen. (2) 1-Pentanol. Fractionated at about 115 mmHg. Normal boiling point 137.83 - 137.90°C. Refrac- tive index at 20°C, n_D = 1.412. ESTIMATED ERROR:
METHOD/APPARATUS/PROCEDURE: A calibrated all-glass combined man- ometer and bulb was enclosed in an air thermostat and shaken until equilibrium. Mercury was used for calibration and as the confining liquid. The solvents were degassed in the apparatus. Details are in references 1 and 2. The absorped volume of gas was cal- culated from the initial and final amounts, both saturated with solvent vapor. The amount of solvent was determined by the weight of dis- placed mercury.	<pre>SOURCE AND PURITY OF MATERIALS; (1) Nitrogen. Dansk Ilt-og Brint Fabrik. Contained less than 0.13 percent oxygen. (2) 1-Pentanol. Fractionated at about 115 mmHg. Normal boiling point 137.83 - 137.90°C. Refrac- tive index at 20°C, n_D = 1.412. ESTIMATED ERROR:</pre>
METHOD/APPARATUS/PROCEDURE: A calibrated all-glass combined man- ometer and bulb was enclosed in an air thermostat and shaken until equilibrium. Mercury was used for calibration and as the confining liquid. The solvents were degassed in the apparatus. Details are in references 1 and 2. The absorped volume of gas was cal- culated from the initial and final amounts, both saturated with solvent vapor. The amount of solvent was determined by the weight of dis- placed mercury. The saturation of the liquid with the gas was carried out close to atmos-	<pre>SOURCE AND PURITY OF MATERIALS; (1) Nitrogen. Dansk Ilt-og Brint Fabrik. Contained less than 0.13 percent oxygen. (2) 1-Pentanol. Fractionated at about 115 mmHg. Normal boiling point 137.83 - 137.90°C. Refrac- tive index at 20°C, n_D = 1.412. ESTIMATED ERROR:</pre>
METHOD/APPARATUS/PROCEDURE: A calibrated all-glass combined man- ometer and bulb was enclosed in an air thermostat and shaken until equilibrium. Mercury was used for calibration and as the confining liquid. The solvents were degassed in the apparatus. Details are in references 1 and 2. The absorped volume of gas was cal- culated from the initial and final amounts, both saturated with solvent vapor. The amount of solvent was determined by the weight of dis- placed mercury. The saturation of the liquid with the gas was carried out close to atmos- pheric pressure. The solubility	SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Dansk Ilt-og Brint Fabrik. Contained less than 0.13 percent oxygen. (2) 1-Pentanol. Fractionated at about 115 mmHg. Normal boiling point 137.83 - 137.90°C. Refrac- tive index at 20°C, $n_D = 1.412$. ESTIMATED ERROR: $\delta T/K = 0.05$ $\delta X_1/X_1 = 0.015$
METHOD/APPARATUS/PROCEDURE: A calibrated all-glass combined man- ometer and bulb was enclosed in an air thermostat and shaken until equilibrium. Mercury was used for calibration and as the confining liquid. The solvents were degassed in the apparatus. Details are in references 1 and 2. The absorped volume of gas was cal- culated from the initial and final amounts, both saturated with solvent vapor. The amount of solvent was determined by the weight of dis- placed mercury. The saturation of the liquid with the gas was carried out close to atmos- pheric pressure. The solubility values were reported for one atmos-	SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Dansk Ilt-og Brint Fabrik. Contained less than 0.13 percent oxygen. (2) 1-Pentanol. Fractionated at about 115 mmHg. Normal boiling point 137.83 - 137.90°C. Refrac- tive index at 20°C, $n_D = 1.412$. ESTIMATED ERROR: $\delta T/K = 0.05$ $\delta X_1/X_1 = 0.015$ REFERENCES:
METHOD/APPARATUS/PROCEDURE: A calibrated all-glass combined man- ometer and bulb was enclosed in an air thermostat and shaken until equilibrium. Mercury was used for calibration and as the confining liquid. The solvents were degassed in the apparatus. Details are in references 1 and 2. The absorped volume of gas was cal- culated from the initial and final amounts, both saturated with solvent vapor. The amount of solvent was determined by the weight of dis- placed mercury. The saturation of the liquid with the gas was carried out close to atmos- pheric pressure. The solubility	SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Dansk Ilt-og Brint Fabrik. Contained less than 0.13 percent oxygen. (2) 1-Pentanol. Fractionated at about 115 mmHg. Normal boiling point 137.83 - 137.90°C. Refrac- tive index at 20°C, $n_D = 1.412$. ESTIMATED ERROR: $\delta T/K = 0.05$ $\delta X_1/X_1 = 0.015$
METHOD/APPARATUS/PROCEDURE: A calibrated all-glass combined man- ometer and bulb was enclosed in an air thermostat and shaken until equilibrium. Mercury was used for calibration and as the confining liquid. The solvents were degassed in the apparatus. Details are in references 1 and 2. The absorped volume of gas was cal- culated from the initial and final amounts, both saturated with solvent vapor. The amount of solvent was determined by the weight of dis- placed mercury. The saturation of the liquid with the gas was carried out close to atmos- pheric pressure. The solubility values were reported for one atmos- phere gas pressure assuming Henry's	SOURCE AND PURITY OF MATERIALS; (1) Nitrogen. Dansk Ilt-og Brint Fabrik. Contained less than 0.13 percent oxygen. (2) 1-Pentanol. Fractionated at about 115 mmHg. Normal boiling point 137.83 - 137.90°C. Refrac- tive index at 20°C, $n_D = 1.412$. ESTIMATED ERROR: $\delta T/K = 0.05$ $\delta X_1/X_1 = 0.015$ REFERENCES: 1. Lannung, A. J. Am. Chem. Soc. <u>1930</u> , 52, 68.
METHOD/APPARATUS/PROCEDURE: A calibrated all-glass combined man- ometer and bulb was enclosed in an air thermostat and shaken until equilibrium. Mercury was used for calibration and as the confining liquid. The solvents were degassed in the apparatus. Details are in references 1 and 2. The absorped volume of gas was cal- culated from the initial and final amounts, both saturated with solvent vapor. The amount of solvent was determined by the weight of dis- placed mercury. The saturation of the liquid with the gas was carried out close to atmos- pheric pressure. The solubility values were reported for one atmos- phere gas pressure assuming Henry's	SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Dansk Ilt-og Brint Fabrik. Contained less than 0.13 percent oxygen. (2) 1-Pentanol. Fractionated at about 115 mmHg. Normal boiling point 137.83 - 137.90°C. Refrac- tive index at 20°C, $n_D = 1.412$. ESTIMATED ERROR: $\delta T/K = 0.05$ $\delta X_1/X_1 = 0.015$ REFERENCES: 1. Lannung, A. J. Am. Chem. Soc. <u>1930</u> , 52, 68. 2. Gjaldbaek, J. C.
METHOD/APPARATUS/PROCEDURE: A calibrated all-glass combined man- ometer and bulb was enclosed in an air thermostat and shaken until equilibrium. Mercury was used for calibration and as the confining liquid. The solvents were degassed in the apparatus. Details are in references 1 and 2. The absorped volume of gas was cal- culated from the initial and final amounts, both saturated with solvent vapor. The amount of solvent was determined by the weight of dis- placed mercury. The saturation of the liquid with the gas was carried out close to atmos- pheric pressure. The solubility values were reported for one atmos- phere gas pressure assuming Henry's	SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Dansk Ilt-og Brint Fabrik. Contained less than 0.13 percent oxygen. (2) 1-Pentanol. Fractionated at about 115 mmHg. Normal boiling point 137.83 - 137.90°C. Refrac- tive index at 20°C, n _D = 1.412. ESTIMATED ERROR: $\delta T/K = 0.05$ $\delta X_1/X_1 = 0.015$ REFERENCES: 1. Lannung, A. J. Am. Chem. Soc. <u>1930</u> , 52, 68.
METHOD/APPARATUS/PROCEDURE: A calibrated all-glass combined man- ometer and bulb was enclosed in an air thermostat and shaken until equilibrium. Mercury was used for calibration and as the confining liquid. The solvents were degassed in the apparatus. Details are in references 1 and 2. The absorped volume of gas was cal- culated from the initial and final amounts, both saturated with solvent vapor. The amount of solvent was determined by the weight of dis- placed mercury. The saturation of the liquid with the gas was carried out close to atmos- pheric pressure. The solubility values were reported for one atmos- phere gas pressure assuming Henry's	SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Dansk Ilt-og Brint Fabrik. Contained less than 0.13 percent oxygen. (2) 1-Pentanol. Fractionated at about 115 mmHg. Normal boiling point 137.83 - 137.90°C. Refrac- tive index at 20°C, $n_D = 1.412$. ESTIMATED ERROR: $\delta T/K = 0.05$ $\delta X_1/X_1 = 0.015$ REFERENCES: 1. Lannung, A. J. Am. Chem. Soc. <u>1930</u> , 52, 68. 2. Gjaldbaek, J. C.

•

204 Nitrogen Solubilit	ties up to 200 kPa
COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Boyer, F. L.; Bircher, L. J.
(2) 1-Pentanol; C ₅ H ₁₂ O; [71-41-0]	J. Phys. Chem. <u>1960</u> , 64, 1330-1.
VARIABLES:	PREPARED BY:
T/K = 298-308 P/kPa = 101.325	M. E. Derrick
EXPERIMENTAL VALUES:	
T/K Mol Fraction $x_1 \times 10^3$ C	Bunsen Ostwald oefficient Coefficient α L
298.15 0.516 308.15 0.568	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
The Bunsen coefficients were calculat	ed by the compiler.
The observed mole fraction solubilitidissertation (2). The Dissertation gives the equations 298.15 K and log $X_1 = -3.576 + 0.452$ number of carbon atoms in the alcoholing in the original paper was calculated Smoothed Data: $\Delta G^O/J \mod^{-1} = -RT \ln T$ The equation is tentation	log $X_1 = -3.594 + 0.449$ log C at log C at 308.15 K where C is the . The mole fraction solubility given from the 298.15 K equation. $X_1 = 7312.1 + 38.408T$
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: Commercial Van Slyke blood gas apparatus (E. H. Sargent Co.) was modified by the authors for their use. The total pressure of gas and solvent vapor in the solution chamber was adjusted to a pressure of one atm. The pressure was maintained at one atm during the solution process. The saturated solution was trans- ferred to a bulb below the lower stopcock of the extraction vessel and sealed off. The gas and solvent vapor were then brought to volume over mercury. See (1) for details of the extraction procedure.	<pre>SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Air Reduction Co. 99.7 per cent nitrogen. (2) 1-Pentanol. Source not given. Treated by standard methods to remove aldehydes and ketones, then dried and distilled. ESTIMATED ERROR:</pre>
	δT/K: 0.01 δL/cm ³ : 0.004
	<pre>REFERENCES: 1. Peters, J. P.; Van Slyke, D. D. "Quantitative Clinical Chemistry" Williams and Wilkins Co., Baltimore, MD, 1932, Volume II. 2. Boyer, F. L. Ph.D. Dissertation Vanderbilt U., 1959, Nashville,TN</pre>

Organic Compounds	
COMPONENTS:	ORIGINAL MEASUREMENTS:
 (1) Nitrogen; N₂; [7727-37-9] (2) 1-Pentanol; C₅H₁₂O; [71-41-0] or 1-Hexanol; C₆H₁₄O; [111-27-3] 	Makranczy, J.; Rusz, L.; Balog-Megyery, K. Hung. J. Ind. Chem. <u>1979</u> , 7, 41-6.
VARIABLES:	PREPARED BY:
$T/K \approx 298$	C.L. Young
EXPERIMENTAL VALUES:	
T/K P ⁺ /kPa Ostwald coeff	icient Mole fraction of nitrogen*, $x_{ m N_2}$
	tanol
298.15 101.3 0.123	0.000546
l-Hex	anol
298.15 101.3 0.117	0.000599
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: Volumetric method. The apparatus	SOURCE AND PURITY OF MATERIALS:
of Bodor, Bor, Mohai, and Sipos (1) was used.	No details given.
	ESTIMATED ERROR:
	$\delta x_{N_2} = \pm 3\%$
	<pre>REFERENCES: 1. Bodor, E.; Bor, Gy.; Mohai, B,; Sipos, G. Veszpremi Vegyip. Egy. Kozl. <u>1957</u>, 1, 55. Chem. Abstr. <u>1961</u>, 55, 3175h</pre>

.

COMPONENTS:	ORIGINAL MEASUREMENTS:	
(1) Nitrogen; N ₂ :[7727-37-9]	Boyer, F. L.; Bircher, L. J.	
(2) 1-Hexanol; $C_6^{H_{14}O}$; [111-27-3]	J. Phys. Chem. 1960, 64, 1330-1.	
(2) 1-Hexanor, 6^{-14} , $[111-27-3]$	J. Phys. Chem. <u>1900</u> , 04, 1990-1.	
VARIABLES:	PREPARED BY:	
T/K = 298.15	M. E. Derrick	
P/kPa = 101.325		
EXPERIMENTAL VALUES:		
T/K Mol Fraction	Bunsen Ostwald	
x ₁ x 10 ³ C	oefficient Coefficient	
	α	
298.15 0.584	0.104 0.114 ± 0.003	
The Bunsen coefficient was calculated	by the compiler.	
The Bunsen coefficient was calculated by the compiler.		
The observed mole fraction solubility (2).	was taken from Boyer's dissertation	
The Dissertation gives the equations $\log X_1 = -3.594 + 0.449 \log C$ at		
298.15 K where C is the number of carbon atoms in the alcohol. The mole fraction solubility given in the original paper was calculated from the		
298.15 K equation.		
AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
Commercial Van Slyke blood gas apparatus (E. H. Sargent Co.) was	(1) Nitrogen. Air Reduction Co. 99.7 per cent nitrogen.	
modified by the authors for their	-	
use.	(2) 1-Hexanol. Source not given. Treated by standard methods to	
The total pressure of gas and solvent	remove aldehydes and ketones,	
vapor in the solution chamber was adjusted to a pressure of one atm.	then dried and distilled.	
The pressure was maintained at one		
atm during the solution process. The saturated solution was trans-		
ferred to a bulb below the lower		
stopcock of the extraction vessel and sealed off. The gas and solvent	ESTIMATED ERROR:	
vapor were then brought to volume	$\delta T/K = 0.01$	
over mercury. See (1) for details of the extraction procedure.	$\delta L/cm^3 = 0.003$	
er ene entrection procedure.	DEPENSIO	
	REFERENCES: 1. Peters, J. P.; Van Slyke, D. D.	
	"Quantitative Clinical Chemistry"	
	Williams and Wilkins Co., Baltimore, MD, 1932, Volume II.	
	2. Boyer, F. L. Ph.D. Dissertation	
	Vanderbilt U., <u>1959</u> , Nashville, TN	

1

ļ

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Gjaldbaek, J. C.; Niemann, H.
(2) Cyclohexanol; C ₆ H ₁₂ O; [108-93-0]	Acta Chem. Scand. <u>1958</u> , 12, 1015-23.
VARIABLES: T/K = 298.15 Total P/kPa = 101.325 EXPERIMENTAL VALUES: T/K Mol Fraction $\frac{X_1 \times 10^3}{298.15}$ 0.266 The mole fraction and Ostwald solubit compiler.	CoefficientCoefficient α L0.05620.0613
	·
AUXILIARY	INFORMATION
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS.
METHOD/APPARATUS/PROCEDURE: A calibrated all-glass combined man- ometer and bulb was enclosed in an air thermostat and shaken until equilibrium. Mercury was used for calibration and as the confining liquid. The solvents were degassed in the apparatus. Details are in references 1 and 2. The absorped volume of gas was cal- culated from the initial and final amounts, both saturated with solvent vapor. The amount of solvent was determined by the weight of dis- placed mercury. The saturation of the liquid with the gas was carried out close to atmos- pheric pressure. The solubility values were reported for one atmos- phere gas pressure assuming Henry's law is obeyed.	SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Dansk Ilt-og Brint Fabrik. Contained less than 0.13 percent oxygen. (2) Cyclohexanol. Fractionated by distillation at low pressure and fractionated by freezing. Completely solid at 24° C. Esti- mated water content was 0.05 percent. ESTIMATED ERROR: $\delta T/K = 0.05$ $\delta X_1/X_1 = 0.015$ REFERENCES: 1. Lannung, A. J. Am. Chem. Soc. <u>1930</u> , 52, 68. 2. Gjaldbaek, J. C. Acta Chem. Scand. <u>1952</u> , 6, 623.

	10200 KI a
COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Boyer, F. L.; Bircher, L. J.
(2) 1-Heptanol; C ₇ H ₁₆ O; [111-70-6]	J. Phys. Chem. <u>1960</u> , 64, 1330-1.
VARIABLES:	PREPARED BY:
т/к = 298.15	M. E. Derrick
P/kPa = 101.325	M. A. Dellick
EXPERIMENTAL VALUES:	And
$x_1 \times 10^3$ C	oefficient Coefficient α L
298.15 0.610	0.0962 0.105 ± 0.002
The Bunsen coefficient was calculated	by the compiler.
The observed mole fraction solubility (2).	was taken from Boyer's dissertation
The Dissertation gives the equations	T
298.15 K where C is the number of car fraction solubility given in the orig 298.15 K equation.	bon atoms in the alcohol. The mole inal paper was calculated from the
AUXILIARY	INFORMATION
ME THOD / AP PARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
Commercial Van Slyke blood gas	(1)Nitrogen. Air Reduction Co. 99.7 per cent nitrogen.
apparatus (E. H. Sargent Co.) was modified by the authors for their	99.7 per cent nitrogen.
use.	(2) 1-Heptanol. Source not given. Treated by standard methods to
The total pressure of gas and solvent vapor in the solution chamber was adjusted to a pressure of one atm. The pressure was maintained at one atm during the solution process. The saturated solution was trans- ferred to a bulb below the lower	
stopcock of the extraction vessel	ESTIMATED ERROR:
and sealed off. The gas and solvent vapor were then brought to volume	δT/K = 0.01
over mercury. See (1) for details of the extraction procedure.	$\delta L/cm^3 = 0.002$
	<pre>REFERENCES: 1. Peters, J. P.; Van Slyke, D. D. "Quantitative Clinical Chemistry' Williams and Wilkins Co., Baltimore, MD, 1932, Volume II. 2. Boyer, F. L. Ph.D. Dissertation</pre>
	Vanderbilt U., <u>1959</u> , Nashville, TN

COMPONENTS:	ORIGINAL MEASUREMENTS:	
(1) Nitrogen; N ₂ ; [7727-37-9]	Ijams, C. C.	
(2) Aliphatic alcohols; C ₇ H ₁₆ O and C ₈ H ₁₈ O	Ph.D. thesis, <u>1941</u> Vanderbilt University Nashville, TN	
VARIABLES:	PREPARED BY:	
T/K = 298.15 P/kPa = 101.325	H. L. Clever	
EXPERIMENTAL VALUES:		
	Bunsen Ostwald efficient Coefficient αL	
l-Heptanol; C ₇ H ₁₆ O;	[111-70-6]	
298.15 0.609	0.0963 0.1051	
l-Octanol; C ₈ H ₁₈ O;	[111-87-5]	
298.15 0.657	0.0930 0.1015	
The mole fraction and Ostw were calculated by the com		
	•	
······		
	INFORMATION	
METHOD/APPARATUS/PROCEDURE: A Van Slyke-Neill Manometric Apparatus manufactured by the Eimer and Amend Co. was used.	SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Air Reduction Co. Purity 99.5 per cent.	
The procedure of Van Slyke (1) for	(2) Aliphatic alcohols. Purified. Vapor pressure and boiling	
pure liquids was modified so that	point also reported in the thesis.	
small solvent sample (2 cm ³) could be used with almost 100 per cent recovery of the solvent.		
An improved temperature control system was used.		
	ESTIMATED ERROR:	
	$\delta T/K = 0.05$	
	REFERENCES :	
	l. Van Slyke, D. D. J. Biol. Chem. <u>1939</u> , 130, 545.	

COMPONENTS:	ORIGINAL MEASUREMENTS:	
(1) Nitrogen; N ₂ ; $[7727-37-9]$ (2) 1-Heptanol; C ₇ H ₁₆ O; [111-70-6]	Makranczy, J.; Rusz, L.; Balog-Megyery, K.	
or 1-Octanol; C ₀ H ₁₈ O; [111-87-5]	Hung. J. Ind. Chem. <u>1979</u> , 7, 41-6.	
VARIABLES:	PREPARED BY:	
T/K = 298	C.L. Young	
EXPERIMENTAL VALUES:		
T/K P ⁺ /kPa Ostwald coef	ficient Mole fraction of nitrogen*, $x_{ m N_2}$	
l-Hept	anol	
298.15 101.3 0.114	0.000660	
l-Octa	nol	
298.15 101.3 0.108		
* calculated by compil	er	
+ partial pressure of	nitrogen	
<u> </u>		
AUXILIARY	INFORMATION	
METHOD / APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:	
Volumetric method. The apparatus of Bodor, Bor, Mohai, and Sipos (1) was used.	No details given.	
	ESTIMATED ERROR:	
	$\delta x_{N_2} = \pm 3\%$	
	REFERENCES :	
	1. Bodor, E.; Bor, Gy.; Mohai, B.;	
	Sipos, G. Veszpremi Vegyip. Egy. Kozl.	
	<u>1957, 1, 55,</u> Chem. Abstr. <u>1961</u> ,55, 3175h	

ł

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Boyer, F. L.; Bircher, L. J.
(2) 1-Octanol; C ₈ H ₁₈ O; [111-87-5]	J. Phys. Chem. <u>1960</u> , 64, 1330-1.
VARIABLES:	PREPARED BY:
T/K = 298-308	M. E. Derrick
P/kPa = 101.325	
EXPERIMENTAL VALUES:	
T/K Mol Fraction $X_1 \times 10^3$	Bunsen Ostwald Coefficient Coefficient
298.15 0.680 308.15 0.673	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
The Bunsen coefficients were calculat	ed by the compiler.
The observed mole fraction solubiliti	
dissertation (2).	
The Dissertation gives the equations 208 ± 5 K and $\log x = -2.576 \pm 0.452$	
298.15 K and log $X_1 = -3.576 + 0.452$. The mole fraction solubility given
in the original paper was calculated	
Smoothed Data: $\Delta G^{O}/J \mod^{-1} = -RT \ln$	Х, = -823.32 + 63.400 т
The equation is tenta	-
	INFORMATION
METHOD/APPARATUS/PROCEDURE: Commercial Van Slyke blood gas	SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Air Reduction Co.
apparatus (E. H. Sargent Co.) was	99.7 per cent nitrogen.
modified by the authors for their use.	(2)1-Octanol. Source not given.
The total pressure of gas and solvent	Treated by standard methods to remove aldehydes and ketones,
vapor in the solution chamber was	then dried and distilled.
adjusted to a pressure of one atm. The pressure was maintained at one	
atm during the solution process. The saturated solution was trans- ferred to a bulb below the lower	
vapor were then brought to volume over mercury. See (1) for details	$\delta T/K = 0.01$
of the extraction procedure.	$\delta L/cm^3 = 0.002$
	REFERENCES:
	1. Peters, J. P.; Van Slyke, D. D. "Quantitative Clinical Chemistry"
	Williams and Wilkins Co.,
	Baltimore, MD, <u>1932</u> , Volume II.
	12. Bover, F. L. Ph.D. Dissertation
	 Boyer, F. L. Ph.D. Dissertation Vanderbilt U., <u>1959</u>, Nashville, TN

.

,

		Antogen oblabili	1103 up to 200 ki a	
COMPONENTS: ORIGINAL MEASUREMENTS:			REMENTS:	
(1) Nitrogen; N ₂ ; [7727-37-9]		Wilcock, R.	J.; Battino, R.; , W. F.; Wilhelm, E.	
(2) 1-Octanol;	C ₉ H ₁₉ O;	[111-87-5]		
	0 10		J. Chem. Th	ermodyn. <u>1978</u> , 10, 817-22.
		<u></u>		
VARIABLES: T/K = 1	283.32 -	- 313.60	PREPARED BY:	H. L. Clever
P/kPa =	101.325			
EXPERIMENTAL VALUE	<u>s</u> .		L	
	т/к	Mol Fraction	Bunsen	Ostwald
		X ₁ × 10 ³	Coefficient a	Co.fticient L
	283.32	0.5727	0.08208	0.08514
	298.15 313.60	0.6230 0.6353	0.08822 0.08876	0.09629 0.1019
		s were calculat	-	mpiler. partial pressure of
101.325 kPa (1			.e u nittoyen	baterar bressare or
Smoothed Data:	∆G ⁰ /J	$mol^{-1} = -RT \ln$	$x_1 = 2495.1$	+ 53.169 т
	Std. I	Dev. $\Delta G^{O} = 44.0$,	- Coef. Corr.	= 0.9985
		$mo1^{-1} = 2495.1,$	_	_
	AH /J			_
			ction ∆G ^O /J	mol -
		x_1 ×	100	
		278.15 0.5		
		288.150.5298.150.6	•	
		308.15 0.6 318.15 0.6		
ā., <u>1997. u</u> t			INFORMATION	
METHOD/APPARATUS/P	DOCEDURE		INFORMATION	
		us is based on	(1) Nitrogen.	ITY OF MATERIALS: . The Matheson Co., Inc.
the design of M	Morrison		99.999 pe	
by Battino, Eva	ans, and	Danforth (2).	(2) 1-octano Chemical	
The degassing a described by Ba	apparatu attino.	s is that Banzhof, Bogan,		$= 0.8247 \text{ g cm}^{-3}$
described by Battino, Banzhof, Bogan, and Wilhelm (3). Degassing. Up to 500 cm ³ of solvent is placed in a flask of such size				
		ESTIMATED E	RROR: $\delta T/K = 0.03$	
that the liquid	l is abo	ut 4 cm deep.		$\delta P/mmHg = 0.5$
The liquid is rapidly stirred, and vacuum is intermittently applied through a liquid N_2 trap until the permanent gas residual pressure drops to 5 microns.			$\delta x_1 / x_1 = 0.01$	
		REFERENCES:		
			, T. J.; Billett, F.	
Solubility Dete			1	<i>Soc.</i> <u>1948</u> , 2033.
gassed solvent film down a gla			2. Battino, Danforth	R.; Evans, F. D.; , W. F.
taining solute	gas plu	is the solvent	J. Am. 0	il Chem. Soc. <u>1968</u> ,
	ne of ga	s absorbed is	45, 830. 3 Battino	R.; Banzhof, M.;
found by differ initial and fir			Bogan, M.	.; Wilhelm, E.
buret system.	The sol	vent is col-	Anal. Che	em. <u>1971</u> , <i>43</i> , 806.
lected in a tar	red flas	k and weighed.		

COMPONENTS:	ODICINAL MEACUDENTINES.
	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Makranczy, J.; Rusz, L.; Balog-Megyery, K.
(2) 1-Nonanol; $C_{9}H_{20}O$; [143-08-8]	Hung. J. Ind. Chem. <u>1979</u> , 7, 41-6.
or	
l-Decanol; $C_{10}H_{22}O; [112-08-8]$	
VARIABLES:	PREPARED BY:
т/к - 298	C.L. Young
EXPERIMENTAL VALUES:	
T/K P ⁺ /kPa Ostwald coeff	icient Mole fraction of nitrogen*, x _{N2}
l-No	nanol
298.15 101.3 0.105	0.000750
l-De	canol
298.15 101.3 0.103	0.000805
* Calculated by compil	er
+ Partial pressure of	nitrogen
	-
· ·	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Volumetric method. The apparatus of Bodor, Bor, Mohai, and Sipos (1) was used.	No details given.
	ESTIMATED ERROR:
	$\delta x_{\rm N_2} = \pm 3\%.$
	N 2
	REFERENCES:
	<pre>1. Bodor, E.; Bor, Gy.; Mohai, B.; Sipos. G.</pre>
	Veszpremi Vegyip. Egy.Kozl
	<u>1957</u> , 1,55, <i>Chem. Abstr.</i> <u>1961</u> , 55, 3175h
L	

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Nitrogen; N₂; [7727-37-9] (2) 1-Decanol; C₁₀H₂₂O; [112-30-1]</pre>	Wilcock, R. J.; Battino, R. Danforth, W. F.; Wilhelm, E. J. Chem. Thermodyn. <u>1978</u> , 10, 817-22.
VARIABLES: T/K = 282.57 - 313.42 P/kPa = 101.325	PREPARED BY: A. L. Cramer
$\begin{array}{r} \begin{array}{c} & \chi_{1} \times 10 \\ \hline \\ 282.57 & 0.6403 \\ 298.08 & 0.6681 \\ 313.42 & 0.6859 \end{array}$ The Bunsen coefficients were calculat The solubility values were adjusted t 101.325 kPa (1 atm) by Henry's law. Smoothed Data: $\Delta G^{O}/J \text{ mol}^{-1} = -RT \ln Std. \text{ Dev. } \Delta G^{O} = 8.8, \\ \Delta H^{O}/J \text{ mol}^{-1} = 1637.5, \end{array}$	to a nitrogen partial pressure of $X_1 = 1637.5 + 55.327 \text{ T}$ Coef. Corr. = 0.9999 $\Delta s^{\circ}/J \text{ K}^{-1} \text{ mol}^{-1} = -55.327$ ction $\Delta G^{\circ}/J \text{ mol}^{-1}$ 10 ³ 35 17,027 50 17,580 66 18,133 80 18,687
AUXILIARY INFORMATION	
METHOD/APPARATUS/PROCEDURE: The solubility apparatus is based on the design of Morrison and Billett (1) and the version used is described by Battino, Evans, and Danforth (2). The degassing apparatus is that described by Battino, Banzhof, Bogan, and Wilhelm (3). Degassing. Up to 500 cm ³ of solvent is placed in a flask of such size that the liquid is about 4 cm deep. The liquid is rapidly stirred, and vacuum is intermittently applied through a liquid N ₂ trap until the permanent gas residual pressure drops to 5 microns. Solubility Determination. The de- gassed solvent is passed in a thin film down a glass helical tube con- taining solute gas plus the solvent vapor at a total pressure of one atm. The volume of gas absorbed is found by difference between the initial and final volumes in the buret system. The solvent is collected in a tared flask and weighed.	Chemicals. Distilled, density $\rho_{298.15} = 0.8206 \text{ g cm}^{-3}.$ ESTIMATED ERROR: $\delta T/K = 0.03$ $\delta P/\text{nmHg} = 0.5$ $\delta X_1/X_1 = 0.01$ REFERENCES: 1. Morrison, T. J.; Billett, F. J. Chem. Soc. <u>1948</u> , 2033. 2. Battino, R.; Evans, F. D.; Danforth, W. F. J. Am. Oil Chem. Soc. <u>1968</u> ,

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Makranczy, J.; Rusz, L.; Balog-Megyery, K.
(2) 1-Undecanol; C ₁₁ H ₂₄ O; [112-42-5]	
or	Hung. J. Ind. Chem. <u>1979</u> , 7, 41-6.
1-Dodecanol; $C_{12}H_{26}O$; [112-53-8]	
VARIABLES:	PREPARED BY:
T/K = 298	C.L. Young
1/1. 200	
EXPERIMENTAL VALUES:	
$T/K P^{+}/kPa$ Ostwald coe	fficient Mole fraction of
T/K F/KFA OStwald COE	nitrogen*, x _{N2}
	• N ₂
l-Und	ecanol
298.15 101.3 0.10	0 0.000849
1	
1-Dod	lecanol
298.15 101.3 0.09	8 0.000898
* calculated by compi	ler
+ partial pressure of	nitrogen
	•
	·
AUXILIARY	
	······
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
	······
METHOD/APPARATUS/PROCEDURE: Volumetric method. The apparatus of Bodor, Bor, Mohai, and Sipos (1) was	SOURCE AND PURITY OF MATERIALS:
METHOD/APPARATUS/PROCEDURE: Volumetric method. The apparatus of Bodor, Bor, Mohai, and Sipos (1) was	SOURCE AND PURITY OF MATERIALS:
METHOD/APPARATUS/PROCEDURE: Volumetric method. The apparatus of Bodor, Bor, Mohai, and Sipos (1) was	SOURCE AND PURITY OF MATERIALS:
METHOD/APPARATUS/PROCEDURE: Volumetric method. The apparatus of Bodor, Bor, Mohai, and Sipos (1) was	SOURCE AND PURITY OF MATERIALS:
METHOD/APPARATUS/PROCEDURE: Volumetric method. The apparatus of Bodor, Bor, Mohai, and Sipos (1) was	SOURCE AND PURITY OF MATERIALS: No details given.
METHOD/APPARATUS/PROCEDURE: Volumetric method. The apparatus of Bodor, Bor, Mohai, and Sipos (1) was	SOURCE AND PURITY OF MATERIALS:
METHOD/APPARATUS/PROCEDURE: Volumetric method. The apparatus of Bodor, Bor, Mohai, and Sipos (1) was	SOURCE AND PURITY OF MATERIALS: No details given. ESTIMATED ERROR:
METHOD/APPARATUS/PROCEDURE: Volumetric method. The apparatus of Bodor, Bor, Mohai, and Sipos (1) was	SOURCE AND PURITY OF MATERIALS: No details given. ESTIMATED ERROR:
METHOD/APPARATUS/PROCEDURE: Volumetric method. The apparatus of Bodor, Bor, Mohai, and Sipos (1) was	SOURCE AND PURITY OF MATERIALS: No details given. ESTIMATED ERROR: $\delta x_{N_2} = \pm 3$ %.
METHOD/APPARATUS/PROCEDURE: Volumetric method. The apparatus of Bodor, Bor, Mohai, and Sipos (1) was	SOURCE AND PURITY OF MATERIALS: No details given. ESTIMATED ERROR: $\delta x_{N_2} = \pm 3$ %. REFERENCES: 1. Bodor, E.; Bor, Gy.; Mohai, B.; Sipos, G. Veszpremi Vegyip. Egy. Kozl. 1957, 1, 55,
METHOD/APPARATUS/PROCEDURE: Volumetric method. The apparatus of Bodor, Bor, Mohai, and Sipos (1) was	SOURCE AND PURITY OF MATERIALS: No details given. ESTIMATED ERROR: $\delta x_{N_2} = \pm 3$ %. REFERENCES: 1. Bodor, E.; Bor, Gy.; Mohai, B.; Sipos, G. Veszpremi Vegyip. Egy. Kozl.

COMPONENTS:	EVALUATOR:
<pre>(1) Nitrogen; N₂; [7727-37-9] (2) 2-Propanone(acetone); C₃H₆O; [67-64-1]</pre>	Rubin Battino Department of Chemistry Wright State University Dayton, Ohio 45435 U.S.A.
	December 1981

CRITICAL EVALUATION:

The nitrogen/acetone system has been studied by three groups (1,2,3). However, the two data points obtained by Just were so low that they are to be not considered. Smoothing the other points in the temperature range 195 to 314 K gave the following least squares equation:

 $\ln x_1 = -11.3529 + 3.77545/(T/100K) + 2.34933 \ln (T/100K)$

The standard deviation of the fit in the mole fraction was 3.2×10^{-6} or about 0.4% at the mid-range of temperature. Smoothed values at 10K intervals are given below. The ΔCp° value was constant at 20 J K mol⁻¹. Entropy and enthalpy changes are also given in the table.

Т/К	10 ⁴ x1	∆ ^H °/J mol ⁻¹	∆5°∕JK ⁻¹ mol ⁻¹
193.15	3.891	634	-62.0
203.15	3.979	829	-61.0
213.15	4.083	1024	-60.1
223.15	4.200	1220	-59.2
233.15	4.330	1415	-58.3
243.15	4.471	1610	-57.5
253.15	4.623	1806	-56.7
263.15	4.784	2001	-56.0
273.15	4.955	2196	-55.2
283.15	5.135	2392	-54.5
293.15	5.324	2587	-53.9
298.15	5,421	2684	-53.5
303.15	5.520	2782	-53.2
313.15	5.726	2977	-52.6
323.15	5.939	3173	-51.9

References

- 1. Just, G. Z. Phys. Chem. 1901, 37, 342-67.
- Horiuti, J. Sci. Pap. Inst. Phys. Chem. Res. (Jpn) <u>1931/32</u>, 17, 125-256.
- Kretschmer, C. B.; Nowakowska, J.; Wiebe, R. Ind. Eng. Chem. <u>1946</u>, 38, 506-9.

COMPONENTS:	ORIGINAL MEASUREMENTS:	
(1) Nitrogen; N ₂ ; [7727-37-9]	Just, G.	
(2) 2-Propanone or acetone; C ₃ H ₆ O; [67-64-1]	Z. Phys. Chem. <u>1901</u> , 37, 342-67.	
VARIABLES:	PREPARED BY:	
T/K = 293-298 P/kPa = 101.325	M. E. Derrick H. L. Clever	
EXPERIMENTAL VALUES:		
T/K Mol Fraction $x_1 \times 10^4$ C	Bunsen Ostwald Defficient Coefficient α L	
293.154.22298.154.41	0.1289 0.1383 0.1338 0.1460	
pressure, and calculated Bunsen coefficient values partial pressure of the g	at 101.325 kPa (1 atm)	
AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE: An Ostwald apparatus as modified by Timofejew (1), and Steiner (2) is used. The apparatus consists of a gas buret, an absorption flask, and a mercury manometer. The system is thermostated with a water jacket.	 SOURCE AND PURITY OF MATERIALS; (1) Nitrogen. Prepared by the reaction of sodium nitrite and ammonium nitrate in aqueous solution in the presence of calcium dichromate. (2) 2-Propanone. No information. 	
The gas is introduced into the de- gassed liquid. The gas volume absorbed is determined by the gas buret. The solvent volume is deter- mined at the end of the experiment by pouring the solvent into a graduated	ESTIMATED ERFOR:	
flask.	$\delta L/L = 0.03$ (compiler)	
	REFERENCES: 1. Timofejew, W. <i>Z. Physik. Chem.</i> <u>1890</u> , 6, 141.	
	2. Steiner, Ann. Phys. (Leipzig) <u>1894</u> , 52, 275.	

210	
COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Horiuti, J.
(2) 2-Propanone or Acetone; C ₃ H ₆ O; [67-64-1]	Sci. Pap. Inst. Phys. Chem. Res. (Jpn) <u>1931/32</u> , 17, 125-256.
VARIABLES: T/K = 195.05 - 314.25	PREPARED BY: M. E. Derrick
Total $P/kPa = 101.325$	H. L. Clever
EXPERIMENTAL VALUES:	
T/K Mol Fraction $x_1 \times 10^3$ 195.05 0.3907 212.85 0.4090 232.40 0.4300 252.95 0.4610 273.15 0.4948	BunsenOstwaldCoefficientCoefficient α L0.13540.09670.13870.10810.14230.12110.14860.13760.15530.1553
293.15 0.5328 314.25 0.5699	0.1628 0.1747 0.1691 0.1946
	.6459/(T/100) + 2.2850 ln (T/100)
by the compiler for a gas pressure of	T/K Mol Fraction $X_1 \times 10^3$ 263.15 0.4775 273.15 0.4943 283.15 0.5119 293.15 0.5303 303.15 0.5495 313.15 0.5695 at a total pressure of one atm. The tion solubility values were calculated f one atm assuming the gas to behave
ideally and the Ostwald coefficient	to be independent of pressure.
METHOD/APPARATUS/PROCEDURE: The apparatus consists of a gas buret, a solvent reservoir, and an absorption pipet. The volume of the pipet was determined at various miniscus heights by weighing a quan- tity of water. The meniscus height was read with a cathetometer. The dry gas introduced into the	 dried). Gas dried over phospho- rus pentoxide. (2)2-Propanone. Nippon Pure Chem. Co. or Merck. Extra pure grade, recrystallized with sodium sulfite.
degassed solvent. The gas and solvent are mixed with a magnetic stir- rer until saturation. Care taken to prevent solvent vapor from mixing with the solute gas in the gas buret. The volume of gas was determined from a gas buret reading, the volume of	Stored over calcium chloride then fractionated. Normal boiling point 56.09°C. ESTIMATED ERROR:
the solvent was determined from the meniscus height in the absorption pipet.	$\delta T/K = 0.05$
the following thermodynamic values.	to be ideal, the fitted equation gives
T/K $\Delta G^{O}/kJ \text{ mol}^{-1} \Delta H^{O}/J \text{ mol}^{-1}$	$\Delta S^{\circ}/J \kappa^{-1} mol^{-1} \Delta C_p^{\circ}/J \kappa^{-1} mol^{-1}$
273.15 17.288 2158 298.15 18.652 2633	-55.39 19.00 -53.73 19.00

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Kretschmer, C. B.; Nowakowska, J.; Wiebe, R.
(2) 2-Propanone or acetone; C ₃ H ₆ O;	
[67-64-1]	Ind. Eng. Chem. <u>1946</u> , 38, 506-09.
VARIABLES:	PREPARED BY:
T/K = 248.15 - 298.15	P. L. Long
P/kPa = 101.325	H. L. Clever
	l
EXPERIMENTAL VALUES:	
T/K Mol Fraction	Bunsen Ostwald Defficient Coefficient
$x_1 \times 10^3$ C	oefficient Coefficient α L
248.15 0.4550	0.1475 0.1340
273.15 0.4954 298.15 0.5486	0.1564 0.1554 0.1664 0.1816
The Ostwald coefficients were measured (1 atm). The compiler calculated the values for an oxygen partial pressure Ostwald coefficient was independent o	Bunsen coefficient and mole fraction of 101.325 kPa (1 atm) assuming the
Smoothed Data: $\ln x_1 = -6.5910 - 2.7$	
Standard error about	the regression line = 6.98×10^{-6}
	Mol Fraction
	$x_1 \times 10^3$
253.15	0.463
263.15	0.482
273.15 283.15	0.501 0.519
293.15	0.537
298.15	0.545
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS;
The apparatus was similar to that of	(1) Nitrogen. Commercial, but source
Horiuti (1), it consisted of a gas buret, manometer, and absorption	not given. Passed through alkaline pyrogallol to remove O ₂ ,
pipet equipped with a magnetic	2
stirrer. All volumes were calibrated	passed through Drierite to dry.
by mercury displacement.	(2) 2-Propanone. Source not given.
The solvent was partly degassed by boiling under reflux. About 40 cm ³	Treated with Ag ₂ O, dried over
of solvent was admitted into the	CaSO ₄ , distilled, b.p. (760 mmHg)/
absorption pipet, and pumped on to	°C 56.10 - 56.14, density,
complete the degassing. Dry gas, measured in the buret, was admitted,	$\rho_{4}^{25}/\text{g cm}^{-3}$ 0.78490.
final equilibrium was established	ESTIMATED ERROR:
after 1 to 3 hours stirring. During	Gas buret $\delta V/cm^3 = 0.005$
the solution process the total pres- sure was kept at one atm by additions	Average deviation from the mean 0.3%, maximum deviation 0.9% (authors).
of dry gas.	active contraction of the (authors).
The solubility value was corrected	REFERENCES:
for the increase of solvent volume	l. Horiuti, J.
with gas absorption, and for the nitrogen impurity in the oxygen.	J. Sci Papers Inst. Phys. Chem.
	Res. (Tokyo) <u>1931</u> , 17, 125.
1	

•

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Guerry, D. Jr.
(2) Cyclohexanone; C ₆ H ₁₀ O; [108-94-1]	Ph.D. thesis, <u>1944</u> Vanderbilt University Nashville, TN
VARIABLES:	PREPARED BY:
T/K = 293-298 P/kPa = 101.325	H. L. Clever
EXPERIMENTAL VALUES:	
T/K Mol Fraction $x_1 \times 10^4$ Co	Bunsen Ostwald Defficient Coefficient α L
293.15 3.72 298.15 3.77	0.0804 0.0863 0.0812 0.0886
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: A Van Slyke-Neill Manometric Appara- tus manufactured by the Eimer and Amend Co. was used. The procedure of Van Slyke (1) for pure liquids was modified (2) so that small solvent samples (2 cm ³) could be used with almost complete recovery of the sample. An improved temperature control system was used.	
SOURCE AND PURITY OF MATERIALS:	ESTIMATED ERROR:
(1) Nitrogen. Ohio Chemical Co. Oil pumped, 99.8 per cent pure.	δT/K = 0.05
(2) Cyclohexanone. Eastman Kodak Co. Purified, distilled, b.p. (754.5 mmHg) t/°C 155.19. Refractive index, density, and vapor pres- sure data are in the thesis.	<pre>REFERENCES: 1. Van Slyke, D. D. J. Biol. Chem. 1939, 130, 545. 2. Ijams, C. C. Ph.D. thesis, 1941 Vanderbilt University</pre>

ţ

t

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Just, G.
(2) Acetic Acid; C ₂ H ₄ O ₂ ; [64-19-7]	Z. Phys. Chem. <u>1901</u> , 37, 342-67.
VARIABLES:	PREPARED BY:
T/K = 293-298 P/kPa = 101.325	M. E. Derrick H. L. Clever
EXPERIMENTAL VALUES:	
T/K Mol Fraction $x_1 \times 10^4$ C	Bunsen Ostwald oefficient Coefficient α L
293.15 2.79 298.15 2.80	0.1092 0.1172 0.1090 0.1190
pressure of about 746 mmH the Ostwald coefficient to pressure, and calculated Bunsen coefficient values partial pressure of the g	o be independent of the mole fraction and at 101.325 kPa (1 atm)
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: An Ostwald apparatus as modified by Timofejew (1), and Steiner (2) is used. The apparatus consists of a gas buret, an absorption flask, and a mercury manometer. The system is thermostated with a water jacket.	 SOURCE AND PURITY OF MATERIALS; (1) Nitrogen. Prepared by the reaction of sodium nitrite and ammonium nitrate in aqueous solution in the presence of calcium dichromate. (2) Acetic Acid. No information.
The gas is introduced into the de- gassed liquid. The gas volume absorbed is determined by the gas buret. The solvent volume is determined at the end of the experi- ment by pouring the solvent into a	
graduated flask.	ESTIMATED ERROR: $\delta L/L = 0.03$ (compiler)
	<pre>REFERENCES: 1. Timofejew, W. Z. Physik. Chem. <u>1890</u>, 6, 141. 2. Steiner, Ann. Phys. (Leipzig) <u>1894</u>, 52,</pre>
	275.

COMPONENTS:			ORIGINAL MEASUREMENTS:
(1) Nitrog	en; N ₂ ; [772	7-37-9]	Ďrucker, K.; Moles, E.
(2) 2-Meth [79-31	ylpropanoic ac: -2]	id; C4H8O2;	Z. Physik. Chem. <u>1910</u> , 75, 405-36.
VARIABLES:			PREPARED BY:
T/K = 1	298 = 35-111		C. L. Young
EXPERIMENTAL	L VALUES:		
т/к	p/mmHg	p/kPa	Ostwald coefficient, L
298.20	262.6 388.3 566.1 662.4 783.5 832.2	35.01 51.77 75.47 88.31 104.5 111.0	0.1609 [*] 0.1640 0.1647 0.1656 0.1656 0.1666
		AUXILIARY	INFORMATION
METHOD /APPAI	RATUS/PROCEDURE:		SOURCE AND PURITY OF MATERIALS;
type gas 1	c method using buret and pipet before being ad	. Solvent	 (1) From cylinder, passed through concentrated alkali, alkaline pyrogallol, concentrated sulfuric acid and over hot copper. (2) From Kahlbaum, distilled four times. ESTIMATED ERROR: δL/L = ±1-3% for dil. soln.; ±5-7% for conc. soln. REFERENCES:

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Horiuti, J.
<pre>(2) Acetic acid, methyl ester or Methyl acetate; C₃H₆O₂; [79-20-9]</pre>	Sci. Pap. Inst. Phys. Chem. Res. (Jpn) <u>1931/32</u> , 17, 125-256.
[79-20-9]	
VARIABLES:	PREPARED BY:
T/K = 194.45 - 313.25	M. E. Derrick H. L. Clever
Total P/kPa = 101.325	
EXPERIMENTAL VALUES:	
T/K Mol Fraction X ₁ x 10 ³	Bunsen Ostwald Coefficient Coefficient α L
194.45 0.3948 213.05 0.4225	0.1264 0.0900 0.1323 0.1032
232.55 0.4573	0.1398 0.1190
252.85 0.4905 273.15 0.5342	0.1462 0.1353 0.1551 0.1551
293.15 0.5342 293.15 0.5761 313.25 0.6201	0.1629 0.1748 0.1706 0.1957
Smoothed Data: $\ln x_1 = -10.3409 + 2$.	
_	
Standard error about the regression 1	1
T/K Mol Fraction X ₁ x 10 ³	T/K Mol Fraction $X_1 \times 10^3$
$\frac{1}{193.15}$ 0.3930	$\frac{1}{263.15}$ 0.5130
203.15 0.4075	273.15 0.5332
213.15 0.4231 223.15 0.4395	283.15 0.5540 293.15 0.5755
233.15 0.4567	303.15 0.5976
243.15 0.4748 253.15 0.4935	313.15 0.6203
The Ostwald coefficient was measured Bunsen coefficient and the mole fract by the compiler for a gas pressure of ideally and the Ostwald coefficient t	ion solubility values were calculated one atm assuming the gas to behave
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The apparatus consists of a gas buret	(1)Nitrogen. Prepared in the
a solvent reservoir, and an absorp- tion pipet. The volume of the pipet	laboratory by heating sodium azide (Kahlbaum, recrystalized and
was determined at various miniscus	dried). Gas dried over phosphorus
heights by weighing a quantity of water. The meniscus height was read	(2) Acetic acid, methyl ester.Merck.
with a cathetometer.	Extra pure grade treated with phosphorous pentoxide several
The dry gas introduced into the degassed solvent. The gas and sol-	times and distilled several times.
vent are mixed with a magnetic stir-	Normal boiling point, 57.12 ^o C.
rer until saturation. Care taken to prevent solvent vapor from mixing	
with the solute gas in the gas buret.	
The volume of gas was determined from a gas buret reading, the volume of	1 (
the solvent was determined from the	$\delta T/K = 0.05$
meniscus height in the absorption pipet.	
If the gas and solution are assumed to the following thermodynamic values.	o be ideal the fitted equation gives
	$\Delta s^{o}/J K^{-1} mol^{-1} \Delta c_{p}^{o}/J K^{-1} mol^{-1}$
273.15 17.116 2386 298.15 18.446 2785	-53.93 15.99 -52.53 15.99

224 Nitrogen Solubili	ties up to 200 kPa
COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Just, G.
<pre>(2) Acetic acid ethyl ester or ethyl acetate; C4H802; [141-78-6]</pre>	Z. Phys. Chem. <u>1901</u> , 37, 342-67.
VARIABLES:	PREPARED BY:
T/K = 293-298 P/kPa = 101.325	M. E. Derrick H. L. Clever
EXPERIMENTAL VALUES:	
T/K Mol Fraction $x_1 \times 10^4$ C	Bunsen Ostwald oefficient Coefficient α L
293.15 6.83 298.15 6.95	0.1564 0.1678 0.1582 0.1727
pressure, and calculated Bunsen coefficient values partial pressure of the g	at 101.325 kPa (1 atm)
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
An Ostwald apparatus as modified by Timofejew (1), and Steiner (2) is used. The apparatus consists of a gas buret, an absorption flask, and a mercury manometer. The system is thermostated with a water jacket. The gas is introduced into the de- gassed liquid. The gas volume absorbed is determined by the gas buret. The solvent volume is deter- mined at the end of the experiment by pouring the solvent into a gradu- ated flask.	 (1) Nitrogen. Prepared by the reaction of sodium nitrite and ammonium nitrate in aqueous solution in the presence of calcium dichromate. (2) Acetic acid ethyl ester. No information given.
	$\delta L/L = 0.03$ (compiler)
	<pre>REFERENCES: 1. Timofejew, W. Z. Physik. Chem. <u>1890</u>, 6, 141. 2. Steiner, Ann. Phys. (Leipzig) <u>1894</u>, 52, 275.</pre>

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Just, G.
<pre>(2) Acetic acid 2-methylpropyl ester or isobutyl acetate; C₆H₁₁O₂; [110-19-0]</pre>	Z. Phys. Chem. <u>1901</u> , 37, 342-67.
VARIABLES:	PREPARED BY:
T/K = 293-298 P/kPa = 101.325	M. E. Derrick H. L. Clever
EXPERIMENTAL VALUES:	1
T/K Mol Fraction $x_1 \times 10^4$ C	Bunsen Ostwald oefficient Coefficient α L
293.15 9.39 298.15 9.47	0.1585 0.1701 0.1589 0.1734
pressure of about 746 mmH the Ostwald coefficient to pressure, and calculated Bunsen coefficient values partial pressure of the g	o be independent of the mole fraction and at 101.325 kPa (1 atm)
AUXILIARY	INFORMATION
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
An Ostwald apparatus as modified by Timofejew (1), and Steiner (2) is used. The apparatus consists of a gas buret, an absorption flask, and a mercury manometer. The system is thermostated with a water jacket.	 (1) Nitrogen. Prepared by the reaction of sodium nitrite and ammonium nitrate in aqueous solution in the presence of calcium dichromate. (2) Acetic acid 2-methylpropyl ester.
The gas is introduced into the de- gassed liquid. The gas volume absorbed is determined by the gas buret. The solvent volume is deter- mined at the end of the experiment by pouring the solvent into a	No information.
graduated flask.	$\delta L/L = 0.03$ (compiler)
	REFERENCES: 1. Timofejew, W. Z. Physik. Chem. <u>1890</u> , 6, 141. 2. Steiner,
	2. Steiner, Ann. Phys. (Leipzig) <u>1894</u> , 52, 275.

	1105 UP 10 200 KF a
COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Just, G.
<pre>(2) Acetic acid pentyl ester or amyl acetate; C₇H₁₄O₂; [628-63-7]</pre>	Z. Phys. Chem. <u>1901</u> , 37, 342-67.
VARIABLES: T/K = 293-298 P/kPa = 101.325	PREPARED BY: M. E. Derrick H. L. Clever
EXPERIMENTAL VALUES:	I
T/K Mol Fraction $x_1 \times 10^4$ Co	Bunsen Ostwald Defficient Coefficient α L
293.15 9.35 298.15 9.43	0.1409 0.1512 0.1413 0.1542
Bunsen coefficient values partial pressure of the g	at 101.325 kPa (l atm) as.
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
An Ostwald apparatus as modified by Timofejew (1), and Steiner (2) is used. The apparatus consists of a gas buret, an absorption flask, and a mercury manometer. The system is thermostated with a water jacket. The gas is introduced into the de- gassed liquid. The gas volume	 Nitrogen. Prepared by the reaction of sodium nitrite and ammonium nitrate in aqueous solution in the presence of calcium dichromate. Acetic acid pentyl ester. No information given.
absorbed is determined by the gas buret. The solvent volume is deter- mined at the end of the experiment by pouring the solvent into a gradu- ated flask.	ESTIMATED ERROR:
accu Llask.	$\delta L/L = 0.03$ (compiler)
	<pre>REFERENCES: 1. Timofejew, W. Z. Physik. Chem. <u>1890</u>, 6, 141. 2. Steiner, Ann. Phys. (Leipzig) <u>1894</u>, 52, 275.</pre>

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Christoff, A.
2	
<pre>(2) 1,1'-Oxybisethane or diethyl ether; C4H10; [60-29-7]</pre>	Z. Phys. Chem. <u>1912</u> , 79, 456-60.
VARIABLES: T/K = 273.15 P/kPa = Atmospheric	PREPARED BY: M. E. Derrick H. L. Clever
EXPERIMENTAL VALUES:	
T/K Mol Fraction $x_1 \times 10^3$	Bunsen Ostwald Coefficient Coefficient α L
273.15 1.16	0.258 0.258
of the solvent at the tem	estwald coefficient. The sted for the vapor pressure aperature of the measurement. the mole fraction and Bunsen
AUXILIARY	INFORMATION
METHOD /APPARATUS / PROCEDURE :	SOURCE AND -PURITY OF MATERIALS:
The apparatus is a modified Ostwald apparatus described by Just (1), and modified by Skirrow (2). The apparatus consists of a thermostated gas buret and absorption flask. The modification involves the use of vapor free gas in the gas buret. A correction is made for the vapor	 (1) Nitrogen. Prepared by decomposing sodium nitrite. Passed over glowing copper to remove nitric oxide. (2) Diethyl ether. Merck (Darmstadt). Stated to be pure and anhydrous.
pressure of the liquid. A steel capillary tube with a stopcock, which prevents the gas and the liquid vapor mixing in the buret, is used to	
connect the absorption flask and the	ESTIMATED ERROR:
buret.	δL/L = 0.05
	REFERENCES:
	1. Just, G. Z. Phys. Chem. <u>1901</u> , 37, 342.
	2. Skirrow, F. W. Z. Phys. Chem. <u>1902</u> , 41, 139.

Nitrogen Solubilities up to 200 kPa

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Horiuti, J.
<pre>(2) l,l-Oxybisethane or Diethylether; C₄H₁₀O; [60-29-7]</pre>	Sci. Pap. Inst. Phys. Chem. Res. (Jpn) <u>1931/32</u> , 17 , 125-256.
VARIABLES:	PREPARED BY:
T/K = 195.45 - 293.15	M. E. Derrick H. L. Clever
Total P/kPa = 101.325	
EXPERIMENTAL VALUES:	
T/K Mol Fraction X ₁ x 10 ³	Bunsen Ostwald Coefficient Coefficient
	α L 0,2872 0,2055
212.55 1.136	0.2755 0.2144
232.05 1.139 252.65 1.155	0.2691 0.2286
273.15 1.199	0.2651 0.2452 0.2672 0.2672
<u>293.15 0.9113</u>	
Smoothed Data: $\ln X_1 = 4.39833 - 13.$	8281/(T/100) - 6.14581 ln (T/100)
	ture a 52 a 10 ⁻⁵
Standard error about the regression]	
T/K Mol Fraction X ₁ x 10 ³	T/K Mol Fraction $X_1 \times 10^3$
$\frac{1}{193.15}$ 1.11	$\frac{1}{253.15}$ 1.14
203.15 1.15	263.15 1.11 273.15 1.07
213.15 1.18	
223.15 1.19 233.15 1.19	283.15 1.03 293.15 0.98
243.15 1.17	
The Ostwald coefficient was measured Bunsen coefficient and the mole fract by the compiler for a gas pressure of ideally and the Ostwald coefficient t	ion solubility values were calculated one atm assuming the gas to behave
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The apparatus consists of a gas	(1)Nitrogen. Prepared in the labora-
buret, a solvent reservoir, and an absorption pipet. The volume of the	tory by heating sodium azide (Kahlbaum, recrystalized and dried)
pipet was determined at various	Gas dried over phosphorous pentoxide.
miniscus heights by weighing a quantity of water. The meniscus	-
height was read with a cathetometer.	(2)1,1-Oxybisethane. Merck's "for analysis". Stored over sodium
The dry gas introduced into the	amalgam and distilled. Constant
degassed solvent. The gas and sol- vent are mixed with a magnetic stir-	boiling within 0.01°C.
rer until saturation. Care taken	
to prevent solvent vapor from mixing with the solute gas in the gas buret.	ESTIMATED ERROR:
The volume of gas was determined from	
a gas buret reading, the volume of the solvent was determined from the	$\delta T/K = 0.05$
meniscus height in the absorption	
pipet. If the gas and solution are assumed t the following thermodynamic values.	o be ideal the fitted equation gives
T/K ΔG ^O /kJ mol ⁻¹ ΔH ^O /J mol ⁻	$\Delta s^{\circ}/J \kappa^{-1} mol^{-1} \Delta c_p^{\circ}/J \kappa^{-1} mol^{-1}$
273.15 15.533 -2460	-65.88 -51.1

Ŧ

A REPORT A STREET A

228

•

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Guerry, D. Jr.
(2) Cyclic ethers: C_4H_8O , $C_4H_8O_2$, C_5H_8O , and $C_5H_{10}O$	Ph.D. thesis, <u>1944</u> Vanderbilt University Nashville, TN
VARIABLES:	
T/K = 293-298 P/kPa = 101.325	PREPARED BY: H. L. Clever
EXPERIMENTAL VALUES:	
	- 0 + -11
T/K Mol Fraction $x_1 \times 10^4$ Co	Bunsen Ostwald Defficient Coefficient α L
Tetrahydrofuran; C	H _D O; [109-99-9]
293.15 5.07	0.140 0.150
298.15 5.21	0.143 0.156
l,4-Dioxane; C ₄ H ₈ O	
293.15 2.29 298.15 2.37	0.0827 0.0888 0.0844 0.0921
2,3-Dihydropyran; (
	0.121 0.130
298.15 4.93	0.121 0.132
Tetrahydro-2H-pyran	n; C ₅ H ₁₀ 0; [142-68-7]
293.15 5.77 [.]	0.133 0.143
298.15 5.93	0.136 0.148
compiler.	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: The apparatus was a modified Van Slyke-Neill Manometric Apparatus manufactured by the Eimer and Amend Co.	SOURCE AND PURITY OF MATERIALS: Tetrahydrofuran. Eastman Kodak Co. B.p.(752.7 mmHg) t/°C 65.50 - 65.54. 1,4-Dioxane. Eastman Kodak Co.
The procedure of Van Slyke (1) for pure liquids was modified (2) so that small solvent samples (2 cm ³) could be used with almost 100 per	B.p.(743.7 mmHg) t/°C 100.81-100.82. Dihydro-2H-pyran. Prepared from tetrahydrofurfuryl alcohol. B.p. (743.6 mmHg) t/°C 84.81 - 84.89.
cent recovery of the sample. An improved temperature control system was used.	Tetrahydro-2H-pyran. Prepared by catalytic reduction of dihydro-2H- pyran. B.p.(750.6 mmHg) t/°C 87.51-
- <u> </u>	87.52. All b.p. are corrected. ESTIMATED ERROR:
SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Ohio Chemical Co. Oil pumped, 99.8 per cent pure.	$\delta T/K = 0.05$
 (2) Cyclic ethers. The ethers were fractionally distilled from over Na in a nitrogen atmosphere. In addition to the solubility data the thesis contains measured values of refractive index, density, vapor pressure and b.p. 	<pre>REFERENCES: 1. Van Slyke, D. D. J. Biol. Chem. 1939, 130, 545. 2. Ijams, C. C. Ph.D. thesis, 1941 Vanderbilt University</pre>

* ¥

(1) Nitrogen; N ₂ ; [7727-37-9]	ORIGINAL MEASUREMENTS: Guerry, D. Jr.
<pre>(2) 1,1'-Oxybispropane or dipropyl ether; C₆H₁₄O; [111-43-3]</pre>	Ph.D. thesis, <u>1944</u> Vanderbilt University Nashville, TN
VARIABLES: T/K = 293-298 P/kPa = 101.325	PREPARED BY: H. L. Clever
EXPERIMENTAL VALUES.	
T/K Mol Fraction $x_1 \times 10^4$ C	Bunsen Ostwald Defficient Coefficient αL
293.1512.0298.1512.2	0.198 0.212 0.199 0.217
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: A Van Slyke-Neill Manometric Appara- tus manufactured by the Eimer and Amend Co. was used. The procedure of Van Slyke (1) for pure liquids was modified (2) so that small solvent samples (2 cm ³) could be used with almost complete	INFORMATION

Ļ

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Olson, J. D.
<pre>(1) Niclogen; M₂; [7,27 57 51 (2) 1,2-Epoxyethane (ethylene oxide);</pre>	
$C_2H_4O;$ [75-21-8]	
VARIABLES: T/K = 273-323	PREPARED BY:
P/IIPa = 0.7-2.2	R. Battino
EXPERIMENTAL VALUES:	P/atm No. of
t/°C T ^a /K H ^b /(atm	/mole fraction) (Range) Points
0 273.2 2	800 7–20 6
25 298.2 2	180 9-22 11
50 323.2 1	820 18-21 3
^a Calculated by compiler.	
b Henry's law constant calculated	ower pressure range and number
of experimental data points ind	icated. H defined as
$H = \lim_{x \to 1} (f_1/x_1)$ where f is the	fugacity and x the mole fraction.
$x \rightarrow 0$	
	-
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The nitrogen and ethylene oxide were	(1) Linde high purity - 99.99%.
weighed into a bomb of known volume.	(2) UCC commercial grade. No
Equilibrium pressures were determined at each temperature for	volatile impurities above
several loadings.	100 ppm level.
	ESTIMATED ERROR:
	$\delta T/K = \pm 0.1$
	$\delta H/H = \pm 0.01$, compiler's estimate
	REFERENCES:
1	

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Just, G.
<pre>(2) Trichloromethane or chloroform; CHCl₃; [67-66-3]</pre>	Z. Physik. Chem. <u>1901</u> , 37, 342-67.
VARIABLES:	PREPARED BY:
T/K= 293-298 P/kPa= 101.325	M. E. Derrick H. L. Clever
EXPERIMENTAL VALUES:	L
T/K Mol Fraction $x_1 \times 10^4$	Bunsen Ostwald Coefficient Coefficient α L
293.15 4.27 298.15 4.45	0.1195 0.1282 0.1235 0.1348
of about 746 mmHg. The co coefficient to be indepen	Ostwald coefficient at a pressure ompiler assumed the Ostwald ident of pressure, and calculated isen coefficient values at 101.325 sure of the gas.
AUXILIARY	INFORMATION
METHOD / APPARATUS / PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
An Ostwald apparatus as modified by Timofejew (1), and Steiner (2) is used. The apparatus consists of a gas buret, an absorption flask, and a mercury manometer. The system is thermostated with a water jacket. The gas is introduced into the de- gassed liquid. The gas volume absorb- ed is determined by the gas buret. The solvent volume is determined at	 Nitrogen. Prepared by the reaction of sodium nitrite and ammonium nitrate in aqueous solution in the presence of calcium dichromate. Trichloromethane. No information.
the end of the experiment by pouring the solvent into a graduated flask.	ESTIMATED ERROR:
	$\delta L/L = 0.03$ (compiler)
	REFERENCES :
	l. Timofejew, W. Z. Physik. Chem. <u>1890</u> , 6, 141.
	2. Steiner, Ann. Phys. (Leipzig) <u>1894</u> , 52, 275.

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Körösy, F.
<pre>(2) Trichloromethane or chloroform; CHCl₃; [67-66-3]</pre>	Trans. Faraday Soc. <u>1937</u> , 33, 416-25.
VARIABLES:	PREPARED BY:
T/K = 295.15 P/kPa = 101.325	H. L. Clever
EXPERIMENTAL VALUES:	
T/K Mol Fraction $x_1 \times 10^4$	Bunsen Ostwald coefficient Coefficient α L
295.15 4.25	0.118 0.128
The mole fraction and Bur calculated by the compile	er.
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The apparatus and method of Winkler (1) were used. However, the apparatus was usually not thermostated, and degassing was by evacuation and shaking the solvent, not by evacu- ating and boiling the solvent as was done by Winkler.	No information
	ESTIMATED ERROR:
	$\delta L/L = 0.05$
	REFERENCES:
	l. Winkler, L. W. <i>Ber</i> . <u>1891</u> , 24, 89.

COMPONENTS:		ORIGINAL MEASURE	MENTS:
(1) Nitrogen; N ₂ ; [7727	-37-9]	Leites, I.L.;	Adlivankina, M.A.
(2) Methane, chlorotrif [75-72-9]	luoro; CClF ₃ ;	Khim. Prom. <u>1</u>	<u>.966</u> , 42, 848-50.
(2') Tetrafluoromethane [75-73-0]	; CF ₄ ;		
VARIABLES:	···· -··	PREPARED BY:	
T/K = 93-123 P/kPa = 101.325		V. Katovi	c
EXPERIMENTAL VALUES:		L	······································
	α ^a /m ³ (STP) m ⁻³ atm ⁻¹	
t/°C	т ^b /к	(Freon-13) CCLF ₃	(Freon - 14) CF ₄
-150	123	0.293	0.066
-160	113 103	0.346 0.415	0.138 0.231
-170 -180	93	0.415 0.428°	0.346
^a Bunsen coefficient.			40
^b Calculated by compile	r		
a			- 9 -
Obtained by extrapola	tion.		
Figure: Solubility of	nitrogen in CF		
at -180°C	meerogen in er	4	
			8 7 1
			2
			0 200 400 600
			P _{N2} /mm Hg →
	AUXILIARY	INFORMATION	•
METHOD/APPARATUS/PROCEDURE:		SOURCE AND PURIT	TY OF MATERIALS:
Solubility was determin	ed by a	(1) Purified	by removing O_2 and H_2O
static method. The sys thermostated in a speci		(2) 0.2% N ₂	
constructed cryostat.	~ <u>_</u>	2	
		(2') 1.5% N ₂	
		ESTIMATED ERROR	
		$\delta T/K = \pm 0.1$	
		$\circ \alpha / \alpha = \pm 0.0$	2, compiler's estimate
		REFERENCES:	
, 1	I.		
		1	

	rs:			ORIGINAL MEASUR	EMENTS:
(l) Ni	trogen; N ₂	; [7727-	37-9]	Steinberg, M.; Manowitz, B.;	
(2) Dia Fra	<pre>Dichlorodifluoromethane or Freon-12; CCl₂F₂; [75-71-8]</pre>		Pruzansky, J. US AEC BNL-542 (T-140). Chem. Abstr. <u>1959</u> , 53, 21242g		
VARIABLES	<u>.</u>	<u></u>		PREPARED BY:	<u></u>
	T/K = 1	.99.65 - 2	276.15		H. L. Clever
EXPERIMEN	NTAL VALUES:				
	Tempe	rature	Solubility	Henry's	Mol Fraction ³
	t/°C	<i>T</i> /K	Coefficient	¹ Constant ² <i>H</i> /atm	10 ³ <i>w</i> ₁
	-73.5	199.65	0.65	-	2.05
		203.15	0.44	510	1.96 1.51
		243.15 260.85	-	600	1.67
		273.15 276.15	0.47	630 -	1.59 1.73
METHOD/AP	- <u></u>		AUXILIARY	INFORMATION	
	PPARATUS/PRO	CEDURE :	AUXILIARY		TY OF MATERIALS:
Dynamic	PPARATUS/PRO				
Dynamic				SOURCE AND-PURI (1) Nitrogen	
Dynamic				SOURCE AND-PURI (1) Nitrogen (2) Dichlorod	
Dynamic				SOURCE AND-PURI (1) Nitrogen (2) Dichlorod No : ESTIMATED ERROR	difluoromethane. information.
Dynamic				SOURCE AND-PURI (1) Nitrogen (2) Dichlorod NO : ESTIMATED ERROR δx ₁ /2	difluoromethane. information.
Dynamic				SOURCE AND-PURI (1) Nitrogen (2) Dichlorod No : ESTIMATED ERROR $\delta x_1/a$ REFERENCES: 1. Steinber	difluoromethane. information.

230 Nitrogen Solubili	ities up to 200 kPa
COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Horiuti, J.
(2) Tetrachloromethane; CCl ₄ ; [56-23-5]	Sci. Pap. Inst. Phys. Chem. Res. (Jpn) <u>1931/32</u> , 17, 125-256.
VARIABLES:	PREPARED BY:
T/K = 253.45 - 333.25 Total P/kPa = 101.325	M. E. Derrick H. L. Clever
EXPERIMENTAL VALUES:	1
x ₁ x 10 ³	Coefficient Coefficient α L
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0.13540.12560.14030.14030.14650.15720.15290.17540.16010.1953
-	4.07891/(T/100) + 2.3634 ln (T/100)
Standard error about the regression 1 T/K Mol Fraction $\frac{X_1 \times 10^3}{253.15 0.5550}$	ine = 9.19 x 10 ⁻⁷ T/K Mol Fraction $\frac{X_1 \times 10^3}{303.15 0.6514}$
263.15 0.5721 273.15 0.5903 283.15 0.6096 293.15 0.6300	313.15 0.6738 323.15 0.6971 333.15 0.7213
If the gas and solution are assumed t the following thermodynamic values. $T/K \Delta G^{O}/kJ \text{ mol}^{-1} \Delta H^{O}/J \text{ mol}^{-1}$	to be ideal the fitted equation gives $\Delta S^{O}/J \ \kappa^{-1} \ mol^{-1} \ \Delta C_{p}^{O}/J \ \kappa^{-1} \ mol^{-1}$
273.15 16.885 1976 298.15 18.228 2467	-54.58 19.65 -52.86 19.65
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: The apparatus consists of a gas buret, a solvent reservoir, and an absorption pipet. The volume of the pipet was determined at various miniscus heights by weighing a quan- tity of water. The miniscus height was read with a cathetometer.	 SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Prepared in the laboratory by heating sodium azide (Kahlbaum, recrystalized and dried). Gas dried over phosphorus pentoxide. (2) Tetrachloromethane. Kahlbaum. Dried, and distilled. Normal
The dry gas introduced into the de- gassed solvent. The gas and solvent were mixed with a magnetic stirrer until saturation. Care taken to prevent solvent vapor from mixing with the solute gas in the gas buret.	boiling point 76.74°C.
The volume of gas was determined from a gas buret reading, the volume of the solvent was determined from the miniscus height in the absorption pipet.	
The Ostwald coefficient was measured Bunsen coefficient and the mole fract by the compiler for a gas pressure of ideally and the Ostwald coefficient t	ion solubility values were calculated one atm assuming the gas to behave

.

COMPONENTS:		ORIGINAL MEASUREME	ENTS:	
(1) Nitrogen; N ₂	; [7727-37-9]	Hammel, A. vor	1	
(2) 2,2,2 - Tric ethanediol (C ₂ H ₃ ClO ₂ ; [chloral hydrate);	Z. Physik. Che	2m. <u>1915</u> , 90	, 121-5.
(3) Water; H ₂ O;	[7732-18-5]			
VARIABLES:		PREPARED BY:		
T/K = 288 Concentration		R. Batting)	
EXPERIMENTAL VALUES:			<u> </u>	
wt. % (2)	$10^2 L^a \qquad 10^2 \alpha^b$) wt. % (2)	10 ² L ^a	10 ² a ^b
		: (288 K)		
0	1.725 1.675 1.79	37.6 6 ^C 48.9	1.23 1.15	1.30
0	1.706	49.3	1.18	1.24 1.20
6.9 14.0	1.64 $1.731.54$ 1.62		1.14 1.31	1.38
15.0	1.52 1.60		1.30 1.52	1.37 1.60
23.6 26.1	$\begin{array}{cccc} 1.34 & 1.41 \\ 1.41 & 1.49 \end{array}$		1.56	1.65
b Bunsen coeffic c Average value.	ient. About 6% lower th	an best modern v	values	
Bunsen coeffic		an best modern v	<i>r</i> alues	-
Bunsen coeffic	About 6% lower th	an best modern v	<i>r</i> alues	
Bunsen coeffic	About 6% lower th AUXILIARY			_
Bunsen coeffic C Average value. METHOD/APPARATUS/PROCE The Ostwald appa	About 6% lower th AUXILIARY DURE:	INFORMATION SOURCE AND PURITY		
Bunsen coeffic C Average value. METHOD/APPARATUS/PROCE The Ostwald appa	About 6% lower th AUXILIARY DURE: ratus as	INFORMATION SOURCE AND PURITY	OF MATERIALS:	
Bunsen coeffic C Average value. METHOD/APPARATUS/PROCE The Ostwald appa	About 6% lower th AUXILIARY DURE: ratus as	INFORMATION SOURCE AND PURITY	OF MATERIALS:	
Bunsen coeffic C Average value. METHOD/APPARATUS/PROCE The Ostwald appa	About 6% lower th AUXILIARY DURE: ratus as	INFORMATION SOURCE AND PURITY No det	OF MATERIALS:	
Bunsen coeffic C Average value. METHOD/APPARATUS/PROCE The Ostwald appa	About 6% lower th AUXILIARY DURE: ratus as	INFORMATION SOURCE AND PURITY No det ESTIMATED ERROR:	OF MATERIALS;	
Bunsen coeffic C Average value. METHOD/APPARATUS/PROCE The Ostwald appa	About 6% lower th AUXILIARY DURE: ratus as	INFORMATION SOURCE AND PURITY No det	OF MATERIALS;	
Bunsen coeffic C Average value. METHOD/APPARATUS/PROCE The Ostwald appa	About 6% lower th AUXILIARY DURE: ratus as	INFORMATION SOURCE AND PURITY No det ESTIMATED ERROR:	OF MATERIALS;	
Bunsen coeffic C Average value. METHOD/APPARATUS/PROCE The Ostwald appa	About 6% lower th AUXILIARY DURE: ratus as	INFORMATION SOURCE AND PURITY NO det ESTIMATED ERROR: $\delta L/L = \pm 0.03$,	OF MATERIALS: cails given. compiler's G. Z. Physi	estimate
Bunsen coeffic C Average value. METHOD/APPARATUS/PROCE The Ostwald appa	About 6% lower th AUXILIARY DURE: ratus as	INFORMATION SOURCE AND PURITY No det ESTIMATED ERROR: $\delta L/L = \pm 0.03$, REFERENCES: 1. Geffcken, G	OF MATERIALS: cails given. compiler's G. Z. Physi	estimate

Nitrogen Solubilities up to 200 kPa

238 Nitrogen Solubilit	ies up to 200 kPa
COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Williams, V. D.
<pre>(2) 1,2-Dichloro-1,1,2,2-tetrafluoro- ethane or Freon-114; C₂Cl₂F₄; [76-14-2]</pre>	J. Chem. Eng. Data <u>1959</u> , 4,92-3.
VARIABLES: T/K = 293 - 333	PREPARED BY:
$N_2 P/kPa = 70 - 900$	H. L. Clever
EXPERIMENTAL VALUES:	
Temperature H	enry's Constant
t/ºF T/K k	$/(psia)^{-1} = x_1/p_1/psia$
68 293	5.5 x 10 ⁻⁴
104 313	3.7×10^{-4}
140 333	2.0 x 10 ⁻⁴
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The method and apparatus were similar to those of Parmlee (1).	No information
A 450 g sample of Freon-114 was placed in a 1000 cm ³ bomb equiped with a three-way diaphram valve. The Freon-114 was frozen and pumped on to degas. Its vapor pressure was checked at 293 K as a measure of its purity. Nitrogen gas was added to the bomb. The bomb was rocked for ½ hour after pressure equilibrium was reached. Both the gas phase and the liquid	ESTIMATED ERROR:
phase were sampled. They were analyzed by a mass spectroscope.	δk/k = 0.05 REFERENCES: 1. Parmelee, H. M. <i>Refrig. Eng.</i> <u>1951</u> , 59, 573.

;

.

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Hiraoka, H.; Hildebrand, J. H.
(2) $1,1,2$ -trichloro- $1,2,2$ -trifluoro- ethane; $C_2Cl_3F_3$ or $(CCl_2F \cdot CClF_2)$ [76-13-1]	J. Phys. Chem. <u>1964</u> , 68, 213-4.
VARIABLES: T/K = 277.15 - 308.15 P/kPa = 101.325	PREPARED BY: M. E. Derrick A. L. Cramer
EXPERIMENTAL VALUES:	
Temperature Mol Fractic t/°C T/K $x_1 \times 10^3$	on Bunsen Ostwald Coefficient Coefficient α L
4.00277.1519.3315.00288.1519.4624.98298.1319.3135.00308.1519.88	0.373 0.378 0.370 0.390 0.362 0.395 0.367 0.414
Smoothed Data: $\ln x_1 = -6.017 - 0.651$	L9/(T/100)
т/к м	Mol Fraction $x_1 \times 10^4$
278.15 283.15 288.15 293.15 298.15 303.15 308.15	19.27 19.35 19.43 19.50 19.58 19.65 19.72
	INFORMATION
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
The degassed liquid was saturated with nitrogen gas having a pressure near 1 atm. The volume of gas absorbed by the liquid was determined by P-V measurements in a gas buret (1). A thermostated gas buret was used for solution measurements. A thermostated pipet containing a magnetic stirrer was used as a solvent reservoir. The liquid	 Nitrogen. General Dynamic Corp., passed through cold trap. 1,1,2-Trichloro-1,2,2-trifluoro- ethane. Union Carbide Co. Distilled, purity checked by ultraviolet absorbance.
volume was determined by the difference in volume between the pipet and the mercury. The connection between the buret and pipet prevents gas and solvent vapor from mixing.	ESTIMATED ERROR: $\delta T/K = 0.02$ $\delta x_1/x_1 = 0.003$ REFERENCES: 1. Kobatake, Y.; Hildebrand, J. H. J. Phys. Chem. <u>1961</u> , 65, 331.

,

	· · · · · · · · · · · · · · · · · · ·
COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Horiuti, J.
(2) Chlorobenzene; C ₆ H ₅ Cl; [108-90-7]	Sci. Pap. Inst. Phys. Chem. Res. (Jpn) <u>1931/32</u> , 17, 125-256.
VARIABLES:	PREPARED BY:
T/K = 233.45 - 353.45	M. E. Derrick
Total P/kPa = 101.325	H. L. Clever
EXPERIMENTAL VALUES: T/K Mol Fraction $X_1 \times 10^3$ C 233.45 0.349	BunsenOstwaldcoefficientCoefficient α L0.08130.0695
253.45 0.366	0.0838 0.0778
273.15 0.392	0.0881 0.0881
293.15 0.420 313.25 0.450	0.0926 0.0994 0.0973 0.1116
333.20 0.487	0.1032 0.1259
353.45 0.521	0.1081 0.1399
Smoothed Data: $\ln x_1 = -12.41926 + 4$.99558/(T/100) + 2.73200 ln (T/100)
Standard error about the regression l	ine = 1.83×10^{-6}
T/K Mol Fraction	T/K Mol Fraction
·	
$x_1 \times 10^3$	$\frac{x_1 \times 10^3}{2}$
233.15 0.348	303.15 0.434
243.15 0.357 253.15 0.368	313.15 0.450 323.15 0.467
263.15 0.379	333.15 0.485
273.15 0.392	343.15 0.503
283.15 0.405 293.15 0.419	353.15 0.522
The Ostwald coefficient was measured	ion solubility values were calculated one atm assuming the gas to behave
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The apparatus consists of a gas buret, a solvent reservoir, and an absorption pipet. The volume of the pipet was determined at various miniscus heights by weighing a quan- tity of water. The miniscus height	(1)Nitrogen. Prepared in the laboratory by heating sodium azide (Kahlbaum, recrystalized and dried). Gas dried over phospho- rous pentoxide.
was read with a cathetometer.	(2) Chlorobenzene. Kahlbaum. Dried, and distilled. Normal boiling
The dry gas introduced into the de- gassed solvent. The gas and solvent are mixed with a magnetic stirrer until saturation. Care taken to prevent solvent vapor from mixing	point 131.96 ⁰ C.
with the solute gas in the gas buret. The volume of gas was determined from a gas buret reading, the volume of	ESTIMATED ERROR:
the solvent was determined from the miniscus height in the absorption pipet.	$\delta T/K = 0.05$
If the gas and solution are assumed t the following thermodynamic values.	
	$\Delta s^0/J \kappa^{-1} mol^{-1} \Delta c_p^0/J \kappa^{-1} mol^{-1}$
273.15 17.817 2051 298.15 19.234 2619	-57.72 22.71 -55.73 22.71

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Guerry, D. Jr.
(2) 1-Chlorohexane; C ₆ H ₁₃ Cl; [544-10-5]	Ph.D. thesis, <u>1944</u> Vanderbilt University Nashville, TN
VARIABLES:	PREPARED BY:
T/K = 293-298 P/kPa = 101.325	H. L. Clever
EXPERIMENTAL VALUES:	
T/K Mol Fraction $x_1 \times 10^4$ Co	Bunsen Ostwald pefficient Coefficient \alphaL
293.15 8.02 298.15 8.19	0.131 0.141 0.133 0.145
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: A Van Slyke-Neill Manometric Appara- tus manufactured by the Eimer and Amend Co. was used. The procedure of Van Slyke (1) for pure liquids was modified (2) so that small solvent samples (2 cm ³) could be used with almost complete recovery of the sample. An improved temperature control system was used.	
 SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Ohio Chemical Co. Oil pumped, 99.8 per cent pure. (2) 1-Chlorohexane. Eastman Kodak Co. Purified, distilled from P₂O₅ in a N₂ atm. B.p. (746.6 mmHg) t/°C 134.66 (corr.). Refractive index, density, and vapor pressure data are in the thesis. 	ESTIMATED ERROR: $\delta T/K = 0.05$ REFERENCES: 1. Van Slyke, D. D. J. Biol. Chem. <u>1939</u> , 130, 545. 2. Ijams, C. C. Ph.D. thesis, <u>1941</u> Vanderbilt University

242		Millogen oolabiin	lies up to 200 kPa		
COMPONENTS: (1) Nitrogen; N ₂	; [7727-37	/-9]	ORIGINAL MEASU Evans, F.D.	WEMENTS: ; Battino, R.	
(2) Hexafluorobe [392-56-3]	nzene; C ₆ F	6;	J. Chem. Th	ermodyn. <u>1971</u> , 3, 753-6	0.
VARIABLES: T/K = 24 P/kPa = 10	32.94 - 29 01.325	7.85	PREPARED BY:	H. L. Clever	
EXPERIMENTAL VALUES	5:				
		x ₁ × 10 ³	Coefficient a	Coefficient	
	282.94 282.94	1.799 1.794	0.356 0.343	0.369 0.368	
	297.56 297.85	1.808 1.783	0.351 0.346	0.382 0.377	
101.325 kPa (1 a	values wer atm) by He	e adjusted to mry's law.	an oxygen pa	artial pressure of	
Smoothed Data:		$r^{-1} = -RT \ln X$	-		
		$\Delta G^{O} = 14.3,$	_	_	
	∆H ⁰ /J mol	$-1 = -34.1, \Delta$		_	
	Т	/K Mol Frac X _l x l	tion ∆G ^O /Jr 0 ³	nol ⁻¹	
	283 288 293	.15 1.80 .15 1.80 .15 1.79 .15 1.79 .15 1.79	14,88 15,14 15,4	34 46 LO	
		AUXILIARY	INFORMATION		
METHOD/APPARATUS/PI The solubility a the design of Mc (1) and the vers by Battino, Evar The degassing ap described by Bat and Wilhelm (3). Degassing: Up t is placed in a f the liquid is rapid] is intermittent liquid is rapid] is intermittent liquid N ₂ trap u gas residual pre 5 microns. Solubility Deter gassed solvent i film down a glas taining solute o vapor at a tota The volume of ga by difference be final volumes ir The solvent is o flask and weight	apparatus prison an sion used as, and Da paratus i ttino, Ban to 500 cm ³ clask of s clask of s cl	d Billett is described nforth (2). s that zhof, Bogan, of solvent uch size that deep. The , and vacuum through a permanent ps to The de- in a thin tube con- he solvent of one atm. d is found initial and t system.	<pre>(1) Nitrogen. Chemicals (2) Hexafluor Smelting GC purity ⁰298.15 Purificat Chem. 196 ESTIMATED EN REFERENCES: 1. Morrison, J. Chem. 2. Battino, Danforth, J. Am. Or 45, 830. 3. Battino, Bogan, M.</pre>	Co., Avnomouth, U.K. 7 99.7%, density, = 1.60596 g cm ⁻³ . tion described Anal. $\overline{88}, 40, 224.$ ROR: $\delta T/K = 0.03$ $\delta P/mmHg = 0.5$ $\delta X_1/X_1 = 0.005$ T. J.; Billett, F. Soc. 1948, 2033. R.; Evans, F. D.;	

i

COMPONENTS: (1) Nitrogen; N ₂ ; [7727-37-9]	ORIGINAL MEASUREMENTS: Ijams, C. C.
(2) 1-Bromoheptane; C ₇ H ₁₅ Br; [629-04-9]	Ph.D. thesis, <u>1941</u> Vanderbilt University Nashville, TN
VARIABLES:	
T/K = 298.15 P/kPa = 101.325	PREPARED BY:
EXPERIMENTAL VALUES:	1
T/K Mol Fraction $x_1 \times 10^3$ Co	Bunsen Ostwald Defficient Coefficient α L
298.15 0.675	0.0964 0.1052
were calculated by the compiler.	
AUXILIARY INFORMATION	
METHOD/APPARATUS/PROCEDURE: A Van Slyke-Neill Manometric Apparatus manufactured by the Eimer and Amend Co. was used. The procedure of Van Slyke (1) for pure liquids was modified so that small solvent sample (2 cm ³) could be used with almost 100 per cent recovery of the solvent. An improved temperature control system was used.	<pre>SOURCE AND PURITY OF MATERIALS; (1) Nitrogen. Air Reduction Co. Purity 99.5 per cent. (2) 1-Bromoheptane. Purified. Vapor pressure and boiling point also reported in the thesis. ESTIMATED ERROR:</pre>

ORIGINAL MEASUREMENTS:	
Gjaldbaek, J. C.; Hildebrand, J. H.	
J. Am. Chem. Soc. <u>1949</u> , 71, 3147-50.	
DEPART N.	
PREPARED BY: J. Chr. Gjaldbaek	
Coefficient Coefficient α L	
0.371 0.405 0.384 0.419	
lity values were calculated by the	
INFORMATION	
SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Stuart Oxygen Co. 99.996 percent N ₂ . (2) Undecafluoro(trifluoromethyl)- cyclohexane. E. I. duPont Co. Distilled, boiling point 76.5 - 76.6 at 760 mmHg. d ESTIMATED ERROR: $\delta T/K = 0.05$ $\delta X_1/X_1 = 0.015$ REFERENCES: 1. Lannung, A.	

COMPONENTS: (1) Nitrogen; N ₂ ; [7727-37-9]	ORIGINAL MEASUREMENTS: Gjaldbaek, J. C.; Hildebrand, J. H.
<pre>(2) Hexadecafluoroheptane or Perfluoroheptane; C₇F₁₆; [335-57-9]</pre>	J. Am. Chem. Soc. <u>1949</u> , 71, 3147-50.
VARIABLES:	PREPARED BY: J. Chr. Gjaldbaek
EXPERIMENTAL VALUES: T/K Mol Fraction X ₁ x 10 ³	Coefficient Coefficient
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
The mole fraction and Ostwald solubil compiler.	ity values were calculated by the
Std. dev. $\Delta G^{\circ} \approx 11.0$, $\Delta H^{\circ}/J \text{ mol}^{-1}679.41$	$X_1 = -679.41 + 48.394T$ Coef. Corr. = 0.9998 , $\Delta S^{O}/J K^{-1} mol^{-1} = -48.394$
T/K Mol Fra X ₁ x 273.15 4.0 283.15 3.9 293.15 3.9 298.15 3.9 303.15 3.8 313.15 3.8 323.15 3.8	12,539 13,023 13,507 13,749 8 13,991 5 14,475
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: A calibrated all-glass combined man- ometer and bulb was enclosed in an air thermostat and shaken until equilibrium. Mercury was used for calibration and as the confining liquid. The solvents were degassed in the apparatus. Details are in references 1 and 2. The absorped volume of gas was cal- culated from the initial and final amounts, both saturated with solvent vapor. The amount of solvent was determined by the weight of displaced mercury. The saturation of the liquid with the gas was carried out close to atmos- pheric pressure. The solubility values were reported for one atmos- phere gas pressure assuming Henry's law is obeyed.	$\delta T/K = 0.05$

COMPONENTS:	ORIGINAL MEASUREMENTS:	
(1) Nitrogen; N ₂ ; [7727-37-9]	Gjaldbaek, J. C.; Hildebrand, J. H.	
(2) Decafluorobis (trifluoromethyl) cyclohexane or perfluoro dimethyl- cyclohexane; C ₈ F ₁₆ ; Isomer not specified.	J. Am. Chem. Soc. <u>1949</u> , 71, 3147-50.	
VARIABLES:	PREPARED BY:	
T/K = 298.10 - 320.25 Total P/kPa = 101.325	J. Chr. Gjaldbaek	
EXPERIMENTAL VALUES:		
T/K Mol Fraction $X_1 \times 10^3$	Bunsen Ostwald Coefficient Coefficient	
298.15 3.19	0.329 0.359	
311.12 3.20 313.67 3.16	0.330 0.376 0.319 0.366	
320.25 3.19	0.319 0.374	
The mole fraction and Ostwald solubil compiler.	ity values were calculated by the	
Std. dev. $\Delta G^{\circ} = 2.3$,	$X_1 = -79.059 + 48.056 T$ Coef. Corr. = 0.9999 $\Delta s^{\circ}/J \kappa^{-1} mol^{-1} = -48.06$	
X ₁ x 298.15 3.1	9 14,249	
308.15 3.1 318.15 3.1		
AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
A calibrated all-glass combined man- ometer and bulb was enclosed in an air thermostat and shaken until equilibrium. Mercury was used for calibration and as the confining liquid. The solvents were degassed in the apparatus. Details are in references 1 and 2.	 Nitrogen. Dansk Itl-og Brint Fabrik. Contained less than 0.13 percent oxygen. Decafluorobis (trifluoromethyl)- cyclohexane. E. I. duPont Co. Distilled, boiling point 102.4 - 102.6 at 760.0 mmHg. 	
The absorped volume of gas was cal- culated from the initial and final amounts, both saturated with solvent vapor. The amount of solvent was		
determined by the weight of dis- placed mercury.	ESTIMATED ERROR:	
The saturation of the liquid with the gas was carried out close to atmos- pheric pressure. The solubility	⁶ x ₁ /x ₁ = 0.015	
values were reported for one atmos- phere gas pressure assuming Henry's law is obeyed.	REFERENCES: 1. Lannung, A. <i>J. Am. Chem. Soc.</i> <u>1930</u> , <i>52</i> , 68.	
	2. Gjaldbaek, J. C. Acta Chem. Scand. <u>1952</u> , 6, 623.	

COMPONENTS:	
	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Sargent, J. W.; Seffl, R. J.
(2) FC-80, which is mostly a mixture of isomers of perfluorobutyl- tetrahydrofuran. For example, 2,2,3,3,4,4,5-heptafluorotetra- hydro-5(nonafluorobutyl)furan; C ₈ F ₁₆ O; [335-36-4]	Fed. Proc. <u>1970</u> , 29, 1699 - 1703.
VARIABLES:	PREPARED BY:
T/K = 298-310 Total P/kPa = 101.325	A. L. Cramer H. L. Clever
EXPERIMENTAL VALUES:	
Temperature t/°C T/K g O	Nitrogen Solubility $_2 \log g^{-1} cm^3 O_2 \log cm^{-3}$
25 298.15	0.216 33.4
37 310.15	0.217 34.0
The authors solubil	ity, cm ³ N ₂ 100 cm ⁻³ , appears pefficient times 100.
/	
AT11777 T A 117	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	INFORMATION SOURCE AND PURITY OF MATERIALS:
	SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Source not given. Commercial cylinder.
METHOD/APPARATUS/PROCEDURE: The equilibrium apparatus is a 50 cm ³ three neck flask equipped with a water condenser, a thermometer, and a gas dispersing tube extending below the fluid surface level. Between 25 and 35 cm ³ of solvent are placed in the flask. Gas is bubbled through the solvent for 2 - 3 h. An 80 micro- liter sample is slowly taken into a gas tight syringe. The sample is injected into a gas chromatograph. The results of three sampling and	 SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Source not given. Commercial cylinder. (2) FC-80. Minnesota Mining and Manufacturing Co. All H in an organic compound are replaced by F by Simons electrochemical process (1)
METHOD/APPARATUS/PROCEDURE: The equilibrium apparatus is a 50 cm ³ three neck flask equipped with a water condenser, a thermometer, and a gas dispersing tube extending below the fluid surface level. Between 25 and 35 cm ³ of solvent are placed in the flask. Gas is bubbled through the solvent for 2 - 3 h. An 80 micro- liter sample is slowly taken into a gas tight syringe. The sample is injected into a gas chromatograph. The results of three sampling and analyses are averaged.	 SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Source not given. Commercial cylinder. (2) FC-80. Minnesota Mining and Manufacturing Co. All H in an organic compound are replaced by F by Simons electrochemical process (1) ESTIMATED ERROR:
METHOD/APPARATUS/PROCEDURE: The equilibrium apparatus is a 50 cm ³ three neck flask equipped with a water condenser, a thermometer, and a gas dispersing tube extending below the fluid surface level. Between 25 and 35 cm ³ of solvent are placed in the flask. Gas is bubbled through the solvent for 2 - 3 h. An 80 micro- liter sample is slowly taken into a gas tight syringe. The sample is injected into a gas chromatograph. The results of three sampling and analyses are averaged. The chromatograph is an F and M Model 720 equipped with a thermal conductivity detector at 320 °C, and a 6' by $\frac{1}{4}$ " stainless steel column Packed with 13X molecular sieve at room temperature. The apparatus is	<pre>Source AND PURITY OF MATERIALS: (1) Nitrogen. Source not given. Commercial cylinder. (2) FC-80. Minnesota Mining and Manufacturing Co. All H in an organic compound are replaced by F by Simons electrochemical process (1) ESTIMATED ERROR: δT/K = 0.1 δc/c = 0.01 (reproducibility) = 0.05 (absolute) REFERENCES: 1. Simons, J. H., Editor</pre>
METHOD/APPARATUS/PROCEDURE: The equilibrium apparatus is a 50 cm ³ three neck flask equipped with a water condenser, a thermometer, and a gas dispersing tube extending below the fluid surface level. Between 25 and 35 cm ³ of solvent are placed in the flask. Gas is bubbled through the solvent for 2 - 3 h. An 80 micro- liter sample is slowly taken into a gas tight syringe. The sample is injected into a gas chromatograph. The results of three sampling and analyses are averaged. The chromatograph is an F and M Model 720 equipped with a thermal conductivity detector at 320 °C, and a 6' by ¼" stainless steel column Packed with 13X molecular sieve at	<pre>Source AND PURITY OF MATERIALS: (1) Nitrogen. Source not given. Commercial cylinder. (2) FC-80. Minnesota Mining and Manufacturing Co. All H in an organic compound are replaced by F by Simons electrochemical process (1) ESTIMATED ERROR: δT/K = 0.1 δc/c = 0.01 (reproducibility) = 0.05 (absolute) REFERENCES:</pre>

Nitrogen Solubilities up to 200 kPa

248	Nitrogen Sol	ubilities up to 200 kPa
butyl)-furan perfluorotetr FC-80; C ₈ F ₁₆ C		J. Chem. Eng. Data <u>1973</u> , 18, 385-6. PREPARED BY:
Total P/kPa = 10)1.325	T. D. Kittredge H. L. Clever
Smoothed Data:	T/K Mol Fraction $X_1 \times 10^3$ 298.15 4.30 303.15 4.18 310.15 4.03 313.15 4.00 323.15 3.80 Destwald coefficients $\Delta G^O/J \text{ mol}^{-1} = -RT$ Std. dev. $\Delta G^O = 6.9$ $\Delta H^O/J \text{ mol}^{-1} = -3916$ T/K Mol H X_1 298.15 4 303.15 4 303.15 4 313.15 5 313.15 5	
	AUXILI	ARY INFORMATION
by Shoor, Walker used. The solve saturator immers temperature bath sed through the glass disk at a m ⁻¹ . After an i period of 30 min withdrawn with a syringe at 15 mi analyzed chromat Elmer 900 gas ch thermal conducti solubility at on pressure of the value of three c	d procedure descrik and Gubbins (1) we nt was placed in a ed in a constant . The gas was disp liquid by a fritted rate of about 40 cm nitial equilibratic utes, samples were Hamilton microlite nute intervals and ographically (Perki romatograph with vity detector). The e atmosphere partia gas was the mean onsecutive samples hin the limits of	Arre Minimum purity 99.6 per cent. (2) FC-80. Minnesota Mining and Manufacturing Co. A mixture of several isomers. The authors also measured the density and viscosity of the solvent at several temper- atures. At 298,15 K the density is 1.7657 g cm ⁻³ and the viscosity is 1.3953 centipoise. m- ESTIMATED ERROR: $\delta T/K = 0.05$

COMPONENT		ORIGINAL AMERICAN
COMPONENTS:		ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]		Tham, M. K.; Walker, R. D. Jr.; Modell, J. H.
(2) 1,1,1,2,2,3,3,4,	4,5,5,6,6-Trideca-	
	2-tetrafluoro-l- .)ethoxy]-hexane or	J. Chem. Eng. Data <u>1973</u> , 18,385-6.
	propoxy hexane or	
Caroxin-F; C _o F ₂₀	0; [37340-18-4] or	
[41719-16-8] 9 20		
VARIABLES:		PREPARED BY:
T/K = 298.1 Total P/kPa = 101.3		T. D. Kittredge H. L. Clever
	20	n. H. CTGAGI
		<u> </u>
EXPERIMENTAL VALUES:		
j T	YK Mol Fraction	Bunsen Ostwald
	$x_{1} \times 10^{3}$	Coefficient Coefficient α L
	<u>_</u>	
-	.15 5.10 .15 5.05	0.398 0.434 0.391 0.434
1	.15 4.97	0.381 0.433
	.15 4.92	0.375 0.430
323	.15 4.80	0.361 0.427
The Bunsen and Ostw	ald coefficients w	ere calculated by the compiler.
	-	
		Х ₁ = -1976.7 + 50.498 т
		Coef. corr. = 0.9998
		$\Delta s^{0}/J \kappa^{-1} mol^{-1} = -50.498$
		ction $\Delta G^{O}/J \text{ mol}^{-1}$
	X, X	103
	298.15 5. 303.15 5.0	71 13,079 04 13,332
	303.15 5.0	
313.15 4.9		
318.15 4.1		
323.15 4.8		31 14,341
	AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDU	JRE:	SOURCE AND PURITY OF MATERIALS:
The apparatus and p		(1) Nitrogen. Source not given.
by Shoor, Walker an	d Gubbins (1) were	Minimum purity 99.6 per cent.
used. The solvent	was placed in a	(2) Caroxin-F. Allied Chemical Corp
saturator immersed		Purity > 99.9 per cent as sup-
temperature bath. The gas was dis-		plied. The authors also measure the density and viscosity of the
Persed through the liquid by a ^f ritted glass disk at a rate of		solvent at several temperatures.
about 40 cm ³ m ⁻¹ .	After an initial	At 298.15 K the density is
equilibration perio	d of 30 minutes,	1.7449 g cm ⁻³ and the viscosity
samples were withdrawn with a		is 1.5405 centipoise.
Hamilton microliter syringe at 15 minute intervals and analyzed		
chromatographically (Perkin-Elmer		ESTIMATED ERROR:
900 gas chromatograph with thermal		$\delta T/K = 0.05$
conductivity detector). The solubility at one atmosphere partial pressure of the gas was the mean		$\delta X_1 / X_1 = 0.005$ (Compiler)
Value of three cons	ecutive samples	PERFORMENCE
which agreed within	the limits of	REFERENCES:
experimental error.		1. Shoor, S. K.; Walker, R. D. Jr.;
		Gubbins, K. E. J. Phys. Chem. <u>1969</u> , 73, 312.
{		5, 1., 5, 5, 6, 1905, 78, 512.

Nitrogen Solubilities up to 200 kPa

COMPORTS: (1) Nitrogen N ₂ ; [7727-37-9] (2) 1,1,2,2,3,3,4,4-Octafluoro-1,4- bis (1,2;2,2-tetrafluoro-1,4- bis (1,2;2,2-tetrafluoro-1,4- bis (1,2;2,2-tetrafluoro-1,4- bis (1,2;2,2-tetrafluoro-1,2,4- god2] VARIABLES: T/K = 298.15 - 323.15 Total P/KPa = 101.325 VARIABLES: T/K = 298.15 - 5.00 333.15 + 4.94 298.15 - 5.00 333.15 + 4.94 298.15 - 4.94 333.15 + 4.93 333.15 + 4.95 333.15 + 9.95 333.16 + 9.95 333.16 + 9.95 333.16 + 9.95				
$\frac{T/K \text{ Mol Fraction}}{X_1 \times 10^3} \qquad \begin{array}{c} \text{Bunsen} & \text{Ostwald} \\ \frac{298.15}{3.03.15} & 5.00 & 0.345 & 0.377 \\ \frac{303.15}{310.15} & 4.94 & 0.338 & 0.375 \\ \frac{313.15}{313.15} & 4.83 & 0.326 & 0.374 \\ \frac{323.15}{313.15} & 4.83 & 0.326 & 0.374 \\ \frac{323.15}{323.15} & 4.75 & 0.316 & 0.374 \\ \frac{323.15}{323.15} & 4.75 & 0.316 & 0.374 \\ \end{array}$ The Bunsen and Ostwald coefficients were calculated by the compiler. Smoothed Data: $\Delta G^0/J \mod^{-1} = -RT \ln x_1 = -1663.9 + 49.631 \text{ T}$ std. dev. $\Delta G^0 = 5.93$, Coef. corr. = 1.000 $\Delta H^0/J \mod^{-1} = -RT \ln x_1 = -1663.9 + 49.631 \text{ T}$ std. dev. $\Delta G^0 = 5.93$, Coef. corr. = 1.000 $\Delta H^0/J \mod^{-1} = -RG (3.9 + 49.631 \text{ T})$ std. dev. $\Delta G^0 = 5.93$, Coef. corr. = 1.000 $\Delta H^0/J \mod^{-1} = -1663.9, \Delta S^0/J \ \text{K}^{-1} \mod^{-1} = -49.631 \text{ T}/K Mol Fraction } \Delta G^0/J \mod^{-1} = -49.631 \text{ T}/K = 0.631 \text{ T}/K = 0.05 \text{ Corr.} = 1000 \text{ A}^{-1} = -1663.9, 4.90 \text{ A}^{-1} = -49.631 \text{ T}/K = 0.05 \text{ Corr.} = 1000 \text{ A}^{-1} = -1663.9, 4.90 \text{ A}^{-1} = -49.631 \text{ T}/K = 0.05 \text{ C}/J \ \text{MOL}^{-1} = -RT \ln x_1 = -1663.9, 4.90 \text{ A}^{-1} = -49.631 \text{ T}/K = 0.05 \text{ C}/J \ \text{MOL}^{-1} = -1663.9, 4.90 \text{ A}^{-1} = -49.631 \text{ T}/K = 0.05 \text{ C}/J \ \text{MOL}^{-1} = -1663.9, 4.90 \text{ A}^{-1} = -49.631 \text{ T}/K \ \text{MOL} \ \text{Factors in A G}/J \ \text{MOL}^{-1} = -1663.9, 4.90 \text{ A}^{-1} = -49.631 \text{ T}/K \ \text{MOL} \ \text{Factors in A G}/J \ \text{MOL}^{-1} = -49.631 \text{ T}/K \ \text{MOL} \ \text{MOL}^{-1} = -1663.9, 4.90 \text{ A}^{-1} = -49.631 \text{ T}/K \ \text{MOL}^{-1} = -1663.9, 4.90 \text{ A}^{-1} = -49.631 \text{ T}/K \ \text{MOL}^{-1} = -49.631 \text{ T}/K \ \text{MOL}^{-1} = -1663.9, 4.90 \text{ A}^{-1} = -49.631 \text{ T}/K \ \text{MOL}^{-1} = -1663.9, 4.90 \text{ A}^{-1} = -49.631 \text{ T}/K \ \text{MOL}^{-1} = -49.631 \text{ T}/K \ \text{MOL}^{-1} = -1663.9, 4.90 \text{ A}^{-1} = -49.631 \text{ T}/K \ \text{MOL}^{-1} = -49.631 \text{ T}/K \$	(2)1,1,2,2,3,3,4,4-Octafluoro-1,4- bis(1,2,2,2-tetrafluoro-1-(tri- fluoromethyl)ethoxy) butane or Perfluoro-1,4-diisopropoxy butane or Caroxin-D; $C_{10}F_{22}O_2$; [23228- 90-2] VARIABLES: T/K = 298.15 - 323.15		(tri- e or butane	Modell, J. H. J. Chem. Eng. Data <u>1973</u> , 18, 385-6. PREPARED BY: T. D. Kittredge
$\frac{x_1 \times 10^3}{(298.15)} = \frac{298.15}{5.00} = \frac{345}{0.345} = \frac{1}{0.377}$ $\frac{298.15}{303.15} = \frac{4.94}{4.94} = \frac{0.331}{0.338} = \frac{0.376}{0.376}$ $\frac{313.15}{310.15} = \frac{4.83}{4.83} = \frac{0.326}{0.326} = \frac{0.374}{0.316}$ The Bunsen and Ostwald coefficients were calculated by the compiler. Smoothed Data: $\Delta G^\circ/J \mod^{-1} = -RT \ln x_1 = -1663.9 + 49.631 T$ Std. dev. $\Delta G^\circ = 5.93$, Coef. corr. = 1.000 $\Delta H^\circ/J \mod^{-1} = -1663.9, \Delta S^\circ/J \times^{-1} \mod^{-1} = -49.631$ T/K Mol Fraction $\Delta G^\circ/J \mod^{-1} = -49.631$ T/K Mol Fraction $\Delta G^\circ/J \mod^{-1} = \frac{x_1 \times 10^3}{298.15} = \frac{298.15}{3.03.15} = \frac{4.89}{4.95} = \frac{13.630}{313.15} = \frac{4.84}{4.95} = \frac{13.630}{313.15} = \frac{4.84}{4.75} = \frac{13.630}{313.15} = \frac{4.84}{4.75} = \frac{14.374}{14.374}$ METHOD/APPARATUS/PROCEDURE: The apparatus and procedure described by Shoor, Walker and Gubbins (1) were used. The solvent was placed in a constant temperature bath. The gas was dis- persed through the liquid by a fritted glass disk at a rate of about 40 cm 3 m^2. After an initial equilibration period of 30 minutes, Samples were withdrawn with a Bamilton microliter syringe at 15 minute intervals and analyzed thromatographically (Perkin-Elmer 900 gas chromatograph with thermal resource of the gas was the mean value of three consecutive samples which agreed within the limits of experimental error. REFERENCES: 1. Shoor, S. K.; Walker, R. D.; Gubbins, K. E.	EXPERIMENTAL VALUE	S:		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				Coefficient Coefficient
Smoothed Data: $\Delta G^{O}/J \text{ mol}^{-1} = -\text{RT ln } x_1 = -1663.9 + 49.631 \text{ T}$ Std. dev. $\Delta G^{O} = 5.93$, Coef. corr. = 1.000 $\Delta H^{O}/J \text{ mol}^{-1} = -1663.9$, $\Delta S^{O}/J \text{ K}^{-1} \text{ mol}^{-1} = -49.631$ T/K Mol Fraction $\Delta G^{O}/J \text{ mol}^{-1}$ $x_1 \times 10^3$ 298.15 5.00 13,134 303.15 4.89 13,630 313.15 4.84 13,878 318.15 4.79 14,126 323.15 4.75 14,374 METHOD/AFPARATUS/PROCEDURE: The apparatus and procedure described by Shoor, Walker and Gubbins (1) were used. The solvent was placed in a saturator immersed in a constant temperature bath. The gas was dis- persed through the liquid by a fritted glass disk at a rate of about 40 cm ³ m ⁻¹ . After an initial equilibration period of 30 minutes, samples were withdrawn with a Hamilton microliter syringe at 15 minute intervals and analyzed chromatographically (Perkin-Elmer 900 gas chromatograph with thermal conductivity detector). The solubility at one atmosphere partial pressure of the gas was the mean value of three consecutive samples which agreed within the limits of experimental error. Smoothed Data: ΔG^{O} is $\Delta S^{O}/J \text{ K}$. E.	_	303.15 4. 310.15 4. 313.15 4.	•94 •89 •83	0.338 0.375 0.331 0.376 0.326 0.374
$\frac{X_1 \times 10^3}{298.15 5.00 13,134} \\ 303.15 4.95 13,382 \\ 308.15 4.95 13,630 \\ 313.15 4.89 13,630 \\ 313.15 4.89 13,678 \\ 318.15 4.79 14,126 \\ 323.15 4.75 14,374 \\ \hline \\ $	Smoothed Data: $\Delta G^{\circ}/J \mod^{-1} = -RT \ln X_1 = -1663.9 + 49.631 T$ Std. dev. $\Delta G^{\circ} = 5.93$, Coef. corr. = 1.000 $\Delta H^{\circ}/J \mod^{-1} = -1663.9$, $\Delta S^{\circ}/J K^{-1} \mod^{-1} = -49.631$			$X_1 = -1663.9 + 49.631 \text{ T}$ Coef. corr. = 1.000 , $\Delta S^{\circ}/J \text{ K}^{-1} \text{ mol}^{-1} = -49.631$
$\begin{array}{c} 303.15 & 4.95 & 13,382\\ 308.15 & 4.89 & 13,630\\ 313.15 & 4.84 & 13,878\\ 318.15 & 4.79 & 14,126\\ 323.15 & 4.75 & 14,374\\ \hline\end{array}$		T/K		_ ,
METHOD/APPARATUS/PROCEDURE:SOURCE AND PURITY OF MATERIALS:The apparatus and procedure described by Shoor, Walker and Gubbins (1) were used. The solvent was placed in a saturator immersed in a constant temperature bath. The gas was dis- persed through the liquid by a fritted glass disk at a rate of about 40 cm ³ m ⁻¹ . After an initial equilibration period of 30 minutes, samples were withdrawn with a Hamilton microliter syringe at 15 minute intervals and analyzed chromatographically (Perkin-Elmer 900 gas chromatograph with thermal conductivity detector). The solubility at one atmosphere partial pressure of the gas was the mean value of three consecutive samples which agreed within the limits of experimental error.SOURCE AND PURITY OF MATERIALS: (1)Nitrogen. Source not given. Min- imum purity 99.6 per cent. (2)Caroxin-D. Allied Chemical Corp. Purity > 99.9 per cent as sup- plied. The authors also measured the density and viscosity of the solvent. At 298.15 K the density is 1.7465 g cm ⁻³ and the viscosity is 2.0579 centipoise.ESTIMATED ERROR: $\delta X_1/X_1 = 0.005$ (Compiler)	303.15 4.95 308.15 4.89 313.15 4.84 318.15 4.79		4.95 4.89 4.84 4.79	5 13,382 9 13,630 4 13,878 9 14,126
METHOD/APPARATUS/PROCEDURE:SOURCE AND PURITY OF MATERIALS:The apparatus and procedure described by Shoor, Walker and Gubbins (1) were used. The solvent was placed in a saturator immersed in a constant temperature bath. The gas was dis- persed through the liquid by a fritted glass disk at a rate of about 40 cm ³ m ⁻¹ . After an initial equilibration period of 30 minutes, samples were withdrawn with a Hamilton microliter syringe at 15 minute intervals and analyzed chromatographically (Perkin-Elmer 900 gas chromatograph with thermal conductivity detector). The solubility at one atmosphere partial pressure of the gas was the mean value of three consecutive samples which agreed within the limits of experimental error.SOURCE AND PURITY OF MATERIALS: (1)Nitrogen. Source not given. Min- imum purity 99.6 per cent. (2)Caroxin-D. Allied Chemical Corp. Purity > 99.9 per cent as sup- plied. The authors also measured the density and viscosity of the solvent. At 298.15 K the density is 1.7465 g cm ⁻³ and the viscosity is 2.0579 centipoise.ESTIMATED ERROR: $\delta X_1/X_1 = 0.005$ (Compiler)				
The apparatus and procedure described by Shoor, Walker and Gubbins (1) were used. The solvent was placed in a saturator immersed in a constant temperature bath. The gas was dis- persed through the liquid by a fritted glass disk at a rate of about 40 cm ³ m ⁻¹ . After an initial equilibration period of 30 minutes, samples were withdrawn with a Hamilton microliter syringe at 15 minute intervals and analyzed Chromatographically (Perkin-Elmer 900 gas chromatograph with thermal conductivity detector). The solubility at one atmosphere partial pressure of the gas was the mean value of three consecutive samples which agreed within the limits of experimental error. (1)Nitrogen. Source not given. Min- imum purity 99.6 per cent. (2)Caroxin-D. Allied Chemical Corp. Purity > 99.9 per cent as sup- plied. The authors also measured the density and viscosity of the solvent. At 298.15 K the density is 1.7465 g cm ⁻³ and the viscosity is 2.0579 centipoise. ESTIMATED ERROR: $\delta T/K = 0.05$ $\delta X_1/X_1 = 0.005$ (Compiler) REFERENCES: 1. Shoor, S. K.; Walker, R. D.; Gubbins, K. E.			AUXILIARY	INFORMATION
	The apparatus and procedure described by Shoor, Walker and Gubbins (1) were used. The solvent was placed in a saturator immersed in a constant temperature bath. The gas was dis- persed through the liquid by a fritted glass disk at a rate of about 40 cm ³ m ⁻¹ . After an initial equilibration period of 30 minutes, samples were withdrawn with a Hamilton microliter syringe at 15 minute intervals and analyzed chromatographically (Perkin-Elmer 900 gas chromatograph with thermal conductivity detector). The solubility at one atmosphere partial pressure of the gas was the mean value of three consecutive samples which agreed within the limits of		(1) were in a ant dis- of bitial butes, 15 mer ermal eartial ean apples	(1)Nitrogen. Source not given. Min- imum purity 99.6 per cent. (2)Caroxin-D. Allied Chemical Corp. Purity > 99.9 per cent as sup- plied. The authors also measured the density and viscosity of the solvent. At 298.15 K the density is 1.7465 g cm ⁻³ and the viscosity is 2.0579 centipoise. ESTIMATED ERROR: $\delta T/K = 0.05$ $\delta X_1/X_1 = 0.005$ (Compiler) REFERENCES: 1. Shoor, S. K.; Walker, R. D.; Gubbins, K. E.

,

CONTROLLING	ODICINAL MELCUDE
COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Sargent, J. W.; Seffl, R. J.
(2) L-1822, which is a mixture of mostly 10-carbon fluorocarbons, including cyclic, open chain, and branched molecules.	Fed. Proc. <u>1970</u> , 29, 1699-1703.
VARIABLES:	PREPARED BY:
T/K = 298.15, 310.15 Total P/kPa = 101.325	A. L. Cramer H. L. Clever
EXPERIMENTAL VALUES:	
Temperature t/°C T/K g O	Nitrogen Solubility $_2$ 1000 g ⁻¹ cm ³ O ₂ 100 cm ⁻³
25 298.15	0.184 30.6
37 310.15	0.162 27.8
	ity, cm ³ N ₂ 100 cm ⁻³ , appears pefficient times 100.
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: The equilibrium apparatus is a 50 cm ³ three neck flask equipped with a water condenser, a thermometer, and a gas dispersing tube extending below the fluid surface level. Between 25 and 35 cm ³ of solvent are placed in the flask. Gas is bubbled through the solvent for 2 - 3 h. An 80 micro-liter sample is slowly taken into a gas tight syringe. The sample is injected into a gas chromatograph. The results of three sampling and analyses are averaged. The chromatograph is an F and M Model 720 equipped with a thermal conductivity detector at 320 °C, and a 6' by $\frac{1}{4}$ " stainless steel column packed with 13X molecular sieve at room temperature. The apparatus is calibrated with pure gas samples.	<pre>Source AND PURITY OF MATERIALS: (1) Nitrogen. Source not given. Commercial cylinder. (2) L-1822. Minnesota Mining and Manufacturing Co. All H in an organic compound are replaced by F by Simons electrochemical process (1) ESTIMATED ERROR: &T/K = 0.1 &c/c = 0.01 (reproducibility) = 0.05 (absolute) REFERENCES: 1. Simons, J. H., Editor Fluorine Chemistry</pre>
Details of the procedure were furnished by R. D. Danielson of the 3 M Co.	Academic Press, New York, <u>1950</u> .

COMPONENTS:	ORIGINAL MEASUREMENTS:	
(1) Nitrogen; N ₂ ; [7727-37-9]	Gorbachev, V. M.; Tret'yakov, G. V.	
(2) Various solvents, see below	Zavodsk. Lab.]966, 32, 796-8.	
VARIABLES:	PREPARED BY:	
т/к = 293	V. Katovic	
EXPERIMENTAL VALUES:		
Substance C ₆ H ₆ CCl ₄ CH ₃ SiC	GeCl ₄ SiCl ₄	
L ^a at 20°C	(293 K)	
Standard C ₆ H ₆ 0.1162 ^b 0.155 0.190	0.208 0.224	
Standard CCl ₄ 0.114 0.1572 ^b 0.184	0.208 0.225	
a Ostwald coefficient.		
^b Literature values (1).		
The Ostwald coefficients for nitro determined from ratios against a st carbon tetrachloride	gen in each solvent (columns) were candard of either benzene or	
d Benzene; C _c H ₆ ; [71-43-2]		
Carbon tetrachloride; CCl ₄ ; [56-23	3-5]	
Methyl trichloro silane; CH ₃ SiCl ₃ ; Germanium tetrachloride; GeCl ₄ ; [10	0038-98-9]	
Silicon tetrachloride; SiCl ₄ ; ⁷ [100;	26-04-7]	
AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS;	
The solubility of N ₂ in the investi-		
gated liquids was determined by gas chromatography. Chromatographs of	No details given.	
equal volumes of a standard liquid $(C_6H_6 \text{ or } CCl_4)$ saturated with N ₂ and		
the investigated saturated liquid were		
obtained. Solubilities were calcu- lated from a ratio of nitrogen peak		
height and liquid peak area of the standard and investigated liquids and		
the known solubility of N2 in the		
standard liquid.	ESTIMATED ERROR:	
	$\delta L/L = \pm 0.03$, compiler's estimate	
	REFERENCES:	
	(1) Horiuti, J.	
	Sci. Papers. Inst. Phys. Chem. Res. (Tokyo) 1931, 17, 125.	

COMPONENTS:	EVALUATOR:
(l) Nitrogen; N ₂ ; [7727-37-9]	H. Lawrence Clever Department of Chemistry
(2) Solvents containing sulfur:	Emory University
Carbon disulfide; CS ₂ ; [75-15-0]	Atlanta, GA 30322 USA
Sulfinylbismethane or dimethyl sulfoxide; C ₂ H ₆ OS; [67-68-5]	1981, December

CRITICAL EVALUATION:

The solubility of nitrogen in carbon disulfide is reported in four papers. Just's (1) values at 293.15 and 298.15 K are 34 to 38 per cent lower than the modern values and should be rejected. The other three papers originated from the laboratory of J. H. Hildebrand over a 23 year period. Gjaldbaek and Hildebrand (2) reported solubility values at 298.04 and 298.11 K in 1949, Kobatake and Hildebrand (3) reported four values between 279.37 and 304.35 K in 1961, and Powell (4) reported values over the 273.15 to 303.15 K temperature interval in 1971. Powell reported a solubility value only at 298.15 K and gave the slope of a plot of log x_{τ} vs. log \overline{T} .

At 298.15 K the mole fraction solubility values at 101.325 kPa (1 atm) nitrogen partial pressure from the three papers (2, 3, 4) agree within 0.7 percent. The smoothed data of Kobatake and Hildebrand (3) and Powell (4) agree within 0.5 per cent at the temperatures between 283.15 and 303.15 K. The recommended solubility values are based on the four solubility values of Kobatake and Hildebrand.

The equation for use between 278.15 and 303.15 K is

$$\log x_{1} = -6.4402 - 5.8881/(T/100 \text{ K})$$

with a standard error about the regression line of 2.03 x 10^{-7} .

The temperature independent thermodynamic changes in enthalpy and entropy for the transfer of one mole of nitrogen from the gas phase at a partial pressure of 101.325 kPa to the infinitely dilute solution are

 $\Delta H_{1}^{\circ}/kJ \mod^{-1} = 4.895 \text{ and } \Delta S_{1}^{\circ}/J \text{ K}^{-1} \mod^{-1} = -53.5.$

The smoothed solubility values and the Gibbs energy of solution are given in Table 1.

Table 1. Solubility of nitrogen in carbon disulfide of a nitrogen partial pressure of 101.325 kPa. Recommended values of the mole fraction solubility and partial molar Gibbs energy of solution as a function of temperature.

T/K	Mol Fraction $10^{+}x_{2}$	$\Delta G_{1}^{\circ}/kJ mol^{-1}$
278.15	1.922	19.789
283.15	1.995	20.057
288.15	2.068	20.325
293.15	2.142	20.593
298.15	2.215	20.860
303.15	2.288	21.128

Only one solubility value is reported for nitrogen + sulfinylbismethane (dimethyl sulfoxide). The mole fraction solubility of 8.33 x 10^{-5} at 298.15 K and 101.325 kPa nitrogen pressure reported by Dymond (5) is classed as tentative.

References:

- 1.
- Just, G. Z. Phys. Chem. <u>1901</u>, 37, 342. Gjaldbaek, J. C.; Hildebrand, J. H. J. Am. Chem. Soc. <u>1949</u>, 71, 3147. Kobatake, Y.; Hildebrand, J. H. J. Phys. Chem. <u>1961</u>, 65, 331. Powell, R. J. J. Chem. Eng. Data <u>1972</u>, 17, 302. Dymond, J. H. J. Phys. Chem. <u>1967</u>, 71, 1829. 2.
- З.
- 4.
- 5.

COMPONENTS: (1) Nitrogen; N ₂ ; [7727-37-9]	ORIGINAL MEASUREMENTS: Just, G.
(2) Carbon disulfide; CS ₂ ; [75-15-0]	Z. Phys. Chem. <u>1901</u> , 37, 342-67.
VARIABLES:	PREPARED BY:
T/K = 293 -298 P/kPa = 101.325	M. E. Derrick H. L. Clever
EXPERIMENTAL VALUES:	
-,	Bunsen Ostwald Efficient Coefficient α L
	0.04929 0.05290 0.05369 0.05860
The author measured the Ospressure of about 746 mmHg the Ostwald coefficient to pressure, and calculated the Bunsen coefficient values a partial pressure of the gas	The compiler assumed be independent of ne mole fraction and at 101.325 kPa (1 atm)
AUXILIARY	INFORMATION
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
An Ostwald apparatus as modified by Timofejew (1), and Steiner (2) is used. The apparatus consists of a gas buret, an absorption flask, and a mercury manometer. The system is thermostated with a water jacket. The gas is introduced into the de- gassed liquid. The gas volume absorbed is determined by the gas buret. The solvent volume is deter- mined at the end of the experiment by pouring the solvent into a gradu-	 Nitrogen. Prepared by the reaction of sodium nitrite and ammonium nitrate in aqueous solution in the presence of calcium dichromate. Carbon disulfide. No information.
ated flask.	ESTIMATED ERROR:
	$\delta L/L = 0.03$ (compiler)
	REFERENCES :
	1. Timofejew, W. Z. Physik. Chem. <u>1890</u> , 6, 141.
	 Steiner, Ann. Phys. (Leipzig) <u>1894</u>, 52, 275.

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Gjaldbaek, J. C.; Hildebrand, J. H.
(2) Carbon disulfide; CS ₂ ; [75-15-0]	J. Am. Chem. Soc. <u>1949</u> , 71,3147-50.
VARIABLES:	PREPARED BY:
T/K = 298.04 - 298.11 Total P/kPa = 101.325	J. Chr. Gjaldbaek
EXPERIMENTAL VALUES: T/K Mol Fraction $X_1 \times 10^3$	Bunsen Ostwald Coefficient Coefficient α L
298.04 0.223	α L 0.0822 0.0897
298.11 0.223	0.0823 0.0898
The mole fraction and Ostwald solubil compiler.	ity values were calculated by the .
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
A calibrated all-glass combined man- ometer and bulb was enclosed in an air thermostat and shaken until equilibrium. Mercury was used for calibration and as the confining	 Nitrogen. Stuart Oxygen Co. 99.996 percent N₂. Carbon disulfide. Mallinckrodt Chemical Co. Analytical reagent
liquid. The solvents were degassed in the apparatus. Details are in references 1 and 2.	grade, boiling point 45.80 - 45.85 at 750.1 mmHg.
The absorbed volume of gas was cal- culated from the initial and final amounts, both saturated with solvent vapor. The amount of solvent was	
determined by the weight of displaced mercury. The saturation of the liquid with the	$\delta T/K = 0.05$
gas was carried out close to atmos- pheric pressure. The solubility	REFERENCES:
values were reported for one atmos- phere gas pressure assuming Henry's law is obeyed.	1. Lannung, A. J. Am. Chem. Soc. <u>1930</u> , 52, 68.
	2. Gjaldbaek, J. C. Acta Chem. Scand. <u>1952</u> , 6, 623.

Nitrogen Solubilities up to 200 kPa

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1)Nitrogen; N ₂ ; [7727-37-9]	Kobatake, Y.; Hildebrand, J. H.
(2)Carbon Disulfide; CS ₂ ; [75-15-0]	
(2) (albon Disulline, cb_2 , $[75-15-0]$	J. Phys. Chem. <u>1961</u> , 65, 331-5.
VARIABLES:	PREPARED BY:
T/K = 279.37 - 304.35 P/kPa = 101.325	M. E. Derrick H. L. Clever
EXPERIMENTAL VALUES:	
T/K Mol Fraction	Punsen Ostwald
$x_{1} \times 10^{3}$	Coefficient Coefficient
279.37 0.1941	0.0733 0.0750
288.56 0.2072 298.15 0.2215	0.0775 0.0819 0.0819 0.0894
304.35 0.2307	0.0847 0.0944
The Bunsen and Ostwald coefficients we	ere calculated by the compiler.
Smoothed Data: $\Delta G^{\circ}/J \text{ mol}^{-1} = - RT \ln$	Х, = 4890.5 + 53.563 Т
Std. Dev. $\Delta G^{\circ} = 1.9$, G	*
1	$\Delta s^{o}/J \kappa^{-1} mol^{-1} = -53.563$
	_
	$\Delta G^{O}/J \text{ mol}^{-1}$
X_1 × 1	
283.15 0.19 288.15 0.20	
293.15 0.21	20,593
298.15 0.22 303.15 0.22	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The apparatus consists of a gas-	(1) Nitrogen. Linde Oxygen Co.
measuring buret, an absorption pipet, and reservoir for solvent. The buret	Standard grade, 99.9 % nitrogen.
is thermostated at 25°C, the pipet at	(2) CS ₂ . Analytical Reagent shaken
any temperature from 5 to 30°C. The solvent is degassed by freezing	with Hg, HgCl ₂ , distilled,
with liquid nitrogen, evacuating, then	
boiling with a heat lamp. The solvent never comes into contact with stop-	
cock grease.	
The amount of gas is determined by P-V measurements in the gas buret	
before and after admission of the gas	ESTIMATED ERROR:
into the pipet. No solvent vapor is allowed into the buret system. The	$\delta x_1 / x_1 = 0.003$
solvent is magnetically stirred for	
up to 24 hours until equilibrium is reached.	REFERENCES:
Ideal gas behavior and Henry's law	
are assumed to calculate the mole fraction solubility at a gas partial	
pressure of one atm.	

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Powell, R. J.
(2) Carbon Disulfide; CS ₂ ; [75-15-0]	J. Chem. Eng. Data <u>1972</u> , 17, 302-4.
VARIABLES:	PREPARED BY:
T/K = 273.15 - 318.15 P/kPa = 101.325	P. L. Long
EXPERIMENTAL VALUES:	
T/K Mol Fraction Bunsen	Ostwald $\Delta \log X$
$x_1 \times 10^4$ Coefficie	$\begin{array}{ccc} \text{Ostwald} & \Delta \log X_1 \\ \text{ent Coefficient} & R_{\Delta \log T} = N \\ L \end{array}$
298.15 2.22 0.0821	0.0896 4.00
The author states that solubility meas 318.15 K, but only the solubility at 2 slope $R(\Delta \log X_1/\Delta \log T)$ was given. The by the compiler from the slope in the	98.15 was given in the paper. The he smoothed data below were calculated
) + (4.00/R)log(T/298.15)
with $R = 1.9872$ cal K^{-1} mol ⁻¹ .	,
, 	tel Emetion
T/K M	$x_1 \times 10^4$
273.15 278.15	1.86 1.93
283.15	2.00
288.15 293.15	2.07 2.15
298.15	2.22
303.15	2.30
The Bunsen and Ostwald coefficients we	re calculated by the compiler.
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: Dymond and Hildebrand (1) apparatus which uses an all glass pumping system	SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Source not given. Manufacturers research grade,
to spray slugs of degassed solvent into the gas. The amount of gas dis-	dried over CaCl ₂ before use.
solved is calculated from the initial	(2) Carbon disulfide. No source
and final gas pressures. The solvent	given. Spectrochemical grade.
is degassed by freezing and pumping followed by boiling under reduced pressure.	
	ESTIMATED ERROR:
	1
	$\delta N/cal K^{-1} mol^{-1} = 0.1$ $\delta x_1/x_1 = 0.002$
	REFERENCES:
	 Dymond, J. H.; Hildebrand, J. H. Ind. Eng. Chem. Fundam. <u>1967</u>, 6, 130.

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Dymond, J. H.
<pre>(2) Sulfinylbismethane or Dimethyl Sulfoxide; C₂H₆OS (CH₃SOCH₃); [67-68-5]</pre>	J. Phys. Chem. <u>1967</u> , 71, 1829-31.
VARIABLES: T/K = 298.15 P/kPa = 101.325	PREPARED BY: M. E. Derrick H. L. Clever
EXPERIMENTAL VALUES:	
T/K Mol Fraction $x_1 \times 10^4$	Bunsen Ostwald Coefficient Coefficient α L
298.15 0.833	0.0262 0.0286
The Bunsen and Ostwald coefficients w	vere calculated by the compiler.
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The liquid is saturated with the gas at a gas partial pressure of l atm. The apparatus is that described by Dymond and Hildebrand (1). The apparatus uses an all-glass pumping system to spray slugs of degassed solvent into the gas. The amount of gas dissolved is calculated from the initial and final gas pressure.	 (1) Nitrogen. General Dynamics Corp. Dried. (2) Dimethyl Sulfoxide. Matheson, Coleman, and Bell Co. Spectro- quality reagent, dried, and a fraction frozen out. Melting pt.: 18.37°C.
	ESTIMATED ERROR:
	REFERENCES: 1. Dymond, J.; Hildebrand, J. H. Ind. Eng. Chem. Fundam. <u>1967</u> , 6, 130.

ļ

COMPONENTS:	ORIGINAL MEASUREMENTS:
	Miller, H. C.; Verdelli, L.S.;
(1) Nitrogen; N ₂ ; [7727-37-9]	Gall, J. F.
<pre>(2) Sulfurhexafluoride; SF₆;</pre>	
[2551-62-4]	Ind. Eng. Chem. 1951, 43, 1126-9.
VARIABLES:	PREPARED BY:
T/K = 300	R. Battino
EXPERIMENTAL VALUES:	
$p^{b}/psig \qquad \alpha^{a}/cm^{3}(STP) cm^{-3}$	1
$\frac{p^{b}/psig}{\alpha^{a}/cm^{3}(STP) cm^{-3}}$	atm ⁻¹ % by wt. ^c % by vol. ^c
356	0 0
365 2. 383 2.3	0.2 0.41 2.1
400 2.1	0.597 3.04
420 1.9	0.807 4.07
· · · · · · · · · · · · · · · · · · ·	
^a Bunsen coefficient at 27°C (300)	K). Pressures up to 420 psig were
used.	
^b Total pressure.	
Of nitrogen in liquid sulfur he:	Karluoride at 27°C (300 K).
,	
AUXILIARY	INFORMATION
METHOD / APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
	SOURCE AND FURITI OF PATERIALS,
A container with liquid SF ₆ at 27°C	
was pressurized with various amounts of nitrogen which dissolved. This	(1) No details given,
was heated up to 50°C where both	
substances were in the gas phase. By	(2) "Purified." Orthobaric liquid
pressure and volume measurements the Bunsen coefficient could be	density of 1.30 g/ml at 26°C. $t_c/°C = 45.5; \rho_c/g \text{ cm}^3 = 0.727;$
calculated. The paper also reports	
on the physical properties of SF6.	$P_c/atm = 36.8.$
	ESTIMATED ERROR:
	$\delta \alpha / \alpha = \pm 0.10$, compiler's estimate.
	REFERENCES:
1	4

Nitrogen Solubilities up to 200 kPa

	ORIGINAL MEASUREMENTS:
[7727-37-9]	Friedman, H. L.
CH ₃ NO ₂ ;	J. Am. Chem. Soc. <u>1954</u> , 76, 3294-7.
=298.00 =98.33	PREPARED BY: P. L. Long H. L. Clever
T/K Mol Fracti x _l x 10 ⁴	
298.00 2.01	0.083 0.091
about 700 mmHg nitro coefficient and the 101.325 kPa (1 atm) calculated by the co	the Ostwald coefficient at ogen pressure. The Bunsen mole fraction solubility at nitrogen pressure were ompiler with the assumptions al and that Henry's law is
AUXILIARY	INFORMATION
DURE:	SOURCE AND PURITY OF MATERIALS:
entially that and Herzberg (1). uded a magnetic stead of shaking sel, and balancing gainst a column of rical contacts ng the gas pressure here.	 Nitrogen. Source not given. The gas was dried over CaH₂ and CaO. Nitromethane. Source not given. Distilled, dried by filtering at 253 K.
gassed by vacuum. eated 5 to 10 times to 15 s evacuation to produce cavita-	ESTIMATED ERROR: $\delta T/K = 0.05$ $\delta P/mmHg = 0.3$ $\delta L/L = 0.03$
ubility, the gas, solvent vapor, was ct with about 80 the absorption nditions were time extrapolation. orium was approached nd super-saturation e.	REFERENCES: 1. Eucken, A.; Herzberg, G. Z. Phys. Chem. <u>1950</u> , 195, 1.
	CH ₃ NO ₂ ; =298.00 =98.33 T/K Mol Fracti $x_1 \times 10^4$ 298.00 2.01 The author measured about 700 mmHg nitro coefficient and the 101.325 kPa (1 atm) calculated by the co that the gas is idea obeyed. AUXILIARY DURE: entially that and Herzberg (1). uded a magnetic stead of shaking sel, and balancing gainst a column of rical contacts ng the gas pressure here. gassed by vacuum. eated 5 to 10 times to 15 s evacuation to produce cavita- ubility, the gas, solvent vapor, was ct with about 80 the absorption ime extrapolation. rium was approached nd super-saturation

.

•

· · ·	
COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Wood, R. H.; DeLaney, D. E.
(2) N-Methylacetamide; C ₃ H ₇ NO; [79-16-3]	J. Phys. Chem. <u>1968</u> , 72, 4651-4.
VARIABLES:	PREPARED BY:
T/K = 308.15 - 343.15 P/kPa = 101.325	P. L. Long H. L. Clever
EXPERIMENTAL VALUES: The authors obtained the equation	
$\ln x_1 = -245.$	7/(T/K) - 7.514
by a linear regression of their experi rearranged to	
$\Delta G^{\circ} = - RT \ln X_{1}$	= 245.7R + 7.514 RT
The experimental data were not include in a thesis (1). The smoothed mole fr 101.325 kPa N ₂ gas and five degree int	raction argon solubilities at
culated by the compiler.	and Ostwald coefficients were cal-
Smoothed Data: T/K Mol Fraction $x_1 \times 10^4$	h ^a Bunsen Ostwald Coefficient Coefficient α L
308.15 2.461	0.7139 0.8054 .
313.15 2.492	0.7198 0.8252
318.15 2.523 323.15 2.554	0.7256 0.8451 0.7313 0.8652
328.15 2.583	0.7364 0.8847
333.15 2.613	0.7417 0.9046
338.15 2.641 343.15 2.669	0.7463 0.9239 0.7509 0.9434
^a These values were given by the author those calculated from their equation large by about 1.5 ppt, which is les	ors and are slightly different than given above. These values are too
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
A gas buret was connected to a solvent buret through a three-way capillary stopcock. A measured volume of gas	(1) Nitrogen. Source not given. Purity 99.99 per cent.
was transferred to a known volume of	(2) N-Methylacetamide. Source not
solvent; when equilibrium was reached	given. Recrystallized three times in a dry box. Typically
the total pressure and volume of the system was measured (1). The appara-	had a water content of 0.04 mol
tus and procedure were checked by	per cent after a solubility run.
measuring the solubility of Ar in H_2O	
at 298.15 K. The Bunsen coefficient of 0.03105 checked well with the literature (2).	
	ESTIMATED ERROR:
	Duplicate runs checked to within 0.5 per cent.
	REFERENCES :
	<pre>1. DeLaney, D. E. M. S. Thesis, University of Delaware, 1968.</pre>
	 Ben-Naim, A.; Baer, S. Trans. Faraday Soc. <u>1963</u>, 59, 2735; ibid. <u>1964</u>, 60, 1736.

Nitrogen Solubilities up to 200 kPa

vitrogen Solubin	
COMPONENTS:	ORIGINAL MEASUREMENTS:
(l) Nitrogen; N ₂ ; [7727-37-9]	Amster, A. B.; Levy, J. B.
<pre>(2) Nitric acid, propyl ester or 1-propyl nitrate; C₃H₇NO₃; [627-13-4]</pre>	J. Am. Rocket Soc. <u>1959</u> , 29, 870-1.
VARIABLES: T/K= "Room temperature" P/kPa= 28.0-85.3	PREPARED BY: M. E. Derrick H. L. Clever
EXPERIMENTAL VALUES:	
	raction Bunsen Ostwald x 10 ⁴ Coefficient Coefficient α L
210 28.0 1.8 1 220 29.3 1.8 1	.9 0.16 0.17 .9 0.16 0.17 .9 0.15 0.16 .5 0.12 0.13
420 56.0 3.1 3 440 58.7 3.0 3	.2 0.13 0.14 .3 0.13 0.14 .2 0.12 0.13 .7 0.10 0.11
620 82.7 4.4 4 620 82.7 4.5 4	.0 0.14 0.15 .6 0.13 0.14 .7 .13 0.14 .6 0.12 0.13
The compiler calculated the mole f Ostwald coefficient values assuming Density values for the solvent were	g a temperature of 293.15 K.
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The apparatus consists of an absorp- tion flask connected by a flexible spiral to a mercury filled capillary (1).	(1) Nitrogen. Technical grade, water pumped, 99.5 per cent. Passed through a drying tube.
A weighed quantity of liquid is placed in the flask. The gas is added, and shaken with the degassed liquid. The volume of the gas is taken as the flask volume minus the solvent volume. The solubility is calculated from	(2) Nitric acid, propyl ester. Source and purity not given.
Solubility/mol $g^{-1} = V\Delta P / WRT$	ESTIMATED ERROR: $\delta P/mmHg = 5$ $\delta T/K = 2$
<pre>where V is the gas volume,</pre>	δα α = 0.15 REFERENCES: 1. Levy, J. B.; Taft, R. W. jr. Aaron, D.; Hammett, L. P. J. Am. Chem. Soc. <u>1953</u> , 75, 3955.

Organic Compounds Cc.

(1) Nitrogen; N ₂ ; [7727-37-9]	ORI Gué
(2) Cyclic amines; C_4H_9N , C_5H_5N , and $C_5H_{10}N$	Ph Va Na
VARIABLES: T/K = 293-298 P/kPa = 101.325	PRE
EXPERIMENTAL VALUES: T/K Mol Fraction $x_1 \times 10^4$ C	Bun Coef
Pyrrolidine; C ₄ H ₉ N 293.15 3.54 298.15 3.68	; [] 0 0
Pyridine; C ₅ H ₅ N; [: 293.15 2.41 298.15 2.50 Piperidine; C ₅ H ₁₁ N	0 0
293.15 4.13 298.15 4.22	, L C C
AUXILIARY	
METHOD/APPARATUS/PROCEDURE: The apparatus was a modified Van Slyke-Neill Manometric Apparatus manufactured by the Eimer and Amend Co.	IN
The procedure of Van Slyke (1) for	IN Py ar Py 88
pure liquids was modified (2) so that small solvent samples (2 cm ³) could be used with almost complete recovery of the sample.	SO Py ar Py
that small solvent samples (2 cm ³) could be used with almost complete	SO Py ar Py 88 Py Pi mm Pi
that small solvent samples (2 cm ³) could be used with almost complete recovery of the sample. An improved temperature control	SO Py ar Py 88 Py Pi mm Pi s pa

bilities up to 200 kPa

	ORIGINAL MEASUREMENTS:
	Just, G.
]	Z. Phys. Chem. <u>1901</u> , 37, 342-67.
	PREPARED BY: M. E. Derrick H. L. Clever
C	Bunsen Ostwald oefficient Coefficient α L
	0.05667 0.06082 0.05731 0.06255
mH to d ≥s	stwald coefficient at a g. The compiler assumed o be independent of the mole fraction and at 101.325 kPa (1 atm) as.

RY INFORMATION

	SOURCE AND PURITY OF MATERIALS:
	(1) Nitrogen. Prepared by the reaction of sodium nitrite and ammonium nitrate in aqueous solution in the presence of calcium dichromate.
- by	(2) Nitrobenzene. No information.
۶đ	ESTIMATED ERROR:
	$\delta L/L = 0.03$ (compiler)
	REFERENCES :
	 Timofejew, W. Z. Physik. Chem. <u>1890</u>, 6, 141.
_	2. Steiner, Ann. Phys. (Leipzig) <u>1894</u> , 52, 275.

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Metschl, J.
(1) Niciogen, N ₂ , [4,2, 5, 5] (2) Benzenamine; C ₆ H ₇ N; [62-53-3]	J. Phys. Chem. <u>1924</u> , 28, 417-37.
	<u></u> ,,,,,
Nitrobenzene; C ₆ H ₅ NO ₂ ; [98-95-3]	
VARIABLES:	PREPARED BY:
T/K = 298.15	M. E. Derrick H. L. Clever
p/kPa = 101.325	n. H. Clevel
EXPERIMENTAL VALUES:	
T/K Mol Fraction $x_1 \times 10^4$	Bunsen Ostwald Coefficient Coefficient αL
Benzenamine or anili	ne; C ₆ H ₇ N; [62-53-3]
298.15 1.3	0.033 0.036
Nitrobenzene; C ₆ H ₅ NC	2; [98-95-3]
298.15 2.6	0.056 0.061
The compiler calculated t Ostwald coefficient value	the mole fraction and es.
AUXILIARY	INFORMATION
AUXILIARY METHOD/APPARATUS/PROCEDURE: The degassed solvent is saturated with nitrogen at 6 to 10 different pressures between 1.5 and 4.5 atm. The pressure is reduced to one atm, and the "supersaturated gas" is shaken out of the solvent and measured. The slope of a plot of the volume of gas reduced to standard conditions	<pre>INFORMATION SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Prepared by the reaction of sodium nitrite and ammonium nitrate in the presence of calcium dichromate in aqueous ' solution. (2) Aniline. Allowed to stand over KOH, then distilled. Nitrobenzene. Chemically pure. Allowed to stand over calcium</pre>

•

266 Nitrogen Solubil	ties up to 200 kPa
COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Just, G.
(2) Benzenamine or aniline; C ₆ H ₇ N; [62-53-3]	Z. Phys. Chem. <u>1901</u> , 37, 342-67.
VARIABLES:	PREPARED BY:
T/K = 292-298 P/kPa = 101.325	M. E. Derrick H. L. Clever
EXPERIMENTAL VALUES:	
T/K Mol Fraction $x_1 \times 10^4$ C	Bunsen Ostwald Coefficient Coefficient
293.15 1.13 298.15 1.15	0.02788 0.02992 0.02816 0.03074
The author measured the O pressure of about 746 mmH the Ostwald coefficient t pressure, and calculated Bunsen coefficient values partial pressure of the g	g. The compiler assumed o be independent of the mole fraction and at 101.325 kPa (1 atm)
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
An Ostwald apparatus as modified by Timofejew (1), and Steiner (2) is used. The apparatus consists of a gas buret, an absorption flask, and a mercury manometer. The system is thermostated with a water jacket. The gas is introduced into the de- gassed liquid. The gas volume absorbed is determined by the gas buret. The solvent volume is deter- mined at the end of the experiment by pouring the solvent into a gradu- ated flask.	 (1) Nitrogen. Prepared by the reaction of sodium nitrite and ammonium nitrate in aqueous solution in the presence of calcium dichromate. (2) Benzenamine. No information given.
ateu IIask.	$\delta L/L = 0.03$ (compiler)
	<pre>REFERENCES: 1. Timofejew, W. Z. Physik. Chem. <u>1890</u>, 6, 141. 2. Steiner, Ann. Phys. (Leipzig) <u>1894</u>, 52, 275.</pre>

.

.

COMPONENTS:	ORIGINAL MEASUREMENTS:
	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Kobatake, Y.; Hildebrand, J. H.
<pre>(?) 1,1,2,2,3,3,4,4,4-Nonafluoro-N,N- bis(nonafluorobuty1)-l-butanamine; (C₄F₉)₃N; [311-89-7]</pre>	J. Phys. Chem. <u>1961</u> , 65, 331-5.
VARIABLES:	PREPARED BY:
T/K = 283.83 - 303.60 P/kPa = 101.325	M. E. Derrick H. L. Clever
EXPERIMENTAL VALUES: T/K Mol Fraction	Bunsen Ostwald
· ·	Coefficient Coefficient
283.83 3.537 287.18 3.524 293.56 3.502 298.15 (3.490) 299.15 3.488 303.60 3.474	0.2300.2390.2270.2390.2230.2400.2200.2400.2190.2400.2160.240
The Bunsen and Ostwald coefficients we	ere calculated by the compiler.
Std. Dev. $\Delta G^{\circ} = 0.84$, $\Delta H^{\circ}/J \text{ mol}^{-1} = -638.71$,	$\Delta S^{\circ}/J K^{-1} mol^{-1} = -49.183$ Detion $\Delta G^{\circ}/J mol^{-1}$ $\Delta S^{\circ}/J mol^{-1}$
	INFORMATION
METHOD/APPARATUS/PROCEDURE: The apparatus consists of a gas- measuring buret, an absorption pipet, and reservoir for solvent. The buret is thermostated at 25°C, the pipet at any temperature from 5 to 30°C. The solvent is degassed by freezing with liquid nitrogen, evacuating, then boiling with a heat lamp. The solvent never comes into contact with stop- cock grease.	
The amount of gas is determined by P-V measurements in the gas buret before and after admission of the gas into the pipet. No solvent vapor is allowed into the buret system. The solvent is magnetically stirred for up to 24 hours until equilibrium is reached.	ESTIMATED ERROR: $\delta X_1 / X_1 = 0.003$ REFERENCES:
Ideal gas behavior and Henry's law are assumed to calculate the mole fraction solubility at a gas partial pressure of one atm.	

ć

COMPONENTS: ORIG	NAL MEASUREMENTS:
1	gent, J. W.; Seffl, R. J.
<pre>(2) FC-47, which is largely per- fluorotributylamine or 1,1,2,2, 3,3,4,4,4-nonafluoro-N,N-bis (nonafluorobutyl)-1-butanamine; C₁₂F₂₇N; [311-89-7]</pre>	. Proc. <u>1970</u> , 29, 1699 - 1703.
VARIABLES: PREP.	ARED BY:
T/K = 298-310 Total P/kPa = 101.325	A. L. Cramer H. L. Clever
EXPERIMENTAL VALUES:	
	rogen Solubility $g^{-1} cm^3 O_2 100 cm^{-3}$.
25 298.15 0.174	28.4
37 310.15 0.173	28.6
The authors solubility,	$cm^3 N_2 100 cm^{-3}$, appears
to be the Ostwald coeffi	
AUXILIARY INFOF	MATION
The equilibrium apparatus is a 50 cm ³ (1) three neck flask equipped with a water condenser, a thermometer, and a gas dispersing tube extending below (2) the fluid surface level. Between 25 and 35 cm ³ of solvent are placed in the flask. Gas is bubbled through the solvent for 2 - 3 h. An 80 micro- liter sample is slowly taken into a gas tight syringe. The sample is injected into a gas chromatograph. The results of three sampling and analyses are averaged. The chromatograph is an F and M Model 720 equipped with a thermal conductivity detector at 320 °C, and a 6' by $\frac{1}{3}$ " stainless steel column packed with 13X molecular sieve at room temperature. The apparatus is calibrated with pure gas samples. Details of the procedure wore	<pre>ZE AND PURITY OF MATERIALS: Nitrogen. Source not given. Commercial cylinder. FC-47. Minnesota Mining and Manufacturing Co. All H in an organic compound are replaced by F by Simons electrochemical process (1) MATED ERROR: K = 0.1 c = 0.01 (reproducibility) = 0.05 (absolute) RENCES: Simons, J. H., Editor Fluorine Chemistry Academic Press, New York, <u>1950</u>.</pre>

Organic Compounds Containing Nitrogen

ORIGINAL MEASUREMENTS:
Powell, R. J.
J. Chem. Eng. Data <u>1972</u> , 17, 302-4.
PREPARED BY:
P. L. Long
$\begin{array}{ccc} n & \text{Ostwald} & \Delta \log X_{1} \\ \text{ent Coefficient} & R_{\Delta \log T} = N \\ L & \end{array}$
0.292 -0.35
Asurements were made between 288.15 and 298.15 was given in the paper. The The smoothed data below were calculated a form: (4) - (0.35/R)log(T/298.15)
Mol Fraction
$x_1 \times 10^4$
42.62 42.49 42.36 42.23 42.11 41.99 41.88
vere calculated by the compiler.
INFORMATION
 SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Source not given. Manufacturers research grade, dried over CaCl₂ before use. (2) Perfluorotributylamine. Minnesota Mining & Mfg. Co., Column distilled, used portion with b.p. = 447.85 - 448.64 K, & single peak GC.
ESTIMATED ERROR: $\delta N/cal K^{-1} mol^{-1} = 0.1$ $\delta x_1/x_1 = 0.002$ REFERENCES: 1. Dymond, J. H.; Hildebrand, J. H. Ind. Eng. Chem. Fundam. 1967, 6, 130.

270		Nitrogen Solubil	ties up to 200) kPa	
COMPONENTS: (1) Nitrogen (2) Hydrazin	-		Chang, H Postor	EASUREMENTS: E. T.; Gokcen, n, T. M. Chem. <u>1968</u> , 7	i
VARIABLES: T/K P/kPa	= 278.15 - =106.31 - :	308.15 209.92	PREPARED E	Y: P. L. Long H. L. Clever	
EXPERIMENTAL VA	ALUES: Nitrogen Pressure P ₁ /atm	- ,	Fraction	n Bunsen Coefficient α	Ostwald Coefficient L
278.15	1.1453 2.0836 1.0	0.49 0.58 0.54 av.	0.56 1.21 0.54	0.0038	0.0039
293.15	1.0492 1.1120 1.9719 2.0619 1.0	0.66 0.64 0.74 <u>0.73</u> 0.69	0.69 0.71 1.45 1.51 0.69	0.0049	0.0039
308.18	1.0842 2.1112 1.0	0.89 0.78 0.85 0.82 av.	0.84 1.80 0.82	0.0056	0.0064
x1/(P1/atm) The solubili kPa (1 atm) the compiler Henry's cons Smoothed Data	ty values a were calcul from the a tant. a: Mole fr atm N ₂ ln x ₁ =	ated by average	78.15 88.15 98.15 08.15 ty of nit - 7.7956	$\begin{array}{c} x \ 10^5 \\ 0.54 \\ 0.62 \\ 0.72 \\ 0.82 \end{array}$	bbs Energy */kJ mol ⁻¹ 28.06 28.71 29.36 30.00 zine at one
		AUXILIARY	INFORMATION	1	
in the previo Apparatus and weighed. Gas apparatus at liquid was st was observed	was degasse busly weigh d degassed s was intro a known P cirred, and until ther Hydrazine with time	duced into the and T. The the pressure was no fur- did not appear as did the	(1) Nitr (2) Hydr sour befo meas equa	azine. No inf ce. It was fr re use. The d ured, and fitt tion:	rmation given. ormation on eshly distilled ensity was
calibrated vo ment of the o solvent, which glass enclose meter for mea a microslide solvent conta 100 g of solv space above t apparatus sec	It consisted olumes for gas, a cont ch was stir ed magnet, asuring the cathetomet ainer had a yent with a che liquid ctions were cm ³ (1).	d of three the measure- ainer for the red with a and a mano- pressure with er. The capacity for 5 ml gas surface. The calibrated There are no ata in the	$\begin{array}{c} \delta P/mmH\\ \delta X_{1}/X\\ \hline REFERENCES\\ 1. Chan\\ J. P\\ 2. Chan\\ Post\\ 1969\\ 3. Gokc \end{array}$	K = 0.03g = 0.011 = 0.05;g, E. T.; Gokchys. Chem. 196g, E. T.; Gokc	6, 70, 2394. en, N. A.; pacecr. Rockets ng, E. T.

COMPONENTS:	
	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Chang, E. T.; Gokcen, N. A.
	Poston, T. M.
(2) Methylhydrazine; NHCH ₃ NH ₂ ;	
[60-34-4]	J. Phys. Chem. <u>1968</u> , 72, 638 - 42.
1	
VARIABLES:	PREPARED BY:
T/K = 253.24 - 298.14	H. L. Clever
P/kPa = 99.16 - 211.32	P. L. Long
EXPERIMENTAL VALUES:	
	Fraction Bunsen Ostwald
Pl/atm 10 ⁵ K/atm ⁻¹ ^x	1×10^5 Coefficient Coefficient α L
253.24 0.9786 6.62	6.48
	13.39
1.0 6.65 av.	6.65 0.0296 0.0274
273.15 1.1052 7.55	8.34
	15.02
1.0 7.56 av.	7.56 0.0329 0.0329
298.14 1.0577 9.25	9.78
	19.46
<u>2.0856</u> <u>9.33</u> 1.0 <u>9.29</u>	9.29 0.0392 0.0428
¹ Henry's constant, K/atm ⁻¹ = $x_1/(P_1/a)$	tm). The solubility values at one
atm nitrogen pressure were calculate	d by the compiler from the value of
the average Henry's constant.	_
Smoothed Data: Mole fraction	T/K Mol Fraction ∆G°/kJ mol ^{~1}
of nitrogen in methyl	E .
hydrazine at one atm b pressure.	
-	258.15 6.87 20.57
$\ln x_{1} = -558.58/(T/K) - 7.422$	268.15 7.45 21.19 278.15 8.03 21.81
$\Delta H^{\circ}/kJ \text{ mol}^{-1} = 4.64;$	278.15 8.03 21.81 288.15 8.61 22.43
	298.15 9.18 23.04
$\Delta S^{\circ}/J K^{-1} mol^{-1} = -61.7$	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The solvent was degassed under vacuum	(1) Nitrogen. No information given.
in the previously weighed apparatus.	
Apparatus and degassed solvent were	(2) Methylhydrazine. Source not given. Distilled prior to use.
weighed. Gas was introduced into the	
apparatus at a known P and T, the	Denstiy, ρ/g ml ⁻¹ = 0.89338 -
	Denstiy, $\rho/g ml^{-1} = 0.89338 -$
apparatus at a known P and T, the liquid stirred, and the pressure ob-	
apparatus at a known P and T, the liquid stirred, and the pressure ob- served until there was no further change. Equilibrium was established within 10 m and the P was followed	Denstiy, $\rho/g ml^{-1} = 0.89338 -$
apparatus at a known P and T, the liquid stirred, and the pressure ob- served until there was no further change. Equilibrium was established within 10 m and the P was followed for 40 m. Substituted hydrazines	Denstiy, $\rho/g ml^{-1} = 0.89338 -$
apparatus at a known P and T, the liquid stirred, and the pressure ob- served until there was no further change. Equilibrium was established within 10 m and the P was followed for 40 m. Substituted hydrazines appear to decompose with time. For	Denstiy, $\rho/g ml^{-1} = 0.89338 -$
apparatus at a known P and T, the liquid stirred, and the pressure ob- served until there was no further change. Equilibrium was established within 10 m and the P was followed for 40 m. Substituted hydrazines appear to decompose with time. For decomposing solvents the P was fol-	Denstiy, $\rho/g ml^{-1} = 0.89338 -$
apparatus at a known P and T, the liquid stirred, and the pressure ob- served until there was no further change. Equilibrium was established within 10 m and the P was followed for 40 m. Substituted hydrazines appear to decompose with time. For decomposing solvents the P was fol- lowed for up to 2 h, and the solu-	Denstiy, $\rho/g ml^{-1} = 0.89338 -$
apparatus at a known P and T, the liquid stirred, and the pressure ob- served until there was no further change. Equilibrium was established within 10 m and the P was followed for 40 m. Substituted hydrazines appear to decompose with time. For decomposing solvents the P was fol- lowed for up to 2 h, and the solu- bility value was corrected for the	Denstiy, ρ/g ml ⁻¹ = 0.89338 - 0.000943t/°C.
apparatus at a known P and T, the liquid stirred, and the pressure ob- served until there was no further change. Equilibrium was established within 10 m and the P was followed for 40 m. Substituted hydrazines appear to decompose with time. For decomposing solvents the P was fol- lowed for up to 2 h, and the solu- bility value was corrected for the gaseous decomp. prod.	Denstiy, ρ/g ml ⁻¹ = 0.89338 - 0.000943t/°C. ESTIMATED ERROR: δT/K = 0.03 δP/mmHg = 0.01
apparatus at a known P and T, the liquid stirred, and the pressure ob- served until there was no further change. Equilibrium was established within 10 m and the P was followed for 40 m. Substituted hydrazines appear to decompose with time. For decomposing solvents the P was fol- lowed for up to 2 h, and the solu- bility value was corrected for the gaseous decomp. prod. The apparatus was of all Pyrex glass	Denstiy, ρ/g ml ⁻¹ = 0.89338 - 0.000943t/°C. ESTIMATED ERROR: δT/K = 0.03
apparatus at a known P and T, the liquid stirred, and the pressure ob- served until there was no further change. Equilibrium was established within 10 m and the P was followed for 40 m. Substituted hydrazines appear to decompose with time. For decomposing solvents the P was fol- lowed for up to 2 h, and the solu- bility value was corrected for the gaseous decomp. prod.	Denstiy, $\rho/g \text{ ml}^{-1} = 0.89338 - 0.000943t/°C.$ ESTIMATED ERROR: $\delta T/K = 0.03$ $\delta P/mmHg = 0.01$ $\delta X_1/X_1 = 0.05$
apparatus at a known P and T, the liquid stirred, and the pressure ob- served until there was no further change. Equilibrium was established within 10 m and the P was followed for 40 m. Substituted hydrazines appear to decompose with time. For decomposing solvents the P was fol- lowed for up to 2 h, and the solu- bility value was corrected for the gaseous decomp. prod. The apparatus was of all Pyrex glass construction. It consisted of three	Denstiy, $\rho/g \text{ ml}^{-1} = 0.89338 - 0.000943t/°C.$ ESTIMATED ERROR: $\delta T/K = 0.03$ $\delta P/mmHg = 0.01$ $\delta X_1/X_1 = 0.05$ REFERENCES:
apparatus at a known P and T, the liquid stirred, and the pressure ob- served until there was no further change. Equilibrium was established within 10 m and the P was followed for 40 m. Substituted hydrazines appear to decompose with time. For decomposing solvents the P was fol- lowed for up to 2 h, and the solu- bility value was corrected for the gaseous decomp. prod. The apparatus was of all Pyrex glass construction. It consisted of three calibrated volumes for the measure- ment of the gas, a container for the solvent, which was stirred with a	Denstiy, $\rho/g \text{ ml}^{-1} = 0.89338 - 0.000943t/°C.$ ESTIMATED ERROR: $\delta T/K = 0.03$ $\delta P/mmHg = 0.01$ $\delta X_1/X_1 = 0.05$ REFERENCES: 1. Chang, E. T.; Gokcen, N. A.
apparatus at a known P and T, the liquid stirred, and the pressure ob- served until there was no further change. Equilibrium was established within 10 m and the P was followed for 40 m. Substituted hydrazines appear to decompose with time. For decomposing solvents the P was fol- lowed for up to 2 h, and the solu- bility value was corrected for the gaseous decomp. prod. The apparatus was of all Pyrex glass construction. It consisted of three calibrated volumes for the measure- ment of the gas, a container for the solvent, which was stirred with a glass enclosed magnet, and a mano-	Denstiy, $\rho/g \text{ ml}^{-1} = 0.89338 - 0.000943t/°C.$ ESTIMATED ERROR: $\delta T/K = 0.03$ $\delta P/mmHg = 0.01$ $\delta X_1/X_1 = 0.05$ REFERENCES:
apparatus at a known P and T, the liquid stirred, and the pressure ob- served until there was no further change. Equilibrium was established within 10 m and the P was followed for 40 m. Substituted hydrazines appear to decompose with time. For decomposing solvents the P was fol- lowed for up to 2 h, and the solu- bility value was corrected for the gaseous decomp. prod. The apparatus was of all Pyrex glass construction. It consisted of three calibrated volumes for the measure- ment of the gas, a container for the solvent, which was stirred with a glass enclosed magnet, and a mano- meter with a microslide cathetometer	Denstiy, $\rho/g \text{ ml}^{-1} = 0.89338 - 0.000943t/°C.$ ESTIMATED ERROR: $\delta T/K = 0.03$ $\delta P/\text{mmHg} = 0.01$ $\delta X_1/X_1 = 0.05$ REFERENCES: 1. Chang, E. T.; Gokcen, N. A. J. Phys. Chem. <u>1966</u> , 70, 2394.
apparatus at a known P and T, the liquid stirred, and the pressure ob- served until there was no further change. Equilibrium was established within 10 m and the P was followed for 40 m. Substituted hydrazines appear to decompose with time. For decomposing solvents the P was fol- lowed for up to 2 h, and the solu- bility value was corrected for the gaseous decomp. prod. The apparatus was of all Pyrex glass construction. It consisted of three calibrated volumes for the measure- ment of the gas, a container for the solvent, which was stirred with a glass enclosed magnet, and a mano- meter with a microslide cathetometer for measuring the pressure. The solve	Denstiy, $\rho/g \text{ ml}^{-1} = 0.89338 - 0.000943t/°C.$ ESTIMATED ERROR: $\delta T/K = 0.03$ $\delta P/\text{mmHg} = 0.01$ $\delta X_1/X_1 = 0.05$ REFERENCES: 1. Chang, E. T.; Gokcen, N. A. J. Phys. Chem. <u>1966</u> , 70, 2394. ent container had a capacity for 100 g
apparatus at a known P and T, the liquid stirred, and the pressure ob- served until there was no further change. Equilibrium was established within 10 m and the P was followed for 40 m. Substituted hydrazines appear to decompose with time. For decomposing solvents the P was fol- lowed for up to 2 h, and the solu- bility value was corrected for the gaseous decomp. prod. The apparatus was of all Pyrex glass construction. It consisted of three calibrated volumes for the measure- ment of the gas, a container for the solvent, which was stirred with a glass enclosed magnet, and a mano- meter with a microslide cathetometer for measuring the pressure. The solve of solvent with a 5 ml gas space above	Denstiy, $\rho/g \text{ ml}^{-1} = 0.89338 - 0.000943t/°C.$ ESTIMATED ERROR: $\delta T/K = 0.03$ $\delta P/\text{mmHg} = 0.01$ $\delta X_1/X_1 = 0.05$ REFERENCES: 1. Chang, E. T.; Gokcen, N. A. J. Phys. Chem. <u>1966</u> , 70, 2394. ent container had a capacity for 100 g a the liquid surface. The apparatus
apparatus at a known P and T, the liquid stirred, and the pressure ob- served until there was no further change. Equilibrium was established within 10 m and the P was followed for 40 m. Substituted hydrazines appear to decompose with time. For decomposing solvents the P was fol- lowed for up to 2 h, and the solu- bility value was corrected for the gaseous decomp. prod. The apparatus was of all Pyrex glass construction. It consisted of three calibrated volumes for the measure- ment of the gas, a container for the solvent, which was stirred with a glass enclosed magnet, and a mano- meter with a microslide cathetometer for measuring the pressure. The solve	Denstiy, $\rho/g \text{ ml}^{-1} = 0.89338 - 0.000943t/°C.$ ESTIMATED ERROR: $\delta T/K = 0.03$ $\delta P/\text{mmHg} = 0.01$ $\delta X_1/X_1 = 0.05$ REFERENCES: 1. Chang, E. T.; Gokcen, N. A. J. Phys. Chem. <u>1966</u> , 70, 2394. ent container had a capacity for 100 g a the liquid surface. The apparatus

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Chang, E. T.; Gokcen, N. A. Poston, T. M.
(2) 1,1-Dimethylhydrazine; N(CH ₃) ₂ NH ₂ ;	
[57-14-7]	J. Phys. Chem. <u>1968</u> , 72, 638 – 42.
VARTABLES:	
VARIABLES: $T/K = 253.05 - 293.16$	PREPARED BY: H. L. Clever
P/kPa = 101.38 - 209.92	P. L. Long
EXPERIMENTAL VALUES:	
	Fraction Bunsen Ostwald
P ₁ /atm 10 ⁵ K/atm ⁻¹	$c_1 \times 10^5$ Coefficient Coefficient α L
$\frac{1}{253.05}$ 1.2330 29.71	36.64
1.9703 29.66	58.44
1.0 29.7 av.	29.7 0.0919 0.0851
273.15 1.0005 32.57	32.59
1.3281 32.74 2.0717 32.86	43.48 68.08
$\frac{2.0717}{1.0}$ 32.7 av.	32.7 0.0990 0.0990
	42.70
$\frac{1.9251}{1.0} \frac{37.04}{36.9} \text{ av.}$	71.30
	36.9 0.108 0.116
¹ Henry's constant, K/atm ⁻¹ = X ₁ /P ₁ /atm nitrogen pressure were calculated by of Henry's constant.). The solubility values at 1.0 atm the compiler from the average value
Smoothed Data: Mole fraction solubili	ty
of nitrogen at one atm	- T/K MOI Fraction AG-/J moi
nitrogen pressure.	<i>x</i> ₁ × 10 ⁵
$\ln x_1 = -404.66/(T/K) - 6.5297$	258.15 30.4 17.38 268.15 32.2 17.92
$\Delta H^{\circ}/kJ \text{ mol}^{-1} = 3.36;$	268.15 32.2 17.92 278.15 34.1 18.47
	288.15 35.8 19.01
$\Delta S^{\circ}/J K^{-1} mol^{-1} = -54.3$	<u>298.15 37.6 19.55</u>
AUXILIARY	INFORMATION
METHOD / APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
The solvent was degassed under vacuum in the previously weighed apparatus.	(1) Nitrogen. No information given.
Apparatus and degassed solvent were	(2) 1,1-Dimethylhydrazine. Source
weighed. Gas was introduced into the apparatus at a known P and T, the	not given. Distilled just prior to use.
liquid stirred, and the pressure	Density, $\rho/g ml^{-1} = 0.80980 -$
observed until there was no further	
change. Equilibrium was established within 10 m and the P was followed	0.001030 t/°C
for 40 m. Substituted hydrazines	
appear to decompose with time. For	
decomposing solvents the P was fol- lowed for up to 2 h, and the solu-	
bility value was corrected for the	ESTIMATED ERROR:
gaseous decomp. prod. The apparatus	$\delta T/K = 0.03$
was of all Pyrex glass construction. It consisted of three calibrated	$\begin{array}{l} \delta P/mmHg = 0.01 \\ \delta X_1/X_1 = 0.05 \end{array}$
volumes for the measurement of the	
gas, a container for the solvent,	REFERENCES:
which was stirred with a glass en- closed magnet, and a manometer with	 Chang, E. T.; Gokcen, N. A. J. Phys. Chem. 1966, 70, 2394.
a microslide cathetometer for meas-	
uring the pressure. The solvent conta	
solvent with a 5 ml gas space above th sections were calibrated to + 0.0002 -	e liquid surface. The apparatus 3 cm ³ (1). See comment on page 232
about additional references.	
	-

ţ

ł

-

COMPONENTS: (1) Nitrogen; N ₂ ; [7727-37-9]	ORIGINAL MEASUREMENTS: Chang, E. T.; Gokcen, N. A.
(2) Hydrazine; NH ₂ NH ₂ ; [302-01-2]	J. Phys. Chem. <u>1968</u> , 72, 2556 -62.
<pre>(3) 1,1-Dimethylhydrazine; N(CH₃)₂NH₂; [57-14-7]</pre>	
VARIABLES:	PREPARED BY:
T/K = 273.15 - 303.15 P/kPa = 50.66 - 253.31	P. L. Long H. L. Clever
EXPERIMENTAL VALUES:	
-RT In K/	$Dl^{-1} = K/atm^{-1} = X_1/(P_1/atm)$ $/atm^{-1} 10^5 K/atm^{-1} at 288.15K$
fraction solubility at 10 The Gibbs energy equation was fitted t temperature range.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
The Henry's constant is based on data pressure range. The values in the Tal 288.15 K. Values at other temperature energy equation.	ole above are the Henry's constant at
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: The solvent was degassed under vacuum in the previously weighed apparatus. Apparatus and degassed solvent were weighed. Gas was introduced into the apparatus at a known P and T, the liquid stirred, and the pressure observed until there was no further change. Equilibrium was established within 10 m and the P was followed for 40 m. Substituted hydrazines appear to decompose with time. For decomposing solvents the P was fol-	SOURCE AND PURITY OF MATERIALS: The source and purity of the mate- rials were not given. The density and refractive index of the solvent components and several of their mixtures are given. The solvents were freshly distilled before use.
lowed for up to 2 h, and the solu- bility value was corrected for the gaseous decomp. product. The apparatus was of all Pyrex glass construction. It consisted of three calibrated volumes for the measure- ment of the gas, a container for the solvent, which was stirred with a glass enclosed magnet, and a mano- meter with a microslide cathetometer for measuring the pressure. The solvent container had a capacity for 100 g of solvent with a 5 ml gas space above the liquid surface.	ESTIMATED ERROR: $\delta T/K = 0.03$ $\delta P/mmHg = 0.01$ $\delta X_1/X_1 = 0.05$ REFERENCES: 1. Chang, E. T.; Gokcen, N. A. J. Phys. Chem. <u>1966</u> , 70, 2394. The apparatus sections were cali- brated to <u>+</u> 0.0002 - 3 cm ³ (1).

.

273

COMPONENTS:	<pre>ORIGINAL MEASUREMENTS:</pre>
(1) Nitrogen; N ₂ ; [7727-37-9]	Chang, E. T.; Gokcen, N. A.
(2) 1,2-Dimethylhydrazine;	Poston, T. M.
NHCH ₃ NHCH ₃ ; [540-73-8]	J. Phys. Chem. <u>1968</u> , 72, 638 - 42.
VARIABLES:	PREPARED BY:
T/K = 273.15 - 298.15	P. L. Long
P/kPa = 101.325	H. L. Clever
1,2-dimethylhydrazine. They used logi	uation for the solution of nitrogen in
relationship between the Gibbs energy	ical assumptions to find a linear

methylhydrazine, and l,l-dimethylhydrazine as a function of $1/r^{12}$, where r is the distance of approach of solvent and solute molecules. The value of r in each solvent was determined from a simple cell model. The linear relationship was extrapolated to obtain the estimated value of the Gibbs energy of solution of nitrogen in 1,2-dimethylhydrazine. The estimated equation is

 $\Delta G^{\circ}/cal mol^{-1} = -(R/cal K^{-1} mol^{-1})(T/K) ln (K/atm^{-1}) = 1300 + 8.51 (T/K)$

where K is the Henry's constant defined as $K/atm^{-1} = X_1/(P/atm)$. The Henry's constants tabulated below were calculated from the equation by the compiler. They are numerically equal to the mole fraction solubility at one atm N₂ pressure.

т/к	Henry's Constant 10 ⁵ K/atm ⁻¹
273.15	126
278.15	131
283.15	137
288.15	143
293.15	148
298.15	154

AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Estimated data, see above.	
	ESTIMATED ERROR:
	REFERENCES :

COMPONENTS :	ORIGINAL MEASUREMENTS:
	1
(1) Nitrogen; N_2 ; [7727-37-9]	Wilcock, R. J.; McHale, J. L.; Battino, R.; Wilhelm, E.
<pre>(2) Octamethylcyclotetrasiloxane; C₈H₂₄O₄Si₄; [556-67-2]</pre>	Fluid Phase Equil. <u>1978</u> , 2, 225-30.
VARIABLES:	PREPARED BY:
	FREFARED DI:
T/K = 292-313	R. Battino
EXPERIMENTAL VALUES:	1
т/к 10	³ x ₁ ^a L ^b
	L
	.624 0.2035
	.537 0.1967 .541 0.1970
	.499 0.1963
298.30 2	.588 0.2034
	.448 0.1925
313.11 2	.579 0.2090
^a Mole fraction solubility at 101.3	25 kPa partial pressure of gas.
b Ostwald coefficient.	
^C At 298.15 K smoothed values are:	$x = 2.551 \times 10^{-3}$
$\Delta H_{1}^{\circ} = 368 \text{ J mol}^{-1}, \Delta S_{1}^{\circ} = -48.5 \text{ J K}$	
ΔH ^o _l = 368 J mol ¹ , ΔS ^o _l =-48.5 J K	
`	INFORMATION
`	
AUXILIARY METHOD/APPARATUS/PROCEDURE: The solubility apparatus is based on	INFORMATION SOURCE AND PURITY OF MATERIALS:
AUXILIARY METHOD/APPARATUS/PROCEDURE:	INFORMATION SOURCE AND-PURITY OF MATERIALS: (1) Matheson, 99.999% (2) General Electric Co.; density is 0.9500 g cm for distilled solvent.
AUXILIARY METHOD/APPARATUS/PROCEDURE: The solubility apparatus is based on the design of Morrison and Billett (1 and the version used is described by Battino, et al. (3). Degassing: Up to 1000 cm ³ of solvent is placed in a flask of such size that the liquid is about 4 cm deep. The liquid is stirred rapidly and vacuum applied intermittently through a liquid nitrogen trap until the permanent gas residual pressure drops to 5 microns. Solubility determination: The de- gassed solvent is passed in a thin film down a glass spiral tube con- taining the solute gas plus the solvent vapor at a total pressure of	INFORMATION SOURCE AND-PURITY OF MATERIALS: (1) Matheson, 99.999% (2) General Electric Co.; density is 0.9500 g cm for distilled solvent.
AUXILIARY METHOD/APPARATUS/PROCEDURE: The solubility apparatus is based on the design of Morrison and Billett (1 and the version used is described by Battino, et al. (3). Degassing: Up to 1000 cm ³ of solvent is placed in a flask of such size that the liquid is about 4 cm deep. The liquid is stirred rapidly and vacuum applied intermittently through a liquid nitrogen trap until the permanent gas residual pressure drops to 5 microns. Solubility determination: The de- gassed solvent is passed in a thin film down a glass spiral tube con- taining the solute gas plus the	INFORMATION SOURCE AND PURITY OF MATERIALS: (1) Matheson, 99.999% (2) General Electric Co.; density is 0.9500 g cm ⁻³ for distilled solvent. ESTIMATED ERROR: $\delta T/K = \pm 0.02$ $\delta x_1/x_1 = \pm 0.01$ REFERENCES: 1.Morrison, T.J.; Billett, F. J.

COMPONENTS:				
		ORIGINAL MEASUREMENTS:		
(1) Nitrogen; N ₂ ; [772	7-37-9]	Vibrans, F. C. <i>Oil and Soap</i> <u>1935</u> , <i>12</i> , 14 -5. PREPARED BY: P. L. Long H. L. Clever		
(2) Animal and vegetab	le oils			
VARIABLES: T/K = 296 - 31	8			
EXPERIMENTAL VALUES:	<u> </u>	i		
Т/К	Solubility, cm	³ (273.15 K, 1 atm) H ₂ 10	00 cm^{-3}	
	Experiment		Av.	
Corn oil 296.15-299.15 318.15	6.38 6.32 6.38 6.26	6.23 6.26 6.35 6.40	6.31 6.33	
Cottonseed				
296.15-299.15 318.15			6.13 6.14	
Hydrogenat	ed cottonseed o			
318.15	6.60 6.62	6.76 6.84	6.70	
Steam rend				
318.15	6.23 6.22		6.22	
	AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDURE:	<u></u>	SOURCE AND PURITY OF MATERIAN	.S :	
Van Slyke manometric	method (1).	(1) Nitrogen. From comme ders. Source or puri		
		(2) Corn oil. Commercial bought on market. Re of its class.		
		Cottonseed oil. Comm bought on market. Re of its class.		
		Lard. From a mixture and cutting fats. St		
		ESTIMATED ERROR: $\delta T/K = 3 \text{ at room t}$ 2 at 318 K $\delta c/c = 0.04 \text{ (authors)}$		
,		REFERENCES:	- 	
		1. Van Slyke, D. D.; et J. Biol. Chem. <u>1924</u> , and 575.		

ł

Biologi	cal Fluids 277
COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Schaffer, P. S.; Haller, H. S.
(2) Animal and vegetable oils	0il and Soap <u>1943</u> , 20, 161 - 2.
VARIABLES: T/K = 313-333 P/kPa =101.325	PREPARED BY: P. L. Long H. L. Clever
EXPERIMENTAL VALUES:	1
T/K cm ³ (273.1	15 K, 1 atm) N ₂ 100 cm ⁻³
Cottonseed oil	
313.15	6.2
Butter oil	
313.15 333.15	8.9 7.9
Lard	
313.15	6.6
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: The apparatus consists of a reaction flask connected to a water jacketed gas buret, a mercury leveling bulb, and a differential manometer. The reaction vessel is attached to a shaking mechanism in an air bath. A 50 cm ³ sample of oil is placed in the falsk. Heat and vacuum are applied to remove dissolved gases. The sample is cooled to the temper- ature of the measurement. Nitrogen gas is admitted, and a zero reading is taken. The sample is shaken until the sample takes up no more gas at a pressure of 1 atm. Three determinatio were made on each sample.	<pre>SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. From commercial cylinder, used as received. (2) Cottonseed oil. Good grade commercial product. Butter oil. Obtained from butter prepared in the lab from fresh cream Lard. Good grade commercial product. ESTIMATED ERROR:</pre>

COMPONENTS: (1) Nitrogen; N ₂ ; [7727-37-9] (2) Soybean Oil	ORIGINAL MEASUREMENTS: Tomoto, N.; Kusano, K. Yukagaku <u>1967</u> , 16, 108-13. Chem. Abstr. <u>1953</u> , 66, 1061412.
-	Yukagaku <u>1967</u> , 16, 108-13.
(2) Soybean Oil	
-	
	[
VARIABLES:	PREPARED BY:
T/K = 303 - 343	R. Battino
EXPERIMENTAL VALUES:	* <u>************************************</u>
t/°C T ^a /K	$10^2 \alpha^{b}/cm$ (STP) cm ⁻³ atm ⁻¹
30 303	8.60
50 323 70 343	6.85 5.22
a Calculated by compiler.	
^b Bunsen coefficient.	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS;
Described in the paper.	(1) No details given.
	(2) Comparison value, 192 0.
	acid value: 0.17; iodine value:
	128.5; unsaponifiable: 0.33%;
	mol ⁻¹ .
·	ESTIMATED ERROR:
	$\delta \alpha / \alpha = \pm 0.02$, compiler's estimate.
	REFERENCES:
	SOURCE AND PURITY OF MATERIALS;

COMPONENTS:	EVALUATOR:	
(l) Nitrogen; N ₂ ; [7727-37-9] (2) Olive Oil	Rubin Battino Department of Chemistry Wright State University Dayton, OH 45435	
	U.S.A.	

CRITICAL EVALUATION:

Four groups (1-4) have studied the nitrogen/olive oil system and with some disparity between their results. We have rejected the single value determined by Ikels (3) as being too low. The remaining data were smoothed in two ways by least squares analysis to yield:

 $l_n x_1 = -5.6757 - 0.58383/(T/100K)$ (1) $L = 1.9886 \times 10^{-3} + 2.3052 \times 10^{-4} (T/K)$ (2)

where x_1 is the mole fraction solubility at 101 kPa partial pressure of gas and L is the Ostwald coefficient. The fit for both equations was to 3.1% in the solubility (one standard deviation divided by the solubility at the mid-point between 285 and 328 K). Smoothed values for both solubility units at 5K intervals are presented in the table. These are tentative values.

10 ² L	10 ³ × ₁	T/K	10 ² L	10 ³ ×1	T/K
 7.30	2.84	308.15	6.73	2.79	283.15
7.42	2.85	313.15	6.84	2.80	288.15
7.53	2.85	318.15	6.96	2.81	293.15
7.65	2.86	323.15	7.07	2.82	298.15
7.76	2.87	328.15	7.19	2.83	303.15

References

- Battino, R.; Evans, F. D.; Danforth, W. F. J. Am. Oil Chem, Soc. <u>1968</u>, 45, 830-3.
- 2. Power, G. G.; Stegall, H. J. Appl. Physiology 1970, 29, 145-9.
- 3. Ikels, K. G. DDC Report No. SAM-TDR-64-1 1964.
- 4. Davidson, D.; Eggleton, P.; Foggie, P. Quart. J. Exptl. Physiol. <u>1952</u>, 37, 91-105.

COMPONENTS:	ORIGINAL MEASUREMENTS:
	Davidson, D.; Eggleton, P.;
(1) Nitrogen; N ₂ ; [7727-37-9]	Foggie, P.
(2) Olive Oil, Tetralin, Oleic acid, Ethyl palmitate (liquid), Lard	Quart. J. Exptl. Physiol. <u>1952</u> , 37, 91–105.
VARIABLES:	PREPARED BY:
T/K = 298 - 323	
	R. Battino
EXPERIMENTAL VALUES:	
t/°C 1	r ^a /K L ^b
0live 25.2 29	e Oil 8.4 0.0686
Tetra 25.2 29	lin 8.4 0.0638
	: Acid
	0.085
Ethyl 25.2 29	Palmitate (liguid) 98.4 0.109
Lard 50 32	(liquid) 23 0.07
^C Tetralin: 1,2,3,4-Tetrahydronaph ^d Oleic Acid: (%)-9-Octadecenoic a ^e Ethyl Palmitate: Hexadecanoic ac [628-97-7]	cid; C ₁₈ H ₃₄ O ₂ ; [112-80-1]
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: Combined with diffusion measurements. Neasurement based knowing gas and liquid phase volumes and the initial (before any gas dissolves) pressure and the final equilibrium pressure.	SOURCE AND PURITY OF MATERIALS: No details given.
	ESTIMATED ERROR: $\delta L/L = \pm 0.08$, compiler's estimate. $\delta T/K = \pm 0.01$, but reported to 0.1°C or 1°C. REFERENCES:

COMPONENTS:	ORIGINAL MEASUREMENTS:				
(1) Nitrogen; N ₂ ; [7727-37-9]	Ikels, K. G				
(2) Olive oil, fats	DDC, Report		R-64-1		
(3) Water; H ₂ O; [7732-18-5]	1964.				
(3) <i>mater</i> , <u>12</u> 0, [<i>1</i> /32-10-5]					
VARIABLES:	PREPARED BY:		····		
T/K = 311		R. Battino			
1/K - 511	R. Batt.	1110			
EXPERIMENTAL VALUES:	L,,,,,,	· · · · · · · · · · · · · · · · · · ·			
Substance	t/°C	т ^а /к	10 ² a ^a		
Water Olive Oil	37.6 37.4	310.3 310.6	1.206 6.092		
Human fat (pooled)	37.4	310.6	6.170		
Human fat (individual)	37.4	310.6	6.109		
Dog fat	37.4	310.6	6.092		
^a Calculated by compiler.			······································		
^b Bunsen coefficient in units of	$= cm^3 (C^{TD}) cm^{-3} atr$	-1 Thore	waluog aro		
the means of multiple measureme	ents.	11656	varues are		
			·		
			·		
	NRY INFORMATION		·		
	SOURCE AND PURITY		5;		
ETHOD/APPARATUS/PROCEDURE: Combination of van Slyke and	SOURCE AND PURITY	s given.			
ETHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY (1) No detail (2) Human adi abdominal of post-m pooled sa	s given. pose tissue region wit ortem. Den mple was 0. f olive oil	from the thin 3-4 h sity of 906 g cm ⁻³ .		
ETHOD/APPARATUS/PROCEDURE: Combination of van Slyke and	SOURCE AND PURITY (1) No detail (2) Human adi abdominal of post-m pooled sa Density o	s given. pose tissue region wit ortem. Den mole was 0. f olive oil lOK.	from the thin 3-4 h sity of 906 g cm ⁻³ .		
ETHOD/APPARATUS/PROCEDURE: Combination of van Slyke and	SOURCE AND PURITY (1) No detail (2) Human adi abdominal of post-m pooled sa Density o cm ⁻³ at 3	s given. pose tissue region wit ortem. Den mple was 0. f olive oil l0K. d.	from the thin 3-4 h sity of 906 g cm ⁻³ .		
ETHOD/APPARATUS/PROCEDURE: Combination of van Slyke and	SOURCE AND PURITY (1) No detail (2) Human adi abdominal of post-m pooled sa Density o cm ⁻³ at 3 (3) Distilled	s given. pose tissue region wit ortem. Den mole was 0. f olive oil lOK. d.	e from the chin 3-4 h sity of 906 g cm ⁻³ . was 0.907 o		
ETHOD/APPARATUS/PROCEDURE: Combination of van Slyke and	SOURCE AND PURITY (1) No detail (2) Human adi abdominal of post-m pooled sa Density o cm ⁻³ at 3 (3) Distilled ESTIMATED ERROR:	s given. pose tissue region wit ortem. Den mole was 0. f olive oil lOK. d.	e from the chin 3-4 h sity of 906 g cm ⁻³ . was 0.907 o		
ETHOD/APPARATUS/PROCEDURE: Combination of van Slyke and	SOURCE AND PURITY (1) No detail (2) Human adi abdominal of post-m pooled sa Density o cm^{-3} at 3 (3) Distilled ESTIMATED ERROR: $\delta \alpha / \alpha = \pm 0.01$,	s given. pose tissue region wit ortem. Den mole was 0. f olive oil lOK. d.	e from the chin 3-4 h sity of 906 g cm ⁻³ . was 0.907 o		
ETHOD/APPARATUS/PROCEDURE: Combination of van Slyke and	SOURCE AND PURITY (1) No detail (2) Human adi abdominal of post-m pooled sa Density o cm^{-3} at 3 (3) Distilled ESTIMATED ERROR: $\delta \alpha / \alpha = \pm 0.01$,	s given. pose tissue region wit ortem. Den mole was 0. f olive oil lOK. d.	e from the chin 3-4 h sity of 906 g cm ⁻³ . was 0.907 o		
ETHOD/APPARATUS/PROCEDURE: Combination of van Slyke and	SOURCE AND PURITY (1) No detail (2) Human adi abdominal of post-m pooled sa Density o cm^{-3} at 3 (3) Distilled ESTIMATED ERROR: $\delta \alpha / \alpha = \pm 0.01$,	s given. pose tissue region wit ortem. Den mole was 0. f olive oil lOK. d.	e from the chin 3-4 h sity of 906 g cm ⁻³ . was 0.907		

202 Nitrogen Solubili	ties up to 200 kPa
COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Battino, R.; Evans, F. D.; Danforth, W. F.
(2) Olive Oil	J. Am. Oil Chem. Soc. <u>1968</u> , 45, 830-3.
VARIABLES: T/K = 297.93 - 327.71 P/kPa = 101.325	PREPARED BY: H. L. Clever
EXPERIMENTAL VALUES:	
T/K Mol Fraction $X_1 \times 10^3$ Co	Defficient Coefficient αL
297.93 2.94 298.04 3.00 307.95 2.88 318.20 2.84 327.71 2.82	$\begin{array}{ccccccc} 0.0674 & 0.0736 \\ 0.0688 & 0.07507 \\ 0.06577 & 0.07415 \\ 0.06361 & 0.07632 \end{array}$
Smoothed Data: $\Delta G^{\circ}/J \text{ mol}^{-1} = -RT \ln S$	$x_1 = -1460.7 + 53.314 \text{ T}$
Std. Dev. $\Delta G^{\circ} = 23$, Co	-
	$\Delta s^{\circ}/J K^{-1} mol^{-1} = -53.314$
T/K Mol Frac X ₁ x 1	ction $\Delta G / J \text{ mol}^{-1}$
298.15 2.90 308.15 2.90	
318.15 2.8 328.15 2.8	•
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: The apparatus is based on the design by Morrison and Billett (1) and the	<pre>SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Matheson Co., Inc. min. vol. % purity 99.999.</pre>
version used is a modification of the apparatus of Clever, Battino, Saylor and Gross (2).	(2) Olive oil. A. U.S.P., Fisher Scientific Company., 0.58% free
Degassing. The solvent is sprayed into an evacuated chamber of an all glass apparatus; it is stirred and heated until the pressure drops to the vapor pressure of the liquid.	fatty acid. B. Nutritional Biochemicals Corp., 0.30% free fatty acid. The density was measured and fitted to the equation ρ/g cm ⁻³ = 0.9152 - 0.000468t/C. The
Solubility Determination. The de-	average mol wt is 884 ± 45 (3).
gassed liquid passes in a thin film down a glass spiral tube at a total pressure of one atm of solute gas plus solvent vapor. The gas ab- sorbed is measured in the attached buret system, and the solvent is	ESTIMATED ERROR: $\delta T/K = 0.03$ $\delta P/mmHg = 0.5$ $\delta X_1/X_1 = 0.005$
collected in a tared flask and weighed.	 REFERENCES: 1. Morrison, T. J.; Billett, F. J. Chem. Soc. <u>1948</u>, 2033. 2. Clever, H. L.; Battino, R.; Saylor, J. H.; Gross, P. M. J. Phys. Chem. <u>1957</u>, 61, 1078. 3. Johnson, L. F.; Shoolery, J. N. Anal. Chem. <u>1962</u>, 34, 1136.

Biologic	201			
COMPONENTS:	ORIGINAL MEASUREMENTS:			
(1) Nitrogen; N ₂ ; [7727-37-9]	Power, G.G.; Stegall, H.			
(2) Olive oil.	J. Appl. Physiology <u>1970</u> , 29, 145-9.			
VARIABLES:	PREPARED BY:			
T/K = 285-310	C.L. Young.			
EXPERIMENTAL VALUES:				
T/K Bunsen coefficient, α	S.D. No. of measurements			
310.150.0643298.150.0633285.150.0622	0.0005 5 0.0005 5 0.0002 5			
* Standard deviation.				
AUXILIARY	INFORMATION			
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:			
Liquid saturated with gas in a stirred cell. 5.0 cm ³ samples of liquid removed in a calibrated syringe and amount of gas extracted by two extraction in a van Slyke apparatus determined. Details in Source and ref. (1).	 (1) Matheson Co. sample, purity better than 99.7 mole per cent. (2) No details given. 			
	ESTIMATED ERROR: $\delta T/K = \pm 0.1$			
	REFERENCES:			
	1. Power, G.G.			
	J. Appl. Physiology. <u>1968</u> , 24, 468.			

COMPONENTS:			ORIGIN	AL MEASUREMENTS	
1	<pre>(1) Nitrogen; N₂; [7727-37-9] (2) Human blood, plasma</pre>		Farhi, L.E.; Edwards, A.W.T.; Homma, T.		
	a, prabila		J. A	ppl. Physiol	. 1963, 18, 97-106.
			2. /	ippe. Ingoloc	· <u>1903</u> , 70, 97 100.
VARIABLES:			PREPAR	ED BY:	
T/K = 310			R.	Battino	
EXPERIMENTAL VALUE	ZS:				
Subject	t/°C	т ^а /к		10 ² a ^b	Hematocrit
Subject				ιο α	Hematocrit
TV	37.25	Human blo 310.4		1.285	13 7
	37.35	310.4		1.285	43.7
TV	37.45	310.6		1.299	43.2
LF	37.35	310.5		1.260	43.7
	37.35 37.20	310.5		1.260	
LF AE	37.35	310.3 310.5		1.261 1.248	46.5 42.7
AE	37.25	310.4		1.250	41.8
AE	37.20	310.3		1.238	38.5
AE	37.25	310.4		1.242	
AE	37.30	310.4		1.272	
AE DH	37.40 37.40	310.5 310.5		1.248 1.276	47.5
WR	37.10	310.2		1.291	46.5
SF	37.10	310.2	25	1.282	46.5
ML	37.35	310.5		1.292	44.2
HR	37.20 37.40	310.3 310.5		1.268 1.270	48.9
RM	57.40			1.270	43.2
m11	27 25	Human Pla		1 215	
TV AE	37.25 37.25	310.4 310.4		1.215 1.195	
				continue	ed on following page
		AUXILIARY	INFORM	ATION	
METHOD/APPARATUS/I	PROCEDURE :		SOURCE	AND PURITY OF	MATERIALS:
Used a combina	ation of the v	an Slyke	(1)	From air.	
method and gas			(2) From nine normal healthy men		
				aged 22-48	years.
			1		
			ESTIM	ATED ERROR:	· · · · · · · · · · · · · · · · · · ·
					. .
				$\alpha = \pm 0.02, coK = \pm 0.05$	ompiler's estimate
			REFERENCES :		
			KLFLR	CHCE9:	
L · - · · - · · -			l		

COMPONENTS :	EVALUATOR:
(1) Nitrogen; N ₂ ; [7727-37-9]	Farhi, L.E.; Edwards, A.W.T.; Homma, T.
(2) Human blood, plasma	J. Appl. Physiol. <u>1963</u> , 18, 97-106.
	J. Appe. Physice. 1903, 18, 97-106.
EXPERIMENTAL VALUES:	
contin	nued
^a Calculated by compiler.	
^b Bunsen coefficient in units of c	m^3 (STP) cm^{-3} atm^{-1} .
C The average value of the Bunsen (310.45K) was 0.01277 at a hemate	coefficient at 37.30°C ocrit of 45.2.
· ·	
	1

286 Nitrogen	Solubilities up to 20	U KPa
COMPONENTS:	ORIGINAL M	EASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Christo	forides, C.; Hedley-Whyte, J.
(2) Human blood	Fed. Pr	<i>o</i> c. <u>1970</u> , 29, A330.
(3) Water; H ₂ O; [7732-18-5]		
VARIABLES:	PREPARED I	3Y:
T/K = 298-310	R. Batt	ino
EXPERIMENTAL VALUES:	L	
2		
α"/	/cm ³ (STP) cm ⁻³	
	25°C (298K)	37°C (310K)
Human blood	0.0145	0.0139
Water	0.0147	0.0128
^a Bunsen coefficient.		
· · · · · · · · · · · · · · · · · · ·		
AU3	XILIARY INFORMATIO	N
METHOD/APPARATUS/PROCEDURE:		D PURITY OF MATERIALS:
lleasured by "standard Van Slyke		details given.
manometry."		. Hb 15.4g/100ml
		details given.
	(3) NO	decails given.
	ESTIMATED	ERROR:
	5-1	to ol compilents estimate
	$\delta \alpha / \alpha =$	±0.01, compiler's estimate.
	$\delta \alpha / \alpha =$ REFERENCE	

COMPONENTS:	ORIGINAL MEASUREMENTS:			
(1) Nitrogen; N ₂ ; [7727-37-9]	Conant, J. B.; Scott, N. D.			
(2) Hemoglobin	J. Biol. Chem. 1926, 68, 107-21			
	5. 5.02. Chem. <u>1520</u> , 08, 107-21			
VARIABLES:	PREPARED BY:			
т/к ≅ 296	R. Battino			
1/R - 290	R. Battino			
EXPERIMENTAL VALUES: Material Used	$C_{Hb}/cm^3 N_2$			
	$C_{Hb}/$ $cm^3 N_2$ (g/100 cm ³) 10 ³ a absorbed			
	/g Hb			
Solution 4. Horse Hb. Undiluted.	22.5 4.7 0.021			
Solution 4. Diluted to 2/3 concentr Solution 4. Diluted to 1/3 concentr				
Solution 12. Undiluted	15.9 4.1 0.026			
Solution 12. Diluted 1/2.	7.95 2.1 0.026			
Solution 5. Laked with toluene. Solution 6. After shaking with tolu	ene. 8.0 2.3 0.029			
Solution 6. Same as above, laked wi				
Solution 7. Cow Hb in water.	13.6 2.7 0.020			
Solution 8. Same as above, shaken w				
Solution 7. M/10 with NaCl. Solution 7. M/10 with phosphate buf	12.8 3.1 0.024 fer.pH≈6.12. 12.8 2.3 0.018			
Solution 7. With phosphate buffer.				
Solution 7. M/10 with borate buffer	. pH=8.41. 12.8 3.6 0.028			
Solution 7. With borate buffer. pH=				
Solution 9. Purified horse Hb, isoe Solution 10. Same as above, phosphat	e huffer			
pH=6.12.	0.0 5.0 0.047			
Solution 11. Same as above, borate b pH=8.41	uffer. 8.5 3.7 0.044			
pn-0.41				
	continued on following page			
AUXILIARY	INFORMATION			
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:			
	(1) From air.			
Van Slyke method used.				
van siyke method used.	(2) Horse hemoglobin except for solutions 7 and 8 which were			
	cow hemoglobin. Details in			
	paper.			
	ESTIMATED ERROR:			
	$\delta \alpha / \alpha = \pm 0.08$, compiler's estimate.			
	REFERENCES:			

COMPONENTS:			ORIGINAL MEASU	JREMENTS:	
(1) Nitrogen;	N ₂ ; [7727	-37-9]	Conant, J. B.	; Scott, 1	N. D.
(2) Hemoglobi	I Bial Cham 1926 68 107-21				
		contir	nued		
^b cm ³ N ₂ a ^c At "room ^P N2 ^{/mmHg}	temperatu:	re." About 23° Solubility ^b		P ^a /kPa	Solubility ^b
	ution E				
Solution 5 Solution 9 585 78.0 0.0279 585 78.0 0.0359					
	8.88		585	78.0	
	8.88		62.6	8.35	0.0271
9.6 9.6	1.28 1.28	0.0088 0.0113	62.6	8.35 1.64	0.0271 0.0237
2.0	1.20	0.0113		1.64	

^a Calculated by compiler. ^b cm³ N₂ at STP dissolved per gram of hemoglobin.

COMPONENTS:	ORIGINAL MEASUREMENTS:			
(1) Nitrogen; N ₂ ; [7727-37-9]	Findlay, A.; Creighton, H.J.M.			
(2) Ox blood and serum	Biochem. J. <u>1910</u> , 5,294-305.			
VARIABLES:	PREPARED BY:			
T/K = 298 P/kPa = 101-209	C.L. Young			
EXPERIMENTAL VALUES: T/K Density of soln. p_{N_2}/mm /g cm ⁻³	Hg p _{O2} /MPa Solubility, S ⁺			
Deaerated	Ox Blood			
298.15 1.066 757	0.101 0.0041			
290.15 1.000 757				
1089				
1241				
1367 1564				
Deaerated				
298.15 1.028 734				
891 1056				
1250				
1368 1529				
AUXILIARY	INFORMATION			
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:			
Gas buret and absorption pipet similar to that of Geffcken (1) except that the manometer tube was longer to give the higher pressures.	 (1)Obtained by heating a mixture of sodium nitrite and ammonium chlor-ide. (2)Obtained from slaughter house. Deaerated blood and serum kept under a reduced pressure of ~2 kPa for one hour. 			
	ESTIMATED ERROR: $\delta T/K = \pm 0.1; \ \delta S/S = \pm 2\%$ (estimated by compiler). REFERENCES: 1. Geffcken, G. Z. Phys. Chem. <u>1904</u> , 49, 257.			

290		Nitrogen Sol	upilit	ies up to 200 kPa			
COMPO	PONENTS: ORIGINAL MEASUREMENTS:						
(1)	(1) Nitrogen; ¹¹ ₂ ; [7727-37-9]			Van Slyke, D Margaria,	. D.; Dil	lon, R. T.;	
(2)	Ox erythrocytes hemoglobin; see	and horse below		J. Biol. Chem. <u>1934</u> , 105, 571-96.			
VARIA	BLES:			PREPARED BY:	<u> </u>		
	T/K = 298 Concentration			R. Batt	ino		
EXPER	IMENTAL VALUES:			à			
	pension or ution ^a	Mixture	N2 mHg		0 ² α ^e	l0 ² α ^f _{Hb}	
2. 5. 6.	Laked cells Suspension Suspension Hb crystals Hb crystals		581 575 576 576 578	76.7 1 76.8 1 76.8 1	.527 .523 .527 .507 .515	1.96 1.89 1.93 1.64 1.67	
4. 4. 5. 1.	Suspension Laked cells Suspension Suspension Suspension ^g Suspension		34	.0 13.2 1 .3 8.04 1 .4 5.25 1 .6 4.61 1	54 54 56 71 57	2.1 1.9 2.1 2.3 3.3 2.3	
3. 3.	Laked cells Suspension Suspension Suspension9	Air + pure O ₂	38	.2 5.23 l .0 5.07 l	48 57 58 21	1.7 2.3 2.4	
5. 5. 2.	Suspension Suspension Suspension Suspension Suspension	Air + pure CO ₂	63 60	.5 8.47 1 .7 8.09 1 .2 4.16 1	49 51 33 46 52	1.6 1.8 0.6 1.7 2.1	
				continued	l on follc	wing page	
		AUXILI	ARY	INFORMATION			
METHO	DD/APPARATUS/PROCEDURE	:		SOURCE AND PURIT	Y OF MATERI	ALS;	
The solutions were saturated with gas using the rotating double tonometer method of Austin, et al. (1). 2-2.5 h were allowed for saturation. The amount of dissolved				 (1) From air or from diluted mixtures with air (see foot- notes). (2) From ox blood or in one case 			
nit	rogen was determi hod of Van Slyke	ned using the	-		emoglobin.		
					l L, compile	er's estimate	
				REFERENCES: (1) Austin, J. Hastings,	Al pressu H.; Culle A.B.; McI	ean, F.C.;	
		-		Peters, J. Biol. Chen (2) Van Slyke, Biol. Chen	1. <u>1922</u> , 5 D.D.; Ne	il, J.M. J.	
L	······································						

COMPONENTS:				ORIGINAL M	EASUREMENTS	5:	
(1) Nitrogen	2			Van Slyke Margari	e, D. D.; Di la, R.	llon, R. T.;	
(2) Ox eryth hemoglob	rocytes ar in; see be			-		105, 571-96.	
EXPERIMENTAL	VALUES:	<u> </u>	l				
	×		con	tinued	•		
^a See follow keyed to t	ing table he indexin	for compo ng number.	sition	of these s	suspensions	or solutions	
Products C	ompany), p	oure oxyge	en (made	from heat	gen (99.6% ing a mixtu ide (99.8 +	from Linde Air re of KCl0 ₃ %) made	
in a Kipp							
C Partial pr							
d Calculated			- 2	-1			
partial pr	essure is	decreased				r as nitrogen	
$\int_{-\infty}^{f} cm^{3} (STP) n$							ĺ
^g Authors st	ate that t	hese meas	urement	s are of p	oorer preci	sion.	
						-	
	Compo		Solutio	ons and Ce	ll Suspensi	ons	
Cell	Blood	Hb ^a Concen-	0 ₂	Salt	Concen- ^C tration	H ₂ O Content ^d	·
Suspension Number	Sample Number	tration			NaHCO ₃	ⁿ 2 ⁰ concent	
<u>1</u>	1	15.5	20.7	177		0.870	
2	ī	15.1	20.2	97	79	0.881	
3 4	2 3	15.3 15.5	20.5 20.5	176 177		0.874 0.870	
5	3	15.5	20.5	109	69	0.874	
6e	4	14.5		56	47	0.885	
$100 \text{ cm}^3 = 0$	O2 capacit	y x 0.746	•	a, Hb conc	entration in	n gram per	
^b Oxygen capa				-			
C Concentrati							
d Concentrati							
e Solution of of ox eryth		ized hors	e hemog]	obin. Al	l other sus	pensions are	
1							
•							

Nitrogen Solubilities up to 200 kPa

COMPONENTS:	ORIGINAL MEASUREMENTS:		
 (1) Nitrogen; N₂; [7727-37-9] (2) Blood from eel, cod, trout, and man 	Steen, J. B. Acta Physiol. Scand. <u>1963</u> , 58, 124-37.		
VARIABLES: T/K = 280-293 P/kPa = 101.325	PREPARED BY: A. L. Cramer H. L. Clever		

EXPERIMENTAL VALUES:

т/к	Blood Source	pH Range	Number of Analyses	Volume per Range	cent Nitrogen ¹ Average
279.65	Eel	6.20 - 7.60 7.60 - 8.50	19 19	1.57 - 1.73 1.71 - 1.85	1.65 1.81
293.15		6.60 - 8.50	10	1.46 - 1.55	1.49
279.65	Cod	6.40 - 8.50	10	1.62 - 1.68	1.66
279.65	Trout	6.40 - 8.50	12	1.64 - 1.75	1.74
279.65	Man	6.40 - 8.60	10	2.00 - 2.11	2.04

¹ At atm nitrogen

292

Biologic	al Fluids	293
COMPONENTS:	ORIGINAL MEASUREMENTS:	
(1) Nitrogen; N ₂ ; [7727-37-9]	Ohta, Y.; Ar, A.; Farhi, L.E.	
(2) Rabbit brain and blood and saline solution.	J. Appl. Physiology, <u>1979</u> , 46, 1169-70.	
VARIABLES:	PREPARED BY:	
T/K = 310	C.L. Young	
EXPERIMENTAL VALUES:		
	oefficient, No. of animals	
	α	
	± 0.0001 5	
Blo.		
	± 0.0001 5	
Bra		
310.15 0.0140	± 0.0003 5	
AUXILIARY	INFORMATION	
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:	
Saline, rabbit blood and brain were saturated by passing humidified gas through three vessels in series. Brain was prepared by manually squeezing out blood from the brain of a freshly killed rabbit. Volume of brain determined by saline displacement. The tissue was homogenized and diluted with an equal volume of 5% low foam detergent	See under method.	
Blood sample was heparinized. Samples of each of the three solut- ions were analysed by GC using helium carrier gas, a molecular sieve column and a thermal conduct- ivity detector.	ESTIMATED ERROR: $\delta T/K = \pm 0.1$ REFERENCES:	

COMPONENTS:	ORIGINAL MEASUREMENTS:	
(1) Nitrogen; N ₂ ; [7727-37-9]	Stoddard, J. L.	
(2) Protein Solutions, Plasma	J. Biol. Chem. <u>1926-2</u> 7, 71, 629-92.	
(3) Water; H ₂ O; [7732-18-5]		
VARIABLES:	PREPARED BY:	
VARIABLES.	FREPARED BI:	
T/K = 293	R. Battino	
EXPERIMENTAL VALUES:		
Substance (g/100 cm		
Hemoglobin 9.284	1.613 1.516	
Plasma protein 5.972 5.772	1.516	
6.56 5.115	1.514 1.54	
6.308	1.526	
5.795 5.70	1.502 1.441	
6.401	1.522	
5.580 Water	1.525 1.561	
 ^b All measurements at 20°C (298. ^c The average for all measurement value of 0.01516. 	2K). ts in plasma protein solutions was an α	
^C The average for all measuremen		
The average for all measurement value of 0.01516.		
The average for all measurement value of 0.01516.	ts in plasma protein solutions was an α	
All measurements at 20 C (258. C The average for all measuremen value of 0.01516. AUXIL METHOD/APPARATUS/PROCEDURE: A manometric/volumetric apparatu	ts in plasma protein solutions was an α JARY INFORMATION SOURCE AND PURITY OF MATERIALS; s (1) No details given.	
All measurements at 20 C (258. ^C The average for all measuremen value of 0.01516. AUXIL METHOD/APPARATUS/PROCEDURE: A manometric/volumetric apparatu was used which the paper describe	ts in plasma protein solutions was an α JARY INFORMATION SOURCE AND PURITY OF MATERIALS: s (1) No details given.	
All measurements at 20 C (258. C The average for all measuremen value of 0.01516. AUXIL METHOD/APPARATUS/PROCEDURE: A manometric/volumetric apparatu	ts in plasma protein solutions was an α .IARY INFORMATION SOURCE AND PURITY OF MATERIALS; (1) No details given.	
All measurements at 20 C (258. ^C The average for all measuremen value of 0.01516. AUXIL METHOD/APPARATUS/PROCEDURE: A manometric/volumetric apparatu was used which the paper describe	ts in plasma protein solutions was an α .IARY INFORMATION SOURCE AND PURITY OF MATERIALS; s (1) No details given. (2) From blood from a healthy horse.	
All measurements at 20 C (258. ^C The average for all measuremen value of 0.01516. AUXIL METHOD/APPARATUS/PROCEDURE: A manometric/volumetric apparatu was used which the paper describe	ts in plasma protein solutions was an α .IARY INFORMATION SOURCE AND PURITY OF MATERIALS; s (1) No details given. (2) From blood from a healthy horse.	
All measurements at 20 C (258. ^C The average for all measuremen value of 0.01516. AUXIL METHOD/APPARATUS/PROCEDURE: A manometric/volumetric apparatu was used which the paper describe	ts in plasma protein solutions was an α .IARY INFORMATION SOURCE AND PURITY OF MATERIALS: (1) No details given. (2) From blood from a healthy horse.	
All measurements at 20 C (258. ^C The average for all measuremen value of 0.01516. AUXIL METHOD/APPARATUS/PROCEDURE: A manometric/volumetric apparatu was used which the paper describe	ts in plasma protein solutions was an α .IARY INFORMATION SOURCE AND PURITY OF MATERIALS: (1) No details given. (2) From blood from a healthy horse.	
All measurements at 20 C (258. ^C The average for all measuremen value of 0.01516. AUXIL METHOD/APPARATUS/PROCEDURE: A manometric/volumetric apparatu was used which the paper describe	<pre>ts in plasma protein solutions was an α .IARY INFORMATION SOURCE AND PURITY OF MATERIALS: (1) No details given. (2) From blood from a healthy horse. (3) Distilled.</pre>	
All measurements at 20 C (258. ^C The average for all measuremen value of 0.01516. AUXIL METHOD/APPARATUS/PROCEDURE: A manometric/volumetric apparatu was used which the paper describe	<pre>ts in plasma protein solutions was an α .IARY INFORMATION SOURCE AND PURITY OF MATERIALS; (1) No details given. (2) From blood from a healthy horse. (3) Distilled. ESTIMATED ERROR:</pre>	
All measurements at 20 C (258. ^C The average for all measuremen value of 0.01516. AUXIL METHOD/APPARATUS/PROCEDURE: A manometric/volumetric apparatu was used which the paper describe	<pre>ts in plasma protein solutions was an α .IARY INFORMATION SOURCE AND PURITY OF MATERIALS: (1) No details given. (2) From blood from a healthy horse. (3) Distilled.</pre>	
All measurements at 20 C (258. ^C The average for all measuremen value of 0.01516. AUXIL METHOD/APPARATUS/PROCEDURE: A manometric/volumetric apparatu was used which the paper describe	ts in plasma protein solutions was an α .IARY INFORMATION SOURCE AND PURITY OF MATERIALS: (1) No details given. (2) From blood from a healthy horse. (3) Distilled. ESTIMATED ERROR: $\delta \alpha / \alpha = \pm 0.01$, compiler's estimate.	
All measurements at 20°C (258. ^C The average for all measurement value of 0.01516. AUXIL METHOD/APPARATUS/PROCEDURE: A manometric/volumetric apparatu was used which the paper describe	ts in plasma protein solutions was an α JARY INFORMATION SOURCE AND PURITY OF MATERIALS; (1) No details given. (2) From blood from a healthy horse. (3) Distilled. ESTIMATED ERROR:	
All measurements at 20°C (258. ^C The average for all measurement value of 0.01516. AUXIL METHOD/APPARATUS/PROCEDURE: A manometric/volumetric apparatu was used which the paper describe	ts in plasma protein solutions was an α .IARY INFORMATION SOURCE AND PURITY OF MATERIALS: (1) No details given. (2) From blood from a healthy horse. (3) Distilled. ESTIMATED ERROR: $\delta \alpha / \alpha = \pm 0.01$, compiler's estimate.	
All measurements at 20°C (258. ^C The average for all measurement value of 0.01516. AUXIL METHOD/APPARATUS/PROCEDURE: A manometric/volumetric apparatu was used which the paper describe	ts in plasma protein solutions was an α .IARY INFORMATION SOURCE AND PURITY OF MATERIALS: (1) No details given. (2) From blood from a healthy horse. (3) Distilled. ESTIMATED ERROR: $\delta \alpha / \alpha = \pm 0.01$, compiler's estimate.	
All measurements at 20°C (258. ^C The average for all measurement value of 0.01516. AUXIL METHOD/APPARATUS/PROCEDURE: A manometric/volumetric apparatu was used which the paper describe	ts in plasma protein solutions was an α .IARY INFORMATION SOURCE AND PURITY OF MATERIALS: (1) No details given. (2) From blood from a healthy horse. (3) Distilled. ESTIMATED ERROR: $\delta \alpha / \alpha = \pm 0.01$, compiler's estimate.	

			23
COMPC	DNENTS:	ORIGINAL MEASUREMENTS:	
	Nitrogen; N ₂ ; [7727-37-9]	Van Slyke, D. D.; Dillon, R. T.; Margaria, R.	
(2)	Plasma, cell-plasma suspensions, see below.	J. Biol. Chem. <u>1934</u> , 105, 571-96.	
VARIA	ABLES:	PREPARED BY:	<u> </u>
	T/K = 311 Concentration	R. Battino	
EXPEF	RIMENTAL VALUES:		
		ts at 38°C (311.95 K)	
	^N 2	$\frac{1}{2} \frac{P_{N_{2}}^{b}}{cn^{-3}} \frac{10^{2} \alpha^{c}}{cn^{-3}} (\text{STP})$	_
	Plasna ^d A 553.0		
	в 554. С 559.2		
	Plasma-Cell C 558.2	2 74.42 1.216	
	Mixture ^e A 534.0		
	C 556. A 550.		
	в 552.6		
	C 556.1		
	A 552.0 C 556.0		
	Cells (extrapolated)	1.46	
	a Partial pressure of nitrogen.		
	^b Calculated by compiler.		
	^C Bunsen coefficient.		
	d Ox plasma.		
	e Ox erythrocytes.		
		INFORMATION	
	DD/APPARATUS/PROCEDURE:	SOURCE AND-PURITY OF MATERIALS:	
The	e solutions were saturated with s using the rotating double	(1) From air.	
ton	ometer method of Austin, et al.	(2) From ox blood - see paper for	
(1)	. 2-2.5 h were allowed for	details on preparation.	
	uration. The amount of		
dis	solved nitrogen was determined ng the method of Van Slyke and		
	1 (2).		
		ESTIMATED ERROR:	
		$\delta T/K = \pm 0.04$	
	,	$\delta \alpha / \alpha = \pm 0.01$, compiler's estimate	
		REFERENCES:	
		1. Austin, J.H.; Cullen, G.E.;	
		Hastings, A.B.; McLean, F.C.;	
		Peters, J.D.; Van Slyke, D.D. J. <i>Biol. Chem. <u>1922</u>, 54, 134.</i>	
		2. Van Slyke, D.D.; Neil, J.M. J.	
		Biol. Chem. <u>1924</u> , 61, 523.	

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Ewing, G. J.; Ionescu, L. V.
(2) Leguminous hemoglobin	J. Phys. Chem. <u>1972</u> , 76, 591-6.
	5. Thigs. onem. <u>1572</u> , 70, 551 5.
VARIABLES:	PREPARED BY:
T/K = 278 - 298	FREFARED BI:
P/MPa = 0-0.5	R. Battino.
EXPERIMENTAL VALUES:	
t/°C T ^a /1	K H ^b /(atm/mol)
5 278	1070 ± 70
15 288	1410 ± 30
25 298	1600 ± 80
^a Calculated by compiler.	
^b Henry's law constants obtained on itrogen range.	over a 0-5 atm partial pressure of
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Solubilities determined as described	(1) No details given.
in reference 2. Henry's law constants were calculated from the	(2) From soybean root following
quantity of nitrogen dissolved in each experimental run.	similar procedure to reference 1. Average molecular weight
each experimental fun.	of 15,600 g mol ^{-1} .
	ESTIMATED ERROR:
	REFERENCES:
	1. Ellfolk, N. Acta Chem. Scand.
	1. Efficit, N. Acta chem. Scand. 1960 , 14, 609.
	2. Maestas, S.; Ewing, G. J. J. Phys.
	Chem. <u>1970</u> , 74, 2341.

	ical Fluids 297
COMPONENTS:	ORIGINAL MEASUREMENTS:
(l) Nitrogen; N ₂ ; [7727-37-9]	Shkol'nikova, R. I.
(2) Serum albumin	Uch. Zap. Leningr. Gos. Univ., Ser. Khim. Nauk. <u>1959</u> , Nr. 18, 64 - 86.
(3) Water; H ₂ O; [7732-18-5]	Chem. Abstr. <u>1961</u> , 55, 25443b.
VARIABLES:	PREPARED BY:
T/K = 283.15 - 313.15 P/kPa = 101.325 serum albumin/wt % = 0.575 - 1.99	A. L. Cramer H. L. Clever
EXPERIMENTAL VALUES:	
0.575	albumin/wt % 1.15
Bunsen Ostwald Coefficient Coefficier	Bunsen Ostwald nt <u>Coefficient Coefficient</u>
283.15 14.2 14.7	13.1 13.6
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	12.4 13.1
293.15 11.7 12.6 298.15 11.4 12.4	10.8 11.6 10.2 11.1
303.15 10.9 12.1	10.1 11.0
308.15 10.5 11.8	9.9 10.8
313.15 10.2 11.7	9.8 10.2
T/K serun 1.68	n albumin/wt % 1.99
Bunsen Ostwald	d Bunsen Ostwald
Coefficient Coefficier 283.15 12.4 12.8	nt Coefficient Coefficient 12.1 12.5
288.15 11.9 12.5	11.2 11.8
293.15 9.4 10.1	9.1 9.7
298.15 9.3 10.1	8.8 9.6
303.15 9.2 10.2 308.15 9.1 10.2	8.5 9.4 8.1 9.1
<u>313.15</u> <u>9.0</u> <u>10.1</u>	8.0 9.1
The enthalpy of solution of nitrogen coefficient of the Bunsen coefficient 410 cal mol ⁻¹ in water, and 0.575, 1. respectively.	. It is 3060, 1250, 890, 300, and 15, 1.68, and 1.99 wt % serum albumin
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The apparatus and procedure of Lannung were modified (1).	(1) Nitrogen. Source not given. Stated to be near 100 percent.
	(2) Serum albumin. No information.
	(3) Water. No information.
	ESTIMATED ERROR:
	REFERENCES:
	 Lannung, A. J. Am. Chem. Soc. <u>1930</u>, 52, 68.

	· · · · · · · · · · · · · · · · · · ·
COMPONENTS: (1) Nitrogen; N ₂ ; [7727-37-9]	ORIGINAL MEASUREMENTS: Power, G.G.; Stegall, H.
Phosphate buffer and human red cell ghost in phosphate buffer.	J. Appl. Physiology, <u>1970</u> , 29, 145-9.
VARIABLES:	
VARIADLES:	PREPARED BY:
T/K = 310	C.L. Young
TYDEDIAENTAL NATURO.	
EXPERIMENTAL VALUES: T/K Bunsen coefficient, a	S.D. No. of measurements
Phosphate	Buffer
310.15 0.01247	0.00006 4
Ghosts suspension i	n phosphate buffer
310.15 0.01302	0.00003 5
* Standard deviation.	
	r buffer) (r shorts cm^{-3}
α° ghost = (α qhosts suspension = 0.096 ± 0.006	-a builer) / g gnoses em
`	
AUXILIARY	INFORMATION
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
5 to 12 cm^{-3} samples placed in a stirrer cell and gas, saturated with	(1) Matheson sample, purity better
water vapor passed through liquid	than 99.7 mole per cent.
for 30-60 mins. Samples of saturated liquid withdrawn and transferred	(2) See method.
to Van Slyke apparatus. Dissolved	
gas removed under reduced pressure. Red cell ghosts prepared by	
centrifugation of human blood and	
lysing the cells using phosphate buffer of pH 7.4. Ghost separated	
by high speed centrifugation.	
Washed with phosphate buffer contain- ing 0.01 M sodium nitrite.	ESTIMATED ERROR:
	$\delta T/K = \pm 0.1$
÷ -	DE DE DENOUC -
	REFERENCES:
1	

COMPONENTS:			ORIGINAL MEASUREMENTS	<u> </u>	
(1) Nitrogen; N ₂ ;	[7727-37-9]		Farhi, L. E.; Edwards, A. U. T.;		
(2) Human urine			Homma, T. J. Appl. Physiol. <u>1963</u> , 18, 97-106.		
			J. Appl. Physical	. <u>1903</u> , 18, 97-100.	
VARIABLES:			PREPARED BY:		
T/K = 310			R. Battino		
EXPERIMENTAL VALUES:					
Subject	t/°C	т ^а /к	Specific	10 ² a ^b	
	-, -		gravity		
	27 40	210 5	5 1.004	1.221	
DH WR	37.40 37.15	310.5 310.3		1.208	
SF	37.15	310.3		1.185 1.120	
TV ML	37.45 37.35	310.6		1.112	
HR	37.25	310.4		1.107	
RM LF	37.40 37.25	310.5		1.101 1.039	
•·····					
	AUX	KILIARY	INFORMATION		
METHOD/APPARATUS/PROCE	DURE:		SOURCE AND PURITY OF	MATERIALS:	
			(1) From air.		
Used the Van Slyk with gas chromato	e method combi graphy.	nea			
-			(2) From eight n aged 22-48 y	ormal healthy men ears.	
			ESTIMATED ERROR:		
			$\delta \alpha / \alpha = \pm 0.02$, co	mpiler's estimate.	
			REFERENCES :		
			ABFERENCES;		

300	Mit ogen oolubii	1165 UP 10 200 KI a
COMPONENTS: (1) Nitrogen; N ₂ ; (2) Benzene; C ₆ H ₆ (3) Cholest-5-en- C ₂₇ H ₄₆ O; [57- VARIABLES: T/K = 31 Total P/kPa = 10 EXPERIMENTAL VALUES: T/K 310.64 310.62 310.63 310.65 *Extrap choles L ₀ and	[7727-37-9]; [71-43-2] 3β-ol or Cholesterol; 88-5] 0.65 1.325 Mass Fraction Ostr Cholesterol Coeff: W ₃ 0.0 0.1 0.0528 0.1 0.0528 0.1 0.1069 0.1 0.1069 0.1 0.1069 0.1 0.1069 0.1 1.0 0.0 olated nitrogen solub: terol. L _w are the nitrogen Ost	ORIGINAL MEASUREMENTS: Byrne, J. E.; Battino, R.; Danforth, W. F. J. Chem. Thermodyn. <u>1974</u> , 6, 245-50. PREPARED BY: H. L. Clever wald "Salting Out" Parameter
		INFORMATION
the design of Mo: (1) and the vers by Battino, Evan The degassing ap described by Bat and Wilhelm (3). Degassing: Up to is placed in a fi that the liquid The liquid is ray vacuum is interm through a liquid the permanent gas drops to 5 micros Solubility Detern gassed solvent i film down a glas taining solute g vapor at a total	pparatus is based on rrison and Billett ion used is described s and Danforth (2). paratus is that tino, Banzhof, Bogan, o 500 cm ³ of solvent lask of such size is about 4 cm deep. pidly stirred, and ittently applied nitrogen trap until s residual pressure ns. mination: The de- s passed in a thin s helical tube con- as plus the solvent pressure of one of gas absorbed is nce between the	SOURCE AND PURITY OF MATERIALS; (1) Nitrogen. Matheson Co., Inc. 99.995 per cent. (2) Benzene. J. T. Baker Analyzed Reagent Grade. 99.9 mol per cent, thiophene free. (3) Cholesterol. Source not given. Recrystalized from benzene. ESTIMATED ERROR: $\delta T/K = 0.01$ $\delta P/mmHg = 0.5$ $\delta L_0/L_0 = 0.01$ $\delta L_w/L_w = 0.02$ REFERENCES: 1. Morrison, T. J.; Billett, F. J. Chem. Soc. <u>1948</u> , 2033. 2. Battino, R.; Evans, F. D.; Danforth, W. F. J. Am. Oil Chem. Soc. 1968, 45, 830.

í

ŧ

.

۰.

COMPONENTS:	
<pre>(1) Nitrogen; N₂; [7727-37-9] (2) Benzene; C₆H₆; [71-43-2] (3) Lecithin</pre>	<pre>ORIGINAL MEASUREMENTS: Byrne, J. E.; Battino, R.; Danforth, W. F. J. Chem. Thermodyn. <u>1974</u>, 6, 245-50.</pre>
VARIABLES: T/K = 310.65 Total P/kPa = 101.325	PREPARED BY: H. L. Clever
	Dstwald "Salting Out" Parameter efficient $k = (1/W_3) \log (L_0/L_w)$ L
310.64 0.0 310.69 0.0	0.1324 0.1328
310.640.1993310.650.1993	0.115 0.116 0.30 <u>+</u> 0.04
310.65 1.0	0.066*
*Extrapolated nitrogen sol lecithin.	ubility in hypothetical liquid
	RY INFORMATION
	RY INFORMATION
AUXILIA METHOD/APPARATUS/PROCEDURE: The solubility apparatus is based o the design of Morrison and Billett (1) and the version used is describ by Battino, Evans and Danforth (2). The degassing apparatus is that described by Battino, Banzhof, Boga and Wilhelm (3). Degassing: Up to 500 cm ³ of solven is placed in a flask of such size that the liquid is about 4 cm deep. The liquid is rapidly stirred, and vacuum is intermittently applied	<pre>Source AND PURITY OF MATERIALS: n (1) Nitrogen. Matheson Co., Inc. 99.995 per cent. ed (2) Benzene. J. T. Baker Analyzed Reagent Grade. 99.9 mol per cent, thiophene free. (3) Lecithin. Nutritional Biochemicals</pre>

	•••• - p •• -•• ·•• ·•
COMPONENTS:	ORIGINAL MEASUREMENTS:
(1)Nitrogen; N ₂ ; [7727-37-9]	Byrne, J. E.; Battino, R.;
(2)Benzene; C ₆ H ₆ ; [71-43-2]	Danforth, W. F.
	J. Chem. Thermodyn. <u>1974</u> , 6, 245-50.
(3)Cephalin	
VARIABLES:	PREPARED BY:
T/K = 310.65 Total P/kPa = 101.325	H. L. Clever
EXPERIMENTAL VALUES:	
-,	twald "Salting Out" Parameter ficient k = (1/W) log (1 /1)
	$L_{L}^{\text{ficient}} k = (1/W_3) \log (L_0/L_w)$
310.64 0.0 0.1	1323
310.69 0.0 0.1	1328
310.60 0.2003 0.1	
310.63 0.2003 0.1	112 0.31 ± 0.05
310.65 1.0 0.0	065*
*Extrapolated nitrogen solubi cephalin.	ility in hypothetical liquid
AUXILIARY	INFORMATION
	· ·
METHOD/APPARATUS/PROCEDURE: The solubility apparatus is based on the design of Morrison and Billett	INFORMATION SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Matheson Co., Inc. 99.995 per cent.
METHOD/APPARATUS/PROCEDURE: The solubility apparatus is based on the design of Morrison and Billett (1) and the version used is described by Battino, Evans and Danforth (2). The degassing apparatus is that	SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Matheson Co., Inc. 99.995 per cent. (2) Benzene. J. T. Baker Analyzed
METHOD/APPARATUS/PROCEDURE: The solubility apparatus is based on the design of Morrison and Billett (1) and the version used is described by Battino, Evans and Danforth (2). The degassing apparatus is that described by Battino, Banzhof, Bogan, and Wilhelm (3). Degassing: Up to 500 cm ³ of solvent is placed in a flask of such size that the liquid is about 4 cm deep. The liquid is rapidly stirred, and vacuum is intermittently applied	 SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Matheson Co., Inc. 99.995 per cent. (2) Benzene. J. T. Baker Analyzed Reagent Grade. 99.9 mol per cent, thiophene free. (3) Cephalin. Nutritional Biochemical Corp. Homostatic phospatide obtained from bovine brain tissue, used as received.
METHOD/APPARATUS/PROCEDURE: The solubility apparatus is based on the design of Morrison and Billett (1) and the version used is described by Battino, Evans and Danforth (2). The degassing apparatus is that described by Battino, Banzhof, Bogan, and Wilhelm (3). Degassing: Up to 500 cm ³ of solvent is placed in a flask of such size that the liquid is about 4 cm deep. The liquid is rapidly stirred, and	<pre>SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Matheson Co., Inc. 99.995 per cent. (2) Benzene. J. T. Baker Analyzed Reagent Grade. 99.9 mol per cent, thiophene free. (3) Cephalin. Nutritional Biochemical Corp. Homostatic phospatide obtained from bovine brain tissue, used as received. ESTIMATED ERROR: δT/K = 0.01 δP/mmHg = 0.5</pre>
METHOD/APPARATUS/PROCEDURE: The solubility apparatus is based on the design of Morrison and Billett (1) and the version used is described by Battino, Evans and Danforth (2). The degassing apparatus is that described by Battino, Banzhof, Bogan, and Wilhelm (3). Degassing: Up to 500 cm ³ of solvent is placed in a flask of such size that the liquid is about 4 cm deep. The liquid is rapidly stirred, and vacuum is intermittently applied through a liquid nitrogen trap until the permanent gas residual pressure drops to 5 microns. Solubility Determination: The de- gassed solvent is passed in a thin	<pre>SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Matheson Co., Inc. 99.995 per cent. (2) Benzene. J. T. Baker Analyzed Reagent Grade. 99.9 mol per cent, thiophene free. (3) Cephalin. Nutritional Biochemical: Corp. Homostatic phospatide obtained from bovine brain tissue, used as received. ESTIMATED ERROR: δT/K = 0.01 δP/mmHg = 0.5 δL₀/L₀ = 0.01 δL_w/L_w = 0.02</pre>
METHOD/APPARATUS/PROCEDURE: The solubility apparatus is based on the design of Morrison and Billett (1) and the version used is described by Battino, Evans and Danforth (2). The degassing apparatus is that described by Battino, Banzhof, Bogan, and Wilhelm (3). Degassing: Up to 500 cm ³ of solvent is placed in a flask of such size that the liquid is about 4 cm deep. The liquid is rapidly stirred, and vacuum is intermittently applied through a liquid nitrogen trap until the permanent gas residual pressure drops to 5 microns. Solubility Determination: The de- gassed solvent is passed in a thin film down a glass helical tube con- taining solute gas plus the solvent yapor at a total pressure of one atm.	SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Matheson Co., Inc. 99.995 per cent. (2) Benzene. J. T. Baker Analyzed Reagent Grade. 99.9 mol per cent, thiophene free. (3) Cephalin. Nutritional Biochemical Corp. Homostatic phospatide obtained from bovine brain tissue, used as received. ESTIMATED ERROR: $\delta T/K = 0.01$ $\delta P/mmHg = 0.5$ $\delta L_0/L_0 = 0.01$ $\delta L_w/L_w = 0.02$ REFERENCES: 1. Morrison, T. J.; Billett, F. J. Chem. Soc. 1948, 2033.
METHOD/APPARATUS/PROCEDURE: The solubility apparatus is based on the design of Morrison and Billett (1) and the version used is described by Battino, Evans and Danforth (2). The degassing apparatus is that described by Battino, Banzhof, Bogan, and Wilhelm (3). Degassing: Up to 500 cm ³ of solvent is placed in a flask of such size that the liquid is about 4 cm deep. The liquid is rapidly stirred, and vacuum is intermittently applied through a liquid nitrogen trap until the permanent gas residual pressure drops to 5 microns. Solubility Determination: The de- gassed solvent is passed in a thin film down a glass helical tube con- taining solute gas plus the solvent	SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Matheson Co., Inc. 99.995 per cent. (2) Benzene. J. T. Baker Analyzed Reagent Grade. 99.9 mol per cent, thiophene free. (3) Cephalin. Nutritional Biochemical Corp. Homostatic phospatide obtained from bovine brain tissue, used as received. ESTIMATED ERROR: $\delta T/K = 0.01$ $\delta P/mmHg = 0.5$ $\delta L_0/L_0 = 0.01$ $\delta L_W/L_W = 0.02$ REFERENCES: 1. Morrison, T. J.; Billett, F.

ļ

COMPONENTS:	ODICINAL MELOUDINEURO
COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Grollman, A.
(2) Lipoidal suspension.	J. Biol. Chem. <u>1929</u> , 82, 317-25.
(3) Water; H ₂ O; [7732-18-5]	5. 5.0 Chem. 1929, 82, 517-25.
2	
VARIABLES:	
	PREPARED BY:
T/K = 311	R. Battino
EXPERIMENTAL VALUES:	I
37.5°C	(310.7K)
Substance	$10^2 \alpha^a$
Nater	1.28
Lipoidal Suspension ^b	1.33
^a Bunsen coefficient in units of a	cm^3 (STP) cm^{-3} atm ⁻¹ .
b Made up of 0.3 g blood lipid in	100 cm ³ water.
	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS;
The Van Slyke method was used.	(1) No details given.
	(2) Extracted from rabbit or dog
	blood with petroleum ether and ethyl ether.
	_
	(3) No details given.
	ESTIMATED ERROR:
	$\delta \alpha / \alpha = \pm 0.02$, compiler's estimate.
	REFERENCES :
	I DE LALMOLO.

Nitrogen Solubilities up to 200 kPa				
COMPONENTS:		ORIGINAL MEASUREMENTS:		
(1) Nitrogen; N ₂ ; [7	727-37-9]	Braun, L.		
(2) Urea; CH ₄ N ₂ O; [5		Z. Phys. Chem. <u>1900</u> ,33, 721-41.		
		<u></u> ,,		
(3) Water; H ₂ O; [773	2-18-5]			
VARIABLES:		PREPARED BY:		
T/K = 278-298		C.L. Young		
Concentration				
EXPERIMENTAL VALUES:	· · · · · · · · · · · · · · · · · · ·			
T/K	Wt. of urea per	r Bunsen coefficient, α		
100g soln./g				
278.2	15.650	0.01749		
270.2	14.365	0.01836		
	11.900	0.01793		
1	11.664	0.01782		
1	10.240 9.418	0.01835 0.01897		
	6.897	0.01979		
	6.409	0.01987		
	5.194	0.01982		
1	5.145	0.01969 0.02003		
	2.460 2.287	0.01992		
	0.000	0.02173		
283.2	15.650	0.01621		
	14.365	0.01657		
	11.900 11.664	0.01671 0.01633		
	10.240	0.01732		
1	9.418	0.01758		
	6.897	0.01827		
1	6.409 5.194	0.01832 0.01890		
	5.145	0.01819		
	2.460	0.01889		
	2.287 0.0	0.01841 0.02003		
	AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDU	RE :	SOURCE AND PURITY OF MATERIALS:		
Ostwald method, usin pipet. Measurement before and after abs	of volume of gas orption. Vapor	No details given.		
pressure of water wa assuming Raoult's la				
degassed. Concentra	tion of salt			
solution estimated b	y titration with			
silver nitrate solut	lon.			
		ESTIMATED ERROR:		
		$\delta \alpha / \alpha = \pm 0.03$		
		REFERENCES:		

COMPONENTS:	-	ORIGINAL MEASUREMENTS:	
(1) Nitrogen; N ₂ ; [77	27-37-9]	Braun, L.	
(2) Urea; CH4N2O; [57-13-6]		Z. Phys. Chem. <u>1900</u> ,33,721-41	
(3) Water; H ₂ O; [7732	-18-5]		
EXPERIMENTAL VALUES:			
	Wt. of urea per soln./g	100g Bunsen coefficient, α	
288.2	$15.650 \\ 14.365 \\ 11.900 \\ 11.664 \\ 10.240 \\ 9.418 \\ 6.897 \\ 6.409 \\ 5.194 \\ 5.145 \\ 2.460 \\ 2.287$	0.01503 0.01514 0.01486 0.01504 0.01601 0.01580 0.01649 0.01666 0.01678 0.01651 0.01715 0.01708	
293.2	0.0 15.650 14.365 11.900 11.664 10.240 9.418 6.897 6.409 5.194 5.145 2.460 2.287	0.01789 0.01396 0.01406 0.01385 0.01395 0.01465 0.01455 0.01510 0.01507 0.01523 0.01523 0.01509 0.01576 0.01552	
298.2	0.0 15.650 14.365 11.900 11.664 10.240 9.418 6.897 6.409 5.194 5.145 2.460 2.287 0.0	0.01621 0.01300 0.01334 0.01296 0.01315 0.01316 0.01328 0.01369 0.01373 0.01376 0.01350 0.01396 0.01390 0.01432	

306 Nitrogen Solubilit	ties up to 200 kPa
COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Hüfner, G.
(2) Urea; CH ₄ N ₂ O or (NH ₂) ₂ CO; [57-13-6]	2. Physik. Chem. <u>1907</u> , 57, 611-24.
(3) Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
T/K = 293.25, 293.40 N ₂ P/kPa = 101.325	H. L. Clever
EXPERIMENTAL VALUES:	
Temperature C _{CH4} N20 ^{/moldm⁻³} t/°C T/K I	Gas Absorbed Bunsen Pressure/ Gas Coefficient mmHg Volume ¹ α x 10 ²
20.18 293.33 0	1.565 ²
20.25 293.40 1.0 20.10 293.25 20.18 Av.	664.4 5.34 1.490 683.6 5.40 1.465 1.477 Av.
¹ Volume of gas reduced to 273.15 K a solution at the stated pressure. ² Average of four runs, see Hüfner's	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The apparatus, described in reference (1), was the Bunsen absorption type.	(1) Nitrogen. Source not given. Argon free.
It consisted of an absorption flask,	(2) Urea. Source not given.
which holds 409.94 cm ³ of solvent, and gas burets.	(3) Water. Pure.
The final partial pressure of the gas ranged between 648.6 and 720.7 mmHg. The author reported both the volume of gas absorbed at the final pressure in 409.94 cm ³ of solvent reduced to	
273.15 K and 760 mmHg, and the Bunsen coefficient, which was calculated	ESTIMATED ERROR:
assuming Henry's law.	$\delta T/K \approx 0.01$
Urea name is harnstoff in the paper.	
	REFERENCES: 1. Hüfner, G. Archiv. F. Anatomie und Physiologie, Physiolog. Abtly. <u>1894</u> , 5, 191.
	1

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Hüfner, G.
(2) Glycine; C ₂ H ₅ NO ₂ or CH ₂ (NH ₂)COOH; [56-40-6]	Z. Physik. Chem. <u>1907</u> , 57, 611-24.
(3) Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
T/K = 293.25 - 293.43 N ₂ P/kPa = 101.325	H. L. Clever
EXPERIMENTAL VALUES:	
Temperature C _{2H5NO2} /moldm ⁻³ t/°C T/K	Gas Absorbed Bunsen Pressure Gas Coefficient mmHg Volume ¹ $\alpha \times 10^2$
20.18 293.33 0	1.565 ²
20.28 293.43 1.0 20.1 293.25 20.1 293.25 20.16 Av.	679.9 4.29 1.170 679.3 4.51 1.231 691.2 4.61 1.236 1.212 Av.
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The apparatus, described in reference (1), was the Bunsen absorption type. It consisted of an absorption flask,	(1) Nitrogen. Source not given. Argon free.
which holds 409.94 cm ³ of solvent, gas burets.	(2) Glycine. Merck.
The final partial pressure of the gas ranged between 648.6 and 720.7 mmHg. The author reported both the volume of gas absorbed at the final pressure in 409.94 cm ³ of solvent reduced to 273.15 K and 760 mmHg, and the Bunsen coefficient, which was calculated	<pre>(3) Water. Pure. ESTIMATED ERROR:</pre>
assuming Henry's law.	δT/K = 0.01
D-Glycine name glykoholl (amino- essigsäure) in the paper.	REFERENCES :

COMPONENTS: ORIGINAL MEASUREMENTS: (1) Nitrogen; N ₂ ; [7727-37-9] Hüfner, G. (2) D-Alanine; C ₃ H ₇ NO ₂ or Z. Physik. Chem. <u>190</u> (3) Water; H ₂ O; [7732-18-5] PREPARED BY:	
 (1) Nitrogen; N₂; [7727-37-9] Hüfner, G. (2) D-Alanine; C₃H₇NO₂ or CH₃CH(NH₂)COOH; [338-69-2] (3) Water; H₂O; [7732-18-5] 	
 (2) D-Alanine; C₃H₇NO₂ or CH₃CH(NH₂)COOH; [338-69-2] (3) Water; H₂O; [7732-18-5] 	
CH ₃ CH(NH ₂)COOH; [338-69-2] (3) Water; H ₂ O; [7732-18-5]	
(3) Water; H ₂ O; [7732-18-5]	07, 57, 611-24.
VARIABLES: PREPARED BY:	
T/K = 293.33	
$N_2 P/kPa = 101.325$ H. L. Cl	ever
2	
EXPERIMENTAL VALUES:	
Temperature C _{C3^H7} NO ₂ /mol dm ⁻³ Gas Absorbed	Bunsen
	Coefficient
t/ C I/K mmHg Volume ¹	$\alpha \times 10^2$
20.18 293.33 0	1.565 ²
	1 204
20.18 293.33 1.0 674.5 4.38 20.2 293.35 684.1 4.51	1.204 1.222
20.2 293.35 684.1 4.51 20.19 Av.	1.213 Av.
AUXILIARY INFORMATION	
METHOD/APPARATUS/PROCEDURE: SOURCE AND PURITY OF MAT	
METHOD/APPARATUS/PROCEDURE: SOURCE AND PURITY OF MAT The apparatus, described in reference (1) Nitrogen. Source	
METHOD/APPARATUS/PROCEDURE: The apparatus, described in reference (1), was the Bunsen absorption type. It consisted of an absorption flask, SOURCE AND PURITY OF MAT (1) Nitrogen. Source Argon free.	e not given.
METHOD/APPARATUS/PROCEDURE: The apparatus, described in reference (1), was the Bunsen absorption type. It consisted of an absorption flask, which holds 409.94 cm ³ of solvent, SOURCE AND PURITY OF MAT (1) Nitrogen. Source Argon free. (2) D-Alanine. Merch	e not given.
METHOD/APPARATUS/PROCEDURE: The apparatus, described in reference (1), was the Bunsen absorption type. It consisted of an absorption flask, which holds 409.94 cm ³ of solvent, SOURCE AND PURITY OF MAT (1) Nitrogen. Source Argon free. (2) D-Alanine. Merch	e not given.
METHOD/APPARATUS/PROCEDURE: The apparatus, described in reference (1), was the Bunsen absorption type. It consisted of an absorption flask, which holds 409.94 cm ³ of solvent, and gas burets. The final partial pressure of the gas ranged between 648.6 and 720.7 mmHg. The author reported both the volume of gas absorbed at the final pressure	e not given.
METHOD/APPARATUS/PROCEDURE: The apparatus, described in reference (1), was the Bunsen absorption type. It consisted of an absorption flask, which holds 409.94 cm ³ of solvent, and gas burets. The final partial pressure of the gas ranged between 648.6 and 720.7 mmHg. The author reported both the volume of gas absorbed at the final pressure in 409.94 cm ³ of solvent reduced to 273.15 K and 760 mmHg, and the Bunsen SOURCE AND PURITY OF MAT (1) Nitrogen. Source Argon free. (2) D-Alanine. Merch (3) Water. Pure. ESTIMATED EPROP.	e not given.
 METHOD/APPARATUS/PROCEDURE: The apparatus, described in reference (1), was the Bunsen absorption type. It consisted of an absorption flask, which holds 409.94 cm³ of solvent, and gas burets. The final partial pressure of the gas ranged between 648.6 and 720.7 mmHg. The author reported both the volume of gas absorbed at the final pressure in 409.94 cm³ of solvent reduced to 273.15 K and 760 mmHg, and the Bunsen coefficient, which was calculated SOURCE AND PURITY OF MAT (1) Nitrogen. Source Argon free. (2) D-Alanine. Merch (3) Water. Pure. 	e not given.
METHOD/APPARATUS/PROCEDURE: The apparatus, described in reference (1), was the Bunsen absorption type. It consisted of an absorption flask, which holds 409.94 cm ³ of solvent, and gas burets. The final partial pressure of the gas ranged between 648.6 and 720.7 mmHg. The author reported both the volume of gas absorbed at the final pressure in 409.94 cm ³ of solvent reduced to 273.15 K and 760 mmHg, and the Bunsen SOURCE AND PURITY OF MAT (1) Nitrogen. Source Argon free. (2) D-Alanine. Merch (3) Water. Pure. ESTIMATED EPROP.	e not given. k.
METHOD/APPARATUS/PROCEDURE: The apparatus, described in reference (1), was the Bunsen absorption type. It consisted of an absorption flask, which holds 409.94 cm ³ of solvent, and gas burets. The final partial pressure of the gas ranged between 648.6 and 720.7 mmHg. The author reported both the volume of gas absorbed at the final pressure in 409.94 cm ³ of solvent reduced to 273.15 K and 760 mmHg, and the Bunsen coefficient, which was calculated assuming Henry's low	e not given. k.
METHOD/APPARATUS/PROCEDURE: The apparatus, described in reference (1), was the Bunsen absorption type. It consisted of an absorption flask, which holds 409.94 cm ³ of solvent, and gas burets. The final partial pressure of the gas ranged between 648.6 and 720.7 mmHg. The author reported both the volume of gas absorbed at the final pressure in 409.94 cm ³ of solvent reduced to 273.15 K and 760 mmHg, and the Bunsen coefficient, which was calculated assuming Henry's low	e not given. k.
<pre>METHOD/APPARATUS/PROCEDURE: The apparatus, described in reference (1), was the Bunsen absorption type. It consisted of an absorption flask, which holds 409.94 cm³ of solvent, and gas burets. The final partial pressure of the gas ranged between 648.6 and 720.7 mmHg. The author reported both the volume of gas absorbed at the final pressure in 409.94 cm³ of solvent reduced to 273.15 K and 760 mmHg, and the Bunsen coefficient, which was calculated assuming Henry's law. SOURCE AND PURITY OF MAT (1) Nitrogen. Source Argon free. (2) D-Alanine. Merch (3) Water. Pure. ESTIMATED ERROR: δT/K = 0 REFERENCES:</pre>	e not given. k.
METHOD/APPARATUS/PROCEDURE: The apparatus, described in reference (1), was the Bunsen absorption type. It consisted of an absorption flask, which holds 409.94 cm ³ of solvent, and gas burets. The final partial pressure of the gas ranged between 648.6 and 720.7 mmHg. The author reported both the volume of gas absorbed at the final pressure in 409.94 cm ³ of solvent reduced to 273.15 K and 760 mmHg, and the Bunsen coefficient, which was calculated assuming Henry's law. SOURCE AND PURITY OF MAT (1) Nitrogen. Source Argon free. (2) D-Alanine. Merch (3) Water. Pure. ESTIMATED ERROR:	e not given. k. .01 <i>mie und</i>
METHOD/APPARATUS/PROCEDURE: The apparatus, described in reference (1), was the Bunsen absorption type. It consisted of an absorption flask, which holds 409.94 cm ³ of solvent, and gas burets. The final partial pressure of the gas ranged between 648.6 and 720.7 mmHg. The author reported both the volume of gas absorbed at the final pressure in 409.94 cm ³ of solvent reduced to 273.15 K and 760 mmHg, and the Bunsen coefficient, which was calculated assuming Henry's law. SURCE AND PURITY OF MAT (1) Nitrogen. Source Argon free. (2) D-Alanine. Merch (3) Water. Pure. ESTIMATED ERROR: δT/K = 0 REFERENCES: 1. Hüfner, G. Archiv. F. Anator Physiologie, Physice Comparent of the set of	e not given. k. .01 <i>mie und</i>

;

				305
COMPONENTS:	ORIGINAL MEAS	SUREMENTS:		
(1) Nitrogen; N ₂ ; [7727-37-9]	Hüfner, G.			
(2) (R*,R*)-1.2,3,4-Butanetetrol; C ₄ H ₁₀ O ₄ ; [7493-90-5]	Z. Physik.	Chem. <u>1907</u>	, 57, 611-24.	
(3) Water; H ₂ O; [7732-18-5]				
VARIABLES:	PREPARED BY:		· · · · · · · · · · · · · · · · ·	
T/K = 293.25 - 293.50 N ₂ P/kPa = 101.325		H. L. Clev	er	
EXPERIMENTAL VALUES:				
Temperature $C_{C_4H_{10}O_4}/mol dm^{-3}$ t/°C T/K	Gas Pressure/ mmHg	Absorbed Gas Volume ¹	Bunsen Coefficient α x 10 ²	
20.18 293.33 0			1.565 ²	
20.1 293.25 1.0 20.3 293.45 20.35 293.50 20.25 Av.	672.3 707.0 672.4	4.79 4.91 4.92	1.321 1.287 <u>1.356</u> 1.321 Av.	
AUXILIARY	INFORMATION			
METHOD/APPARATUS/PROCEDURE:	1		<u> </u>	
	SOURCE AND P	URITY OF MATE		
The apparatus, described in reference (1), was the Bunsen absorption type.		en. Source		
(1), was the Bunsen absorption type. It consisted of an absorption flask,	SOURCE AND P (1) Nitroge Argon f	en. Source	not given.	
	SOURCE AND P (1) Nitroge Argon f (2) Erythr	en. Source Free. itol. Merck	not given.	
<pre>(1), was the Bunsen absorption type. It consisted of an absorption flask, which holds 409.94 cm³ of solvent, and gas burets. The final partial pressure of the gas ranged between 648.6 and 720.7 mmHg. The author reported both the volume of gas absorbed at the final pressure</pre>	SOURCE AND P (1) Nitroge Argon f	en. Source Free. itol. Merck	not given.	
(1), was the Bunsen absorption type. It consisted of an absorption flask, which holds 409.94 cm^3 of solvent, and gas burets. The final partial pressure of the gas ranged between 648.6 and 720.7 mmHg . The author reported both the volume of gas absorbed at the final pressure in 409.94 cm^3 of solvent reduced to 273.15 K and $760 mmHg$, and the Bunsen coefficient, which was calculated	SOURCE AND P (1) Nitroge Argon f (2) Erythr	en. Source Free. itol. Merck Pure.	not given.	
(1), was the Bunsen absorption type. It consisted of an absorption flask, which holds 409.94 cm^3 of solvent, and gas burets. The final partial pressure of the gas ranged between 648.6 and 720.7 mmHg . The author reported both the volume of gas absorbed at the final pressure in 409.94 cm^3 of solvent reduced to 273.15 K and 760 mmHg , and the Bunsen	SOURCE AND P (1) Nitroge Argon f (2) Erythr (3) Water.	en. Source Free. itol. Merck Pure.	not given.	
<pre>(1), was the Bunsen absorption type. It consisted of an absorption flask, which holds 409.94 cm³ of solvent, and gas burets. The final partial pressure of the gas ranged between 648.6 and 720.7 mmHg. The author reported both the volume of gas absorbed at the final pressure in 409.94 cm³ of solvent reduced to 273.15 K and 760 mmHg, and the Bunsen coefficient, which was calculated assuming Henry's law.</pre>	SOURCE AND P (1) Nitroge Argon f (2) Erythr (3) Water. ESTIMATED ER REFERENCES: 1. Hüfner, Archiv.	en. Source Free. itol. Merck Pure. Pure. δT/K = 0. G. F. Anatom ogie, Phys	not given.	
(1), was the Bunsen absorption type. It consisted of an absorption flask, which holds 409.94 cm ³ of solvent, and gas burets. The final partial pressure of the gas ranged between 648.6 and 720.7 mmHg. The author reported both the volume of gas absorbed at the final pressure in 409.94 cm ³ of solvent reduced to 273.15 K and 760 mmHg, and the Bunsen coefficient, which was calculated assuming Henry's law. (R, R)-1,2,3,4-Butanetetrol name	SOURCE AND P (1) Nitroge Argon f (2) Erythr (3) Water. ESTIMATED ER REFERENCES: 1. Hüfner, Archiv. Physiol	en. Source Free. itol. Merck Pure. Pure. δT/K = 0. G. F. Anatom ogie, Phys	not given.	

	103 up to 200 ki u
COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Hüfner, G.
(2) _{L-Arabinose} , C ₅ H ₁₀ O ₅ ; [5328-37-0]	Z. Physik. Chem. <u>1907</u> , 57, 611-24.
(3) Water; H ₂ O; [7732-18-5]	
VARIABLES: T/K = 293	PREPARED BY:
$N_2 P/kPa = 101.325$	H. L. Clever
EXPERIMENTAL VALUES:	
Temperature C _{C5^H10^O5} /mol dm ⁻³ t/°C T/K	Gas Absorbed Bunsen Pressure/ Gas Coefficient mmHg Volume ¹ $\alpha \times 10^2$
20.18 293.33 0	1.565 ²
20.15 293.30 1.0 20.28 293.43 20.21 Av.	680.40 4.47 1.218 676.78 4.34 <u>1.189</u> 1.203 Av.
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The apparatus, described in reference (1), was the Bunsen absorption type.	(1) Nitrogen. Source not given. Argon free.
It consisted of an absorption flask, which holds 409.94 cm ³ of solvent,	(2) L-Arabinose. Merck.
and gas burets.	(3) Water. Pure.
The final partial pressure of the gas ranged between 648.6 and 720.7 mmHg. The author reported both the volume of gas absorbed at the final pressure in 409.94 cm ³ of solvent reduced to	
273.15 K and 760 mmHg, and the Bunsen coefficient, which was calculated	ESTIMATED ERROR:
assuming Henry's law.	δT/K = 0.01
	REFERENCES: 1. Hüfner, G. Archiv. F. Anatomie und Physiologie, Physiolog. Abtly. <u>1894</u> , 5, 191.
	1

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Hüfner, G.
(2) D-Fructose; C ₆ H ₁₂ O ₆ ; [57-48-7]	Z. Physik. Chem. <u>1907</u> , 57, 611- 24.
(3) Water; H ₂ O; [7732-18-5]	
VARIABLES: T/K = 293.40	PREPARED BY:
$N_2 P/kPa = 101.325$	H. L. Clever
EXPERIMENTAL VALUES:	
Temperature C _{C6^H12} 0 ₆ /mol dm ⁻³ t/°C T/K	Gas Absorbed Bunsen Pressure/ Gas Coefficient
	mmHg Volume ¹ $\alpha \times 10^2$
20.18 293.33 0	1.565 ²
20.25 293.40 1.0	648.6 4.27 1.221
¹ Volume of gas reduced to 273.15 K a solution at the stated pressure.	and 760 mmHg absorbed in 490.94 cm ³
² Average of four runs, see Hüfner's	$N_2 + H_2O$ data sheet.
	2 2
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The apparatus, described in reference (1), was the Bunsen absorption type.	(1) Nitrogen. Source not given. Argon free.
It consisted of an absorption flask,	(2) D-Fructose. Merck.
which holds 409.94 cm ³ of solvent, and gas burets.	
The final partial pressure of the gas	(3) Water. Pure
ranged between 648.6 and 720.7 mmHg.	
The author reported both the volume of gas absorbed at the final pressure	
in 409.94 cm ³ of solvent reduced to	
273.15 K and 760 mmHg, and the Bunsen coefficient, which was calculated	ESTIMATED ERROR:
assuming Henry's law.	$\delta T/K = 0.01$
D-Fructose name Fruchtzucker or	
levulose in the paper.	REFERENCES:
	l. Hüfner, G.
	Archiv. F. Anatomie und Physiologie, Physiolog. Abtly. <u>1894</u> , 5, 191.

COMPONENTS:	ORIGINAL MEA	SUREMENTS	
(1) Nitrogen; N ₂ ; [7727-37-9]	Hüfner, G.		
4			7, 57, 611-24.
(2) D-Glucose; $C_{6}H_{12}O_{6}$; [50-99-7]	2. FNYSIK.	cnem. <u>190</u>	<u>,</u> , ,, ,, ,, ,,,,,,,,,,,,,,,,,,,,,,,,,
(3) Water; H ₂ O; [7732-18-5]			
VARIABLES:	PREPARED BY:		
T/K = 293.20 - 293.57 N ₂ P/kPa = 101.325		H. L. Cle	ver
N2 17 M a = 1011 525			
EXPERIMENTAL VALUES:	A		·· ·· ·
Temperature C _{C6^H12^O6} /mol dm ⁻³ t/°C T/K	Gas Pressure/ mmHg	Absorbed Gas Volume ¹	Bunsen Coefficient
		VOLUME	$\frac{\alpha \times 10^2}{\alpha \times 10^2}$
20.18 293.33 0		 r	1.565 ²
20.25 293.40 0.25 20.10 293.25	693.9 697.0	5.56 5.57	1.485 1.482
20.25 293.40 20.2 Av.	680.2	5.40	<u>1.472</u> 1.480 Av.
20.2 AV. 20.05 293.20 0.50	681.3	5.05	1.374
20.2 293.35	675.8	4.98	1.366
20.3 293.45 20.3 293.45	704.5 700.2	5.17 5.36	1.361 1.419
20.21 Av.			1.380 Av.
20.42 293.57 1.00 20.10 293.25	672.1 688.3	4.51 4.45	1.244 1.199
20.20 293.35	720.7	4.67	1.201
20.15 293.30 20.05 293.20	704.3 688.2	4.74 4.38	1.248 1.180
20.18 Av.	00012		1.215 Av.
solution at the stated pressure. ² Average of four runs, see Hüfner's	N ₂ + H ₂ O d	ata sheet.	
AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND P		
The apparatus, described in reference (1), was the Bunsen absorption type. It consisted of an absorption flask,	(1) Nitrog Argon		e not given.
which holds 409.94 cm ³ of solvent,	(2) D-Gluc	ose. Sour	ce not given.
and gas burets.	(3) Water.	Pure.	
The final partial pressure of the gas ranged between 648.6 and 720.7 mmHg. The author reported both the volume of gas absorbed at the final pressure			
in 409.94 cm ³ of solvent reduced to 273.15 K and 760 mmHg, and the Bunsen coefficient, which was	ESTIMATED ER	ROR:	
calculated assuming Henry's law.		$\delta T/K = 0.$	01
D-glucose name tranbenzucker (grape		01/K = 0.1	VΤ.
sugar) in the paper.	REFERENCES:	·	
	l. Hüfner Archiv Physio	. F. Anator	mie und siolog. Abtly.
	<u></u>		

COMPONENTS:	ORIGINAL MEASUREMENTS:	
(1) Nitrogen; N ₂ ; [7727-37-9]	Shkol'nikova, R. I.	
(2) Gelatin	Uch. Zap. Leningr. Gos. Univ., Ser.	
(3) Water, H_{0} , [7722 19.5]	Khim. Nauk. <u>1959</u> , Nr. 18, 64 - 86.	
(3) Water; H ₂ O; [7732-18-5]	Chem. Abstr. 1961, 55, 25443b.	
	,,	
VARIABLES:	PREPARED BY:	
T/K = 283.15 - 313.15 P/kPa = 101.325	A. L. Cramer	
Gelatin/wt % = 1 - 10	H. L. Clever	
EXPERIMENTAL VALUES:		
T/K Gelatin/wt % l	Gelatin/wt % 5	
Bunsen Ostwald	Bunsen Ostwald At Coefficient Coefficient	
283.15 15.6 16.2	14.3 14.8	
$\begin{bmatrix} 288.15 & 14.2 & 14.9 \\ 293.15 & 13.0 & 14.0 \end{bmatrix}$	13.6 14.1 12.5 13.5	
298.15 12.6 13.8	11.4 12.4	
303.15 11.5 12.8 308.15 10.7 12.1	10.4 11.5 9.8 11.1	
313.15 10.1 11.6	9.2 10.6	
	atin/wt % 10	
Bunse Coeffic	n Ostwald ient Coefficient	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14.3	
293.15 10.8	11.6	
298.15 10.2 303.15 9.8		
308.15 8.3	9.4	
313.15 7.2	8.2	
The enthalpy of solution of nitrogen		
coefficient of the Bunsen coefficient		
cal mol ⁻¹ in water, and 1, 5, and 10	wt % gelatin respectively.	
	INFORMATION	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
The apparatus and procedure of Lannung were modified (1).	(1) Nitrogen. Source not given. Stated to be near 100 percent.	
	(2) Gelatin. No information.	
	(3) Water. No information.	
	ESTIMATED ERROR:	
	REFERENCES:	
	1. Lannung, A.	
	J. Am. Chem. Soc. <u>1930</u> , 52, 68.	
	1	

COMPOR	NENTS:		ORIGINAL MEASUREMENT	rs:
(1)	Nitrogen; N	1 ₂ ; [7727-37-9]	Müller, C.	
(2)	Sucrose; C _l	2 ^H 22 ^O 11; [57-50-1]	Z. Physik. Chem.	. <u>1912</u> , <i>81</i> , 483-503.
(3)	Water; H ₂ O;	[7732-18-5]		
	24			
VARIA	BLES:		PREPARED BY:	
	T/K = 290-2			
	P/kPa = 101		R. Battino	
EXPER	IMENTAL VALUES	:		
-	'T ^a /K	Weight Percentage Sucrose	Ostwald Coeff. ^b 10 ² L	Bunsen Coeff. ^C 10 ² α
	289.95	11.38	1.520	1.432
	290.05 290.15	20.00 29.93	1.309 1.089	1.233 1.025
	290.95	30.12	1.100	1.025
	291.15	47.89	0.791	0.742
-	290.85	48.57	0.701	0.658
a	Temperature	e reported to 0.1°C.		
b	Ostwald coe	efficient calculated by	compiler.	
c	Bunsen coef	ficient		
	Dunsen cocr			
		AUXILIARY	INFORMATION	
	D/APPARATUS/PR		SOURCE AND PURITY O	F MATERIALS:
	er is degass uum. The ab	ed by pumping under sorption vessel is		rom heating potassium
	$1t 600 \text{ cm}^3$ a	nd is separately		ammonium nitrite. potassium hydroxide
		rom the buret gas	solution, fe	errous sulfate
		m. Both are connected illary tube. Gas	Solucion and	sulfuric acid; and
upta	ake is read	on the gas burets.	copper tube.	ed through a glowing
	-	flask volume and all were calibrated using		emically pure from
-		riginal paper contains	Merck in Dar	mstadt. comment by author.
		ation and a drawing of	(3) water - no c	comment by author.
		Solubilities were n pure water, glycerol	ESTIMATED ERROR:	
	chloral hyd		ESTIMATED ERROR:	
			$\delta \alpha / \alpha = \pm 0.01$, e	stimate by compiler.
			REFERENCES:	
1				
1				

COMPONENTS:	ORIGINAL MEASUREMEN	
	ORIGINAL MEASUREMEN	ITS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Dornte, R.W.; Ferguson, C.V.	
£.		. <u>1939</u> , <i>31</i> , 112-3.
(2) Sulfur dioxide; 0 ₂ S; [7446-09-5]	Thu. Lng. Chem	<u>1939</u> , <i>91</i> , 112-3.
VARIABLES:		
	PREPARED BY:	
T/K = 213 - 253	R. Battino	
EXPERIMENTAL VALUES:	1	
т/°С т/к ^а	K ^b Static	K ^C Circ.
-60 213.2 -60 213.2	2.86	2.24 1.97
-60 213.2		2.23
-50 223.2	6.35	4,50
-50 223.2 -40 233.2	14.0	4.32 7.55
-40 233.2	10.6	8.00
-40 233.2 -30 243.2	27.2	8.09
-20, 253.2	56.6	26.7
AUXILIARY	INFORMATION	
	INFORMATION	
ÆTHOD/APPARATUS/PROCEDURE: The apparatus consisted of a gas buret, a differential manometer, and two 10 cm ³ bulbs. The bulbs were in a dewar flask whose temperature was controlled manually by adding dry ice. Measurements could be taken while the gas was circulating or static. Gas uptake was read on the buret. Corrections were applied for the	INFORMATION SOURCE AND PURITY O No details	
ÆTHOD/APPARATUS/PROCEDURE: The apparatus consisted of a gas buret, a differential manometer, and two 10 cm ³ bulbs. The bulbs were in a dewar flask whose temperature was controlled manually by adding dry ice. Measurements could be taken while the gas was circulating or static. Gas uptake was read on the buret. Corrections were applied for the	SOURCE AND PURITY O	
ÆTHOD/APPARATUS/PROCEDURE: The apparatus consisted of a gas buret, a differential manometer, and two 10 cm ³ bulbs. The bulbs were in a dewar flask whose temperature was controlled manually by adding dry ice. Measurements could be taken while the gas was circulating or static. Gas uptake was read on the buret. Corrections were applied for the	SOURCE AND PURITY O	
ÆTHOD/APPARATUS/PROCEDURE: The apparatus consisted of a gas buret, a differential manometer, and two 10 cm ³ bulbs. The bulbs were in a dewar flask whose temperature was controlled manually by adding dry ice. Measurements could be taken while the gas was circulating or static. Gas uptake was read on the buret. Corrections were applied for the	SOURCE AND PURITY OF No details ESTIMATED ERROR: $\delta K/K = \pm 0.1$	
METHOD/APPARATUS/PROCEDURE: The apparatus consisted of a gas buret, a differential manometer, and two 10 cm ³ bulbs. The bulbs were in a dewar flask whose temperature was controlled manually by adding dry ice. Measurements could be taken while the	SOURCE AND PURITY OF NO details ESTIMATED ERROR: $\delta K/K = \pm 0.1$ $\delta T/K = \pm 0.5$	
ETHOD/APPARATUS/PROCEDURE: The apparatus consisted of a gas buret, a differential manometer, and two 10 cm ³ bulbs. The bulbs were in a dewar flask whose temperature was controlled manually by adding dry ice. Measurements could be taken while the gas was circulating or static. Gas uptake was read on the buret. Corrections were applied for the	SOURCE AND PURITY OF NO details ESTIMATED ERROR: $\delta K/K = \pm 0.1$ $\delta T/K = \pm 0.5$	

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Steinberg, M.; Manowitz, B.; Pruzansky, J.
(2) Nitrous oxide; N ₂ O; [10024-97-2]	US AEC BNL-542 (T-140). Chem. Abstr. <u>1959</u> , 53, 21242g
VARIABLES: T/K = 186.15 - 243.65	PREPARED BY: H. L. Clever
EXPERIMENTAL VALUES:	
Temperature Solubility,	Henry's Mol Fraction ³
t/°C T/K Coefficient ¹	$\frac{H/\text{atm}}{H/\text{atm}} = \frac{10^3 x_1}{10^3 x_1}$
-87 186.15 0.93 -80 193.15 0.87 -72 201.15 - -56 217.15 1.17 -45 228.15 0.85 -35.5 237.65 1.03 -33 240.15 - -29.5 243.65 - +32 305.15 0.99 ⁴ ¹ The solubility coefficient uni The gas volume is reduced to 2 solvent volume is for the temp ² Henry's constant, $H/atm = (p_1/from the data smoothed by the 3 The mole fraction values were pressure of 101.325 kPa (1 atm values were estimated from a s International Critical Tables, 4 Solubiluty coefficient value c literature value based on the liquid nitrous oxide cylinders$	88.15 K and 1 atm and the erature of the measurement. $atm)/x_1$. The values are apparently authors. calculated for a gas partial) by the compiler. The density ingle value given in the Vol. III. alculated by the authors from average residual nitrogen in
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
See earlier paper for some details of the procedure(1). The measure- ments were made using a modified McDaniel method (2), a static method.	(1) Nitrogen.(2) Nitrous oxide.No information.
	ESTIMATED ERROR: $\delta x_1/x_1 = \pm 0.05 - 0.10$ (compiler) REFERENCES: 1. Steinberg, M.; Manowitz, B. Ind. Eng. Chem. <u>1959</u> , 51,47. 2. Furman, N.H. "Scott's Standard Methods of Chemical Analysis," vol. II, 5th ed., Van Nostrand, New York, <u>1939</u> .

Miscellan	eous Fluids 31
COMPONENTS: (1) Nitrogen; N ₂ ; [7727-37-9]	ORIGINAL MEASUREMENTS: Chang, E. T.; Gokcen, N. A.
(2) Nitrogen Oxide; N ₂ O ₄ ; [10544-72-6]	J. Phys. Chem. <u>1966</u> , 70, 2394-9. NASA Accession No. N66-14076, Rept. No. ATN=64-(9228)-4, 22p (1964). From Sci. Tech. Aerospace Rept. 4(4), 640(1964).
VARIABLES:	PREPARED BY:
T/K = 262.02 - 303.16 N ₂ P/kPa = 35.50 - 197.58	P. L. Long H. L. Clever
EXPERIMENTAL VALUES:	
Smoothed Data: Mole fraction solubili	ty at 1 atm N ₂ pressure.
$\ln x_1 = -360.31/(T/K)$	- 6.106
–	$S^{o}/J K^{-1} mol^{-1} = -50.8$
	tion Gibbs Energy ∆G°/kJ mol ⁻¹
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16.36 16.61 16.86 17.12 17.37 17.63 17.88 18.13 18.39
data (1,2).	, but present no additional solubility continued on following page
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: The solvent was degassed under vacuum in the previously weighed apparatus. Apparatus and degassed solvent were weighed. Gas was introduced into the apparatus at a known P and T, the liquid stirred, and the pressure ob- served until there was no further change. Equilibrium was established within 10 m and the P was followed for 40 m.	<pre>Source AND PURITY OF MATERIALS: (1) Nitrogen. No source given. (2) Nitrogen Oxide. Source not given. Research grade. 99.5% min. purity. Density, ρ/g ml⁻¹ = 1.4916 - 0.00226 t/°C.</pre>
The apparatus was of all glass con- struction. It consisted of three calibrated volumes for the measure- ment of the gas, a container for the solvent, which was stirred with a glass enclosed magnet, and a mano- meter for measuring the pressure with a microslide cathetometer. The solvent container had a capacity for 100 g of solvent with a 5 ml gas space above the liquid surface. The apparatus sections were calibrated to \pm 0.0002-3 cm ³ .	ESTIMATED ERROR: $\delta T/K = 0.03$ $\delta P/mmHg = 0.01$ $\delta X_1/X_1 = 0.05$ REFERENCES: 1. Chang, E. T.; Gokcen, N. A.; Poston, T. M. J. Spacecr. Rockets <u>1969</u> , 6, 1177.
	 Gokcen, N. A.; Chang, E. T. J. Chem. Ed. <u>1977</u>, 54, 368.

$ \begin{array}{c} \hline \texttt{CONPONENTS:} & \texttt{ORIGINAL MEASUREMENTS:} \\ (1) \text{ Nitrogen; N}_2; [7727-37-9] & \texttt{ORIGINAL MEASUREMENTS:} \\ (2) \text{ Nitrogen oxide; N}_2O_4; & \texttt{Chang, E. T.; Gokcen, N. A.} \\ (2) \text{ Nitrogen oxide; N}_2O_4; & \texttt{Chang, E. T.; Gokcen, N. A.} \\ \hline \texttt{I0544-72-6]} & \texttt{NaSA Accession No. N66-14076, Rept.} \\ \hline \texttt{No. ATN-64-[9228]-4, 229 (1964).} \\ \hline \texttt{From Sci. Tech. Accospace Rept.} \\ \hline \texttt{Mol Fraction Bunsen Ostwald} \\ \hline \texttt{Presure Constant^1} \\ \texttt{P1/atm 10^*K/atm^{-1}} & \texttt{Nol Fraction Bunsen Ostwald} \\ \hline \texttt{Confined 5.56 3.44} \\ \texttt{1.2964 5.69 7.38} \\ \texttt{1.3922 5.69 7.51} \\ \texttt{1.9500 5.68 11.08} \\ \hline \texttt{1.9500 5.68 11.08} \\ \hline \texttt{1.9500 5.68 11.08} \\ \hline \texttt{1.0 5.62 0.208 0.199} \\ \hline \texttt{273.15 0.3504 5.96 2.09} \\ \texttt{0.3811 6.09 2.32} \\ \texttt{0.6136 5.55 5.94 4.06} \\ \texttt{0.8972 6.01 5.39} \\ \texttt{0.6830 5.94 4.06} \\ \texttt{0.8972 6.01 5.39} \\ \texttt{0.7331 6.00 10.77} \\ \hline \texttt{1.7951 6.00 10.77} \\ \hline \texttt{1.7951 6.00 10.77} \\ \hline \texttt{1.7951 6.00 10.77} \\ \hline \texttt{1.3032 6.59 8.59} \\ \texttt{1.10 6.55 5.54} \\ \texttt{1.125 6.66 7.41} \\ \texttt{1.3032 6.59 8.59} \\ \texttt{1.0 0 6.58 0.230 0.251} \\ \hline \texttt{303.16 } \\ \texttt{0.5604^2 6.85 5.74} \\ \texttt{0.8300^2 6.85 5.74} \\ \texttt{1.0 6.85 0.238 0.268} \\ \hline \texttt{0.238 0.268} \\ \hline$	318		Nitrog	en Solubilitie	s up to 200 kPa	
	COMPONEN	ITS:			ORIGINAL MEASUREME	NTS:
$ \begin{bmatrix} 10544-72-6 \end{bmatrix} \\ & \text{NASA Accession No. N66-14076, Rept.} \\ & \text{No. ATN-64-[9228]-4, 220 (1964).} \\ & \text{FXPERIMENTAL VALUES:} \\ & \text{continued} \\ \hline \\ $	(1) NS	trogen; N ₂ ;	[7727-37-9]		Chang, E. T.; Gokc	en, N. A.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(2) Ni [1	trogen oxid L0544-72-6]	e; N ₂ O ₄ ;		NASA Accession No. No. ATN-64-(9228 From Sci. Tech. 4(4), 640(1964).	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	EXPERI	MENTAL VALU	ES:	continu	ied	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	т/к	Pressure	Constant ¹		Coefficient	Coefficient
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	262.02	0.6186 1.2964 1.3192 1.9440	5.56 5.69 5.69 5.61	3.44 7.38 7.51 10.91		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					0.208	0.199
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	273.15	0.3811 0.4716 ² 0.6830 0.8972 0.9389 ² 1.4283 1.5043	6.09 6.00 5.94 6.01 6.00 6.02 5.95	2.32 2.83 4.06 5.39 5.63 8.60 8.95		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1.0		5.99	0.218	0.218
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	298.15	0.5909 0.7222 0.7393 0.8457 1.1125	6.52 6.67 6.60 6.55 6.66	3.85 4.82 4.88 5.54 7.41		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					0.230	0.251
	303.16					
		1.0		6.85	0.238	0.268

¹ Henry's constant, $K/atm^{-1} = X_1/(P_1/atm)$

² Data from a new apparatus having a greater degree of accuracy, but similar to the original apparatus.

The values at 101.325 kPa (1.0 atm) partial pressure nitrogen were cal-culated by the compiler from the average value of Henry's constant.

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Baldwin, R. R.; Daniel, S. G.;
(2) Oils.	J. Appl. Chem., <u>1952</u> , 2(Apr.),161-5.
	J. Inst. Petrol., London, 1953, 39,
,	105-24.
· · · · · · · · · · · · · · · · · · ·	
VARIABLES: T/K ≈ 273.15 - 373.15	PREPARED BY: P.L. Long
P/kPa = 101.325	H.L. Clever
EXPERIMENTAL VALUES: T/K Bunsen Coeffici	ient Ostwald Coefficient
Oil Al, viscosity 6 mean mol wt 670.	15 centistokes at 100 ⁰ F,
293.15 0.0662	0.0711
Oil A2, viscosity 26 mean mol wt 610.	68 centistokes at 100 ⁰ F,
273.15 0.0632	0.0632
293.15 0.0664	0.0713
333.15 0.0738 373.15 0.0739	0.0901 0.100
Oil A3, viscosity 18 mean mol wt 570.	81 centistokes at 100 ⁰ F,
293.15 0.0717	0.0770
Oil A4, viscosity 80 mean mol wt 530.	0.3 centistokes at 100 ⁰ F, .
293.15 0.0748	0.0803
Oil A5, viscosity 34 mean mol wt 400.	4.9 centistokes at 100 ⁰ F,
273.15 0.0773 293.15 0.0762	0.0773 0.0818
333.15 0.0785	0.0957
373.15 0.0818	0.1113
mean mol wt 630.	60 centistokes at 100 ⁰ F,
293.15 0.0644	0.0691
METHOD/APPARATUS/PROCEDURE: The method consists of two opera- tions: Saturation of the liquid with the gas under consideration; and determination of the amount of dis- solved gas in the liquid saturated with the gas. All gases were passed through a liquid air trap to remove water and CO ₂ vapors before passage through the liquid. All gases were passed through a long coil, thermo- stated, before the saturation process. Oil or similar liquid is deaerated by passing it through a continuously evacuated vessel. Gas is then passed through the liquid to saturation. Liquid is then degassed, and trans- ferred to a storage burette, discon- nected from the degassing apparatus, thermostated, and saturated with the desired gas. Burette is now con- nected to another degassing apparatus, portions of the oil degassed and gas collected.	<pre>and Wheeler apparatus shows it to be at least 99.5% pure; no source given. (2) Oils. The oils conform to DTD- 472B specifications. Composition and physical properties of the oils are given in the appendix of the 1953 paper. The molecular weights were determined by freezing point depression in naphthalene to within <u>+</u>5 percent.</pre>

320	Nitrogen Solubilit	ies up to 2	00 kPa	
COMPONENTS :		-	MEASUREMENTS:	
(1) Nitrogen; N ₂ ; [7727-3			, C. J.; Maude	э. А. Н.
	57-31	-		hem. Soc. 1925,
(2) Mineral oil		47, 71		<i>tem</i> , <i>boc</i> , <u>1925</u> ,
		1		
VARIABLES: T/K = 298.15, $p_1/kPa = 101.3$	353.15	PREPARED	BY: H. L. C	lever
EXPERIMENTAL VALUES:	I		<u> </u>	<u> </u>
Temperature	Bunsen	,	Ostwald	
t/°C T/K	Coefficient a/cm ³ (STP) cm ³	-3atm-1	Coefficient L/cm ³ cm ⁻³	Solubility g kg ⁻¹
25 298.15 80 353.15	0.0848		0.0925 0.1185	0.127 0.144
	AUXILIARY			
METHOD/APPARATUS/PROCEDURE:		SOURCE A	ND PURITY OF MAT	ERIALS:
The apparatus cons 180 cm ³ absorption bott to a 100 cm ³ gas buret. tion bottle sits in a t which is attached to a machine. A weighed sample o introduced into the abs vessel. The sample is d vacuum taking care to a	le connected The absorp- hermostat, shaking f oil is orption egassed by void	2. Min oil, 9 carbon and 40 and at commer	6 per cent sa s, and distil 0 °C. Density 80 °C = 0.80	ormation. ennsylvania base turated hydro- ling between 300 at 25 °C = 0.840 0 g cm ⁻³ . As a the oil is known
	gas is . An initial d the shaker taken every	ESTIMATE		

Wiscellan	eous Fluids 32
COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Kubie, L. S.
(2) Mineral oil, white	J. Biol. Chem. <u>1927</u> , 72, 548-8.
VARIABLES: T/K = 295.15 - 295.65	PREPARED BY:
P/kPa = 101.325	H. L. Clever
EXPERIMENTAL VALUES:	1
Т/К Виля	sen Coefficient (STP) cm ⁻³ atm ⁻¹
295.15- 295.65	0.071 ± 0.002
	•
AUXILIARY	INFORMATION
METHOD / APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
The appartaus was the constant	(1) Oxygen. Commercial cylinder.
volume Van Slyke and Neill type (1).	(2) Mineral oil. "Amalie" brand, L. Sonneborn Sons, Inc., NY.
Saturation was attained by bubbling the gas through the oil for several	A medicinal white oil which
hours.	meets US Pharmacopeia standards. Prepared by fractional distill-
A 1.990 \pm 0.007 cm ³ volume of	ation from a naphthalene base, unsaturated hydrocarbons re-
saturated solution was analyzed. The Van Slyke correction factor	moved. Specific gravity 0.890 - 0.895 at 15 °C, viscosity 285 at
for unextracted and redissolved gas	100 °F
was 1.04.	ESTIMATED ERROR:
	$\delta T/K = 1$
	DEPENDING
	REFERENCES: 1. Van Slyke, D. D.; Neill, J. M.
	J. Biol. Chem. <u>1924</u> , 56, 523.

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Nasini, A. G.; Corinaldi, G.
(2) Paraffin oil	Soc. Ital. Prog. Sci. Atti Rium. <u>1932</u> , 20, 264-6.
VARIABLES:	PREPARED BY:
T/K = 305.15 Total P/kPa = 101.325	A. L. Cramer H. L. Clever
EXPERIMENTAL VALUES:	
T/K Bun Coeff	sen Ostwald icient Coefficient α L
305.15 .0	.0822
	coefficient was the compiler.
AUXILIA	ARY INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The apparatus and procedure were based on those of Lannung (1).	<pre>(1) Nitrogen. Laboratory preparation from ammonium nitrate followed by "conventional purification".</pre>
	(2) Paraffin oil. Density,
	$\rho_{288.15} = 0.87 \text{ g cm}^{-3}$.
	ESTIMATED ERROR:
	$\delta T/K = 0.1$
	REFERENCES:
	l. Lannung, A. J. Am. Chem. Soc. <u>1930</u> , 52, 68.

C	Lanzarius	
COMPONENTS:	ORIGINAL MEASU	
(1) Nitrogen; N ₂ ; [7727-37-9]	Luther, H;	Rottger, H.
(2) Paraffin Oil	Elektrotech	. Z. <u>1957</u> , A78, 462-4.
VARIABLES:	PREPARED BY:	
T/K = 318		
P/kPa = 27-103	R. Bat	tino
EXPERIMENTAL VALUES:		
t/°С т ^а /К	P/mm Hg	$S/cm^3 g^{-1}$
45 318	200	0.023
45 318	300	0.034
45 318 45 318	500 700	0.054 0.076
45 318	770	0.084
^a Calculated by compiler.		
		· -
)		
AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURT	ITY OF MATERIALS:
Solubility determined by an appartus		ails given.
described in the paper by a combined		-
volume and pressure measurement.	(2) Molecul	ar weight of 357 g mol^{-1} , 3420 g cm ⁻³ , $n_D^{20} = 1.4597$.
	20-0.0	$1420 \text{ g cm} , \text{m}_{\text{D}} = 1.4397.$
	ESTIMATED ERROL	K:
	$\circ S/S = \pm 0$.05, compiler's estimate.
	REFERENCES:	
	1	
	J	

Nitrogen Solubilities up to 200 kPa

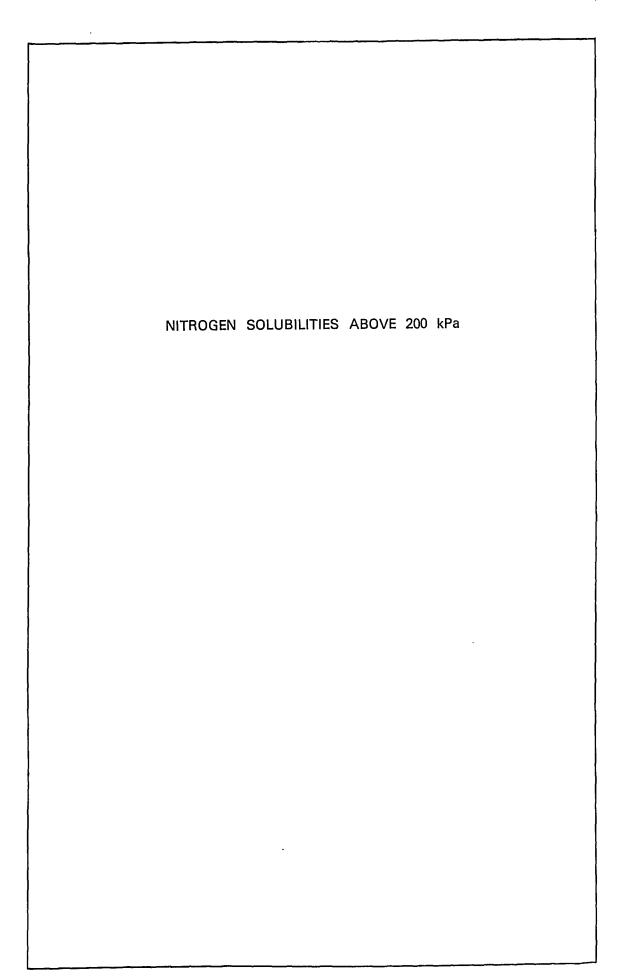
524			Mitrogen Solubili	lies up	10 200 KFa		
COME	ONENTS:	······		ORIGI	NAL MEASUREMEN	TS:	
) Nitrogon	. N [7797_	- 2791	Tuth	er, H.; Hiem	enz 57	
		; N ₂ ; [7727-		}			
(2		and a 5 and a 5 and a 5	50:50 mixture	Chem	. Ingrlech	. <u>1957</u> , 29,	530-5.
	or 1-dec		IOGECANOL				
	*						
VAR	ABLES:			PREPA	ARED BY:		
	T/K = 293	-355					
				R.	Battino		
EVDI	ERIMENTAL VAL	UEC .		L			
LAPI	KINENIAL VAL	.UED:					
			4 h	~	6 3	2 0	
	t/°C	т ^а /К	10 ⁴ x1 ^b	нс	10 ⁶ s ^d	$10^2 L^e$	
			Paraffi		1		
}	20 20.0	293	16.4	608	1.89	8.33	
	20.0 41.0	293.2 314.2			1.87	8.82	
l	61.5	334.7			1.83	9.20	
	82.0	355.2			1.80	9.57	
			Alcohol M		re		
	20	293	6.2]	621	1.69	7.54	
	20.0 41.0	293.2 314.2			1.93	9.28	
	61.5	334.7			2.07	10.5	
	82.0	355.2			2.24	12.0	
		by compiler					
e f	Ostwald co 50 mol % l		0 mol % 1-dod	lecan	ol.		
			AUXILIARY	INFOR	MATION		**
MET	HOD/APPARATUS	S/PROCEDURE:		SOUR	CE AND PURITY C	OF MATERIALS:	*
0-	1	determined	he on	1 (1)	No details	aiven	
ab	paratus de	scribed in t	he paper by a		Paraffin oi	1 - densit	y of
		ssure and vo			0.8795 g cm	-3 and mol	ecular
me	asurement.			100	weight of 4		
				(3)	Alcohol mix		l-dodecanol.
				[T. ACCANOT 1	JU MOL 8	T GOUECANOI.
				(
				L			
				ESTI	MATED ERROR:		
				ł –			
				δH	$/H = \pm 0.05,$	compiler's	estimate.
				REFE	RENCES :		
					· · · · · · · · · ·		
1				1			
				}			
				L			

COMPONENTS:		ORIGINAL MEASUREM	ENTS:
(1) Nitrogen; N ₂ ; [7727-37	7-9]		P.; Weatherford, W. D.;
(2) Paraffin wax		Ind. Eng. Chem. <u>1954</u> , 46,2376-81.	
MADTARIEC.			·····
VARIABLES: T/K = 349.55		PREPARED BY:	L. Cramer
P/kPa = 35.26 - 103.19)		L. Clever
EXPERIMENTAL VALUES:		l <u></u>	
T/K Pressure/	Mol Fraction	Bunsen	Solubility
mmHg	$x_{1} \times 10^{3}$	$\operatorname{Coefficient}_{\alpha}$	Coefficient
- <u></u>	······································	~ c	m ³ N ₂ (STP) g ⁻¹ wax
349.55 264.5 442.7	0.506 0.906	0.071 0.076	0.033 0.058
590.5	1.27	0.080	0.081
774.0	1.66 (1.66)	0.080 0.080	0.106 0.104
	(1.00)		0.104
The mole fraction s	olubility at	a nitrogen part	ial pressure of
760 mmHg was calcul			-
	-		
	AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE:		SOURCE AND PURITY	OF MATERIALS.
			Air Reduction Co.
The apparatus was similar equilibrium adsorption ap		99.96% N2,	0.04 % 0 ₂ .
described by Brunauer, Em	mett, and	(2) Paraffin wa:	x. Described as 122°F
Teller (1) for the measur surface area of a solid c		English mel	ting point wax.
	-	Molecular we point 123.2	eight 350, actual melt ^O F (323.8 K), density
A weighed amount of wax w	as placed s and solvent	0.7716 g cm	^o F (323.8 K), density ⁻³ at 293.3 K and ⁻³ at 298.0 K.
in the apparatus. The ga were equilibrated for 20	to 60 min-	0.7662 g cm	-5 at 298.0 K.
utes. The gas volume in system was calculated from	the buret m the ideal		
gas law.		DOMINAMED PERCO	
The results of the absorp	tion mea-	ESTIMATED ERROR: $\delta T/K = 2.$	
surements were checked by	a desorp-	$\delta P/mmHg = 0.2$	
tion measurement. The two ments agreed very well.	o measure-	$\delta \alpha / cm^3 = 0.00$	4 (low pressure) 01 (high pres.)
· · · · · · · · · · · · · · · · · · ·		REFERENCES:	
			; Emmett, P. H.;
		Teller, E. J. Am. Chem.	. Soc. 1938, 60, 309.
			<u> </u>
		·····	

COMPONENTS:			ORIGINAL MEASURE	MENTS .	
	; N ₂ ; [7727-:	37-91]	P.; Weatherford,	W. D.:
	-		Capell, R. G		
(2) Petrowax	A		Ind. Eng. Ch	em. <u>1954</u> , 46, 237	6 -81.
				<u> </u>	0 01.
VARIABLES: T/K = 3	354.75		PREPARED BY:		
	32.88 - 105.2	26	1	L. Cramer L. Clever	
-				H. CICVCI	
EXPERIMENTAL V					
T/K	Pressure/ mmHg	Mol Fraction	Bunsen Coefficient	Solubility Coefficient	
	mining	$x_{1} \times 10^{3}$	a	$cm^3 N_2$ (STP) g^{-1}	wax
			<u> </u>	<u> </u>	wax
354.75		0.54	0.040	0.016	
	419.3 654.4	1.27 2.11	0.056 0.058	0.038 0.063	
	789.5	2.57	0.060	0.077	
			•••		
		AUXILIARY	INFORMATION		
ΜΕΤΗΟΡ /ΑΡΡΑΒΑΤΙ	US / PROCEDURE :	AUXILIARY	· · · · · · · · · · · · · · · · · · ·	TY OF MATERIALS.	
METHOD/APPARAT			SOURCE AND PURIT		
The apparatu	s was simila	ir to the	SOURCE AND PURIT	Air Reduction C	0.
The apparatu equilibrium	s was simila adsorption a	ar to the apparatus	SOURCE AND PURIT		0.
The apparatu equilibrium described by Teller (1) f	s was simila adsorption a Brunauer, B or the measu	ar to the apparatus Ammett, and arement of the	SOURCE AND PURIT (1) Nitrogen. 99.96% N ₂ (2) Petrowax A	Air Reduction C , 0.04% O ₂ . A. Molecular wei	ght 750,
The apparatu equilibrium described by	s was simila adsorption a Brunauer, B or the measu	ar to the apparatus Ammett, and arement of the	SOURCE AND PURIT (1) Nitrogen. 99.96% N ₂ (2) Petrowax A	Air Reduction C , 0.04% O ₂ . A. Molecular wei	ght 750,
The apparatu equilibrium described by Teller (1) f surface area	adsorption a adsorption a Brunauer, E or the measu of a solid	ar to the apparatus mmett, and arement of the catalyst.	SOURCE AND PURIT (1) Nitrogen. 99.96% N ₂ (2) Petrowax A melting po density 0.	Air Reduction C , 0.04 % O_2 . A. Molecular wei Dint 159.6 ^O F (352 .8039 g cm ⁻³ at 3	ght 750, .8 K) 55.6 K
The apparatu equilibrium described by Teller (1) f surface area A weighed am	adsorption a Brunauer, E or the measu of a solid	ar to the apparatus mmett, and arement of the catalyst. was placed in	SOURCE AND PURIT (1) Nitrogen. 99.96% N ₂ (2) Petrowax A melting po density 0.	Air Reduction C , 0.04% O ₂ . A. Molecular wei	ght 750, .8 K) 55.6 K
The apparatu equilibrium described by Teller (1) f surface area A weighed am the apparatu	adsorption a Brunauer, E or the measu of a solid count of wax s. The gas	ar to the apparatus ammett, and arement of the catalyst. was placed in and solvent	SOURCE AND PURIT (1) Nitrogen. 99.96% N ₂ (2) Petrowax A melting po density 0.	Air Reduction C , 0.04 % O_2 . A. Molecular wei Dint 159.6 ^O F (352 .8039 g cm ⁻³ at 3	ght 750, .8 K) 55.6 K
The apparatu equilibrium described by Teller (1) f surface area A weighed am the apparatu were equilib	adsorption a Brunauer, F or the measu of a solid count of wax s. The gas rated for 20	ar to the apparatus Anmett, and arement of the catalyst. was placed in and solvent to 60 min-	SOURCE AND PURIT (1) Nitrogen. 99.96% N ₂ (2) Petrowax A melting po density 0.	Air Reduction C , 0.04 % O_2 . A. Molecular wei Dint 159.6 ^O F (352 .8039 g cm ⁻³ at 3	ght 750, .8 K) 55.6 K
The apparatu equilibrium described by Teller (1) f surface area A weighed am the apparatu were equilib utes. The g system was c	s was simila adsorption a Brunauer, F or the measu of a solid count of wax s. The gas rated for 20 as volume in	ar to the apparatus Anmett, and arement of the catalyst. was placed in and solvent to 60 min-	SOURCE AND PURIT (1) Nitrogen. 99.96% N ₂ (2) Petrowax A melting po density 0.	Air Reduction C , 0.04 % O_2 . A. Molecular wei Dint 159.6 ^O F (352 .8039 g cm ⁻³ at 3	ght 750, .8 K) 55.6 K
The apparatu equilibrium described by Teller (1) f surface area A weighed am the apparatu were equilib utes. The g	s was simila adsorption a Brunauer, F or the measu of a solid count of wax s. The gas rated for 20 as volume in	ar to the apparatus Ammett, and arement of the catalyst. was placed in and solvent to 60 min- the buret	SOURCE AND PURIT (1) Nitrogen. 99.96% N ₂ (2) Petrowax A melting po density 0.	Air Reduction C , 0.04 % O_2 . A. Molecular wei Dint 159.6 ^O F (352 .8039 g cm ⁻³ at 3	ght 750, .8 K) 55.6 K
The apparatu equilibrium described by Teller (1) f surface area A weighed am the apparatu were equilib utes. The g system was c gas law.	adsorption a Brunauer, F or the measu of a solid count of wax s. The gas orated for 20 as volume in alculated fr	ar to the apparatus Armett, and arement of the catalyst. was placed in and solvent to 60 min- the buret for the ideal	SOURCE AND PURIT (1) Nitrogen. 99.96% N ₂ , (2) Petrowax A melting po density 0.	Air Reduction C , 0.04% O_2 . A. Molecular wei Dint 159.6 O F (352 .8039 g cm ⁻³ at 3 2 g cm ⁻³ at 370.2	ght 750, .8 K) 55.6 K
The apparatu equilibrium described by Teller (1) f surface area A weighed am the apparatu were equilib utes. The g system was c gas law. The results	s was simila adsorption a Brunauer, F or the measu of a solid ount of wax s. The gas rated for 20 as volume in alculated fr of the absor	ar to the apparatus Armett, and arement of the catalyst. was placed in and solvent to 60 min- the buret from the ideal	SOURCE AND PURIT (1) Nitrogen. 99.96% N2 (2) Petrowax A melting po density 0. and 0.7662 ESTIMATED ERROR: $\delta T/K = 2.$	Air Reduction C , 0.04% O_2 . A. Molecular wei Dint 159.6°F (352 .8039 g cm ⁻³ at 3 2 g cm ⁻³ at 370.2	ght 750, .8 K) 55.6 K
The apparatu equilibrium described by Teller (1) f surface area A weighed am the apparatu were equilib utes. The g system was c gas law. The results	s was simila adsorption a Brunauer, F or the measu of a solid ount of wax s. The gas rated for 20 as volume in alculated fr of the absor re checked b	ar to the apparatus Armett, and arement of the catalyst. was placed in and solvent to 60 min- the buret for the ideal	SOURCE AND PURIT (1) Nitrogen. 99.96% N2 (2) Petrowax A melting po density 0. and 0.7662 ESTIMATED ERROR: $\delta T/K = 2.$ $\delta P/mmHg = 0.2$	Air Reduction C , 0.04% 0 ₂ . A. Molecular wei Dint 159.6 ^O F (352 .8039 g cm ⁻³ at 3 2 g cm ⁻³ at 370.2	ght 750, .8 K) 55.6 K K.
The apparatu equilibrium described by Teller (1) f surface area A weighed am the apparatu were equilib utes. The g system was c gas law. The results surements we	s was simila adsorption a Brunauer, H or the measu of a solid ount of wax s. The gas rated for 20 as volume in alculated fr of the absor re checked h The two me	ar to the apparatus ammett, and arement of the catalyst. was placed in and solvent to 60 min- the buret from the ideal aption mea- by a desorption	SOURCE AND PURIT (1) Nitrogen. 99.96% N ₂ , (2) Petrowax A melting po density 0. and 0.7662 ESTIMATED ERROR: $\delta T/K = 2.$ $\delta P/mmHg = 0.2$ $\delta \alpha/cm^3 = 0.0$	Air Reduction C , 0.04% 0 ₂ . A. Molecular wei Dint 159.6 ^O F (352 .8039 g cm ⁻³ at 3 2 g cm ⁻³ at 370.2	ght 750, .8 K) 55.6 K K.
The apparatu equilibrium described by Teller (1) f surface area A weighed am the apparatu were equilib utes. The g system was c gas law. The results surements we measurement.	s was simila adsorption a Brunauer, H or the measu of a solid ount of wax s. The gas rated for 20 as volume in alculated fr of the absor re checked h The two me	ar to the apparatus ammett, and arement of the catalyst. was placed in and solvent to 60 min- the buret from the ideal aption mea- by a desorption	SOURCE AND PURIT (1) Nitrogen. 99.96% N ₂ (2) Petrowax A melting po density 0. and 0.7662 ESTIMATED ERROR: $\delta T/K = 2.$ $\delta P/mmHg = 0.2$ $\delta \alpha/cm^3 = 0.0$	Air Reduction C , 0.04% 0 ₂ . A. Molecular wei Dint 159.6 ^O F (352 .8039 g cm ⁻³ at 3 2 g cm ⁻³ at 370.2	ght 750, .8 K) 55.6 K K.
The apparatu equilibrium described by Teller (1) f surface area A weighed am the apparatu were equilib utes. The g system was c gas law. The results surements we measurement.	s was simila adsorption a Brunauer, H or the measu of a solid ount of wax s. The gas rated for 20 as volume in alculated fr of the absor re checked h The two me	ar to the apparatus ammett, and arement of the catalyst. was placed in and solvent to 60 min- the buret from the ideal aption mea- by a desorption	SOURCE AND PURIT (1) Nitrogen. 99.96% N ₂ , (2) Petrowax A melting po density 0. and 0.7662 ESTIMATED ERROR: $\delta T/K = 2.$ $\delta P/mmHg = 0.2$ $\delta \alpha/cm^3 = 0.0$ REFERENCES:	Air Reduction C , 0.04% O_2 . A. Molecular wei Dint 159.6 O F (352 .8039 g cm ⁻³ at 3 2 g cm ⁻³ at 370.2 g cm ⁻³ at 370.2	ght 750, .8 K) 55.6 K K.
The apparatu equilibrium described by Teller (1) f surface area A weighed am the apparatu were equilib utes. The g system was c gas law. The results surements we measurement.	s was simila adsorption a Brunauer, H or the measu of a solid ount of wax s. The gas rated for 20 as volume in alculated fr of the absor re checked h The two me	ar to the apparatus ammett, and arement of the catalyst. was placed in and solvent to 60 min- the buret from the ideal aption mea- by a desorption	SOURCE AND PURIT (1) Nitrogen. 99.96% N ₂ , (2) Petrowax A melting po density 0. and 0.7662 ESTIMATED ERROR: $\delta T/K = 2.$ $\delta P/mmHg = 0.2$ $\delta \alpha/cm^3 = 0.0$ REFERENCES: 1. Brunauer, S	Air Reduction C , 0.04% 0 ₂ . A. Molecular wei Dint 159.6 ^O F (352 .8039 g cm ⁻³ at 3 2 g cm ⁻³ at 370.2 g cm ⁻³ at 370.2 cm ⁻³ at 370.2 cm ⁻³ at 370.2 g cm ⁻³ at 370.2 cm ⁻³ at 370.2	ght 750, .8 K) 55.6 K K.
The apparatu equilibrium described by Teller (1) f surface area A weighed am the apparatu were equilib utes. The g system was c gas law. The results surements we measurement.	s was simila adsorption a Brunauer, H or the measu of a solid ount of wax s. The gas rated for 20 as volume in alculated fr of the absor re checked h The two me	ar to the apparatus ammett, and arement of the catalyst. was placed in and solvent to 60 min- the buret from the ideal aption mea- by a desorption	SOURCE AND PURIT (1) Nitrogen. 99.96% N ₂ , (2) Petrowax A melting podensity 0. and 0.7662 ESTIMATED ERROR: $\delta T/K = 2.$ $\delta P/mmHg = 0.2$ $\delta \alpha/cm^3 = 0.0$ REFERENCES: 1. Brunauer, S Teller, E.	Air Reduction C , 0.04% 0 ₂ . A. Molecular wei Dint 159.6°F (352 .8039 g cm ⁻³ at 3 2 g cm ⁻³ at 370.2 g cm ⁻³ at 370.2	ght 750, .8 K) 55.6 K K.
The apparatu equilibrium described by Teller (1) f surface area A weighed am the apparatu were equilib utes. The g system was c gas law. The results surements we measurement.	s was simila adsorption a Brunauer, H or the measu of a solid ount of wax s. The gas rated for 20 as volume in alculated fr of the absor re checked h The two me	ar to the apparatus ammett, and arement of the catalyst. was placed in and solvent to 60 min- the buret from the ideal aption mea- by a desorption	SOURCE AND PURIT (1) Nitrogen. 99.96% N ₂ , (2) Petrowax A melting podensity 0. and 0.7662 ESTIMATED ERROR: $\delta T/K = 2.$ $\delta P/mmHg = 0.2$ $\delta \alpha/cm^3 = 0.0$ REFERENCES: 1. Brunauer, S Teller, E.	Air Reduction C , 0.04% 0 ₂ . A. Molecular wei Dint 159.6 ^O F (352 .8039 g cm ⁻³ at 3 2 g cm ⁻³ at 370.2 g cm ⁻³ at 370.2 cm ⁻³ at 370.2 cm ⁻³ at 370.2 g cm ⁻³ at 370.2 cm ⁻³ at 370.2	ght 750, .8 K) 55.6 K K.
The apparatu equilibrium described by Teller (1) f surface area A weighed am the apparatu were equilib utes. The g system was c gas law. The results surements we measurement.	s was simila adsorption a Brunauer, H or the measu of a solid ount of wax s. The gas rated for 20 as volume in alculated fr of the absor re checked h The two me	ar to the apparatus ammett, and arement of the catalyst. was placed in and solvent to 60 min- the buret from the ideal aption mea- by a desorption	SOURCE AND PURIT (1) Nitrogen. 99.96% N ₂ , (2) Petrowax A melting podensity 0. and 0.7662 ESTIMATED ERROR: $\delta T/K = 2.$ $\delta P/mmHg = 0.2$ $\delta \alpha/cm^3 = 0.0$ REFERENCES: 1. Brunauer, S Teller, E.	Air Reduction C , 0.04% 0 ₂ . A. Molecular wei Dint 159.6°F (352 .8039 g cm ⁻³ at 3 2 g cm ⁻³ at 370.2 g cm ⁻³ at 370.2	ght 750, .8 K) 55.6 K K.
The apparatu equilibrium described by Teller (1) f surface area A weighed am the apparatu were equilib utes. The g system was c gas law. The results surements we measurement.	s was simila adsorption a Brunauer, H or the measu of a solid ount of wax s. The gas rated for 20 as volume in alculated fr of the absor re checked h The two me	ar to the apparatus ammett, and arement of the catalyst. was placed in and solvent to 60 min- the buret from the ideal aption mea- by a desorption	SOURCE AND PURIT (1) Nitrogen. 99.96% N ₂ , (2) Petrowax A melting podensity 0. and 0.7662 ESTIMATED ERROR: $\delta T/K = 2.$ $\delta P/mmHg = 0.2$ $\delta \alpha/cm^3 = 0.0$ REFERENCES: 1. Brunauer, S Teller, E.	Air Reduction C , 0.04% 0 ₂ . A. Molecular wei Dint 159.6°F (352 .8039 g cm ⁻³ at 3 2 g cm ⁻³ at 370.2 g cm ⁻³ at 370.2	ght 750, .8 K) 55.6 K K.

COMPONENTS:		
		ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7	727-37-9]	Baldwin, R. R.; Daniel, S. G.
(2) Hydrocarbon fuel	S	J. Appl. Chem. <u>1952</u> , 2,161-5.
		J. Inst. Petrol, London, <u>1953</u> , 39,
		105-24.
VARIABLES:		PREPARED BY:
T/K = 273.15		P. L. Long
P/kPa = 101.32	5	H. L. Clever
EXPERIMENTAL VALUES:		
	T/K Buns Coeffi	en Ostwald zient Coefficient
	α	L
	100 octane	fuel D
	293.15 0.2	0.219
	Kerosene	
	293.15 0.1	185 0.127
	273.15 0.1	16 0.116
	,	
	AUXILIARY	INFORMATION
•	3:	SOURCE AND PURITY OF MATERIALS;
1. Degassing. The 1:	: iquid was deaer-	SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Commercial cylinder,
1. Degassing. The 1: ated by passage throu ously evacuated vesse	iquid was deaer- igh a continu- el. The liquid	SOURCE AND PURITY OF MATERIALS; (1) Nitrogen. Commercial cylinder, source not given. 99.5 per cent pure by gas analysis on Bone and
1. Degassing. The 1: ated by passage throu ously evacuated vesse was saturated with ga	iquid was deaer- igh a continu- el. The liquid	 SOURCE AND PURITY OF MATERIALS; (1) Nitrogen. Commercial cylinder, source not given. 99.5 per cent pure by gas analysis on Bone and Wheeler apparatus.
1. Degassing. The 1: ated by passage throu ously evacuated vesse	iquid was deaer- igh a continu- el. The liquid as, then degas-	 SOURCE AND PURITY OF MATERIALS; (1) Nitrogen. Commercial cylinder, source not given. 99.5 per cent pure by gas analysis on Bone and Wheeler apparatus. (2) 100 Octane Fuel. Molecular weight estimated to be 100.
 Degassing. The line ated by passage throu ously evacuated vesses was saturated with gas ed again. Saturation of liquidas was passed through the saturated through the saturated through the saturation of liquidas was passed through the saturation of liquidation of liquidation through the saturation of liquidation through the saturation of liquidation the saturation the saturation of liquidation the saturation the	iquid was deaer- igh a continu- el. The liquid as, then degas- nid with gas.The gh a liquid air	 SOURCE AND PURITY OF MATERIALS; (1) Nitrogen. Commercial cylinder, source not given. 99.5 per cent pure by gas analysis on Bone and Wheeler apparatus. (2) 100 Octane Fuel. Molecular
 Degassing. The line ated by passage throu ously evacuated vesses was saturated with gased again. Saturation of liquidation gas was passed through the through a conduct the throw a conduct the through a conduct the throw a conduct the thro	iquid was deaer- igh a continu- el. The liquid as, then degas- nid with gas.The gh a liquid air and carbon di- a long coil	 SOURCE AND PURITY OF MATERIALS; (1) Nitrogen. Commercial cylinder, source not given. 99.5 per cent pure by gas analysis on Bone and Wheeler apparatus. (2) 100 Octane Fuel. Molecular weight estimated to be 100. Kerosene. Mean molecular weight
 Degassing. The line ated by passage throu ously evacuated vesses was saturated with gased again. Saturation of liquidation gas was passed through the through a thermostated at the the through at the the the the the the the the the th	iquid was deaer- igh a continu- el. The liquid as, then degas- nid with gas.The gh a liquid air and carbon di- a long coil cemperature of	 SOURCE AND PURITY OF MATERIALS; (1) Nitrogen. Commercial cylinder, source not given. 99.5 per cent pure by gas analysis on Bone and Wheeler apparatus. (2) 100 Octane Fuel. Molecular weight estimated to be 100. Kerosene. Mean molecular weight
 Degassing. The line ated by passage throu ously evacuated vesses was saturated with gased again. Saturation of liquidation of a section of the se	iquid was deaer- igh a continu- el. The liquid as, then degas- nid with gas.The gh a liquid air and carbon di- a long coil cemperature of cement, and then	 SOURCE AND PURITY OF MATERIALS; (1) Nitrogen. Commercial cylinder, source not given. 99.5 per cent pure by gas analysis on Bone and Wheeler apparatus. (2) 100 Octane Fuel. Molecular weight estimated to be 100. Kerosene. Mean molecular weight measured, obtained 165.
 Degassing. The line ated by passage throu ously evacuated vesses was saturated with gased again. Saturation of liquing gas was passed through the through at the through at the through at the solubility measure bubbled through the line solubility measure bubbled through the solubility measure bubbled through through the solubility measure bubbled through the solubility measure bubbled through the solubility measure bubbled through thr	iquid was deaer- igh a continu- el. The liquid as, then degas- nid with gas.The gh a liquid air and carbon di- a long coil cemperature of cement, and then liquid up to five	<pre>SOURCE AND PURITY OF MATERIALS; (1) Nitrogen. Commercial cylinder, source not given. 99.5 per cent pure by gas analysis on Bone and wheeler apparatus. (2) 100 Octane Fuel. Molecular weight estimated to be 100. Kerosene. Mean molecular weight measured, obtained 165. ESTIMATED ERROR:</pre>
 Degassing. The line ated by passage throu ously evacuated vesses was saturated with gased again. Saturation of liquidation of the saturated at the saturated at the the solubility measure bubbled through the line saturation of the saturati	iquid was deaer- igh a continu- el. The liquid as, then degas- nid with gas.The gh a liquid air and carbon di- a long coil cemperature of cement, and then liquid up to five che amount of gas	<pre>SOURCE AND PURITY OF MATERIALS; (1) Nitrogen. Commercial cylinder, source not given. 99.5 per cent pure by gas analysis on Bone and Wheeler apparatus. (2) 100 Octane Fuel. Molecular weight estimated to be 100. Kerosene. Mean molecular weight measured, obtained 165. ESTIMATED ERROR:</pre>
 Degassing. The line ated by passage throu ously evacuated vesses was saturated with gassed again. Saturation of liquid gas was passed through the remove water oxide, then through a thermostated at the the solubility measure bubbled through the liberated under vacuut volume of the saturation /li>	iquid was deaer- iquid was deaer- igh a continu- el. The liquid as, then degas- nid with gas.The gh a liquid air and carbon di- a long coil cemperature of cement, and then liquid up to five the amount of gas im from a known ced liquid. The	<pre>SOURCE AND PURITY OF MATERIALS; (1) Nitrogen. Commercial cylinder, source not given. 99.5 per cent pure by gas analysis on Bone and wheeler apparatus. (2) 100 Octane Fuel. Molecular weight estimated to be 100. Kerosene. Mean molecular weight measured, obtained 165. ESTIMATED ERROR:</pre>
 Degassing. The line ated by passage throu ously evacuated vesses was saturated with gassed again. Saturation of liquid gas was passed through the remove water oxide, then through a thermostated at the the solubility measure bubbled through the liberated under vacuut volume of the saturated saturated liquid is gated. 	iquid was deaer- iquid was deaer- igh a continu- el. The liquid as, then degas- nid with gas.The gh a liquid air and carbon di- a long coil cemperature of cement, and then liquid up to five the amount of gas im from a known ced liquid. The placed in a ves-	<pre>SOURCE AND PURITY OF MATERIALS; (1) Nitrogen. Commercial cylinder, source not given. 99.5 per cent pure by gas analysis on Bone and wheeler apparatus. (2) 100 Octane Fuel. Molecular weight estimated to be 100. Kerosene. Mean molecular weight measured, obtained 165. ESTIMATED ERROR:</pre>
 ated by passage throu ously evacuated vesses was saturated with gas sed again. 2. Saturation of liquid gas was passed through the remove water oxide, then through a thermostated at the the solubility measure bubbled through the 1 hours. 3. Determination of the saturated under vacuut volume of the saturated saturated liquid is pasel attached to a call the whole apparatus whole apparatu	iquid was deaer- iquid was deaer- igh a continu- el. The liquid as, then degas- nid with gas.The gh a liquid air and carbon di- a long coil cemperature of cement, and then liquid up to five the amount of gas im from a known ced liquid. The placed in a ves- librated buret. yas initially	<pre>SOURCE AND PURITY OF MATERIALS; (1) Nitrogen. Commercial cylinder, source not given. 99.5 per cent pure by gas analysis on Bone and Wheeler apparatus. (2) 100 Octane Fuel. Molecular weight estimated to be 100. Kerosene. Mean molecular weight measured, obtained 165. ESTIMATED ERROR:</pre>
 Degassing. The line is a ted by passage througond ously evacuated vesses was saturated with gassed again. Saturation of liquid gas was passed througon trap to remove water oxide, then through a thermostated at the time solubility measure bubbled through the liberated under vacuut volume of the saturate saturated liquid is gas attached to a call the whole apparatus we evacuated. The gas manual saturated is the gas manual saturated is the solubility whole apparatus we ware the saturate the satura	iquid was deaer- igh a continu- el. The liquid as, then degas- nid with gas.The gh a liquid air and carbon di- a long coil cemperature of cement, and then liquid up to five the amount of gas im from a known ced liquid. The placed in a ves- librated buret. was initially celeased from	<pre>SOURCE AND PURITY OF MATERIALS; (1) Nitrogen. Commercial cylinder, source not given. 99.5 per cent pure by gas analysis on Bone and Wheeler apparatus. (2) 100 Octane Fuel. Molecular weight estimated to be 100. Kerosene. Mean molecular weight measured, obtained 165. ESTIMATED ERROR:</pre>
 Degassing. The line is a ted by passage througously evacuated vesses was saturated with gassed again. Saturation of liquing gas was passed througously the solution of the saturated under vacuut volume of the saturated saturated liquid is gas sel attached to a call the whole apparatus we vacuated. The gas gas the solution of the solution of the saturated liquid was transfer the solution of the saturated to a call the whole apparatus we wacuated. The gas gas the liquid was transfer the solution of the saturated to a call the sat	iquid was deaer- igh a continu- el. The liquid as, then degas- nid with gas.The gh a liquid air and carbon di- a long coil cemperature of cement, and then liquid up to five the amount of gas im from a known ced liquid. The placed in a ves- librated buret. was initially celeased from ferred to the a Topler pump.	<pre>SOURCE AND PURITY OF MATERIALS; (1) Nitrogen. Commercial cylinder, source not given. 99.5 per cent pure by gas analysis on Bone and Wheeler apparatus. (2) 100 Octane Fuel. Molecular weight estimated to be 100. Kerosene. Mean molecular weight measured, obtained 165. ESTIMATED ERROR:</pre>
 Degassing. The line is at the by passage throu ously evacuated vesses was saturated with gas sed again. Saturation of liquing gas was passed through the gas was passed through the provide, then through a thermostated at the the solubility measure bubbled through the liberated under vacuut volume of the saturate saturated liquid is presel attached to a call the whole apparatus we vacuated. The gas right the liquid was transfer calibrated buret by a Five operations and the set operations and the saturate saturated buret by a set operations and the liquid was transfer the liquid was transfer the liquid was transfer the liquid was transfer the liquid buret by a set operations and the set operations are set operat	iquid was deaer- iquid was deaer- igh a continu- el. The liquid as, then degas- nid with gas.The gh a liquid air and carbon di- a long coil cemperature of cement, and then liquid up to five the amount of gas im from a known ced liquid. The placed in a ves- librated buret. vas initially celeased from cerred to the a Töpler pump. cransfers	<pre>SOURCE AND PURITY OF MATERIALS; (1) Nitrogen. Commercial cylinder, source not given. 99.5 per cent pure by gas analysis on Bone and Wheeler apparatus. (2) 100 Octane Fuel. Molecular weight estimated to be 100. Kerosene. Mean molecular weight measured, obtained 165. ESTIMATED ERROR:</pre>
 Degassing. The line ated by passage throu ously evacuated vesses was saturated with gas sed again. Saturation of liquid gas was passed through the trap to remove water oxide, then through a thermostated at the time solubility measure bubbled through the liberated under vacuut volume of the saturated saturated liquid is gas aturated liquid is gas aturated. The gas gas the liquid was transfer calibrated buret by a transfer the liquid was transfer the liquid buret by a transfer the liquid buret by a transfer the liquid was transfer the liquid was transfer the liquid buret by a transfer the liquid burget by the liquid burget by a transfer the liquid burget by the liquid burget by the liquid burget by the liquid burget by the liquid burget burget by the liquid burget b	iquid was deaer- iquid was deaer- igh a continu- el. The liquid as, then degas- nid with gas.The gh a liquid air and carbon di- a long coil cemperature of cement, and then liquid up to five the amount of gas im from a known ced liquid. The placed in a ves- librated buret. yas initially released from cerred to the a Topler pump. cransfers ace of the gas.	<pre>SOURCE AND PURITY OF MATERIALS; (1) Nitrogen. Commercial cylinder, source not given. 99.5 per cent pure by gas analysis on Bone and Wheeler apparatus. (2) 100 Octane Fuel. Molecular weight estimated to be 100. Kerosene. Mean molecular weight measured, obtained 165. ESTIMATED ERROR:</pre>

520 Nitrogen Oblasini			
COMPONENTS:	ORIGINAL MEASUREMENTS:		
(1) Nitrogen; N ₂ ; [7727-37-9]	Logvinyuk, V. P.; Makarenkov, V. V.; Malyshev, V. V.; Panchenkov, G. M.		
(2) Hydrocarbon fuels and oil	Khim. Tekhnol. Topl. Masel <u>1970</u> , 15, (No. 5), 27-9. Chem. Technol. Fuels Oils (Eng.trans) <u>1970</u> , 15, 353-5.		
VARIABLES:	PREPARED BY:		
T/K= 253.15 - 365.15 N ₂ P/kPa= 101.325	S. A. Johnson H. L. Clever		
EXPERIMENTAL VALUES:			
T/K Bunser Coeffici α	ent Coefficient L		
Hydrocarbon fuel, T-1,	density $\rho_{\mu}^{20} = 0.816$		
253.15 0.122	0.113		
273.15 0.122 293.15 0.122	0.122		
293.15 0.122 323.15 0.099			
Hydrocarbon fuel, TS-1			
	4		
293.15 0.129			
Hydrocarbon fuel, T-6,	density pf° = 0.84		
253.15 0.099			
273.15 0.099 293.15 0.114	0.099 0.122		
323.15 0.114	0.135		
323.15 0.114 365.15 0.099	0.132		
Hydrogenated fuel, ρ_4^{20}	= 0.832		
293.15 0.114	0.122		
Oil, MK-8, density p	${}^{20}_{4} = 0.855$		
293.15 0.076	0.082		
The compiler calculate	d the Ostwald coefficients.		
	INFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:		
The apparatus and procedure were	(1) Nitrogen. No information given.		
described in reference (1) which was not available to the compiler.	(2) Fuels and oil. Solvent densities in text above.		
	ESTIMATED ERROR:		
	$\delta \alpha / \alpha = 0.06$ (authors)		
	REFERENCES: 1.Gogitidize, L. D.;Logvinyuk, V. P.; Makarenkov, V.V.; Panchenkov, G.M.; Malyshev, V.V.; Yakovlevskii, V.V. "Method of Evaluating the Operating Properties of Jet Fuels and Lubri-		
Mashinostroenie, see Izv. Vyssh. Uchebn. Zaved., Mashinostr.	cating Materials" (Russ.), Mashinostroenie [] <u>1966</u> .		


COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Gniewosz, S.; Walfisz, A.
(2) Petroleum	Z. Phys. Chem. <u>1887</u> , 1, 70-2.
VARIABLES:	PREPARED BY:
T/K = 283-293 Pressure ="Atmospheric"	M. E. Derrick H. L. Clever
TIESSUIE - ACMOSPHEITE	
EXPERIMENTAL VALUES:	
T/K Bunsen Coefficie α	Ostwald ent Coefficient L
283.15 0.135 293.15 0.117	
The Ostwald coeffic by the compiler.	cients were calculated
AUXILIARY	INFORMATION
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
The apparatus consisted of an absorp-	(1) Nitrogen. No information.
tion flask connected to a gas buret by a flexible lead capillary. The	(2) Petroleum. Russian petroleum.
system was thermostated in a large water bath.	Cleaned by boiling in a large copper flask.
The volume of nitrogen absorbed in a known volume of degassed petroleum was directly measured on the gas buret.	
	ESTIMATED ERROR:
	$\delta \alpha / \alpha = 0.05$ (compiler)
	REFERENCES:
	REFERENCES:
	REFERENCES :
	REFERENCES :

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Steinberg, M.; Manowitz, B.
(2) Amsco 123-15	Ind. Eng. Chem. <u>1959</u> , 51, 47 - 51.
VARIABLES:	PREPARED BY:
T/K = 218.15 - 373.15 P/kPa = 101.325	H. L. Clever
EXPERIMENTAL VALUES:	
т/к	Absorption Coefficient β
218.15	0.125
297.15 373.15	0.126 0.136
volume of gas, correcte absorbed under a total per unit volume (at 288	ed to 288.15 K and 101.325 kPa, system pressure of 101.325 kPa 3.15 K) of solvent.
AIIXILIA	RY INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
	(1) Nitrogen. Matheson Co.
Van Slyke Method.	 (2) Amsco 123-15. American Mineral Spirits Co. No. 140. Paraffin 59.6 wt %, naphthene 27.3 wt %, and aromatics 13.2 wt %.
1	
	ESTIMATED ERROR:
	$\delta\beta/\beta = 0.05 - 0.10$ (authors)
	REFERENCES:

,

•

COMPONENTS:		ORIGINAL M	EASUREMENTS:			
	07-01			Thurson The The		
<pre>(1) Nitrogen; N₂; [7727-3 (2) Crude oils from U.S.S</pre>		Safranova, T. P.; Zhuze, T. P.				
(2) CIUCE OIIS IIOM 0.5.	5. K.	Khim. i. Tekhnol. Top. liv. Masel <u>1958</u> , 41-6.				
		Chem. A	bstr. <u>1958</u> ,	52, 8518e.		
VARIABLES:		PREPARED P	3Y:			
T/K = 373 P/MPa = 5.1 - 30.4		v. к	atovic			
EXPERIMENTAL VALUES:	<u> </u>			······································		
	α	/cm ³ (STP)c	m ⁻³ atm ⁻¹ at	t/°C = 100(373 K)		
Crude Oil			P/atm			
		50 10	0 200	300		
·····						
(l) "Surakhanskaya otk	ornaya" O	.101 0.	091 0.078			
(2) "Nebitdagskaya"	0	.077 0.	075 0.066	0.064		
(3) "Romashinskaya"			100 0.088	0.087		
P/MPa (compiler)	5	.07 10.	1 20.3	30.4		
Crude Oil	Density Y	Viscosity	Fraction	Fraction		
	a_4^{20}	/cs	200°C> چ	200-300°C %		
(1)	0.8494	5.14	18	23.5		
(2)	0.8713	8.70	20	20		
(3)	0.8530	6.54	25	19.5		
	AUXILIARY	INFORMATION	1			
METHOD/APPARATUS/PROCEDURE:		SOURCE AND	PURITY OF MAT	ERIALS:		
The apparatus consists thermostated steel ves	of a (450 cm^3)	(1) 5	stated to com	ntain 3 098		
equipped with a magnet.	ic stiller,		of air			
heaters, temperature co auxilliary pumps and an		(2) S	ee details a	above.		
equipment.						
The amounts of liquid a	and gas					
were determined volume The original paper cont						
details and a drawing o	of					
apperatus.		ESTIMATED	ERROR:			
		DEFEDENCES				
		REFERENCES	i			
]				

۷	٧	a	t	e	r

COMPONENTS:	
-------------	--

EVALUATOR:

(1) Nitrogen; N₂; [7727-37-9]

(2) Water; H₂O; [7732-18-5]

```
Colin L. Young,
School of Chemistry,
University of Melbourne,
Parkville, Victoria 3052,
Australia.
```

June 1981

CRITICAL EVALUATION:

The most extensive studies of the solubility of nitrogen in water are those of Wiebe et al. (1), (2), Krase and coworkers (3), (4) and of Smith and coworkers (5), (6), (7). The data of Smith and cowork (6), (7) agree within about 2% with those of Wiebe $et \ al$. (2). The data of Smith and coworkers (5), However, there are larger discrepancies between the data of Krase and coworkers (3), (4) and Wiebe $et \ all$. (2). There is also some uncertainty with regard to the data of Suciu (8), McKee (9) and Suciu, Zoss and Sibbitt The relatively low pressure data (10) which are classified as doubtful. of Pray et al. (11) were incorporated with additional new data to give the data reported in references (8) and (10). The data of Smith and coworkers (5), (6), (7) and Wiebe $et \ all$. (1), (2) are classified as recommended for the temperature range 298.15 K to 398.15 K. Above Above this temperature range up to 513 K, the data of Saddington and Krase (4) are the most reliable and are classified as tentative. The data of Pray et al. (11) give an indication of the solubility at higher temperatures but must be regarded with some caution.

The data of Bassett and Dode (12) cover pressures up to 450 MPa but are rejected since it appears that the water became contaminated with oil from the high pressure compressor. These workers' data disagree with the data of Wiebe *et al.* (2) at 100 MPa. Bassett and Dode found that the solubility of nitrogen in water at 18° C initially increased with increasing pressure and then decreased with further increases in pressure. This finding is supported by work by Tsiklis and Maslennikova (13) who found similar behaviour at 330°C. These latter workers (13) found the system showed the phenomenon of gas-gas immiscibility of the second kind.

The data of Frolich et al. (14) are not of high accuracy and are presented in graphical form. Consequently these data are rejected for the present system.

References

1. 2.	Wiebe, R.; Gaddy, V. L.; Heins, C. <i>Ind. Eng. Chem.</i> <u>1932</u> , 24, 927. Wiebe, R.; Gaddy, V. L.; Heins, C. <i>Ind. Eng. Chem.</i> <u>1933</u> , 55, 947.
3.	Goodman, J. B.; Krase, N. W. Ind. Eng. Chem. <u>1931</u> , 23, 401.
4.	Saddington, A. W.; Krase, N. W. J. Am. Chem. Soc. <u>1934</u> , 56, 353.
5.	Smith, N. O.; Kelemen, S.; Nagy, B. <i>Geochim. Cosmochim. Acta</i> <u>1962</u> , 26, 921.
6.	O'Sullivan, T. D.; Smith, N. O.; Nagy, B. Geochim. Cosmochim. Acta 1966, 30, 617.
7.	O'Sullivan, T. D.; Smith, N. O. J. Phys. Chem. <u>1970</u> , 74, 1460.
8.	Suciu, S. Ph.D. Thesis, 1951, Purdue University.
9.	McKee, O. L. Jr. Ph.D. Thesis, 1953, Purdue University.
10.	Suciu, S. N.; Zoss, L. M.; Sibbitt, W. L. Am. Soc. Mech. Eng. Paper No. 53-A-64. Presented at the Annual Meeting, New York, <u>1953</u> .
11.	Pray, H. A.; Schweichert, C. E.; Minnich, B. H. Ind. Eng. Chem. <u>1952</u> , 44, 1147.
12.	Bassett, J.; Dode, M. Compt. Rend. <u>1936</u> , 203, 775.
13.	Tsiklis, D. S.; Maslennikova, V. Ya. Doklady Akad. Nauk. SSSR 1965, 161, 645.
14.	Frolich, P. K.; Trauch, E. J.; Hogan, J. J.; Peer, A. A. Ind. Eng. Chem. <u>1931</u> , 23, 548.

Nitrogen Solubilities Above 200 kPa

COMPONENTS			1000 0000			
COMPONENT	5:		ORIGINAL	MEASUREMEN	TS:	
(1) Nit	rogen; N;	2; [7727-37-9]	Goodman, J. B. and Krase, N. W., Ind. Eng. Chem., <u>1931</u> , 23, 401-4/			
(2) Wat	cer; H ₂ O;	[7732-18-5]		-		
VARIABLES						
VARIABLES	: т/к = 273-	-442	PREPARED	BY:		
	P/MPa = 10	0.1-30.4	С. L. У	loung		
EXPERIMEN	TAL VALUES:	· · · · · · · · · · · · · · · · · · ·				
т/к	P/bar	10 ³ Mole fraction of nitrogen in water,	T/K	<i>P/</i> bar	<pre>10³ Mole fraction of nitrogen in water,</pre>	
		10 ³ <i>x</i> _{N2}			10 ³ <i>x</i> _{N₂}	
273.15	101.3	1.04	353.15	202.6	1.62	
	126.7	1.26	272 15	304.0	2.04	
	202.6 304.0	2.27 2.57	373.15	101.3 126.7	0.681 0.835	
298.15	101.3	0.764		202.6	1.61	
	126.7 202.6	1.03 1.97	417.15	304.0 101.3	2.08 0.732	
	304.0	2.32	417.10	126.7	0.928	
323.15	101.3	0.716		207.6	0.91	
	126.7 102.6	0.885 1.78	442.15	304.0 101.3	2.47 0.771	
	304.0	2.13	442.10	126.7	1.09	
353.15	101.3	0.667 0.821		202.6	2.35	
		AUXILIARY	INFORMATI	0N		
METHOD/AP	PARATUS/PR	OCEDURE:	SOURCE AN	ND PURITY O	F MATERIALS:	
of about with dea thermost 273.15K.	~ 0.02 l. d weight g at used at Cell cha	ed equilibrium cell Pressure measured auge. Copper block temperatures above rged with gas and librium established	dio bef		ample oxygen; carbon water vapor removed	
liquid s cell and	ample remo amount of d volumetr	ved from bottom of dissolved gas ically. Details				
			ESTIMATE	D ERROR:		
					$/bar = \pm 0.5;$	
			$\delta x_{N_2} =$	±1-2% (es	timated by compiler).	
			REFERENC	ES:		

I

Water

		Wa	ater 3
COMPONENTS	i:	<u></u>	ORIGINAL MEASUREMENTS:
(1) Nit	trogen; N_2 ; [7	727-37-9]	Wiebe, R.; Gaddy, V. L.; Heins, C.
(2) Wat	cer; H ₂ O; [773	32-18-5]	Ind. Eng. Chem. <u>1932</u> , 24, 927.
VARIABLES	:	<u></u>	PREPARED BY:
	T/K = 2 P/MPa=2	98 .53-101.3	C. L. Young
EXPERIMENT	TAL VALUES:		
T/K	l0³ P/bar	× Mole fraction in liqu 10 ³ x	hid
298.15	25.33 50.66 101.33 202.65 303.97 506.62 810.60 1013.25	0.249 0.267 0.903 1.616 2.180 3.160 4.361 5.076	
		AUXILIARY	INFORMATION
METHOD/AP	PARATUS/PROCED		INFORMATION SOURCE AND PURITY OF MATERIALS:
One pass adsorpti as sourc Pressure gauges. a high p approach	on train. Se e of sample fo measured with Measurements ressure and lo	URE: ith two vessel cond vessel used r analysis. dead weight taken both for	SOURCE AND PURITY OF MATERIALS: (1) Best commercial sample purified

COMPONENT	:S:		ORIGINAL	MEASUREMENTS	•
	.	N ₂ ; [7727-37-9] ; [7732-18-5]			V. L.; Heins, C. <u>1933</u> , 55, 947.
VARIABLES	T/K = 2	298-373 = 2.5-101.3	PREPARED C. L. Y		<u>`</u>
EXPERIMEN	NTAL VALUES:	· · · · · · · · · · · · · · · · · · ·	I	·····	·
т/к	P/bar	10 ² Mole fraction of nitrogen in liquid, 10 ² x _{N2}	т/к	P/bar	10 ² Mole fraction of nitrogen in liquid, 10 ² x _{N2}
298.15 323.15	$\begin{array}{c} 25.33\\ 50.66\\ 101.33\\ 202.65\\ 303.97\\ 506.62\\ 810.60\\ 1013.25\\ 25.33\\ 50.66\\ 101.33\\ 202.65\\ 303.97\\ 506.62\\ 810.60\\ \end{array}$	0.0249 0.0481 0.0902 0.1610 0.2183 0.3163 0.4364 0.5083 0.0195 0.0381 0.0722 0.1306 0.1807 0.2651 0.3717	348.15 373.15	$\begin{array}{c} 25.33\\ 50.66\\ 101.33\\ 202.65\\ 303.97\\ 506.62\\ 810.60\\ 1013.25\\ 25.33\\ 50.66\\ 101.33\\ 202.65\\ 303.97\\ 506.62\\ 810.60\\ \end{array}$	0.0181 0.0353 0.0676 0.1236 0.1721 0.2554 0.3604 0.4222 0.0190 0.0369 0.0704 0.1300 0.1816 0.2707 0.3819
		AUXILIARY	TNEODWATT	01	
					WATEDTALC.
One pass adsorpt as source Pressure gauges. a high p approach	ion train. ce of samp e measured Measure pressure a	hod with two vessel Second vessel used le for analysis. with dead weight ments taken both for nd low pressure ibrium. Details in	(1) Pur imp	ND PURITY OF ity 99.9 m urity argo details gi	ole percent; major n, trace of oxygen.
			$\delta x_{N_2} =$ REFERENC 1. Wiel	±0.05; δP, ±1%. ES: be, R. Gao Ind. Eng.	/bar = ±0.5; ddy, V. L.; Heins, <i>Chem</i> . <u>1931</u> , 23,
			L		

A CONTRACTOR OF THE

Water	٧	V	a	t	e	r
-------	---	---	---	---	---	---

١	Nater 33
COMPONENTS:	ORIGINAL MEASUREMENTS:
 Nitrogen; N₂; [7727-37-9] Water; H₂O; [7732-18-5] 	Saddington, A. W.; Kraše, N. W. J. Am. Chem. Soc. <u>1934</u> , 56, 353-61.
VARIABLES: $T/K = 338-503$	PREPARED BY: C. L. Young
P/MPa = 10.1-30.4	
EXPERIMENTAL VALUES:	
T/K P/bar Mole fraction of n in liquid ^x N ₂	
338.15 101.3 0.000700 353.15 101.3 0.000698 398.15 101.3 0.001173 483.15 101.3 0.001297 513.15 101.3 0.001290 353.15 202.7 0.001290 353.15 202.7 0.001290 353.15 202.7 0.001302 423.15 202.7 0.001302 423.15 202.7 0.001302 423.15 202.7 0.001302 423.15 202.7 0.001302 423.15 202.7 0.001302 423.15 202.7 0.001302 423.15 202.7 0.001302 423.15 304.0 0.001834 343.15 304.0 0.001853 408.15 304.0 0.002230 438.15 304.0 0.002783 503.15 304.0 0.004313	
AUXILIAR	Y INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Single pass flow system with five pipet adsorption train. Last pipet used as source of sample for analysis Temperature measured with three chromel-alumel thermocouples. Pressure measured with dead weight piston gauge. Gas bubbled through water for at least three hours. Liquid phase sample allowed to expand and volume of gas measured. Details in source.	(2) No details given.
	ESTIMATED ERROR: $\delta T/K = \pm 1.0; \delta P/bar = \pm 0.5;$ $\delta x_{N_2} = \pm 0.002$ (estimated by compiler).
	REFERENCES :

•

COMPONENTS:	
	ORIGINAL MEASUREMENTS:
(l) Nitrogen; N ₂ ; [7727-37-9] (2) Water; H ₂ O; [7732-18-5]	Suciu, S. Ph. D. thesis, <u>1951</u> Purdue University
VARIABLES: T/K = 397.0 - 535.9	PREPARED BY: H. L. Clever
Total P/kPa = 10,440 EXPERIMENTAL VALUES:	· · · · · · · · · · · · · · · · · · ·
Temperature Pressure Nit: t/ºF T/K psig ¹ Solu	rogen Vapor ubility Composition m ³ (STP) g ⁻¹ c _{H2O} /mol dm ⁻³
303 423.7 392 473.15	1.05 0.16 1.35 0.30 2.18 0.98 2.50 2.67
in the thesis by the compiler. own data plus the values from Sa J. Am. Chem. Soc. <u>1934</u> , 56, 353 C. E.; Minnich, B. H. Battelle	large scale graphs (Fig 9 and 10) The curves were drawn using Suciu's addington, A. W.; Krase, N. W. , and from Pray, H. A. H.; Schweickert Memorial Institute, BMI-T-25, <u>1950</u> Department of Mechanical Engineering
AUXILIARY METHOD/APPARATUS/PROCEDURE: The absorption apparatus was a stain- less steel high pressure bomb. It consisted of three chambers arranged in line axially, and connected by valve openings for control. There was a vapor chamber, a two phase chamber, and a liquid chamber. The entire bomb with valves was kept at the temperature of the measurement. The system was inside a 1½ inch aluminum cover.	INFORMATION SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Purchased in standard steel gas bottles usually pressurized at 2100 psig. (2) Water. No information given.

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Pray, H. A.; Schweichert, C. E.; Minnich, B. H.
(2) Water; H ₂ O; [7732-18-5]	Ind. Eng. Chem. <u>1952</u> , 44, 1146-51.
VARIABLES:	PREPARED BY:
T/K = 533-589	C. L. Young
P/MPa = 1.03-3.45	c. I. Toung
EXPERIMENTAL VALUES:	
10 ³ Mole fraction of T/K P/bar in water, 10 ³ x _{N2}	nitrogen
533.1 10.34 0.31 34.47 0.89	
588.7 10.34 0.39 20.68 1.11	
34.47 1.66	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Rocking equilibrium cell of 3 & capacity; pressure measured with dead	
weight gauge and temperature measured	
using chromel-alumel thermogouple	
using chromel-alumel thermocouple. Cell contents equilibrated and liquid	
using chromel-alumel thermocouple.	
using chromel-alumel thermocouple. Cell contents equilibrated and liquid sample removed. The amount of dis-	
using chromel-alumel thermocouple. Cell contents equilibrated and liquid sample removed. The amount of dis-	
using chromel-alumel thermocouple. Cell contents equilibrated and liquid sample removed. The amount of dis-	No details given.
using chromel-alumel thermocouple. Cell contents equilibrated and liquid sample removed. The amount of dis-	No details given. ESTIMATED ERROR: &T/K = ±1; &P/bar = ±1;
using chromel-alumel thermocouple. Cell contents equilibrated and liquid sample removed. The amount of dis-	No details given. ESTIMATED ERROR:
using chromel-alumel thermocouple. Cell contents equilibrated and liquid sample removed. The amount of dis-	No details given. ESTIMATED ERROR: &T/K = ±1; &P/bar = ±1;
using chromel-alumel thermocouple. Cell contents equilibrated and liquid sample removed. The amount of dis-	No details given. ESTIMATED ERROR: $\delta T/K = \pm 1; \delta P/bar = \pm 1;$ $\delta x_{N_2} = \pm 1-5$ %.
using chromel-alumel thermocouple. Cell contents equilibrated and liquid sample removed. The amount of dis-	No details given. ESTIMATED ERROR: $\delta T/K = \pm 1; \delta P/bar = \pm 1;$ $\delta x_{N_2} = \pm 1-5$ %.
using chromel-alumel thermocouple. Cell contents equilibrated and liquid sample removed. The amount of dis-	No details given. ESTIMATED ERROR: $\delta T/K = \pm 1; \delta P/bar = \pm 1;$ $\delta x_{N_2} = \pm 1-5$ %.
using chromel-alumel thermocouple. Cell contents equilibrated and liquid sample removed. The amount of dis-	No details given. ESTIMATED ERROR: $\delta T/K = \pm 1; \delta P/bar = \pm 1;$ $\delta x_{N_2} = \pm 1-5$ %.

COMPONENTS:		<u></u> <u></u>		ORIGINAL	MEASUREME	NTS:	···_···
(1) Nitrogen; N ₂ ; [7727-37-9]			McKee,	O. L. J.	r.		
(2) Water; H ₂ O; [7732-18-5]			Ph. D. thesis, <u>1953</u> Purdue University				
VARIABLES: T/K = 273-295				PREPARED	BY:		
Total $P/kPa = 3450 - 20,680$				н. 1	L. Cleve	r	
EXPERIMENTAL VALU	ES:						
Total	Temp	erature		trogen ubility	Tempe	erature	Nitrogen Solubility
P/lb ir	re n ^{−2} t/°F	т/к	S/cm ³	(STP) g	·l t∕°F	Т/К	$S/cm^3(STP) g^{-1}$
500	32	273.15		.71 .76	72	295.4	0.53 0.76
1000	32	273.15		.41 .43	71	294.8	0.99 1.38
1500	32	273.15		.00 .05	71	294.8	1.43 1.37
2000	32	273.15		.47 .53	71	294.8	1.77 1.76
3000	32	273.15		.51 .53	70	294.3	2.42 2.37
			5		71	294.8	2.44
	e directio		<u> </u>	DICC.			
		AU	XILIARY	INFORMATI	ON		
METHOD /APPARATUS /	PROCEDURE:			SOURCE A	ND PURITY	OF MATERI	ALS:
The apparatus	of Zoss (1) modif	ied	(1) Nit	rogen. 1	No infor	mation given.
to improve the at 32 °F, and	e temperat	ure cont	rol				Boiled three
of the liquid	and vapor	phases.		not	rs prion	to use	•
1							
					D ERROR: C ility Ma		ed by author:
Total Pressure				0	.8	16.3 % 3.5	
P/lb in ⁻² P/	atm	P/kPa		3	.5	2.0	
1	4.0	3450 6895		REFERENC	ES: s, L. M.		
	2.1	10340 13790		Ph.	D. thes due Univ	sis, 195	2
	94.1	20680					
)							
				L			

;

*

	VVC		341
COMPONENTS:		ORIGINAL MEASUREMENTS:	
(1) Nitrogen; N ₂ ; [7727-37-9]		Eichelberger, W. C.	
(2) Water; H ₂ O; [7732-18-5]		Ind. Eng. Chem. <u>1955</u> , 47, 2223-8.	
		,	
VARIABLES:	<u> </u>	PREPARED BY:	
T/K = 338 P/MPa = 7.1-20.3		R. Battino	
EXPERIMENTAL VALUES:	<u></u>	L.,	
P _N /psig 2	PN ^a /MPa	a Solubility ^b	
1010	7.063	0.68	
1370	9.545	0.91	
1475 2230	10.27 15.47	0.97 1.39	
2230	19.47	1.69	
2930	20.30	1.76	
b Solubility in units of m	nl N. (Si	L pressure of nitrogen (absolute). (P) per ml water at 65°C (338.2 K) on-ideality of gas at pressure of	-
	AUXILIARY	INFORMATION	ļ
METHOD/APPARATUS/PROCEDURE:		SOURCE AND PURITY OF MATERIALS:	
A pressure vessel is charged u	ip to	(1) Tank.	
pressure with gas and liquid a rocked for several hours. Aft equilibration a sample is remo into a gas buret where the liq and gas volumes are measured a atmospheric pressure.	ind er oved guid	(2) Distilled.	
			ł
		ESTIMATED ERROR:	
		$\delta T/K = \pm 0.1$ $\delta Solubility/Solubility = \pm 0.03,$ compiler's estimate.	
		REFERENCES:	

2/1

COMPONENTS:	
	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ;[7727-37-9]	Smith, N. O.; Kelemen, S.; Nagy, B.
(2) Water; H ₂ O;[7732-18-5]	Geochim. Cosmochim. Acta <u>1962</u> , 26, 921-6.
VARIABLES:	
T/K = 303	PREPARED BY: C. L. Young
P/MPa = 1.1-5.9	
EXPERIMENTAL VALUES:	
l0 ³ Mole fraction of T/K P/bar in liquid, 10 ³ x _{N2}	nitrogen
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	
Rocking equilibrium cell. Pressure measured with a Bourdon pressure gauge. Cell charged with boiled water; gas admitted to known pres- sure. Cell contents allowed to equilibrate. Final pressure measured and used to calculate amount of gas dissolved. Details in ref. 1.	SOURCE AND PURITY OF MATERIALS: (1) Purity 99.6 mole per cent. (2) Degassed.

***	3161 3
COMPONENTS:	ORIGINAL MEASUREMENTS:
 Nitrogen; N₂; [7727-37-9] Water; H₂O; [7732-18-5] 	O'Sullivan, T. D.; Smith, N. O. Geochim. Cosmochim. Acta <u>1966</u> , 30, 617-9.
VARIABLES:	PREPARED BY:
T/K = 325 P/MPa = 10.1-60.8	C. L. Young
EXPERIMENTAL VALUES:	
10 ³ Mole fraction of T/K P/bar in liquid 10 ³ x N ₂	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	INFORMATION
METHOD /APPARATUS/PROCEDURE: Garge steel autoclave (~ 4.5 l) cell. Pressure measured with Bourdon gauge. Temperature measured with iron- constantan thermocouple. Cell charged with liquid, compressed gas added. After equilibrium attained, samples removed and analysed using rolumetric techniques. Details in source.	SOURCE AND PURITY OF MATERIALS: (1) Purity 99.90 mole per cent. (2) Distilled and de-ionised.
	ESTIMATED ERROR: $\delta T/K = \pm 0.05$; $\delta P/bar = \pm 1$; $\delta x_{N_2} = \pm 10^{-5}$ (estimated by compiler). REFERENCES:

COMPONENTS	3:	ORIGINAL MEASUREMENTS:
(1) Nit	trogen; N ₂ ; [7727-37-9]	O'Sullivan, T. D.; Smith, N. O.
(1) N1	10gen; N ₂ , 17727 57 51	J. Phys. Chem. 1970, 74, 1460-6.
(2) 11-	ter; H ₂ O; [7732-18-5]	(Correction in J. Phys. Chem. 1970,
(2) Wat	er; H ₂ O; L//32-18-5]	74, 4612.)
VARIABLES	•	PREPARED BY:
	T/K = 324 - 398	
	P/MPa = 10.1-61.6	C. L. Young
EVDEDTMEN'	TAL VALUES:	
EAI BRINDA.	10^3 Mole fraction of	nitrogen
т/К	P/har in liquid	
	$\frac{10^{3} x_{N_2}}{10^{3}}$	
324.65	101.3 0.799	
	202.6 1.454 304.0 2.017	
	405.3 2.49	
	506.6 2.92	
375.65	607.9 3.35 102.3 0.777	、
	203.7 1.447	
	306.0 2.005	
	408.3 2.52 509.7 2.98	
	612.0 3.37	
398.15	104.4 0.808 206.7 1.492	
	206.7 1.492 309.0 2.047	
	410.4 2.57	
	513.7 3.06 616.1 3.51	
	5.51 	
	AUXILIARY	INFORMATION
METHOD / AF	PPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS;
	•	(1) Matheson Co. sample, purity
Pressure	e measured with Bourdon gauge.	99.996 mole per cent.
	cure measured with iron-	(2) Distilled and do ississed bir
	an thermocouple. Cell with liquid, compressed gas	(2) Distilled and de-ionised, air removed.
added.	After equilibrium obtained,	
	removed and analysed using ic techniques. Details in	
ref. 1.	To cominguos. Detaits in	
		ESTIMATED ERROR:
		$\delta T/K = \pm 0.5; \delta P/bar = \pm 0.05\%;$
		$\delta x_{\rm N_2} = \pm 0.4\%.$
		REFERENCES :
		1. O'Sullivan, T. D.; Smith, N.O.
		Geochem. Cosmochim. Acta <u>1966</u> , 30, 617-9.
		JU, 01/-J.
		<u> </u>

COMPONENTS:	ORIGINAL MEASUREMENTS:
 (1) Nitrogen; N₂; [7727-37-9] (2) Magnesium Sulfate; MgSO₄; [7487-88-9] (3) Water; H₂O; [7732-18-5] 	Smith, N. O.; Kelemen, S.; Nagy, B. Geochim. Cosmochim. Acta <u>1962</u> , 26, 921-6.
VARIABLES: T/K = 303 P/MPa = 1.5-7.0 Concentration	PREPARED BY: C. L. Young
EXPERIMENTAL VALUES:	
10 T/K Conc./10 ³ mol m ⁻³ P/bar	⁴ Mole fraction of nitrogen in liquid, 10 ⁴ x _{N2}
303.15 1.25 15.17 26.54 40.89 48.95	0.65 1.34 2.23 3.11
63.09 2.49 16.89 45.51 59.78 69.84	3.51 0.41 1.25 1.70 2.28
AUXILI	ARY INFORMATION
METHOD /APPARATUS/PROCEDURE: Rocking equilibrium cell. Pressur measured with a Bourdon pressure gauge. Cell charged with salt sol tion; gas admitted to known pressu Cell contents allowed to equilibrat Final pressure measured and used to calculate amount of gas dissolved. Details in ref. 1.	lu- (2) Fisher Scientific Certified ure. Chemical. te. 5 (3) Degassed.
	}

COMBONENTS .	ODICINAL ACTIONS
COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Nitrogen; N₂; [7727-37-9] (2) Calcium Chloride: CaCl₂; [10043-53-4]</pre>	Smith, N. O.; Kelemen, S.; Nagy, B. Geochim. Cosmochim. Acta <u>1962</u> , 26, 921-6.
(3) Water; H ₂ O; [7732-18-5]	
VARIABLES: T/K = 303 P/MPa = 1.2-7.3 Concentration	PREPARED BY: C. L. Young
EXPERIMENTAL VALUES:	
T/K Conc./10 ³ mol m ⁻³ P/k	10 ⁴ Mole fraction of nitrogen par in liquid phase, 10 ⁴ ²⁰ N ₂
303.15 0.50 12. 24. 34. 45. 54.	6 1.82 5 2.86 .8 3.84 1 4.73
60 1.75 14 26 38 48 55	8 0.56 9 1.46 .3 2.13 .3 2.44 .8 3.10
64 3.50 29 44 58 66	2 0.38 9 0.93 3 1.37 8 1.78 4 2.38
76. 5.60 26. 34. 54. 72.	2 0.32 1 0.52 0 0.90
AUXIL	ARY INFORMATION
METHOD /APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Rocking equilibrium cell. Pressu	re (1) Purity 99.6 mole per cent.
measured with a Bourdon pressure gauge. Cell charged with salt so tion; gas admitted to known pres-	
sure. Cell contents allowed to equilibrate. Final pressure measured and used to calculate amount of gas dissolved. Details in ref. 1.	(3) Degassed
	ESTIMATED ERROR:
	$\delta T/K = \pm 1.0; \delta P/bar \simeq \pm 0.3; \delta x_{N_2} =$
	0.2×10^{-4} (estimated by compiler).
	REFERENCES:
	1. Duffy, J. R.; Smith, N. O.;
	Nagy, B. Geochim. Cosmochim. Acta <u>1961</u> , 24, 23-31.

COMPONENTS :	ORIGINAL MEASUREMENTS:	
(1) Nitrogen; N ₂ ; [7727-37-9]		
<pre>(1) Nitrogen; N₂; [7727-37-3] (2) Sodium Sulfate; Na₂SO₄; [7757-82-6]</pre>	Smith, N. O.; Kelemen, S.; Nagy, B. Geochim. Cosmochim. Acta <u>1962</u> , 26, 921-6.	
(3) Water; H ₂ O; [7732-18-5]		
VARIABLES:	PREPARED BY:	
T/K = 303 P/MPa = 1.3-7.0 Concentration	C. L. Young	
EXPERIMENTAL VALUES:		
10 ⁴ T/K Conc./10 ³ mol m ⁻³ <i>P</i> /bar	Mole fraction of nitrogen in liquid, 10 ⁴ ^x _{N2}	
303.15 0.50 12.6 24.8 42.1 54.5	0.79 1.78 3.24 3.88	
1.25 15.5 27.6 47.2	0.58 1.23 2.01	
60.3 2.10 16.5 30.7 45.5	2.99 0.38 0.84 1.39	
57.4 69.8	2.13 3.18	
AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
Rocking equilibrium cell. Pressure	(1) Purity 99.6 mole per cent.	
measured with a Bourdon pressure gauge. Cell charged with salt solution; gas admitted to known pressure. Cell contents allowed to	(2) Fisher Scientific N.F. grade chemical.	
equilibrate. Final pressure measu- red and used to calculate amount of gas dissolved. Details in ref. 1.	(3) Degassed.	
	ESTIMATED ERROR: $\delta T/K = \pm 1.0; \delta P/bar \simeq \pm 0.3; \delta x_{N_2} =$	
	$\pm 0.2 \times 10^{-4}$ (estimated by compiler).	
	REFERENCES:	
	 Duffy, J. R.; Smith, N. O.; Nagy, B. Geochim. Cosmochim. Acta <u>1961</u>, 24, 23-31. 	
	AUUU <u>1701</u> , 24, 23-31.	

,

COMPONENTS:	ORIGINAL MEASUREMENTS:			
(1) Nitrogen N - [7707, 27, 0]	Smith, N. O.; Kelemen, S.; Nagy, B.			
<pre>(1) Nitrogen; N₂; [7727-37-9] (2) Sodium Chloride; NaCl; [7647-14-5]</pre>	Geochim. Cosmochim. Acta <u>1962</u> , 26, 921-6.			
(3) Water; H ₂ O; [7732-18-5]				
VARIABLES:	PREPARED BY:			
T/K = 303 P/MPa = 1.2-7.1 Concentration	C. L. Young			
EXPERIMENTAL VALUES:				
T/K Conc./10 ³ mol m ⁻³ P/ba	l0 ⁴ Mole fraction of nitrogen ar in liquid phase, 10 ⁴ x _{N2}			
303.15 1.00 12.4 23.8 35.2 45.9	1.74 2.2.56 3.70			
55.0 303.15 2.70 14. 27.3 38. 51.	2 5.50 L 0.57 2 1.29 3 2.02 7 2.81			
61.4 72.6 303.15 5.47 16.9 31.1 44. 56.9 71.7	5 4.14 9 0.32 5 0.88 1.39 5 1.86			
AUXILIARY INFORMATION				
METHOD / APPARATUS / PROCEDURE: Rocking equilibrium cell. Pressure	SOURCE AND PURITY OF MATERIALS: (1) Purity 99.6 mole per cent.			
measured with a Bourdon pressure gauge. Cell charged with salt solu- tion; gas admitted to known pres- sure. Cell contents allowed to	(2) Fisher Scientific Certified Chemical.			
equilibrate. Final pressure measured and used to calculate amount of gas dissolved. Details in ref. 1.	(3) Degassed.			
	ESTIMATED ERROR:			
	$\delta T/K = \pm 1.0; \delta P/bar \simeq \pm 0.3; \delta x_{N_2} = \pm 0.2 \times 10^{-4}$ (estimated by compiler).			
	REFERENCES:			
	 Duffy, J. R.; Smith, N. O.; Nagy, B. Geochim. Cosmochim. Acta <u>1961</u>, 24,23-31. 			

	Salt Solution	is (Aqueous)	34
:	<u></u>	ORIGINAL MEASUREMENTS:	
ium Chloride; NaCl; 17-14-5]		O'Sullivan, T. D.; Smith, N. O. Geochim. Cosmochim. Acta <u>1966</u> , 30, 617-9.	,
T/K - 325-376 P/MPa = 10.1-61.2 Concentration		C. L. Young	
AL VALUES:			
Conc./10 ³ mol m ⁻³	1 P/bar	0 ⁴ Mole fraction of nitrogen in liquid, 10 ⁴ x _{N2}	
1.0	101.3 202.6 304.0 405.3 506.6 607.9	6.00 10.9 15.2 19.0 22.6 25.9	
1.0	102.3 203.7 306.0 408.3 509.7 612.0	6.10 11.3 15.6 19.5 23.0 26.6	
		ΤΝΕΩΡΜΑΤΤΩΝ	
PARATUS / PROCEDURE :			
METHOD /APPARATUS/PROCEDURE: Large steel autoclave (~ 4.5 l) cell. Pressure measured with Bourdon gauge. Temperature measured with iron- constantan thermocouple. Cell charged with liquid, compressed gas added. After equilibrium attained, samples removed and analysed using volumetric techniques. Details in source.		 (1) Purity 99.90 mole per cent. (2) Baker analyzed reagent grade, dried at 388 K. (3) Distilled and de-ionized. 	
		ESTIMATED ERROR: $\delta T/K = \pm 0.05; \delta P/bar = \pm 1; \delta x_{N_2} = \pm 10^{-5}$ (estimated by compiler). REFERENCES:	
	<pre>cogen; N₂; [7727-37- ium Chloride; NaCl; i7-14-5] er; H₂O; [7732-18-5] T/K - 325-376 P/MPa = 10.1-61.2 Concentration AL VALUES: Conc./10³ mol m⁻³ 1.0 1.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2</pre>	<pre>Fogen; N₂; [7727-37-9] Lum Chloride; NaCl; H7-14-5] ar; H₂O; [7732-18-5] T/K - 325-376 P/MPa = 10.1-61.2 Concentration AL VALUES: Conc./10³ mol m⁻³ P/bar 1.0 101.3 202.6 304.0 405.3 506.6 607.9 1.0 102.3 203.7 306.0 408.3 509.7 612.0 AUXILIARY PARATUS/PROCEDURE: seel autoclave ($\sim 4.5 \ l$) cell. measured with Bourdon gauge. ure measured with iron- an thermocouple. Cell with liquid, compressed gas After equilibrium attained, removed and analysed using</pre>	cogen; N ₂ ; [7727-37-9] O'Sullivan, T. D.; Smith, N. O. ium Chloride; NaCl; Geochim. Cosmochim. Asia 1966, 30, 617-9. ir; H ₂ O; [7732-18-5] FREPARED BY: T/K - 325-376 PREPARED BY: COncentration C. L. Young AL VALUES: 10 ⁶ Mole fraction of nitrogen in liquid, 10 ⁹ π_{N_2} 1.0 101.3 1.0 101.3 202.6 10.9 304.0 15.2 405.3 19.0 506.6 22.6 1.0 102.3 617.9 25.9 1.0 102.3 612.0 26.6 203.7 11.3 306.0 15.5 408.3 19.5 519.7 23.0 612.0 26.6 202.7 23.0 612.0 26.6 212.0 26.6 212.0 26.6 212.0 26.6 212.0 26.6 212.0 26.6 212.0 26.6 212.0 26.6 212.0<

CONDONENTS	OPTOTNAL NELOUPENENDO
COMPONENTS:	ORIGINAL MEASUREMENTS:
 Nitrogen; N₂; [7727-37-9] Sodium Chloride; NaCl; [7647-14-5] Water; H₂0; [7732-18-5] 	O'Sullivan, T. D.; Smith, N. O. J. Phys. Chem. <u>1970</u> , 74, 1460-6. (CorrnJ. Phys. Chem. <u>1970</u> , 74, 4612)
VARIABLES:	PREPARED BY:
T/K = 325-398 P/MPa = 10.1-61.2 Concentration	C. L. Young
EXPERIMENTAL VALUES:	
T/K Conc./10 ³ mol m ⁻³ P/	10 ³ Mole fraction of nitrogen bar in liquid, 10 ³ x _{N2}
20 30 40	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
60 375.65 20 30 40	7.9 2.53 1.3 0.603 3.7 1.113 6.0 1.538 8.3 1.920 9.7 2.252
61 398.15 20 30 41	2.0 2.60 4.4 0.632 6.7 1.102 9.0 1.533 0.4 1.883
61 324.65 4.00 20 30 40 50	3.7 2.231 6.1 2.55 2.6 0.500 4.0 0.700 5.3 0.878 6.6 1.034 7.9 1.179 (cont.)
AUXILIA	Y INFORMATION
METHOD / APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS;
Large steel autoclave (\sim 4.5 $\&$) cel Pressure measured with Bourdon gauge	1. (1) Matheson Co. sample; purity
Temperature measured with iron- constantan thermocouple. Cell charged with liquid, compressed gas	(2) Baker analyzed reagent dried at 388 K.
added. After equilibrium attained samples removed and analysed using volumetric techniques. Details in ref. 1.	(3) Distilled and de-ionized air removed.
	ESTIMATED ERROR: $\delta T/K = \pm 0.5; \delta P/bar = \pm 0.05; \delta x_{N_2} = \pm 0.4\%$
	IN 2
	REFERENCES: 1. O'Sullivan, T. D.; Smith, N. O. Geochim. Cosmochim. Acta <u>1966</u> , 30, 617-9.

COMPONENTS:

(1) Nitrogen; N₂; [7727-37-9]
(2) Sodium Chloride, NaCl;
 [7647-14-5]

ORIGINAL MEASUREMENTS:

O'Sullivan, T. D.; Smith, N. O. J. Phys. Chem. <u>1970</u>, 74, 1460 - 6. (Corrn.-J. Phys. Chem. <u>1970</u>, 74, 4612)

(3) Water; H₂O; [7732-18-5]

EXPERIMENTAL VALUES:

т/к	Conc./10 ³ mol m ⁻³	continued P/bar	10 ⁴ Mole fraction of nitrogen in liquid, 10 ^{4 x} N ₂
375.65	4.000	203.7 306.0 408.3 509.7	0.523 0.731 0.899 1.047
398.15		612.0 206.7 309.0 410.4 513.7 616.1	1.205 0.567 0.740 0.921 1.041 1.227
			ver

COMPONENTS:					ORIGINAL MEASUREMENTS:				
(1) Nitrogen; N ₂ ; [7727-37-9]					Enns, T.; Scholander, P. F.; Bradstreet, E. D.				
(2) Detergent					J. Phys. Chem. <u>1</u> 965, 69; 389-91.				
(3) Water; H ₂ O; [7732-18-5]						<u> </u>	.,		
VARIA					PREPARED BY:				
	= 298 Pa = 0-10				R. Bat	tino			
EXPERI	IMENTAL VAL	LUES:	<u>ь</u>	h		ъ	h		
	t/°C	т ^а /к	$P^{b} = 0$ (0 MPa)		= 34 atm 45MPa)	P ^b = 68 atm (6.8911Pa)	$P^{b} = 102 \text{ atm}$ (10.34MPa)		
	25 25 25	298.15 298.15 298.15	733 705 732		er 773 744 769	802 777 806.5	843 811 844		
	25	298.15	712	Deter	gent 742	774	811		
		lated by c							
	^b Hydro	static pre	essure.						
		·	AU	XILIARY	INFORMATION				
METHO	D/APPARATU	S/PROCEDURE:			SOURCE AND PURITY OF MATERIALS:				
		s-extracte		the	(1) No details given.				
expe init at c equi to l The a sy atta meas of t	eriment. ial pres controlle librium h durin solution ringe wh hched to sured by the press	Nitrogen sure was d d temperat vessel was g the nitr was then ich had te it. Press a null poi ure develo Details	at the de lissolved cure. The s shaken f cogen upta transfer flon tubi sure was t nt measure oped insid	esired in it for 0.5 ake. red to ing then cement de the	that	ce tension equ of water. tails given.	ual to 30%		
		the origi			ESTIMATED ER	ROR:			
					REFERENCES :				

·······	·····			· · · · · · · · · · · · · · · · · · ·		303		
COMPONENTS	5:			ORIGINAL MEASUREMENTS:				
(2)Охуд	en; 02;	C ₆ H ₁₂ ; [7]	Khodeeva, S. M. Tr. Naucho-Issledov. Proekt. Inst. Azotn. Prod. Prom. Org. Sin. <u>1971</u> , 12, 30-39.				
-	: = 373-433 a = 4-11			PREPARED BY:	. L. Young			
EXPERIMEN	TAL VALUES:			Total Mole fraction of gases	Volume fraction of O_2 in			
т/к	P/atm	P/MPa	cm^3/g^{-1}	in liquid	gas phase	of O2 in dissolved gas		
373.15 403.15	41.3 44.6 47.5 54.2 55.0 58.1 59.8 65.9 67.3 72.4 73.5 78.7 82.8 91.3 42.1 46.8 51.8 51.8 51.8 51.8 51.3 65.6 89.0 96.8 104.0	$\begin{array}{c} 4.18\\ 4.52\\ 4.81\\ 5.49\\ 5.57\\ 5.89\\ 6.06\\ 6.68\\ 6.82\\ 7.34\\ 7.45\\ 7.97\\ 8.39\\ 9.25\\ 4.27\\ 4.74\\ 5.25\\ 5.79\\ 6.21\\ 6.65\\ 9.02\\ 9.81\\ 10.54 \end{array}$	12.1 11.9 13.3 14.8 15.3 15.9 16.8 18.9 19.4 20.3 21.4 22.5 24.2 27.0 11.8 13.5 15.0 16.2 17.9 19.3 27.3 30.7 33.2	0.043 0.043 0.048 0.053 0.054 0.057 0.060 0.066 0.068 0.071 0.075 0.078 0.083 0.092 0.042 0.042 0.042 0.042 0.048 0.053 0.058 0.058 0.063 0.068 0.093 0.103 0.111	0.082 0.082	0.118 - 0.088 - 0.092 0.113 0.111 0.125 0.135 0.135 0.133 0.127 - 0.118 0.113 0.116 0.121 0.127 0.130 0.115 0.123		
			AUXILIARY	INFORMATION	10110,11.9	pago		
METHOD /ADI		EDUDE -			P. MATERIAL C.			
METHOD/APPARATUS/PROCEDURE: Volumetric method in which saturated liquid sample was stripped of gas under reduced pressure. Amount of liquid in sample determined gravi- metrically. Amount of dissolved gas determined by measuring the volume at known temperature and pressure. Some details in source and ref. (1).				<pre>SOURCE AND PURITY OF MATERIALS: (1) Specially purified sample, less than 0.005 volume per cent impurity. (2) No details given. (3) 0.5% of α-naphthylamine added. ESTIMATED ERROR:</pre>				
				<pre>δα/α = ±1%. REFERENCES: 1. Khodeeva, S. M.; Dymova, R. P. Tr. Naucho-Issledov. Proekt. Inst Azotn. Prom. Prod. Org. Sin. 1971, 12, 39.</pre>				

COMPONE	NTS:			ORIGINAL MEASUREMENTS:			
(l) Nitr	ogen; N ₂	; [7727-3	7-9]	Khodeeva, S. M.			
(2) Oxva	en: 0 ₂ :	[7782-44-	71		Issledov. Pro	ekt. Inst.	
		C ₆ H ₁₂ ; []			. Prom. Org.		
(3) CYCI	onexane,	C6127 [.		1971, 12, 3	-		
				<u>1971</u> , 12, 3			
EXPERIM	ENTAL VAL	UES:	contir				
			CONCIL	ideu			
				Total	Volume	Volume	
т/к	P/atm	<i>P/</i> MPa	(<u>)</u> .	ole fraction of gases		fraction of O2 in	
1/1	17acm	rymra	cm ³ /g ⁻¹	in	gas	dissolved	
				liquid	phase	gas	
					_		
433.15	38.7	3.92	12.2	0.044	0.082	0.122	
	45.5	4.61	14.2	0.050	0.082	-	
	49.4	5.01	16.0	0.056	0.082	0.117	
	51.8 60.7	5.25 6.15	17.1 20.4	0.060 0.071	0.082 0.082	0.119 0.122	
	68.0	6.89	22.5	0.078	0.082	0.121	
	76.3	7.73	25.5	0.088	0.082	0.120	
	82.3	8.34	28.2	0.096	0.082	0.123	
272 15	87.6	8.88 4.61	30.3 12.6	0.102	0.082 0.200	0.125	
373.15	45.5 43.5	4.61	12.4	0.045 0.045	0.200	-	
	46.5	4.71	13.5	0.048	0.200	-	
	54.3	5.50	16.2	0.057	0.200	0.259	
	69.2	7.01	21.2	0.074	0.200	0.248	
	74.6	7.56	23.2	0.080	0.200	0.265	
	80.0 87.1	8.11 8.83	25.3 27.3	0.087 0.093	0.200 0.200	0.264 0.256	
	94.6	9.59	29.1	0.099	0.200	0.266	
403.15	44.6	4.52	13.0	0.046	0.200	0.266	
	48.4	4.90	14.7	0.052	0.200	0.269	
	54.7	5.54	16.6	0.059	0.200	0.257	
	61.5 63.4	6.23 6.42	18.9 20.2	0.067 0.071	0.200 0.200	0.254 0.273	
	66.8	6.77	21.2	0.074	0.200	-	
	73.1	7.41	23.3	0.081	0.200	0.252	
	79.7	8.08	25.3	0.087	0.200	0.249	
	86.9	8.81	28.1	0.096	0.200	0.251	
433.15	93.9 50.3	9.51	30.9 16.4	0.105 0.058	0.200 0.200	0.249 0.246	
-100.10	55.9	5.10 5.66	18.8	0.066	0.200	U.240	
	62.3	6.31	20.9	0.073	0.200	0.248	
	68.2	6.91	22.9	0.079	0.200	0.236	
	73.3	7.43	25.0	0.086	0.200	0.255	
	82.8 88.6	8.39	27.5	0.093	0.200	- 0.245	
	88.6 95.8	8.98 9.71	30.6 33.5	0.103 0.112	0.200 0.200	0.245	
	102.3	10.37	35.3	0.117	0.200	0.246	

,

COMPONENTS:				ORIGINAL M	EASUREMENTS	3:		
(1) Nitr	ogen; N ₂ ;	Brunner, G; Peter, S.; Wenzel, H.						
(2) Meth	ylcyclohexa -87-2]			Chem. Eng. J. <u>1974</u> , 7, 99.				
-	-	[142-82-5]						
P	/K = 453-49 /MPa = 17-3 oncentratic	PREPARED BY: C. L. Young						
EXPERIMENTAL	VALUES:			I <u></u>	<u> </u>			
Mole		liquid pha						
т/к	P/bar	× _{N2}	^х с ₇ н ₁	4 ^x C7 ^H 1	6 ^{<i>y</i>} N2	^{<i>y</i>} c ₇ ^H 14	^{<i>y</i>} C7 ^H 16	
453.15	235	0.371 0.336	0.16 0.32	9 0.33	5 0.885	0.054	0.090 0.061	
	275	0.307 0.454 0.404 0.363	0.50 0.13 0.29 0.46	8 0.40 6 0.30	8 0.869 0 0.869	0.062		
	329	0.747 0.539 0.469	0.06	3 0.19 0 0.23	0 0.757 1 0.862 0 0.881	0,061	0.182	
472.15	168	0.306 0.278 0.249	0.39	9 0.36 3 0.19	8 0.863	0.041 0.073 0.098	0.039	
	201	0.374 0.336 0.297	0.15 0.33 0.51 0.11	4 0.33	0 0.846 9 0.867	0.095	0.081 0.038	
	246	0.558 0.441 0.380	0.28	2 0.27		0.077	0.139 0.083 0.041	
		cont	tinued	l on following page				
<u></u>		AUS	(ILIARY	INFORMATIO	٩			
METHOD/APPAR	ATUS/PROCEDUR	E:		SOURCE AND	PURITY OF	MATERIALS	:	
capacity f	l of about litted with	magnetic	_	<pre>(1) Linde sample; purity 99.98 mole per cent.</pre>				
Bourdon ga measured w	uge. Temp	easured with erature -chromium al Each phase	loy	(2) Fluka sample; purity 99.4 mole per cent.				
sampled, h hexane fro estimated	eptane and zen out; to gravimetrio	methylcyclo otal amount) -	(3) Fluka sample; purity 99.7 mole per cent.				
mined by g		ography; nit		ESTIMATED	ERROR:			
				^{δ x} C ₇ H ₁₄ '	$\delta x C_7 H_{16}$, δ ^y N ₂ ,	.5; δχ _{N2} ; δy _{C7H14} '	
				δ <u>yC₇H₁</u> REFERENCES	= ±0.00			

,

Nitrogen Solubilities Above 200 kPa

COMPONENTS: (1) Nitrogen; N ₂ ; [7727-37-9] (2) Methylcyclohexane; C ₇ H ₁₄ ;				ORIGINAL MEASUREMENTS: Brunner, G.; Peter. S.; Wenzel, H. Chem. Eng. J. <u>1974</u> , 7, 99.				
[108-	87-2]							
(3) Hepta	ne; C7 ^H 16;	[142-82-5]						
EXPERIMENTAL VALUES: continued								
Mole f	raction in 1	liquid phas	se	Mole f	raction	in gas p	hase	
т/к	P/bar	^x _{N2}	^x C7 ^H 1	4 ^x C7 ^H 16	^y _{N2}	^y c7 ^H 14	^y C7 ^H 16	
492.15	129	0.279 0.245 0.221	0.183 0.376 0.575	0.379	0.747 0.760 0.771	0.060 0.113 0.164	0.193 0.127 0.065	
	158	0.384 0.320	0.156 0.339 0.531	0.460 0.341	0.743 0.775 0.797	0.061 0.107	0.196 0.118	
	198	0.559 0.484 0.385	0.111 0.255 0.452	0.330	0.569 0.749 0.799	0.108 0.121 0.145	0.323 0.130 0.056	

						357
COMPONENTS: (1) Nitrogen; N (2) Cyclohexano (3) Cyclohexano (4) Acetic acid	ne; $C_{6}H_{10}$ l; $C_{6}H_{12}O$; [108-94-1]; [108-93-0]	Khoo Tr. P	Nauch-Is	5.M.; Dymova ssled.Proekt	a, R.P. t. <i>Inst</i> .Azotn. n. <u>1971</u> , 12,
VARIABLES:			PREPA	RED BY:		
T/K = 373-44 P/MPa = 3-12 Concentratio	2				C.L. Young	9
EXPERIMENTAL VALUES						
	absorption	Defore 1. CH₃COOH	P/atm	P/MPa	α ⁺ /cm g ⁻³	Mole fraction of nitrogen §
						^x N 2
373.15 0.10	0.225	0.675	35.4 50.9 51.8 55.9 67.1 84.7 88.1 91.9	3.59 5.16 5.25 5.66 6.80 8.58 8.93 9.31	4.7 6.4 6.8 7.2 8.6 10.8 11.1 12.1	0.014 0.020 0.021 0.022 0.026 0.033 0.034 0.037
423.15		,	32.9 37.8 41.2 53.3 58.2 61.5 107.7 113.5 117.2	3.33 3.83 4.17 5.40 5.90 6.23 10.91 11.50 11.88	5.1 5.8 6.3 7.9 8.9 9.3 15.9 16.7 18.9	0.016 0.018 0.019 0.024 0.027 0.029 0.049 0.051 0.058
373.15 0.20	0.52	0.28	36.0 38.2	3.14 3.65 3.87 4.18 4.26 4.59 5.54	3.8 4.3 4.6 4.7 5.1 5.5 6.4	0.014 0.016 0.017 0.018 0.019 0.025 0.024
		AUXILIAR	Y INFORM	ATION		
METHOD/APPARATUS/PR Volumetric metho liquid sample wa under reduced pr liquid in sample weighing and com by gas chromatog dissolved detern the volume at a and pressure. Source and ref.	od in which as strippe cessure. determin position rraphy. A hined by m known tem come detai	h saturated d of gas Amount of ed by determined mount of ga easuring perature	SOURCE (1) Sp th (2) Di GC s (3) Tw fu (4) Ch ESTIM δα REFERI 1. Kh Tr	E AND PUR pecially an 0.00 stilled set sod sed sod emicall $/K = \pm 0$ $/\alpha = \pm 0$ ENCES: odeeva, <i>Nauch</i>	<pre>5 volume pe no impurit tilled drie ium sulfate y pure. R: .5; &P/atm .01. S.M.; Dymo p.Issledov.</pre>	<pre>ample, less r cent impurity y detected by d over freshly = ±0.2;</pre>

(2) Cyclc(3) Cyclc	ogen; N ₂ ; bhexanone bhexanol; Lc acid;	C ₆ H ₁₂ O; [C ₂ H ₄ O ₂ ; [6	[108-94-1] 108-93-0]	ORIGINAL MEASUREMENTS: Khodeeva, S.M.; Dymova, R.P. Tr.NauchIssled.Proekt.Inst.Azotn Prom. Prod. Org. Sin. <u>1971</u> , 12, 18-30.			
т/к	Wt.fr			P/atm	P/MPa	a ⁺ /cm g ⁻³	Mole fraction
		C ₆ H ₁₀ O					of nitrogen § ^x N ₂
373.15	0.20	0.52	0.28	58.6 65.5 68.4	5.94 6.64 6.93	7.3 7.7 8.5	0.027 0.029 0.032
423.15				70.7 31.6 34.6 52.2 54.5 66.6 70.4 78.3	7.16 3.20 3.51 5.29 5.52 6.75 7.13 7.93	8.6 4.7 5.3 7.2 7.5 9.5 9.9 10.7	0.032 0.018 0.020 0.027 0.028 0.035 0.037 0.040
448.15				36.5 38.8 51.7 53.6	3.70 3.93 5.24 5.43	5.7 6.1 7.9 8.3	0.021 0.023 0.029 0.031
373.15	0.10	0.585	0.315	30.1 45.0 48.3 58.5 64.3 67.2 72.2 74.3 80.0	3.05 4.56 4.89 5.93 6.52 6.81 7.32 7.53 8.11	3.8 5.8 6.0 7.2 8.1 8.2 9.0 9.0 10.1	0.014 0.021 0.022 0.026 0.030 0.030 0.033 0.033 0.037
423.15				26.9 29.7 41.2 44.6 53.5 59.0 62.5 66.7 80.2	2.73 3.01 4.17 4.52 5.42 5.98 6.33 6.76 8.13	3.8 4.4 5.8 6.6 7.6 8.4 9.6 9.9 12.2	0.014 0.016 0.021 0.024 0.028 0.031 0.035 0.036 0.045
448.15				84.5 31.9 40.9 47.8 50.0 55.7 59.5 66.7 70.3 80.0 84.5	8.56 3.23 4.14 4.84 5.07 5.64 6.03 6.76 7.12 8.11 8.56	12.5 5.3 7.3 8.1 8.5 9.6 10.1 11.2 11.0 13.5 14.5	0.046 0.019 0.027 0.030 0.031 0.035 0.037 0.041 0.040 0.049 0.053
b	y lg of s	gas, measu solvent. d by compi		3.15 K a	and 101.3	kPa pressur	e dissolved

Mixed Solvents

	35 35		
COMPONENTS:	ORIGINAL MEASUREMENTS:		
(1) Nitrogen; N ₂ ; [7727-37-9]	Khodeeva, S.M.		
(2) Acetic Acid; C ₂ H ₄ O ₂ ; [64-19-7]	Tr. Naucho-Issledov.Proekt.Inst.		
(3) Cyclohexanone; C ₆ H ₁₀ 0; [108-94-1	Azotn. Prom. Prod. Org. Sin. <u>1971</u> 12, 18-30.		
VARIABLES:			
T/K = 348-473 P/MPa = 2-9 Concentration	PREPARED BY: C.L. Young		
EXPERIMENTAL VALUES:			
T/K Wt.per cent of cyclohexanone P/a before absorption	α ⁺ Mole fraction tm P/MPa /cm³g ⁻¹ of nitrogen § [∞] N ₂		
348.15 25 31.			
35. 38. 43. 59. 67. 69. 73. 373.15 25 37. 40. 43. 47. 423.15 25 37. 423.15 25 37. 40. 43. 47. 63. 53. 63. 53. 63. 53. 63. 53. 63. 53. 63. 53. 63. 53. 63. 53. 64. 53. 63. 53. 63. 53. 63. 53. 63. 53. 63. 53. 63. 53. 63. 53. 63. 53. 53. 53. 53. 53. 53. 53. 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
	INFORMATION		
	SOURCE AND PURITY OF MATERIALS:		
METHOD/APPARATUS/PROCEDURE: Volumetric method in which saturated liquid sample was stripped of gas under reduced pressure. Amount of liquid in sample determined by weigh- ing and composition determined by gas chromatography. Amount of dissolved gas determined by measuring the volume at a known temperature and pressure. Some details in source and ref. (1).	 Specially purified sample, less than 0.005 volume per cent impurity. Chemically "pure" Distilled, no impurity detected by GC. 		
	ESTIMATED ERROR:		
	$\delta T/K = \pm 0.5; \ \delta P/atm = \pm 0.2; \\ \delta \alpha/\alpha = \pm 0.01.$		
	REFERENCES :		
	1. Khodeeva, S.M.; Dymova, R.P. Tr. Naucho-Issledov. Proekt. Azotn.Prom.Prod.Org.Sin. <u>1971</u> , 12, 39.		
·····			

Nitrogen Solubilities Above 200 kPa

COM	COMPONENTS:				ORIGINAL MEASUREMENTS:		
(1)	Nitroge	en; N ₂ ; [7727-37-9]		Khodeeva, S.M.			
(2)		Acid; $C_2H_4O_2$; [64-19 exanone; $C_6H_{10}O$; [108		Tr.Naucho-Issledov.Proekt.Inst. Azotn. Prom. Prod. Org. Sin. 1971, 12, 18-30.			
	-					·····	
EXP	PERIMENTA	AL VALUES:					
	T/K	Wt.per cent of cyclohexanone before absorption	P/atm	P/MPa	α ⁺ /cm ³ g ⁻¹	Mole fraction of nitrogen § ^x N ₂	
	423.15		41.2 42.6 44.4 51.8 56.6 60.2 65.5 67.7 75.1	4.17 4.32 4.50 5.25 5.73 6.10 6.64 6.86 7.61	6.5 6.5 6.1 6.5 7.2 7.7 8.7 9.2 9.9 11.2	0.019 0.019 0.018 0.019 0.021 0.023 0.026 0.027 0.029 0.033	
	473.15		79.2 29.5 31.2 52.2 55.1 58.3 69.9 74.6 79.0 86.7	8.02 2.99 3.16 5.29 5.58 5.91 7.08 7.56 8.00 8.78	12.0 4.6 5.2 7.9 8.6 9.5 12.0 12.9 14.1 14.9	0.036 0.014 0.015 0.023 0.026 0.028 0.036 0.038 0.042 0.044	
	373.15	64	28.8 40.7 44.2 48.0 56.3 63.4 67.4 76.6	2.92 4.12 4.48 4.86 5.70 6.42 6.83 7.76	3.7 5.1 5.3 6.0 7.4 8.0 8.6 9.8	0.013 0.018 0.019 0.021 0.026 0.029 0.031 0.035 0.037	
	423.15		81.5 24.3 40.9 43.2 51.9 71.0 74.1 76.4	8.26 2.46 4.14 4.38 5.26 7.19 7.51 7.74	10.4 3.6 5.4 6.0 7.4 9.7 10.1 10.6	0.037 0.013 0.029 0.021 0.026 0.035 0.036 0.038	

+α = Volume of gas, measured at 273.15 K and 101.3 kPa pressure dissolved by lg of solvent.

\$ calculated by compiler.

COMPONENTS:	EVALUATOR:
(1) Nitrogen; N ₂ ; [7727-37-9]	Colin L. Young, School of Chemistry, University of Melbourne,
(2) Methane; CH ₄ ; [74-82-8]	Parkville, Victoria 3052, Australia.
	June 1981

CRITICAL EVALUATION:

This system has been extensively studied but since the critical temperatures of the two components are relatively similar, much of the data fall more naturally into the category of vapor-liquid equilibrium data rather than gas-liquid solubility data.

The data given in the three earliest investigations (1), (2), (3), were of limited accuracy and are rejected. The data of Vellinger and Pons (4) are also rejected because the results were limited to 190 K and were only presented in graphical form. The data of Brandt and Stroud (5) are rejected since they are of fairly low accuracy by recent standards and furthermore the data were only included in the original paper for comparison purposes and are not extensive. Sprow and Prausnitz's data (6) were limited to 97.6 K and will not be considered further.

The data of Miller et al.(7) and of Parrish and Hiza (8) are recommended for the temperature range 90 K to 120 K. The data of Cheung and Wang (9) cover a similar temperature and are classified as tentative since the pressure range is limited and the accuracy less than that of Miller et al.(7) and of Parrish and Hiza (8). The data of Stryjek et al.(10) and Kidnay et al.(11) are classified as recommended for the temperature range 120 K to 183 K. The data of Bloomer and Parent (12), (13) cover the temperature range of approximately 95 to 185 K but are less accurate than the recommended values but still of reasonable accuracy. The investigation was made using a dew point-buttle point apparatus and the results are not the most suitable for solubility evaluation. These data are therefore classified as tentative. The high pressure results of Cines et al. (14) show considerable scatter and differ somewhat from those of Bloomer and Parent (12), (13) and Stryjek et al. (10), hence are classified as doubtful. The data of Chang and Lu (15) are in fair agreement with the results of Stryjek et al. (10) and Bloomer and Parent (12), (13) and the results at $-150^{\circ}F$ and $-240^{\circ}F$ (122 K and 172 K) are classified as tentative.

The data of Fastovsky and Petrovsky (16) are rejected. Their work is mainly concerned with vapor-liquid equilibrium where the mole fraction of the more volatile component (nitrogen) is greater than 0.2. The limited comparison which can be made with the data of Stryjek *et al*. (10) shows that the two sets of data are consistent but the data in reference (16) are less precise.

Similarly the data of Skripka *et al.* (17) are rejected since they are limited in scope consisting mainly of data for which the mole fraction of nitrogen in the liquid phase is greater than 0.2.

References

- McTaggart, H. A.; Edwards, E. Trans. Roy. Soc., Canada III <u>1919</u>, 13, 57.
- Rysakov, M. W.; Teodarovich, V. P.; Kozyreva, O. V. Bull. GIVD 1934 (2), 12.
- 3. Torochesnikova, N. S.; Levius, L. A. Zh. Khim. Prom. 1939, 16, 19.
- 4. Vellinger, E.; Pons, E. Comp. Rend. 1943, 217, 689.

continued on following page

Сомі	PONENTS:	EVALUATOR:					
	Nitrogen; N ₂ ; $[7727-37-9]$ Methane; CH ₄ ; $[74-82-8]$	Colin L. Young, School of Chemistry, University of Melbourne, Parkville, Victoria 3052, Australia.					
		June 1981					
	conti	nued					
Refe	erences (cont.)						
5.	Brandt, L. W.; Stroud, L. In	d. Eng. Chem. <u>1958</u> , 50, 849.					
6.	Sprow, F. B.; Prausnitz, J. M 780.	. Am. Inst. Chem. Engng. J. <u>1966</u> , 12,					
7.	7. Miller, R. C.; Kidnay, A. J.; Hiza, M. J. Am. Inst. Chem. Engng. J. <u>1973</u> , 19, 145.						
8.	Parrish, W. R.; Hiza, M. J. Adv. Cryog. Eng. <u>1973</u> , 19, 300.						
9.	Cheung, H.; Wang, D. I. J. Ind. Eng. Chem. Fundam. <u>1964</u> , 3, 355.						
10.	Stryjek, R.; Chappelear, P. S <u>1974</u> , <i>19</i> , 334.	.; Kobayashi, R. J. Chem. Eng. Data					
11.	Kidnay, A. J.; Miller, R. C.; <i>Cryogenics</i> <u>1975</u> , <i>15</i> , 531.	Parrish, W. R.; Hiza, M. J.					
12.	Bloomer, O. T.; Parent, J. D. <u>1962</u> .	Inst. Gas Technol., Res. Bull. No. 17,					
13.	Bloomer, O. T.; Parent, J. D. (6), 11.	Chem. Eng. Prog. Symp. Ser. <u>1953</u> , 49					
14.	Cines, M. R.; Roach, J. T.; H Chem. Eng. Prog. Symp. Ser						
15.	Chang, S. D.; Lu, B. CY. Che 18.	em. Eng. Prog. Symp. Ser. <u>1967</u> , 63 (81),					
16.	Fastovsky, V. G.; Petrovsky, Y 2317.	<pre>Xu. V. J. Phys. Chem. (USSR) <u>1957</u>, 31,</pre>					
17.		.; Zhadanovich, L. A.; Sirotin, A. G.; v. Prom. <u>1970</u> , 15 (12), 35.					
1							

	·			
COMPONENTS:		ORIGINAL M	EASUREMENTS:	
(1) Nitrogen; N₂;(2) Methane; CH₄;		Bloomer, O.T.; Parent, J.D. D. Chem. Eng. Progr. Symp. Ser. <u>1953</u> , No. 6, 49, 11.		
VARIABLES:	<u></u>	PREPARED B	Y:	
T/K = 9 P/MPa =	91-174 = 0.1-51	С. L. Ус	oung	
EXPERIMENTAL VALUES:		1		
T/K P/bar	Mole fraction of nitrogen in liquid, ^x N ₂	т/к	P/bar	Mole fraction of nitrogen in liquid, x N ₂
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0295 0.02	163.48 166.37 171.76 176.9 177.1 180.40 183.15 186.32 187.01 187.09 122.83 141.37 155.17 163.57 170.39 172.22 174.81 177.96 181.36 183.15 184.26	23.96 26.52 26.34 31.15 36.93 40.47 43.82 47.24 47.24 47.82 47.79 5.87 12.87 20.96 27.53 33.74 35.97 38.56 42.09 45.62 47.22 48.04	0.0611 0.0611 0.0611 0.0611 0.0611 0.0611 0.0611 0.0611 0.0611 0.0611 0.0611 0.0611 0.0611 0.0611 0.1002
153.40 16.95	0.0611			(cont.)
	AUXILIARY	INFORMATION	1	
METHOD/APPARATUS/PR	OCEDURE:	SOURCE AND	PURITY OF M	ATERIALS;
Bubble point-dew p glass equilibrium measured with copp thermocouple. Pr using dead weight Gaseous mixture co dew point and the adding mercury to and bubble points and also determine in pressure-volume data and other det	(2) Pure tiona per c	sample mol ted final	ole per cent, dried. e per cent frac- purity 99.97 mole	
		ESTIMATED		hom - +0.05
		$\delta T/K = \pm \delta x_{N_2} = \pm \delta x_{N_2}$		$bar = \pm 0.07;$
		⁵ N ₂		
		REFERENCES	:	

Nitrogen Solubilities Above 200 kPa

Domer, O.T.; Parent, J.D. em. Eng. Progr. Symp. Ser. <u>1953</u> , No. 6, 49, 11.
Mole fraction of nitrogen K P/bar in liquid, ^x N ₂
N 2
5.08 43.76 0.697 8.71 44.92 0.697 5.99 34.83 0.697 5.99 34.83 0.697 1.73 40.38 0.697 7.48 15.64 0.697 7.48 15.64 0.697 7.48 7.86 0.697 7.48 7.86 0.697 1.42 28.50 0.697 1.42 28.50 0.697 1.42 28.50 0.697 1.42 28.50 0.697 1.42 29.72 0.6972 7.77 40.02 0.8422 5.71 39.67 0.8422 5.71 39.67 0.8422 2.81 35.60 0.8422 2.81 35.60 0.8422 2.81 35.60 0.8422 2.83 31.38 0.8422 2.86 15.20 0.8422 2.86 15.20 0.8422 2.86 15.20 0.8422 2.86 15.20 0.8422 2.89 5.31 0.8422 2.64 7.41 0.8422 2.64 7.41 0.9515 2.33 27.15 0.9515 2.33 27.15 0.9515 2.33 27.15 0.9515 3.96 4.71 0.9515

364

r				365
COMPONENTS:			ORIGINAL MEASUREMENTS:	
(l) Nitro	gen; N ₂ ; [772	7-37-9]	Cines, M. R.; Roa Hogan, J. J.; Ro	oland, C. H.
(2) Metha	ne; CH ₄ ; [74-	82-8]	Chem. Eng. Prog. S	Symp. Ser.
			<u>1953</u> , 49, 1-10.	
VARIABLES:	- 4	<u> </u>	PREPARED BY:	
	T/K = 135-208 P/MPa = 0.1-4		C. L.	. Young
	P/MPa = 0.1-4			-
EXPERIMENTA	L VALUES:		Mole fraction	of nitrogen
т/к	P/psia	P/MPa	in liquid,	in vapor,
			^{<i>x</i>} N ₂	^y _{N₂}
135.4 .	20	0.138	0.079	0.748
	25	0.172	0.111 0.144	0.791
	30 35	0.207 0.241	0.144	0.822 0.848
	40	0.276	0.221	0.868
	50	0.345	0.312	0.899
	60 70	0.414 0.483	0.427 0.560	0.922 0.940
	80	0.552	0.682	0.954
	90	0.621	0.793	0.968
146.5	100 25	0.689 0.172	0.901 0.032	0.985 0.427
T40.0	30	0.207	0.047	0.524
	35	0.241	0.063	0.598
	40	0.276 0.345	0.080 0.115	0.649 0.721
	50 60	0.414	0.152	0.768
	70	0.483	0.190	0.801
	80	0.552 0.621	0.234 0.283	0.829 0.851
	90 100	0.689	0.338	0.870
	125	0.862	0.486	0.907
	150 175	1.03 1.21	0.638 0.780	0.933 0.955
	175	.	(con	
_		AUXILIARY	INFORMATION	
METHOD /APPAF	RATUS/PROCEDURE:		SOURCE AND PURITY OF MATH	ERIALS:
Vapor rec	irculating appa	aratus.	(1) Mass spectrometr	ic analysis re-
	are measured with		vealed only 0.03	
-			-	more ber court
-	d pressure with		oxygen.	
	Liquid and gase		(2) Purified natural	-
taken and	l analysed by ga	as density	per cent methane	- 1
balance.	Details in so	ource.	cent nitrogen an	d 0.09 mole per
			cent ethane.	
			ESTIMATED ERROR:	
•			$\delta T/K = \pm 0.2; \delta P/MP.$	
			$\delta x_{N_2}, \ \delta y_{N_2} = \pm 0.009$	or less.
			REFERENCES :	
·····				

COMPONENTS	:		ORIGINAL MEASUREN	1ents:
(l) Nitroge	n; N ₂ ; [772	27-37-9]	Cines, M. R.; Ro Hogan, J. J.; 1	•
(2) Methane	; CH4; [74-	-82-8]	Chem. Eng. Prog. <u>1953</u> , 49, 1-10	
EXPERIMENT	AL VALUES:			
T/K	<i>P</i> /psia	P/MPa	Mole fraction in liquid	n of nitrogen in vapor,
·			^{<i>x</i>} N ₂	^y _{N₂}
146.5	200	1,38	0.902	0.977
157.6	50 60	0.345 0.414	0.036 0.056	0.324 0.445
	70	0.483	0.077	0.529
	80	0.552	0.099	0.586 0.630
	90 100	0.621 0.689	0.121 0.144	0.668
	125	0,862	0.203	0.737
	150	1.03	0.272	0.782
	175 200	1.21 1.38	0.348 0.432	0.818 0.846
	250	1.72	0.600	0.894
	300	2.07	0.763	0.934 0.969
	350 400	2.41 2.76	0.893 0.989	0.997
161.6	50	0.345	0.014	0.163
	60	0.414	0.031	0.295
	70 80	0.483 0.552	0.049 0.066	0.389 0.461
	90	0.621	0.085	0.519
	100	0.689	0.104	0.566
	125 150	0.862 1.03	0.153 0.207	0.657 0.717
	175	1.21	0.266	0.760
	200	1.38	0.334	0.793 0.846
	250 300	1.72 2.07	0.480 0.618	0.888
	350	2.41	0.744	0.922
	400	2.76	0.854	0.952 0.980
168.7	450 70	3.10 0.483	0.944 0.008	0.079
100.7	80	0.552	0.021	0.178
	90	0.621	0.036	0.260 0.330
	100 125	0.689 0.862	0.050 0.086	0.460
	150	1.03	0.125	0.550
	175	1.21	0.164 0.205	0.618 0.668
	200 250	1.38 1.72	0.301	0.739
	300	2.07	0.406	0.789
	350 400	2.41 2.76	0.513 0.621	0.829 0.860
	400	3.10	0.725	0.888
	500	3.45	0.822	0.912
179.8	125	0.862 1.03	0.009 0.036	0.070 0.210
	150 175	1.21	0.038	0.317
	200	1.38	0.089	0.395
	250 300	1.72 2.07	0.145 0.206	0.512 0.592
	350	2.07	0.208	0.651
	400	2.76	0.352	0.692
	450 500	3.10	0.431	0.726 0.752
	550	3.45 3.79	0.509 0.588	0.752
	600	4.14	0.668	0.783

Hydrocarbons

			ORIGINAL MEASUREMEN	
COMPONENTS:				
 Nitrogen Methane; 			Cines, M. R.; Road Hogan, J. J.; Ro Chem. Eng. Prog. St	land, C. H.
			<u>1953</u> , 49, 1-10.	
EXPERIMENTA	L VALUES:		Mala forestion	
T/K	P/psia	P/MPa	Mole fraction in liquid	in vapor,
			^{<i>x</i>} N ₂	^y N ₂
190.0	200 250	1.38 1.72	0.006 0.046	0.040 0.213
	300 350	2.07 2.41	0.089 0.136	0.334 0.416
	400 450	2.76 3.10	0.185 0.238	0.479 0.526
	500 550	3.45 3.79	0.295 0.354	0.565 0.597
	600 650	4.14 4.48	0.415 0.479	0.620 0.634
207.6	400 450	2.76 3.10	0.018 0.049	0.079 0.162
	500 550	3.45 3.79	0.082 0.118	0.226 0.278
	600 650	4.14 4.48	0.161 0.215	0.318 0.351
•				
			-	
				1
				1

000	trogen Solubilities Above 200 kPa
COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-3	Ind. Eng. Chem. Fund. <u>1964</u> , 3, 355.
(2) Methane; CH ₄ ; [74-8	32-8 J
VARIABLES:	PREPARED BY:
T/K = .92 - 124	C. L. Young
P/kPa = 21-567	
EXPERIMENTAL VALUES:	
Mole fracti T/K P/bar in liquid, ^x N ₂	ion of nitrogen in vapor, ^y N2
91.7 0.212 0.009 91.6 0.292 0.019	0.295 0.476
0.445 0.037	0.644
1.147 0.147 97.2 0.361 0.009	0.861 0.230
97.1 0.478 0.018 0.679 0.036	0.405 0.570
1.680 0.146	0.827 0.211
104.90.7030.009105.10.8750.018	0.335
105.11.2000.036105.22.7480.145	0.512 0.790
114.41.5190.009114.61.7590.018	0.144 0.247
114.7 2.198 0.036	0.394
4.639 0.144 119.2 5.642 0.144	0.709 0.663
123.92.8240.009124.12.8420.017	0.098 0.162
3.786 0.035	0.304
	AUXILIARY INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Static equilibrium cell fit magnetic stirrer. Pressur	a manurad
on mercury manometer. Tem	iperature Not given.
measured by thermocouple. in source reference. Know	n quantity
solvent added to evacuated Metered quantity of solvent	
Solubility determined from librium pressure and mass b	equi-
Details in source reference	
	ESTIMATED ERROR:
	$\delta T/K = \pm 0.2; \delta P/bar = \pm 0.0015;$ $\delta r = \delta u = \pm 2 $ (estimated by
	$\delta x_{N_2} = \delta y_{N_2} = \pm 2\%$ (estimated by compiler).
	REFERENCES :
	~

		Hydro	carbons
COMPONENTS:			ORIGINAL MEASUREMENTS:
	; N ₂ ; [7727-37-9] CH ₄ ; [74-82-8]		Chang, S. D.; Lu, B. CY. Chem. Eng. Prog. Symp. Ser. <u>1967</u> , 63 (81), 18-27.
	T/K = 122-171 P/MPa = 0.4-4.5		PREPARED BY: C. L. Young
EXPERIMENTAL VALU	IES:		
T/K P/bar	Mole fraction of in liquid, ^x N ₂	f nitro in va ^y N	apor,
171.4 26.59 26.90 28.11 28.76 31.76 31.83 33.07 35.49 36.97 37.80 39.90 41.18 43.07 43.21 44.69 122.0 3.50 6.96	0.01720 0.01770 0.02510 0.03110 0.06380 0.05360 0.07310 0.1017 0.1081 0.1182 0.1164 0.1445 0.1634 0.1803 0.1949 0.1908 0.03371 0.1503	0.063 0.046 0.075 0.183 0.221 0.240 0.247 0.253 0.226 0.289 0.310 0.310 0.314 0.359 0.707	530 550 910 77 66 86 77 77 77 75 1 1 6 5 3 3 6 9
	X11A	TLIARY	
METHOD / ADDADA		LUINKI	SOURCE AND PURITY OF MATERIALS:
with cell consi Jerguson gauge body. Tempera copper-constant pressure measun gauges. Magne Details of appa Cell charged va 2 or more hours and liquid remo	vapor flow apparat isting of 100 ml with stainless st ature measured using tan thermocouples, red using Bourdon etic circulating pr aratus in source re apor recirculated s. Samples of vap oved at constant pr sed using gas chron	eel ng ump. ef. for por res-	<pre>Source AND PURITY OF MATERIALS: (1) Matheson research grade, purity 99.999 mole per cent. (2) Matheson research grade, purity 99.99 mole per cent. ESTIMATED ERROR:</pre>

Nitrogen Solubilities Above 200 kPa

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-:	37-9]; Miller, R. C.; Kidnay, A. J.; Hiza, M. J.
(2) Methane; CH ₄ ; [74-82-	
VARIABLES:	PREPARED BY:
T/K = 112 P/MPa = 0.2-1.3	
EXPERIMENTAL VALUES:	
Mol	le fraction of nitrogen liquid, in vapor, x_{N_2} y_{N_2}
$\begin{array}{c} 2.192 \\ 2.181 \\ 4.027 \\ 4.013 \\ 0 \\ 4.335 \\ 4.285 \\ 5.559 \\ 5.485 \\ 6.990 \\ 6.985 \\ 9.229 \\ 9.120 \\ 0 \\ 9.460 \\ 9.490 \\ 10.852 \\ 10.847 \\ 0 \\ 11.970 \\ 11.960 \\ 0 \\ 12.960 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	AUXILIARY INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS;
Recirculating vapor-flow a Temperature measured with resistance thermometer. measured with Bourdon gaug and liquid samples analyse chromatography. Details and refs. 1 and 2.	platinum Pressure ge. Gas No details given. ed by gas
1	ESTIMATED ERROR: $\delta T/K = \pm 0.05; \delta P/bar = \pm 0.02;$ $\delta x_{N_2}, \delta y_{N_2} = \pm 1$ %. REFERENCES: 1. Kidnay, A.J.; Miller, R.C.; Hiza, M.J. Ind. Eng. Chem. Fund. <u>1971</u> , 10, 459. 2. Miller, R.C.; Kidnay, A.J.; Hiza, M.J. J. Chem. Thermodynamics

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Parrish, W. R.; Hiza, M. J. Adv. Cryog. Eng. <u>1973</u> , 19, 300.
(2) Methane; CH4; [74-82-8]	
VARIABLES: T/K = 95-120 P/MPa = 0.2-1.0	PREPARED BY: C. L. Young
EXPERIMENTAL VALUES:	
	ogen gas, ^y N ₂
2.737 0.3562 0.9	533 855 237 615 782 363 122 458
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Recirculating vapor flow apparatus; details given in source and refs. 1-4. Temperature measured using platinum resistance thermometer. Pressure measured with Bourdon gauge. Mixture equilibrated and samples analysed using gas chromatography with thermal conductivity detector.	ESTIMATED ERROR:
	$\begin{array}{l} \delta T/K = \pm 0.02; \delta P/bar = \pm 0.02 \ (up \ to \\ 20 \ bar); = \pm 0.05 \ (above \ 20 \ bar); \\ \delta x_{N_2} = \delta y_{N_2} = \pm 1 \ or \ \pm 0.001 \ whichever \\ is \ greater. \end{array}$
	 1. Hiza, M.J.; Duncan, A.G. <i>Rev. Sci. Inst.</i> <u>1969</u>, 40, 513. 2. Duncan, A.G.; Hiza, M.J. <i>Adv. Cryog.</i> Eng. <u>1970</u>, 15, 42. 3. Kidnay, A.J.; Miller, R.C.; Hiza, M.J., <i>Ind. Eng. Chem. Fund.</i> <u>1971</u>, 10, 459. 4. Miller, R.C.; Kidnay, A.J.; Hiza, M.J. J. Chem. Thermodynamics <u>1972</u>, 4, 807.

,

COMPON	ENTS:	<u> </u>		ORIGINAL N	IEASUREMEN	TS:	
(1) N	itrogen.	N ₂ ; [7727-37-9]		l		appelear, P.	s.;
	rerogen,	2/ 1/12/ 0/ 01		-	ashi, R.		
(2) 1	Methane;	CH4; [74-82-8]	J. Chem.	. Eng. Do	ata <u>1974</u> , 19,	334.
							}
VARIAE			· · · · · · · · · · · · · · · · · · ·	PREPARED H	3Y:		
		/K = 114-183 /MPa = 0.5-5.0		C. L. Yo	ung		
		······································					
EXPERI	IMENTAL VAL	UES: Mole fra of nitr				Mole fra of nit	
т/к	<i>P/</i> bar	in liquid,	in vapor,	T/K	P/bar	in liquid,	in vapor,
		^{<i>x</i>} N ₂	y_{N_2}			^{<i>x</i>} N ₂	^y N ₂
113.7		0.089407		149.82		0.3778	0.6480
	5.17 6.89	0.1671 0.2609	0.7660 0.8290	160.93	40.95 17.24	0.5034 0.009750	0.6867 0.04452
	10.31	0.4984	0.8990		19.06	0.02968	0.1221
122.0	4 2.79 3.44	0.016538 0.03514	0.19633 0.3466		20.75 24.68	0.04895	0.1835 0.2986
	5.17	0.086024			27.20	0.09572 0.1257	0.3471
	6.88	0.1411	0.6655		31.37	0.1774	0.4130
127.5	13.79 9 3.53	0.4283 0.009745	0.8411 0.1144		36.27 41.23	0.2457 0.3128	0.4671 0.5131
127.5	5.17	0.04714	0.3786		44.61	0.3683	0.5284
	6.88	0.09116	0.5318		48.33	0.4382	0.5296
138.4	13.79 4 6.91	0.3040 0.01852	0.7662 0.1499		48.88 48.95	0.4514 0.4527	0.5181 0.5178
130.4	8.20	0.04106	0.2724	172.04	25.55	0.005951	0.01938
	10.34	0.08104	0.4183		26.89	0.01689	0.05251
1	13.79 20.68	0.1490 0.3037	0.5568 0.6983		27.65 31.23	0.02446 0.05764	0.07397 0.1532
1	27.03	0.4593	0.7677		34.47	0.09245	0.2157
149.8	2 12.34	0.02838	0.1529		37.92	0.1287	0.2646
1	13.96 17.20	0.05140 0.09849	0.2404 0.3683		41.23 48.47	0.1657 0.2599	0.3009 0.3445
	20.62	0.1503	0.4579		50.33	0.3156	0.3156
	20.68 27.34	0.2579	0.4615 0.5779	177.59	31.03	0.004056	
				INFORMATIO	N		
METHOI		US/PROCEDURE:	·	····		F MATERIALS:	
	•	d through equil	ibrium			ple; purity	99.99
cell	by magne	tic pump. Temp platinum resis	erature		per cen		
ther	mometer u	sing Mueller br	idge.	(2) Puri	ty speci	fied as 99.99	mole
		ured with Heise		per	cent.		
		rium establishe d then recycle					
		d phase sampled					
		s analysed with					
		detector. Deta fs. 1 and 2.	Additional				
vapor	r-liquid	equilibrium dat]			
sour	ce.			ESTIMATED			
						$P/bar < \pm 0.07$; δ ^x N ₂ ,
				$\delta y_{N_2} = \pm 0$	0.2−1.0%	•	Ì
				REFERENCE			
						Low Temperatu bria of the N	
				Metha	ne, Nitr	ogen-Ethane d	ind Nitro-
				gen-M	ethane-E	thane Systems	, Rice
						ouston, Tex., Kobayashi,R.	
				Chem.	Eng. Do	ita <u>1972</u> , 1	7, 4.
L				I	-		

Hydrocarbons

				riyuluc				3.
COMPONI	ENTS:				ORIGINA	AL MEASU	JREMENTS:	
(1) Nit	rogen; 1	N ₂ ; [7	727-37-9]			., R.; ashi, R	Chappelear, P	. s.;
2) Met	thane;	СН4;	[74-82-8]	J. Chem	. Eng.	Data <u>1974</u> , 19	9, 334.
EXPERIMENTAL VALUES: continued								
			Mole fr of nit				Mole fra of nitr	
Г/К	<i>P/</i> bar	in	liquid, ^x N ₂	in vapor, ^y N2	Т/К	P/bar	in liquid, ^x N ₂	in vapor ^y N ₂
177.59	34.51 36.82		0.03257 0.05547	0.07937	177.59 183.15	49.78 39.71	0.2272 0.02544	0.2272
	39.58 41.99 44.82		0.08284 0.1097 0.1391	0.1693 0.2023 0.2286		41.23 42.95 45.09	0.04160 0.05676 0.07848	0.07742 0.09635 0.1251
	46.61 48.26		0.1613 0.1816	0.2459 0.2495		46.47 47.50	0.09106 0.1060	0.1357 0.1425
	48.88 49.64		0.1929 0.2026	0.2488 0.2458		48.26 48.47	0.1165 0.1175	0.1449 0.1425
					đ			

•

/4			introg					
COMPONEN	rs:				ORIGINAL MEASUREMENTS:			
	itrogen; ethane; C				Parri	sh, W. R	Miller, R. C R.; Hiza, M. <u>75</u> , <i>15</i> , 531.	
(-)								
VARIABLE	S:				PREPARED	BY:		
	T/K = 1 P/MPa =	12-180 0.2-4.	. 9		С. L. Y	oung		
EXPERIME	NTAL VALUES:							
т/к	P/bar	of			т/к	<i>P/</i> bar	Mole fra of nitr in liquid, ^x N ₂	ogen
112.00	1.965 4.725		376 504	0.4720 0.7654	150.00	14.228 18.088	0.0518 0.1082	0.2479 0.3938
120.00	5.234	0.1	.048	0.6327		22.55	0.1788	0.5026
130.00	10.058 4.155 4.552 5.025 6.594	0.0 0.0 0.0	8012 9097 9186 9292 9641	0.8182 0.1098 0.1862 0.2640 0.4339	160.00	27.21 16.813 17.968 18.988 19.913	0.2510 0.0095 0.0223 0.0334 0.0448	0.5742 0.0438 0.0979 0.1394 0.1742
	7.797 10.203 12.579 15.038	0.0 0.1 0.2	926 547 188	0.5201 0.6316 0.7018 0.7508		21.94 22.10 26.19 30.38	0.0684 0.0714 0.1205 0.1756	0.2406 0.2458 0.3442 0.4184
140.00	7.221 8.298 9.258 10.108	0.0 0.0 0.0	132 316 485 637	0.1051 0.2166 0.2952 0.3498	170.00	33.95 38.46 24.47 25.39	0.2243 0.2820 0.0082 0.0189	0.4657 0.5051 0.0291 0.0652
150.00	14.056 18.047 21.94 10.673 11.213	0.1 0.2 0.3 0.0 0.0	.372 165 008 038 106	0.5228 0.6214 0.6850 0.0224 0.0675		26.20 27.47 28.43 30.36 34.43	0.0276 0.0399 0.0495 0.0888 0.1115	0.0889 0.1219 0.1458 0.1875 0.2593
	12.908	0.0	333	0.1776		38.58	0.1562 (cont	0.3135
				AUXILIARY	INFORMATIC	DN		
METHOD/2	APPARATUS/	PROCEDU	RE:		SOURCE AN	D PURITY (OF MATERIALS:	
METHOD/APPARATUS/PROCEDURE: Recirculating vapor flow apparatus. Details given in source and refs. 1-4. Temperature measured using platinum resistance thermometer. Pressure measured with Bourdon gauge. Mixture equilibrated and samples analysed using gas chromatography with thermal conductivity detector.							details give	n.
					$\begin{array}{c} 20 \text{ bar} \\ \delta x_{N_2} \end{array} = \\ \hline \end{array}$	$\pm 0.02;$; = ±0. $\delta y_{N_2} = \pm$	δP/bar = ±0. 05 (above 20 1% or ±0.001 is gr	bar);
					Sci. 2. Dunc Cryc 3. Kidn Hiza <u>197</u> 4. Mill Hiza	a, M.J; Inst. can, A.G 29. Eng nay, A.J a, M.J. 1, 10, 4 ler, R.C a, M.J.	.; Miller, R Ind. Eng. Ci	13. M.J. Adv. , 42. .C.; hem. Fund. .J.;
					<u> </u>			

COMP	ONENTS:	ORIGINAL MEASUREMENTS:
(1)	Nitrogen; N2;[7727-37-9]	Kidnay, A. J.; Miller. R. C.;
(2)	Methane; CH ₄ ; [74-82-8]	Parrish, W. R.; Hiza, M. J. Cryogenics <u>1975</u> , 15, 531.

EXPERIMENTAL VALUES:

т/К	P/bar	Mole fra of nitr in liquid, ^x N₂		Т/К	P/bar	Mole fra of nitr in liquid, ^x N ₂	
			·····				
170.00	42.52	0.2001	0.3519	180.00	37.87	0.0434	0.0936
	46.31	0.246	0.3743		39.45	0.0588	0.1192
	48.33	0.2729	0.3784		40.24	0.0632	0.1260
	48.95	0.2915	0.3798		42.72	0.0863	0.1572
	49.39	0,3066	0.3801		44.75	0.1083	0.1786
180.00	34.11	0.0039	0.0230		46.56	0.1254	0.1919
	35.40	0.0202	0.0494		48.70	0.1567	0.1992
[36.72	0.0327	0.0738				

-

COMPONENTS:				ORIGINAL MEA	SUREMENTS:	7	
(1) Nitrog	jen; N ₂ ; [772	27-37-9]		Cosway, H	I. F.; Katz,	D. L.	
(2) Methar	ne; CH4; [74-	-82-8]	Am. Inst. Chem. Engnrs. J.				
(3) Ethane	$c_{2}H_{6}; [74-$	-84-01		<u>1959</u> ,	5, 46-50.		
	2 0 0	-					
VARIABLES:				PREPARED BY			
	r/к = 144-200 P/MPa = 3.5-6.9)			C.L.)	Young	
	Composition				C. 11. 1	loung	
EXPERIMENTA	L VALUES:						
Mole	e fractions in	liquid		Mol	e fractions i	in gas	
* _{N2}	[∞] CH₄	^ж С ₂ Н ₆		y_{N_2}	y _{CH}	^y C ₂ H ₆	
11 2	T/K = 199.8			u = 500			
0.0956	0.0000	0.9044		0.8922	0.000	0.1078	
0.0715	0.1989	0.7296		0.6029	0.2979	0.0992 0.0700 ⁺	
0.0000	0.6600	0.3400		0.0000	0.9300 <i>P/</i> MPa = 6.		
0.2129	T/K = 199.8 0.0000	0.7871		u = 1000 0.9055	P/MPa = 6.	0.0945	
0.2129	0.1564	0.6372		0.7460	0.1642	0.0898	
0,1752	0.5612			0.3435	0.5608	0.0957	
	T/K = 144.3			1 = 1000	P/MPa = 6		
0.1826	0.0000 0.2525	0.8174 0.5072		0.9923 0.8810	0.0000 0.1131	0.00766 0.00593	
0.3506	0.4499	0.1995		0.7975	0.1979	0.00463*	
0.4900	0.5100 0.4910	0.0000 0.0000		0.7300 0.7520	0.2700 0.2480	0.00 0.00 [§]	
Blo	ca quoted in or comer, O. T.; st. Gas. Tech.	Gami, D.	C.; F	Parent, J.	D.	(cont.)	
		AI		INFORMATION			
METHOD /ADD	ARATUS/PROCEDURE:				DUDITY OF MATERI		
ME THOD / AP P A	ARAIUS/PROCEDURE:			SOURCE AND	PURITY OF MATERI	ALS:	
Recircula	ting vapor flo	ow system	based	(1) NO Ĉ	letails given.		
on that d	lescribed in re	ef. (l),					
Details c	of present appa	ratus in		(2 and 3)	Phillips Pe	etroleum Co.	
source an	nd ref. (2).	Temperat	ure		samples.		
measured	with thermocou	ple. P	res-				
sure meas	ured with Boun	don gaug	e.			ļ	
	sure magnetic	circulat	ing				
pump empl	-			ESTIMATED E			
	ged under pres		amples	1	:0.2; δ <i>P</i> /MPa		
	hase expanded		-	$\delta x, \delta y =$	= ±2% (estimat	ced by compiler).	
1	ire and pressur	e; anal	ysea	PEPEDENCUS		-	
by mass s	spectrometry.			REFERENCES:	B.F.; Dunk	par. A. K.	
				í		L927, <i>49</i> , 591.	
					-		
				ſ –	1, H. J.; Kat	1	
				Ina. E	ing. Chem. <u>195</u>	<u>, 40, 100.</u>	
L				l			

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Cosway, H. F.; Katz, D. L.
(2) Methane; CH ₄ ; [74-82-8]	Am. Inst. Chem. Engnrs. J. <u>1959</u> ,
(2) Methane; $C_{2}H_{6}$; $[74-82-8]$ (3) Ethane; $C_{2}H_{6}$; $[74-84-0]$	5, 46-50.
(3) Ethane; $C_2 n_6$; $[74-54-6]$	
EXPERIMENTAL VALUES:	-
* Data quoted in original but ta Bloomer, O. T.; Parent, J. D. <u>1953</u> , No. 6, 49, 11.	aken from Chem. Eng. Progr. Symposium Ser.
[§] Data quoted in original but ta Cines, M. R.; Roach, J. T.; Chem. Eng. Progr. Symposium Se	Hogan, R. J.; Roland, C. H.
	-
	<u> </u>

COMPONENTS :			ORIGINAL	L MEASUREMENT	 TS :		
(1) Nitrogen; N ₂ ;	[7727–3	7-9]		, S.D.; Lu			
<pre>(2) Methane; CH₄;</pre>			Chem	Eng. Prog	. Sumn s	er. 1967.	
(3) Ethane; C_2H_6 ;			•	, (81) 18-2		er. <u>1907</u> ,	
(3) Echane; C_2n_6	114-04-	.01					
VARIABLES:			PREPAREI		<u></u>	<u> </u>	
T/K = 17							
P/MPa ≈ Composit				C.L	. Young		
EXPERIMENTAL VALUES:	101	m / K	= 171.4				
Pressure		Compos Vapor	ition,mc	le fractic	n		
/MPa	y_{N_2}		C ₂ H ₅	* _{N2}	°CH ₄	² C ₂ H ₆	
	112					02116	
1.377	0.5628		.04158	0.04082	0.2201		
1.370	0.6222		.04109		0.1686	0.8029 0.4948	
1.373 1.381	0.1200 0.6241		.03357 .04288	0.009581 0.04912	0.4957 0.1873	0.7636	
1.369	0.4788		.03748	0.03694	0.2751	0.6900	
1.356	0.2000	0.7661 0	.03385	0.01901	0.3888	0.5922	
1.380	0.0742		.03213	0.00542	0.5258	0.4687	
2.066	0.7065		.03008	0.03361	0.1648 0.1446	0.8016	
2.066 2.059	0.7417 0.4193		.03213 .02436	0.04383 0.04599	0.1446	0.8116 0.5358	
2.070	0.7443		.03371	0.04360	0.1482	0.8082	
2.058	0.6457	0.3208 0	.03350	0.03811	0.2259	0.7359	
2.073	0.3843		.02421	0.04622	0.4832	0.4706	
2.087	0.1884		.01625	0.03092	0.6674	0.3016	
2.077 2.756	0.1364 0.7693		.01387 .03180	0.02511 0.05924	0.7213 0.1564	0.2535 0.7843	
2.756	0.5599		.02533	-	-	-	
2.756	0.8030		.03011	0.06841	0.1503	0.7813	
2.770	0.7391		.02786	0.06195	0.2071	0.7309	
2.766	0.5279	0.4504 0 0.6025 0	.02167	0.06417	0.4455	0.4903	
2.763 · 2.763	0.3804 0.3329		.01714 .01602	0.07453 0.07475	0.6324 0.6805	0.2931 0.2448	
0.3168	0.6249		.001856		0.5000	0.4663	
0.7894	0.8409		.001740		0.3638	0.5393	
1.308	0.9026	0.09737 0	.000696	0.1646	0.3556	0.4800 cont	
		AUXILIARY	INFORMAT	ION			
METHOD/APPARATUS/PRO	CEDURE :		SOURCE	AND PURITY OF	F MATERIALS		
Recirculating vap with cell consist				heson resea 999 mole pa		e, purity	
Jerguson gauge wi	th stain	less steel		neson resea		e, puritv	
body. Temperatur copper-constantar				99 mole per			
			s(3) Matheson research grade, purity				
Magnetic circulat	ing pump	. Cell	99.9	9 mole per	cent.		
charged, vapor re more hours. Samp							
liquid removed at							
and analysed usin	g gas ch		•				
Details in source	•						
			1	ED ERROR:			
				$x = \pm 0.1; d$			
			δ ^x N ₂	2 ^{≃δy} N2 < 109	t (estima	ted by	
				piler).			
			REFEREN	CES:			
			1				
			{				
			1				

727-37-9] 1-82-8]		Chang, S.D.			
			; Lu, B.C.Y		
-82-0]		Chem. Eng. Prog. Symp. Ser.			
			(81) 18-27		
-84-0]					
	T/K = 17				
Cor Vapor	mposition,mo	le fraction	Liquid		
^y _{CH4}	y _{C2H6}	^{<i>x</i>} N ₂	^x CH ₄	^x C ₂ H ₆	
0.06777	0.00095	0.3188	0.2966	0.3846	
0.04133 0.02598	0.00112 0.00115	0.5940 0.7605	0.1779 0.1078	0.2281 0.1317	
0.01144	0.001276	0.9358	0.03627	0.02793	
0.9537	0.004872	0.07798	0.3348	0.5871	
0.1521	0.00335	0.09513	0.3405	0.5643	
0.2169 0.07415	0.001316 0.001652	0.08766 0.1659	0.2419 0.2413	0.6705 0.5928	
0.04571	0.001380	0.2772	0.1863	0.5365	
0.03966	0.002098	BL0.4219	0.1458	0.4323	
0.00003		*TL0.5322	0.1529	0.3149	
0.02891 0.02661	0.001710 0.001161	0.5450 BL0.4715	0.1644 0.1513	0.2906 0.3772	
0.02001	0.001101	0.6628	0.1418	0.1954	
0.01880	0.0005356		0.07831	0.2221	
0.01510	0.001157	0.7509	0.06091	0.1882	
0.2867	0.002279 0.003105	0.02279 0.03949	0.2783 0.2750	0.6989	
0.2086 0.04112	0.0006961	0.1095	0.2642	0.6855 0.6263	
0.04216	0.0006863	0.1026	0.1672	0.7302	
0.03206	0.0006209	0.1507	0.1629	0.6864	
0.02675	0.0006855	0.2048	0.1469	0.6482	
0.02107	0.0008995 0.001251	0.3158	0.1260	0.5582	
0.01785		BL0.3658 *TL0.7047	0.1025 0.07117	0.5317 0.2241	
0.008430	0.001499	0.8971	0.03577	0.06715	
0.9045	0.001847				
0.4731	0.001238	0.03182	0.6916	0.2766	
0.2456	0.0009046 0.0006336	0.09313	0.6348	0.2680	
0.1106 0.03672	0.0007767	0.3072 0.8206	0.4874 0.1318	0.2054 0.04758	
0.03515	0.0007576	0.8396	0.1171	0.04330	
0.01229	0.0005563	0,9605	0.02907	0.01039	
0.007547	0.0004530	0.8523	0.1429	0.004819	
0.01352	0.001279	BL0.3500	0.08683	0.5632	
		TL0.8496	0.06764	0.08278	
0.02171	0.001226	BL0.4389	0.1464	0.4147	
0.02312	0.001278	TL0.7208 BL0.4731	0.1228 0.1439	0.1564 0.3830	
	0.0012.0	TL0.7217	0.1233	0.1551	
iquid Layer	-	or layers to	separate		
	iquid Layer	m Liquid Layer iquid Layer before allow l hour fo	iquid Layer		

•

· [
COMPONENTS:		ORIGINAL MEASU			
(1) Nitrogen; N ₂ ; [7727	-37-9]	Gupta, M.K.;	Gardner,	G.C.;	
(2) Methane; CH ₄ ; [74-8	2-8]	J. Chem. Eng	. Data 19	80, 25, 3	13-8.
(3) Ethane; C ₂ H ₆ ; [74-8				<u> </u>	
	,				
VARIABLES:		PREPARED BY:			
T/K = 260-280 P/MPa = 5-9		C.L.	Young		
Composition					
EXPERIMENTAL VALUES:					
Total pressure	Mole f:	ractions			
p/atm p/MPa $x_{ m N_2}$	^x CH ₄ ^x C ₂	H ₆ ^y N ₂	^𝔥 CH₄	$y_{C_2H_6}$	
	CI14 C2.			C 2 11 6	
	T/K = 260.00				
50.05 5.071 0.0139		196 0.0533		0.4418	
50.015.0670.029649.905.0560.0452	0.2205 0.7			0.4507 0.4596	
50.02 5.068 0.0592	0.1300 0.8	107 0.2667	0.2652	0.4681	
49.92 5.058 0.0723 50.07 5.073 0.0847	0.0890 0.8	387 0.3396 667 0.4147		0.4752 0.4821	
65.13 6.599 0.1172	0.1114 0.7	714 0.3811	0.1839	0.4350	
65.006.5860.119865.096.5950.1230	0.1021 0.7			0.4362 0.4363	
64.96 6.582 0.0767	0.2400 0.6			0.4227	
65.086.5940.088665.166.6020.0260	0.2047 0.7			0.4256 0.4147	
65.02 6.588 -		- 0.1262		0.4164	
65.006.5860.132765.006.5860.1351	0.0570 0.8			0.4407 0.4408	
64.98 6.584 0.0463	0.3297 0.6	240 0.1081	0.4749	0.4170	
65.006.5860.149465.006.5860.0000	0.0000 0.8	506 0.5541 415 0.0000		0.4459 0.4167	
					cont.
	AUXILIARY	INFORMATION			
METHOD/APPARATUS/PROCEDURE:		SOURCE AND PU	RITY OF MATER	RIALS:	
Recirculating vapor flo	w apparatus	(1) Purity	at least 9	99.7 mole	per
with diaphragm pump.	Temperature	cent.			•
measured with platinum thermometer and pressur		(2) Purity	at least 9	99 mole p	er cent.
Bourdon gauges. Cell s			ous peaks v		
double propeller stirre liquid samples analysed		graphy.	alysed by q	jas chrom	ato-
chromatography using a	thermal cond-				
uctivity detector. De ref. (1).	calls in				
		ESTIMATED ERE		- +0 02	up to
			0.1 above	$-\pm0.03$ 3.4 MPa;	up to
		δx N2' δyN2			
		REFERENCES :			
			., F.; Kidr	nay, A.J.	
			m. Eng. 1	Data <u>1978</u>	, 23,
		301.			
L		<u>}</u>			

				lrocarbons				3
PONENTS:			<u> </u>	ORIGIŅA	L MEASUREME	NTS:		
	en; N ₂ ;	[7727-37-	9]		a, M.K.;		, G.C.;	
) Methan	e: CH.:	[74-82-8]						
				J. C	hem. Eng.	Data,	<u>1980</u> ,25,	313-8
) Ethane	; C ₂ H ₆ ;	[74-84-0]						
Total	pressur		Mo	le fract:	ions			
p/atm	p/MPa	x _{N2}	^ℋ CH₄	$x_{C_2H_6}$	y_{N_2}	$y_{CH_{4}}$	$y_{C_2H_6}$	
		T	/K = 260.	00		<u></u>		
74.80	7.579	0.1734	0.0464	0.7802	0.4963	0.0703	0.4336	
75.18	7.618	0.1750	0.0453	0.7797	0.4984	0.0684	0.4332	
75.08	7.607	0.1645	0.0821	0.7533	0.4463	0.1221	0.4315	
75.13	7.613	0.1663	0.0795	0.7542	0.4507	0.1176	0.4317	
75.06	7.605	0.1532	0.1219	0.7249	0.3925	0.1773	0.4302	
75.13	7.613	0.1565	0.1146	0.7290	0.4031	0.1666	0.4303	
75.13	7.613	0.1415	0.1676	0.6910	0.3350	0.2357	0.4293	
75.00	7.599	0.1472	0.1469	0.7058	0.3611	0.2094	0.4295	
74.90	7.589	0.1349	0.1874	0.6676	0.3103	0.2606	0.4290 0.4295	
75.02	7.601	0.1274	0.2162	0.6564 0.6229	0.2765 0.2245	0.2940 0.3442	0.4295	
75.08	7.607 7.608	0.1141 0.1245	0.2629 0.2270	0.6229	0.2245	0.3442	0.4312	
75.09	7.608	0.1245	0.3046	0.5914	0.1824	0.3811	0.4365	
75.20 75.10	7.620	0.1145	0.2643	0.6213	0.2237		0.4309	
75.17	7.617	0.0926	0.3548	0.5526	0.1366		0.4490	
75.07	7.606	0.0987	0.3239	0.5775	0.1641	0.3966	0.4392	
74.90	7.589	0.0878	0.3848	0.5274	0.1121	0.4245	0.4635	
75.07	7.606	0.0919	0.3579	0.5502	0.1340	0.4159	0.4501	
			/K = 270.	00				
35.00	3.546	0.0341	0.0160	0.9500	0.2297	0.0470	0.7232	
35.01	3.547	0.0285	0.0322	0.9393	0.1892	0.0936	0.7172	
35.01	3.547	0.0223	0.0505	0.9272.		0.1450	0.7104	
35.01	3.547	0.0196	0.0576	0.9228	0.1270	0.1652	0.7078	
35.00	3.546	0.0116	0.0814	0.9069	0.0736	0.2284	0.6979	
35.00	3.546	0.0077	0.0921	0.9002	0.0482	0.2572	0.6946	
35.00	3.546	-	-	-	0.0797	0.2201	0.7001	
50.00	5.066	0.0783	0.0231	0.8986	0.3546	0.0503	0.5951	
50.00	5.066	0.0749	0.0347	0.8904	0.3335 0.2564	0,0740 0,1602	0.5925 0.5834	
50.00	5.066	0.0602	0.0766	0.8631 0.8364	0.2564	0.1602	0.5834	
50.00	5.066	0.0463	0.1173 0.1535	0.8364	0.1283	0.2392	0.5657	
50.00	5.066	0.0331 0.0297	0.1535	0.8084	0.1139	0.3222	0.5638	
50.01	5.067 5.066	0.0297	0.2361	0.7619	0.0066	0,4466	0.5468	
50.00 50.00	5.066	0.0019	0.2089	0.7815	0.0362	0,4114	0.5524	
50.00	5.067	0.0177	0.1948	0.7875	0.0664	0.3775	0.5561	
50.00	5.066	-			0.0627	0.3807	0.5565	
49.99	5.065	0.0827	0.0000	0.9173	0.3955	0.0000	0.6045	
64.95	6.581	0.1213	0.0539	0.8247	0.3712	0.0906	0.5382	
64.85	6.570	0.1205	0.0548	0.8247	0.3701	0.0923	0.5376	
65.15	6.601	0.0937	0.1381	0.7682	0.2526	0.2192	0.5281	
64.92	6.578	0.0935	0.1361	0.7704	0.2546	0.2167	0.5287	
65.00	6.586	0.0948	0.1333	0.7719	0.2589	0.2124	0.5286	
64.98	6.584	0.0622	0.2245	0.7133	0.1449	0.3348	0.5203	
64.95	6.581	0.0610	0.2285	0.7106	0.1412	0.3375	0.5212	
65.05	6.591	0.0646	0.2212	0.7142	0.1510		0.5207	
65.10	6.596	0.0343	0.3047	0.6610	0.0667 0.0610	0.4152 0.4213	0.5181	
64.92	6.578	0.0313	0.3104	0.6583	0.0582	0.4213	0.5178	
65.06	6.592	0 0700	0.1714	0.7526	0.0582	0.4238	0.5180 0.5250	
65.00	6.586	0.0760	0.1/14 0.1633	0.7526	0.2028	0.2723	0.5250	
65.00	6.586	0.0846 0.1008	0.1053	0.7931	0,2194	0.1755	0.5263	
65.00	6.586	0.1008	0.0716	0.7759	0.3550	0.1135	0.5324	
75.00	7.599 7.596	0.1525	0.0317	0.8010	0.4200	0.0476	0.5323	
		0.1010						
74.97	7.593	0.1747	0.0080	0.8173	0.4540	0.0124	0.5339	

.

381

Hydrocarbons

OMPONENTS:			• • • • • • • • • • • • • • • • • • •	ORIGIN	AL MEASUREM	ŒNTS:	, , i and a sump
l) Nitr	ogen; N ₂ ;	[7727-37	-9]	Gur	ota, M.K.;	Gardner	, G.C.
2) Meth	ane; CH ₄ ;	[74-82-8]		ah am Eina	Data 1	980,25,313-8.
3) Etha	ne; C ₂ H ₆ ;	[74-84-0]		chem. chy	. Data, <u>1</u>	900,29,919-0.
Total	pressure			e fractio	ons		
p/atm	p/MPa	^{<i>x</i>} N 2	^x CH ₄	[∞] C₂H ₆	y _{N2}	^у сн _ч	^y C ₂ H ₆
75.00	7.599	T 0.1130	/K = 270 0.2519	.00 0.6351	0.1545	0.2891	0.5564
75.10	7.610	0.1130	0.2467	0.6403	0.1586	0.2861	0.5553
74.92 75.08	7.591 7.607	0.1213 0.1205	0.2023 0.2050	0.6764 0.6745	0.2065 0.2030	0.2556 0.2581	0.5378 0.5389
74.95	7.594	0.1331	0.1559	0.7110	0.2590	0.2089	0.5321
75.00	7.599	0.1483	0.0993	0.7524	0.3282 0.2987	0.1410 0.1705	0.5308 0.5307
75.10 84.90	7.610 8.602	0.2202	0.0396	0.7403	0.4034	0.0506	0.5460
85.10	8.623	-	-	-	0.4232	0.0320	0.5449 0.5443
84.97 84.90	8.610 8.602	0.2229	0.0242	0.7530	0.4242 0.3534	0.0316 0.0922	0.5543
84.97	8.610	0.2152	0.0918	0.6930	0.3288	0.1093	0.5619
85.10 85.02	8.623 8.615	0.2177 0.2178	0.1083 0.1106	0.6739 0.6716	0.3024 0.2991	0.1241 0.1260	0.5734 0.5749
85.17	8.630	0.2394	0.1287	0.6319	0.2602	0.1382	0.6016
84.90 84.90	8.602 8.602	- 0.2153	- 0.0675	_ 0.7172	0.3628 0.3643	0.0848 0.0837	0.5524 0.5520
04.00	0.001		$\Gamma/K = 280$		0,0010		
50.00	5.066	0.0709	0.0000	0.9291	0.2835	0.0000	0.7165
50.00 50.10	5.066 5.076	0.0000 0.0609	0.1820 0.0290	0.8180 0.9101	0.0000 0.2336	0.3352 0.0600	0.6648 0.7064
50.15	5.081	0.0467	0.0290	0.8866	0.1706	0.1340	0.6954
49.90 50.12	5.056	0.0296	0.1077 0.1489	0.8627	0.1030	0.2113	0.6857
65.08	5.078 6.594	0.0139 0.0900	0.1489	0.8372 0.8048	0.0455 0.2021	0.2814 0.1575	0.6730 0.6404
65.10	6.596	0.1037	0.0668	0.8295	0.2511	0.1041	0.6448
65.05 65.00	6.591 6.586	0.1173 0.0723	0.0286 0.1540	0.8541 0.7737	0.3046 0.1451	0.0460 0.2183	0.6494 0.6366
64.90	6.576	0.0565	0.1944	0.7491	0.1018	0.2620	0.6362
65.00 65.00	6.586 6.586	0.0483 0.0530	0.2211 0.2078	0.7306 0.7392	0.0787 0.0909	0.2830 0.2725	0.6383 0.6366
65.05	6.591	0.0438	0.2369	0.7193	0.0667	0.2925	0.6408
65.10 65.10	6.596 6.596	0.0471 0.0454	0.2271 0.2290	0.7258 0.7256	0.0746 0.0717	0.2861 0.2892	0.6392 0.6392
65.15	6.601	0.0425	0.2407	0.7168	0.0633	0.2947	0.6420
65.15 65.10	6.601	0.0423	0.2437 0.2488	0.7139	0.0623	0.2957	0.6420
64.88	6.596 6.574	0.0400 0.0360	0.2488	0.7112 0.7024	0.0574 0.0480	0.2985 0.3021	0.6441 0.6499
64.92	6.578	0.0394	0.2477	0.7129	0.0575	0.2989	0.6436
64.90 65.00	6.576 6.586	0.0349 0.1277	0.2699 0.0000	0.6951 0.8723	0.0430 0.3463	0.2996 0.0000	0.6574 0.6537
75.03	7.602	0.1663	0.0297	0.8040	0.3115	0.0400	0.6485
74.98 75.00	7.597 7.599	0.1573 0.1534	0.0691 0.1054	0.7736 0.7412	0.2579 0.2091	0.0873 0.1222	0.6548 0.6687
75.05	7.604	0.1566	0.1126	0.7307	0.1980	0.1260	0.6760
74.89 74.95	7.588 7.594	0.1596 0.1580	0.1182 0.1139	0.7222 0.7281	0.1849 0.1941	0.1273 0.1255	0.6878
75.00	7.594	0.1743	0.0000	0.8257	0.1941 0.3521	0.1255	0.6803 0.6479
						-	

			carbons			38	
COMPONENTS:			ORIGINAL MI	EASUREMENTS:			
(1) Nitro	ogen; N2; ['	7727-37-9]	Poon, D.	P. L.; 1	Lu, B. C.	-Y.	
(2) Metha	ane; CH4; ['	74-82-8]	Adv. Cryogen. Engng. <u>1973</u> , 19, 292-9.				
(3) Propa	ane; C ₃ H ₈ ;	[74-98-6]					
-							
VARIABLES:			PREPARED BY	v.			
т/к =	= 114-122				Young		
	a = 0.1-2.3			C. 1.	. roung		
EXPERIMENT			l				
			Mole	fractions	Mole f	ractions	
т/к	<i>P</i> /psia	<i>P/</i> MPa		liquid x		vapor	
	-/ ₽5±4		^x N ₂	^{<i>x</i>} СН ₄	у _{N2}	^у сн ₄	
114.1	70.9	0.4888 -	0.0245	0.0161	0.9886	0.0112	
	127.2 193.4	0.8770 1.333	0.0446 0.0637	0.0159 0.0136	0.9901 0.9932	0.0098 0.0067	
	82.8	0.5709	0.0388	0.2624	0.8986	0.1013	
	124.5	0.8584	0.0620	0.2606	0.9314	0.0685	
	165.0 65.8	1.138 0.4537	0.1252 0.0562	0.2602 0.6126	0.9496 0.7851	0.0504 0.2149	
	101.4	0.6991	0.0989	0.5779	0.8644	0.1356	
	124.1 16.6	0.8556 0.1145	0.1797 0.0000	0.5525 0.9320	0.9074 0.0000	0.0926 0.9999	
	43.4	0.2992	0.0503	0.8352	0.6241	0.3759	
	41.8 77.6	0.2882 0.5350	0.0525 0.1270	0.8657 0.7679	0.6057 0.7902	0.3943 0.2098	
	131.7	0.9080	0.2999	0.6180	0.8866	0.1134	
	158.3	1.091	0.4184	0.5117	0.9145	0.0855	
	173.0 185.3	1.193 1.278	0.5072 0.6106	0.4373 0.3566	0.9283 0.9353	0.0717 0.0647	
	220.8	1.522	0.8059	0.1800	0.9593	0.0407	
	233.7 253.7	1.611 1.749	0.8644 0.9415	0.1248 0.0547	0.9699 0.9811	0.0301 0.0189	
	260.6	1.797	0.9750	0.0248	0.9922	0.0078	
					(cont	.)	
		AUXILIARY	INFORMATION		<u></u>	· · · · · · · · · · · · · · · · · · ·	
METHOD /APPA	RATUS / PROCEDURE	:	SOURCE AND	PURITY OF M	ATERIALS :		
		low apparatus		eson resea		sample.	
	l consisting			y 99.997		-	
	-	tainless steel		4	····· •		
-		easured using	(2 and 3)	Phillip	s Petrole	um Co.	
-	onstantan the	-	sample, research grade, purity				
	measured usi		99.99 mole per cent.				
gauges.		rculating pump.		-			
	-	ecirculated for	ł				
2 or more hours and samples of vapor			ESTIMATED E	ERROR:			
and liquid removed at constant			$\delta T/K = \pm 0.05; \delta^P/MPa = \pm 0.005;$				
	and analysed		δx , $\delta y =$		-		
	-	ails in					
source.			REFERENCES:	:			
			L	······			

		r-				
COMPONENTS:	ŕ		ORIGINAL	MEASUREME	NTS:	
(1) Nitrogen;	; N ₂ ; [772	27-37-9]	Poon, D.	P. L.; L	u, B. C.	-Y.
(2) Methane;	СН4; [74-	-82-8]	Adv. Cry	ogen. Engn	g. <u>1973</u> ,	19, 292-9
(3) Propane;	C ₃ H ₈ ; [74	1-98-6]				
EXPERIMENTAI	L VALUES:		<u></u>			
				fractions liquid		ractions vapor
т/к	<i>P</i> /psia	P/MPa	<i>x</i> _{N₂}	^ж Сн ₄	<i>y</i> _{N2}	^у СН 4
118.3	50.8 89.6 127.1 155.9 175.8 191.5 214.4 48.8 78.8 142.0	0.3503 0.6178 0.8763 1.075 1.212 1.320 1.478 0.3365 0.5433 0.9791	0.0559 0.1501 0.2509 0.3559 0.4403 0.4954 0.5946 0.0207 0.0399 0.0820	0.9126 0.8217 0.7187 0.6287 0.5481 0.4979 0.4007 0.4689 0.4499 0.4169	0.5299 0.7491 0.8279 0.8633 0.8896 0.8938 0.9156 0.6498 0.7845 0.8815	0.4701 0.2509 0.1721 0.1367 0.1104 0.1062 0.0844 0.3501 0.2155 0.1184
	178.6 19.8 106.8 150.5 169.7 193.8 200.7 11.8 59.0	1.231 0.1365 0.7364 1.038 1.170 1.336 1.384 0.0814 0.4068	0.1221 0.0000 0.0970 0.1683 0.2258 0.2843 0.3033 0.0000 0.0227	0.3954 0.7492 0.6262 0.5672 0.5226 0.4869 0.4869 0.4792 0.2901 0.2713	0.9022 	0.0977
	102.2 123.7 147.0 185.8 24.6 64.3 105.3 140.8 245.9	0.7046 0.8529 1.014 1.281 0.1696 0.4433 0.7260 0.9708 1.695	0.0470 0.0601 0.0743 0.0967 0.0071 0.0199 0.0324 0.0443 0.0858	0.2713 0.2631 0.2531 0.2383 0.0628 0.0603 0.0578 0.0558 0.0558 0.0491	0.8836 0.9098 0.9190 0.9324 0.8782 0.9505 0.9671 0.9795 0.9820	0.1154 0.0892 0.0802 0.1217 0.0494 0.0328 0.0205 0.0179
122.2	3.5 30.6 64.8 142.8 15.3 67.3 108.6 145.2 186.8	0.0241 0.2110 0.4468 0.9846 0.1055 0.4640 0.7488 1.001 1.288	0.0000 0.0190 0.0505 0.0000 0.0203 0.0360 0.0500 0.0767	0.0543 0.0501 0.0458 0.2825 0.2628 0.2462 0.2388 0.2327	- 0.8948 0.9564 0.9794 - 0.7711 0.8591 0.8951 0.9207	- 0.1048 0.0434 0.0205 - 0.2288 0.1409 0.1048 0.0793
	23.2 48.3 88.8 173.8 240.3 26.8 51.8	0.1600 0.3330 0.6123 1.198 1.657 0.1848 0.3571	0.0000 0.0156 0.0378 0.0824 0.1443 0.0000 0.0215	0.5158 0.4876 0.4576 0.4073 0.3789 0.7003 0.6813	- 0.5374 0.7492 0.8680 0.8875 - 0.4699	- 0.4625 0.2508 0.1319 0.1125 - 0.5301
	79.4 199.2 244.6 30.1 83.8	0.5371 0.5474 1.373 1.686 0.2075 0.5778	0.0450 0.1699 0.2678 0.0000 0.0846	0.6528 0.5419 0.4635 0.9042 0.8225	0.4099 0.6528 0.8696 0.9054 - 0.6484	0.3472 0.1304 0.0946 - 0.3517
	137.3 185.1 255.1 327.4	0.9467 1.276 1.759 2.257	0.0848 0.1853 0.3532 0.5875 0.8468	0.8225 0.7294 0.6102 0.4019 0.1510	0.8484 0.7908 0.8561 0.9023 0.9497	0.2092 0.1439 0.0967 0.0503

COMPONENTS:			ORIGINA	L MEASUREMENTS	:			
(1) Nitrogen; N	N ₂ ; [7727-	37-9]	Robe	Roberts, L. R.; McKetta, J. J.				
(2) Methane; CH	I4; [74-82	-8]	J. C	hem. Eng.	Data <u>1963</u>	<i>, 8</i> , 161-3.		
(3) Butane; C ₄ F	H ₁₀ ; [106-	97-8]						
VARIABLES:	<u></u>		DREDAR	D DV.		<u></u>		
T/K =	311-411 = 3.4-20.7 ition		PREPARI C. I	. Young				
EXPERIMENTAL VALUE	S:		·L					
T/K P/MPa	Mole fra ^x C ₄ H ₁₀	actions ir [°] CH4	n liquid ^x N ₂	Mole f		in vapor ^Y N2		
310.9 3.447	0.856 0.918	0.074 0.131 0.040	0.031 0.013 0.042	0.150 0.149 0.154	0.691 0.187	0.416 0.160 0.659		
6.895	0.774 0.809 0.746	0.164 0.113 0.214 0.300	0.062 0.078 0.044	0.112 0.110 0.115	0.480 0.327 0.609	0.408 0.563 0.276		
10.34	0.689 0.731 0.661 0.567	0.165 0.242 0.384	0.011 0.104 0.097 0.049	0.121 0.109 0.114 0.128	0.808 0.344 0.475 0.708	0.071 0.547 0.411 0.164		
13.79	0.746 0.519 0.507 0.451	0.115 0.348 0.373 0.456	0.139 0.133 0.120 0.093	0.096 0.151 0.141 0.152	0.246 0.523 0.564 0.638	0.658 0.326 0.295 0.210		
	0.430 0.462 0.663	0.497 0.434 0.137	0.073 0.104 0.200	0.168 0.143 0.133 0.113	0.698 0.624 0.540 0.233	0.134 0.233 0.327 0.654		
17.24	0.540	0.149	0.201	0.110 0.117 0.129	0.249 0.280 0.269	0.641 0.603 0.602		
	0.456	0.302	0.242	0.146 0.161	0.399 0.455 (cont.)	0.455 0.384		
		AUXILI	ARY INFORMA	TION				
METHOD/APPARATUS/P	ROCEDURE:		SOURCE	AND PURITY OF	MATERIALS:			
Recirculating with windowed			1	inimum purit ent.	y 99.9 mol	e per		
After equilibr. allowed to star	nd for 1 ho	our.	(2) P	ure grade mi ble per cent		ty 99		
Samples withdra by mass spectro chromatography	ometry or g		(3) II	nstrument gr 9.5 mole per		m purity		
			δт/к	$\begin{array}{l} \text{TED ERROR:} \\ = \pm 0.06; \delta^{2} \\ \delta^{x} \\ \text{CH}_{\mu}, \delta^{x} \\ \end{array}$				
			^{δy} C ₄ F REFEREN		•			
_								

COMP	ONENTS	5:
------	--------	----

(1)Nitrogen; N₂; [7727-37-9] (2)Methane; CH₄; [74-82-8] (3)Butane; C₄H₁₀; [106-97-8]

ORIGINAL MEASUREMENTS: Roberts, L. R.; McKetta, J. J. J. Chem. Eng. Data <u>1963</u>, 8, 161-3.

EXPERIMENTAL VALUES:

г/к	P/MPa	^x C ₄ H ₁₀	Ctions in ^x CH ₄		Mole f ^y C4H10	^y CH ₄	in vapor ^y N ₂
	·	C4H10	Сн ₄	N 2	^y C4H10	• CH 4	• N 2
310.9	17.24		0.379	0.221	0.175	0.472	0.353
		0.404	0.371	0.225	0.163	0.464	0.373
		0.429	0.338	0.233	0.155	0.429	0.416
	20.68	0.538	0.092	0.370	0.134	0.119	0.747
		0.508	0.136	0.356	0.158	0.167	0.675
		0.450	0.195	0.355	0.167	0.234	0.599
44.3	3.447	0.907	0.067	0.026	0.338	0.334	0.328
	6,895	0.807	0.137	0.056	0.239	0.409	0.352
		0.869	0.039	0.092	0.228	0.132	0.640
		0.883	0.022	0.095	0.230	0.073	0.697
		0.884	0.013	0.103	0.235	0.043	0.722
	10.34	0.750	0.117	0.133	0.218	0.249	0.533
		0.733	0.143	0.124	0.235	0.295	0.470
		0.699	0.192	0.109	0.228	0.386	0.386
		0.661	0.257	0.082	0.242	0.490	0.268
		0.639	0.301	0.060	0.252	0.570	0.178
		0.642	0.296	0.062	0.245	0.561	0.194
	13.79	0.554	0.323	0.123	0.281	0.462	0.257
	20175	0.560	0.307	0.133	0.285	0.440	0.275
		0.578	0.291	0.131	0.281	0.432	0.287
		0.535	0.356	0.109	0.291	0.487	0.222
		0.713	0.070	0.217	0.217	0.122	0.661
		0.650	0.158	0.192	0.237	0.267	0.496
		0.600	0.245	0.155	0.267	0.376	0.357
		0.570	0.290	0.140	0.292	0.415	0.293
	17.34	0.507	0.203	0.290	0.347	0.237	0.416
	1/.54	0.630	0.067	0.303	0.265	0.095	0.640
		0.543	0.166	0.291	0.313	0.213	0.474
		0.531	0.189		0.313	0.232	0.450
				0.280	0.318		0.450
77 6	2 4 4 7	0.952	0.0	0.048	0.604	0.0 0.273	
77.6	3.447	0.934	0.051	0.015	0.588		0.139
		0.918	0.078	0.004	0.602	0.356	0.042
	6 005	0.942	0.029	0.029	0.601	0.143	0.256
	6.895	0.758	0.236	0.006	0.449	0.516	0.035
		0.810	0.144	0.046	0.439	0.358	0.203
		0.834	0.098	0.068	0.444	0.284	0.272
		0.810	0.129	0.061	0.440	0.310	0.250
		0.833	0.088	0.079	0.428	0.232	0.340
	10.34	0.730	0.089	0.181	0.415	0.162	0.423
		0.739	0.073	0.188	0.395	0.129	0.475
		0.720	0.122	0.158	0.417	0.218	0.365
					0.407	0.200	0.393
		0.639	0.254	0.107	0.466	0.353	0.181
					0.401	0.218	0.381
		0.673	0.188	0.139	0.430	0.280	0.290
		0.628	0.265	0.107	0.470	0.354	0.176
		0.640	0.246	0.114	0.455	0.357	0.188
10.9	3.447	0.989	0.002	0.009	0.943	0.014	0.043
	_	0.987	0.004	0.009	0.940	0.016	0.044
	6.895	0.883	0.101	0.016	0.770	0.192	0.038
		0.904	0.046	0.050	0.769	0.106	0.125
	10.34	0.849	0.052	0.099	0.754	0.080	0.166
		0.849	0.041	0.110	0.746	0.071	0.183

COMPONENTS :	ORIGINAL MEASUREMENTS:			
(1) Nitrogen; N ₂ ; [7727-37-9]	Cannon, W. A.; Robson, J.H.; English,			
(2) Ethene; C ₂ H ₄ ; [74-85-1]	N.D. Report DAC-60510-F2. Contract NAS7- 548 (1968). (Tech. Report Douglas Missile & Space Systems Division, Astropower Laboratory.) PREPARED BY: R. Battino			
VARIABLES:				
T/K = 144-228 P/IIPa = 2.1-4.8				
EXPERIMENTAL VALUES:		x ₁ ^b		
P _{II2} /psia P ^a /MPa -200.2°F 2 (144.2 K)	-150.1°F (172.0 K)	-100.1°F (199.6 K)	-50.2°F (227.5 К)	
300 2.07 0.0914 300 2.07 0.0900	0.0660 0.0643	0.0481 0.0455	0.0263 0.0264	
300 2.07 0.0907	0.0648	0.0455	0.0258	
300 2.07 0.0907	0.0655	0.0475	0.0258	
700 4.83 0.241 700 4.83 0.251	0.161 0.166	0.137 0.131	0.108 0.109	
700 4.83 0.246 700 4.83 0.246	0.160 0.168	0.132	0.111 0.114	
AUXILIARY	INFORMATION			
		JRITY OF MATERI	IALS:	
AUXILIARY METHOD/APPARATUS/PROCEDURE: About 200 cm ³ of liquid propellant was condensed into a pressure vessel of about 1 liter capacity. Nitrogen was added to the proper pressure and the apparatus agitated for about one hour. A sample of the liquid phase was withdrawn and flashed to a gas at a lower temperature. The gas sample was then analyzed by gas chromatography.	SOURCE AND PU (1) Air Pr high p (2) J. T.	oducts and o ourity grade	Chemicals, , 99.9%. cal Company,	
METHOD/APPARATUS/PROCEDURE: About 200 cm ³ of liquid propellant was condensed into a pressure vessel of about 1 liter capacity. Nitrogen was added to the proper pressure and the apparatus agitated for about one hour. A sample of the liquid phase was withdrawn and flashed to a gas at a lower temperature. The gas sample was then analyzed by gas	SOURCE AND PU (1) Air Pr high p (2) J. T.	oducts and o ourity grade Baker Chemi Grade, 99.0	Chemicals, , 99.9%. cal Company,	
METHOD/APPARATUS/PROCEDURE: About 200 cm ³ of liquid propellant was condensed into a pressure vessel of about 1 liter capacity. Nitrogen was added to the proper pressure and the apparatus agitated for about one hour. A sample of the liquid phase was withdrawn and flashed to a gas at a lower temperature. The gas sample was then analyzed by gas	SOURCE AND PU (1) Air Pr high p (2) J. T. C. P.	Coducts and o Durity grade Baker Chemi Grade, 99.0 NOR: 2 02	Chemicals, , 99.9%. cal Company,	
METHOD/APPARATUS/PROCEDURE: About 200 cm ³ of liquid propellant was condensed into a pressure vessel of about 1 liter capacity. Nitrogen was added to the proper pressure and the apparatus agitated for about one hour. A sample of the liquid phase was withdrawn and flashed to a gas at a lower temperature. The gas sample was then analyzed by gas	SOURCE AND PU (1) Air Pr high p (2) J. T. C. P. ESTIMATED ERR $\delta T/K = \pm 0.$ $\delta P/P = \pm 0.$	Coducts and o Durity grade Baker Chemi Grade, 99.0 NOR: 2 02	Chemicals, , 99.9%. cal Company,	

[avarau]	
COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Grauso, L.; Fredenslund, A.;
(2) Ethene; C ₂ H ₄ ; [74-85-1]	Mollerup, J.
	Fluid Phase Equilibria <u>1977</u> , 1, 13.
VARIABLES:	PREPARED BY:
T/K = 200-260 P/MPa = 0.5-11	C. L. Young
	0. 1. 10ung
EXPERIMENTAL VALUES:	
Mole fraction of nitr T/K P/bar in liquid, in v	
	N ₂
200.0 4.543 0.0000 0.00	00
15.41 0.0307 0.65 28.94 0.0714 0.77	
39.57 0.1058 0.81	21
60.33 0.1811 0.82 81.83 0.2742 0.81	
102.64 0.3940 0.76 110.38 0.4735 0.71	
260.0 30.01 0.0000 0.00	00
36.80 0.0199 0.11 43.66 0.0413 0.19	
52.41 0.0716 0.25 62.12 0.1080 0.30	
70.92 0.1498 0.31	39
76.85 0.1939 0.29	32
AUXILIARY	INFORMATION
METHOD /APPARATUS/PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
Recirculating vapor flow apparatus. Temperature measured with platinum	(1) Purity 99.998 mole per cent.
resistance thermometer. Pressure measured with dead weight piston	(2) Purity 99.95 mole per cent.
balance. Coexisting samples	
analysed by gas chromatography. Details in source and ref. 1.	
	4
	ESTIMATED ERROR: $\delta T/K = \pm 0.01; \delta P/bar = \pm 0.02\%;$
	$\delta x_{N_2}, \delta y_{N_2} \leq \pm 0.003.$
	REFERENCES :
	1. Fredenslund, A.; Mollerup, J.;
	Christiansen, L. J.
	Cryogenics 1973, 13, 405.
	· · · · · · · · · · · · · · · · · · ·
	L

COMPONENTS	ç.			ORTGINAT	MEASUDEMENT	rc •	
			ORIGINAL MEASUREMENTS:				
(1) Nitrogen; N ₂ ; [7727-37-9]		Gasem, K. A. M.; Hiza, M. J.; Kidnay, A. J.					
		1 - 4			-	1.11 1.001	
(2) Ethe	ne; C_2H_4	; [74-85-1]		Fluid P	nase Equi	lib. <u>1981</u> , d	o, 181∽9.
L				[<u> </u>		
VARIABLES	: K = 120-2	0.0		PREPARED	BY:		
-,	K = 120-2 MPa = 0.0					C. L. Young	
	-						
EXPERIMEN	TAL VALUES:	Mole fra	ation	-		Mole fra	ation
		of nitr	ogen			of nitr	ogen
т/к	P/MPa	in liquid;		T/K	P/MPa	in liquid;	
		x_{N_2}	y_{N_2}			^{<i>x</i>} N ₂	y_{N_2}
	<u></u>						
120.00	0.0012	0.0000	0.0000	140.00	0.0118 0.606	0.0000	0.0000 0.9787
	0.644 1.035	0.0451 0.0719	1.0000 1.0000		1.047	0.0469	0.9787
1	1.503	0.1083	1.0000		1.600	0.0736	0.9917
	2.086 2.285 **	0.1666 0.2024	1.0000 1.0000		2.193 2.875	0.1038 0.1424	0.9931 0.9925
125.28	0.0027	0.0000	0.0000		3.599	0.1947	0.9902
	0.496	0.0291	0.9970		4.299	0.2373	0.9855
	1.006 1.507	0.0601 0.0953	0.9994 1.0000		4.788 4.903	0.2792	0.9731
	1.818	0.1129	1.0000		5.026 **	0.3019	0.9646
	2.150 2.635	0.1414 0.1954	1.0000 0.9994		5.045 5.127	 0.9316	0.9714 0.9737
	2.880 **	0.2282	0.9981		5.260		0.9682
	2.910		0.9996		5.360 5.410	0.9481 0.9658	0.9690 0.9717
134.00	3.031 0.0069	0.9188 0.0000	_ 0.0000	144.92		0.0000	0.0000
134.00	0.671	0.0338	0.9906		1.602	0.0716	0.9864
	1.666 2.646	0.0851 0.1517	0.9965 0.9966		3.097 4.536	0.1502 0.2357	0.9882
	3.692	0.2302	0.9918		5.110	0.2776	0.9776
	4.033	0.2516 0.2710	0.9880 0.9900		5.593	0.3070	0.9658
_	4.110 **	0.2710	0.9900	conti	nued on fo	ollowing pag	e
			AUXILIARY	INFORMATI	ON		
METHOD /API	PARATUS/PROG	CEDURE :		SOURCE AM	D PURITY OF	MATERIALS;	
Donim	1.4.	nor flow are	aratus				
		por flow app					
-		ured using a					
	nce thermo		essure		No de	etails given	• [
	-	ourdon gauge					
	-	ated and sam					
-		as chromatog					ł
		onductivity					
Details	in source	e and refs.	(1), (2)				
and (3)	•			ESTIMATEI δτ/κ =		$P/MPa = \pm 0.0$	05 up to
						ove 5 MPa;	up to
				$\delta x_{\rm N}$, $\delta z_{\rm N}$	$y_{N_2} = \pm 0.0$	002.	
				REFERENCE			
				1. Kidn	ay, A.J.;	Miller, R.C	.;Parrish,
					; Hiza, M		1
				2. Hiza	, M.J.; D	<u>75, 15,</u> 531. uncan, A.G.	
				Inst	. 1969, 4	0, 513.	
						Hiza, M.J. 1970, 15, 4	
							-

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1)Nitrogen; N ₂ ; [7727-37-9]	Gasem, K. A. M.; Hiza, M. J.; Kidnay, A. J.
(2)Ethene; C ₂ H ₄ ; [74-85-1]	Fluid Phase Equilib. <u>1981</u> , 6, 181-9.

EXPERIMENTAL VALUES:

	Mole fraction of nitrogen				Mole fraction of nitrogen		
т/к	P/MPa	in liquid; ^x N ₂	in gas, ^Y N ₂	т/к	P/MPa	in liquid*; ^x N ₂	in gas, ^Y N ₂
144.92	5.928 5.978	0.3502	0.9508	160.00	2.795	0.1062	0.9660
	6.008 6.353 6.360	0.6123 0.7838 0.6376	0.9570 0.9574		4.080 4.830 6.558	0.1615 0.2023 0.2923	0.9670 0.9631 0.9473
160.00	6.444 0.0563 0.430	0.8004 0.0000 0.0167	0.9507 0.0000 0.8587	200.00	8.200 9.342 0.455	0.4315 0.6538 0.0000	0.9079 0.8631 0.0000
	0.580 0.720 0.817	0.0219 0.0247 0.0285	0.8927 0.9113 0.9210		0.837 1.227 1.320	0.0132	0.4166 0.5800 0.6035
	0.897 1.120 1.152	0.0310 0.0398 0.0406	0.9367 0.9391 0.9402		1.388 1.576 1.760	0.0351 0.0394	0.6186 0.6860
	1.470 1.809 2.150	0.0525 0.0663 0.0797	0.9511 0.9567 0.9618		2.637 3.797 4.730	0.0648 0.1021 0.1332	0.7642 0.8093 0.8248

* Where liquid phase separation occurs, the liquid compositions are for the bottom liquid layer.

** Pressure at which phase separation occurs.

COMPONENTS:	EVALUATOR:
(1) Nitrogen; N ₂ ; [7727-37	-9] Colin L. Young, School of Chemistry,
(2) Ethane; C ₂ H ₆ ; [74-84-0]	
	June 1981.

CRITICAL EVALUATION:

This system has been investigated by seven different groups. The experimental data of Stryjek $et \ al.$ (1) for the temperature range 140-195 K, of Gupta et al. (2) for the temperature range 260-280 K and of Grauso et al. (3) for the temperature range 200-290 K are all thought to be reliable and show good agreement when interpolated or extrapolated. The older data of Eakin $et \ al.$ (4) and (5) are more or less consistent with the data of the above three groups but show considerably more scatter. The data of Chang and Lu (6) are only reported at two temperatures and their vapor-phase concentrations of ethane are almost certainly too large being two or three times those obtained by Eakin $et \ al.$ (4), (5); therefore, the data are classified as doubtful. However the liquid phase compositions are in fair agreement with values interpolated or extrapolated from the data of Stryjek et al. (1). The data of Yu et al. (7) on this system are not considered here as they are mainly concerned with liquid-liquid-gas equilibrium exhibited by this system at low temperatures (below 135 K). The limited data of Cannon et al. (8) are classified as tentative, the data being in fair agreement with the data of Grauso et al. (3) although considerably less accurate.

References

l.	Stryjek, R.;	Chappelear, P. S.;	Kobayashi, R.
	J. Chem.	Eng. Data 1974, 19,	340.

- Gupta, M. K.; Gardner, G. C.; Hegarty, M. J.; Kidnay, A. J. J. Chem. Eng. Data <u>1980</u>, 25, 313.
- Grauso, L.; Fredenslund, A.; Mollerup, J. *Fluid Phase Equilibria* 1977, 1, 13.
- Eakin, B. E.; Ellington, R. T.; Gami, D. C. Inst. Gas Technol., Res. Bull. No. 26, <u>1955</u>.
- 5. Ellington, R. T.; Eakin, B. E.; Parent, J. D.; Bloomer, O. T. Thermodynamic Properties of Gases, Liquids and Solids, Amer. Soc. Mech. Engnrs., New York, <u>1959</u>, p.180.
- Chang, S. D.; Lu, B. C. Y. Chem. Eng. Prog. Symp. Ser. <u>1967</u>, 63 (81), 18.
- Yu, P.; Elshayal, I. M.; Lu, B. C. Y. Can. J. Chem. Eng. 1969, 47, 495.
- Cannon, W. A.; Robson, J. H.; English, W. D. *Report DAC-60510-F2*, <u>1968</u>, (Tech. Report, Douglas Missile and Space Systems Division, Astropower Laboratory.)

·
ORIGINAL MEASUREMENTS:
Ellington, R.T.; Eakin, B.E.; Parent, J.D.; Gami, D.C.; Bloomer, O.T.
Thermodynamic Properties of Gases, Liquids and Solids, Amer. Soc. Mech. Engineers: New York, <u>1959</u> , p.180.
PREPARED BY:
C.L. Young,
Mole fraction of T/K P/bar nitrogen in liquid, ^x N ₂
301.0 55.16 0.0498 100.8 6.89 0.1501 109.3 10.34 0.1501 116.5 13.79 0.1501 123.5 17.24 0.1501 130.3 20.68 0.1501 137.0 24.13 0.1501 143.8 27.56 0.1501 151.2 31.03 0.1501 158.8 34.47 0.1501 166.8 37.92 0.1501 175.7 41.37 0.1501 186.3 44.82 0.1501 198.3 48.26 0.1501
INFORMATION
SOURCE AND PURITY OF MATERIALS:
 (1) Stated purity 99.99 mole per cent. (2) Phillips Petroleum Research grade sample; purity 99.88 mole per cent.
<pre>ESTIMATED ERROR:</pre>

Нуаго	carbons
COMPONENTS:	ORIGINAL MEASUREMENTS:
 (1) Nitrogen; N₂; [7727-37-9] (2) Ethane; C₂H₆; [74-84-0] 	Chang, S. D.; Lu, B. C. Y. Chem. Eng. Prog. Symp. Ser., <u>1967</u> , 63(81), 18-27.
VARIABLES:	PREPARED BY:
T/K = 122-171 P/MPa = 0.4-3.4	C. L. Young
EXPERIMENTAL VALUES:	
Mole fraction of nitro T/K P/bar in liquid, in va ^x N ₂ ^y N	por,
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 5 1 0 4 4 8 2 2 0 5
AUXILIARY	INFORMATION
METHOD /APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Recirculating vapor flow apparatus with cell consisting of 100 ml Jerguson gauge with stainless steel body. Temperature measured using copper-constantan thermocouples. Pressure measured using Bourdon gauges. Magnetic circulating pump. Cell charged vapor recirculated for 2 or more hours. Samples of vapor and liquid removed at constant pressure and analyzed using gas chromato- graphy. Details in source.	 Matheson research grade, purity 99.999 mole per cent. Matheson research grade, purity 99.9 mole per cent.
	ESTIMATED ERROR: $\delta T/K = \pm 0.1; \delta P/bar = \pm 0.5$; $\delta x_{N_2} \approx \delta y_{N_2} \leq 10$ % (estimated by compiler). REFERENCES:

.

	COMPONENTS:			ORIGINAL MEASUREMENTS: Cannon, N. A.; Robson, J. H.;		
 (1) Hitrogen; N₂; [7727-37-9] (2) Ethane; C₂H₆; [74-84-0] 		English, N. A	; Robson, J .D.	• 11.;		
(2) Ethane; C	·2 ⁿ 6i [/4-64	-0]	548 (1968) Missile &	0510-F2. Con . (Tech. Rep Space System Laboratory.	ort Douglas s Division,	
VARIABLES:			PREPARED BY:		<u></u>	
T/K = 144-2 P/MPa = 2.1			R. Battin	o		
EXPERIMENTAL VALU	ES:		x, ^b			
P _N /psia 2	P ^a /MPa N2	~199.8°F (144.4 K)	-150.4°F (171.8 K)	-99.6°F (200.0 K)	-50.1°F (227.5 K)	
300	2.07	0.106	0.0714	0.0571	0.0478	
300	2.07	0.106	0.0747	0.0571	0.0450	
300 300	2.07 2.07	0.105 0.107	0.0737 0.0760	0.0543 0.0558	0.0487 0.0467	
700	4.83	0.278	0.179	0.144	0.130	
700	4.83	0.268 0.274	0.173 0.180	0.137 0.149	0.127 0.119	
700 700	4.83 4.83	0.264	0.175	0.141	0.116	
METHOD/APPARATUS/		AUXILIARY	INFORMATION			
About 200 cm ³	PROCEDURE:	AUXILIARY	INFORMATION SOURCE AND PURI	TY OF MATERIALS	;	
was condensed	³ of liquid l into a pre	propellant ssure vessel	SOURCE AND PURI	TY OF MATERIALS ucts and Cher rade, 99.9%.		
was condensed of about 1 li was added to the apparatus hour. A samp was withdrawn at a lower te sample was th chromatograph	of liquid into a pre ter capacit the proper a agitated f ble of the l and flashe emperature. hen analyzed	propellant ssure vessel y. Nitrogen pressure and or about one iquid phase d to a gas The gas	SOURCE AND PURI (1) Air Prod purity g	ucts and Cher	micals, high	
of about 1 li was added to the apparatus hour. A samp was withdrawn at a lower te sample was th	of liquid into a pre ter capacit the proper a agitated f ble of the l and flashe emperature. hen analyzed	propellant ssure vessel y. Nitrogen pressure and or about one iquid phase d to a gas The gas	SOURCE AND PURI (1) Air Prod purity g	ucts and Cher rade, 99.9%. er, C.P. grad	micals, high	
of about 1 li was added to the apparatus hour. A samp was withdrawn at a lower te sample was th	of liquid into a pre ter capacit the proper a agitated f ble of the l and flashe emperature. hen analyzed	propellant ssure vessel y. Nitrogen pressure and or about one iquid phase d to a gas The gas	SOURCE AND PURIT (1) Air Prod purity g (2) J.T. Bak ESTIMATED ERROR $\delta T/K = \pm 0.2$ $\delta P/P = \pm 0.0$	ucts and Cher rade, 99.9%. er, C.P. grad	micals, high	
of about 1 li was added to the apparatus hour. A samp was withdrawn at a lower te sample was th	of liquid into a pre ter capacit the proper a agitated f ble of the l and flashe emperature. hen analyzed	propellant ssure vessel y. Nitrogen pressure and or about one iquid phase d to a gas The gas	SOURCE AND PURIT (1) Air Prod purity g (2) J.T. Bak ESTIMATED ERROR $\delta T/K = \pm 0.2$	ucts and Cher rade, 99.9%. er, C.P. grad	micals, high	
of about 1 li was added to the apparatus hour. A samp was withdrawn at a lower te sample was th	of liquid into a pre ter capacit the proper a agitated f ble of the l and flashe emperature. hen analyzed	propellant ssure vessel y. Nitrogen pressure and or about one iquid phase d to a gas The gas	SOURCE AND PURIT (1) Air Prod purity g (2) J.T. Bak ESTIMATED ERROR $\delta T/K = \pm 0.2$ $\delta P/P = \pm 0.0$ $\delta x_1/x_1 = \pm 0$	ucts and Cher rade, 99.9%. er, C.P. grad	micals, high	

,

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Nitrogen; N₂; [7727-37-9] (2) Ethane; C₂H₆; [74-84-0]</pre>	Stryjek, R.; Chappelear, P. S.; Kobayashi, R. J. Chem. Eng. Data <u>1974</u> , 19, 340.
VARIABLES: T/K = 139-194	PREPARED BY:
P/MPa - 0.4-13.5	C. L. Young
EXPERIMENTAL VALUES: Mole fraction	Mole fraction
of nitrogen	of nitrogen
T/K P/bar in liquid, in vapor, x _{N2} y _{N2}	T/K P/bar in liquid, in vapor, x_{N_2} y_{N_2}
	N 2 N 2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27.560.099030.9636841.780.15520.9663555.300.20900.9621568.810.26890.9560090.390.37550.92771
13.81 0.06400 0.98752 20.68 0.09698 0.98937 27.56 0.1343 0.98985 34.47 0.1685 0.98834 41.44 0.2058 0.98656 55.50 0.2839 0.98097 69.09 0.3531 0.95918 88.87 0.4336 0.9001	103.42 0.4327 0.9012 120.66 0.5626 0.8138 124.93 0.6341 0.7704 125.35 ^a 0.7080 0.7080 194.26 3.52 0.005715 0.4862 6.92 0.01612 0.7146 13.79 0.03722 0.8360 (cont.)
^a Critical point; ^b Smoot	thed value.
	INFORMATION
METHOD /APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Vapor recycled through equilibrium cell by magnetic pump. Temperature	<pre>(1) Matheson sample; purity 99.99 mole per cent.</pre>
measured by platinum resistance thermometer using a Mueller bridge. Pressure measured with Heise gauge. Samples of both phases analyzed with a thermal conductivity detector (1-3). After equilibrium established vapor phase analyzed then recycle pump stopped and liquid phase sampled (1-3).	(2) Specified purity 99.99 mole per cent.
	ESTIMATED ERROR:
	$\delta T/K \sim 0.02; \ \delta P/bar < 1; \ \delta x_{N_2} \sim \delta y_{N_2} = 0.2-1.0$ %.
	REFERENCES: 1. Stryjek, R. Monograph. Rice University, <u>1972</u> .
	 Wichterle, I.; Kobayashi, R. J. Chem. Eng. Data <u>1972</u>, 17, 4.
	 Stryjek, R.; Chappelear, P. S.; Kobayashi, R. J. Chem. Eng. Data <u>1974</u> 19,334.

COMPONENTS:		ORIGINAL MEASUREMENTS:		
(1) Nitrogen; N ₂ ; [7727-37-9]		Stryjek, R.; Chappelear, P. S.; Kobayashi, R.		
(2) Ethane; C_2H_6 ;	[74-84-0]	J. Chem. Eng. Data <u>1974</u> , 19, 340		
EXPERIMENTAL VALUE	S:			
	Mole fraction of nitrogen liquid, in vapor, ^x N ₂ ^y N ₂	Mole fraction of nitrogen T/K P/bar in liquid, in vapor, ^x N ₂ ^y N ₂		
41.51 55.71 69.09 89.77	0.08081 0.8966 0.1273 0.9126 0.1756 0.9154 0.2225 0.9126 0.3024 0.8977 0.3338 0.8885	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
. Cri	tical point; ^b Smoo	thed value.		

COMPONENTS:	ORIGINAL MEASUREMENTS:
COMPONENTS:	ORIGINAL MEASUREMENTS:
(l) Nitrogen; N ₂ ; [7727-37-9]	Grauso, L.; Fredenslund, A.; Mollerup, J.
(2) Ethane; C ₂ H ₆ ; [74-84-0]	Fluid Phase Equilibria <u>1977</u> , 1, 13.
VARIABLES:	PREPARED BY:
T/K = 200-230 P/MPa = 0.2-13	C. L. Young
	1
EXPERIMENTAL VALUES: Mole fraction T/K P/bar of nitrogen in liquid, in vapor, x_{N_2} y_{N_2}	Mole fraction T/K P/bar of nitrogen in liquid, in vapor, . ^w N2 ^y N2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
AUXILIARY	INFORMATION
METHOD /APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Recirculating vapor flow apparatus.	(1) Purity 99.998 mole per cent.
Temperature measured with platinum resistance thermometer. Pressure measured with dead weight piston balance. Coexisting samples analysed by gas chromatography. Details in source and ref. 1.	(2) Purity 99.95 mole per cent.
	ESTIMATED ERROR:
	$\delta T/K = \pm 0.001; \delta P/bar = \pm 0.028;$
	$\delta x_{N_2} = \delta y_{N_2} \le \pm 0.003.$
	REFERENCES:
	1. Fredenslund, A.; Mollerup, J.;
	Christiansen, L. J.
	Cryogenics <u>1973</u> , 13, 405.

COMPONENTS		[7727-37-9]	ORIGINAL MEASUREMENTS: Gupta, M.K.; Gardner, G.C.;
(2) Etha	ne; C ₂ H ₆ ;	[74-84-0]	Hegarty, M. J.; Kidnay, A. J.
			J. Chem. Eng. Data <u>1980</u> , 25, 313-
ARIABLES: T	/K = 260-28	30	PREPARED BY:
Р	/MPa = 2-10)	C.L. Young
		<u> </u>	L <u></u>
XPERIMENT	AL VALUES:		Mole fraction in nitrogen
	Total pres	sure	in liquid in gas
т/к	p/atm	p/MPa	<i>x</i> _{N₂} <i>y</i> _{N₂}
260.00	16.80	1.702	0.0000 0.0000
	18.10 20.59	1.834 2.086	0.0036 0.0523 0.0106 0.1375
	22.55	2.285	0.0161 -
	25.63	2.597	0.0254
	35.36 44.88	3.583 4.547	0.0541 0.4065 0.0828 0.4823
	65.05	6.591	0.1494 0.5541
	75.20 84.27	7.620	0.1873 0.5653
	84.27 93.80	8.539 9.504	0.2258 0.5632 0.2714 0.5473
270,00	21.68	2.197	0.0000 0.0000
	23.50 24.35	2.381 2.467	0.0052 0.0523 0.0077 0.0770
	25.13	2.546	0.0098 0.0942
	27.65	2.802	0.0157 0.1489
	28.63 30.00	2.901 3.040	0.0193 0.1698 0.0233 0.1889
	30.40	3.080	0.0251
	32.52	3.295	0.0302 0.2378
	32.62 34.52	3.305 3.498	0.0302 0.2262 0.0359 0.2636
	34.70	3.516	0.0382 0.2646
	35.26 37.31	3.573 3.780	0.0390 0.2668 0.0435 0.2938
		AUXILIARY	INFORMATION
ETHOD/APP	ARATUS/PROCEI	OURE :	SOURCE AND PURITY OF MATERIALS:
De et			(1) Purity at least 99.7 mole per
	lating vapo aphragm pum	r flow apparatus p. Temperature	cent.
measured	l with plat	inum resistance	(2) Purity at least 99 mole per ce
		essure with ell stirred with	No extraneous peaks were found whe samples analysed by gas chromato-
double p	propeller s	tirrer. Vapor and	
liquid s	amples ana	lysed by gas	
		ng a thermal cond- Details in	
ref. (1)		SCORED All	
			ESTIMATED ERROR:
			$\delta T/K = \pm 0.02; \delta p/MPa = \pm 0.03 \text{ up to}$ 3.4 MPa, ± 0.1 above 3.4 MPa; $\delta x_{N_2}, \delta y_{N_2} = \pm 0.002$
			REFERENCES:
			<pre>1. Somait, F.; Kidnay, A.J. J. Chem. Eng. Data <u>1978</u>, 23, 301.</pre>

COMPONENTS:		······	ORIGINAL MEASUREM	ENTS:
(1) Nitro	gen; N ₂ ;	[7727-37-9]		Gardner, G.C.;
(2) Ethan	e: Calles	[74-84-0]	Hegarty, M.	J.; Kidnay, A. J.
(2) Denan	.c, c ₂ ,	[14 04 0]	J. Chem. Eng.	. Data <u>1980</u> ,25, 313-8.
			No. 1	
	Total	pressure	in liquid	n in nitrogen in gas
т/к	p/atm	p/MPa	^x N ₂	y_{N_2}
270.00	40.39	4.093	0.0543	0.3216
	40.53	4.107	0.0563	0.3321
	41.19 45.50	4.174 4.610	0.0554	0.3339
	47.42	4.805	0.0696 0.0687	0.3618 0.3811
	50.31	5.098	0.0848	0.3921
	53.47	5.418	0.0951	0.4156
	55.20	5.593	0.0989	0.4127
	57.70	5.846	0.1076	0.4290
	60.18 65.62	6.098 6.649	0.1165	0.4291 0.4506
	70.43	7.136	0.1555	0.4545
	80.50	8.157	0.2030	0.4631
	80.59	8.166	_	0.4631
	81.42	8.250	0.2079	0.4611
	84.12	8.523	0.2263	-
	85.45 89.81	8.658 9.100	0.2306 0.2572	0.4652
	90.71	9.191	0.2636	-
	93.25	9.449	0.2849	-
	93.50	9.474	-	0.4594
	93.70	9.494	0.2931	-
	96.42 96.45	9.770 9.773	-	0.4446 0.4475
	96.67	9.795	0.3361	-
	97.72	9.901	0.3742	_
280.00	27.60	2.797	0.0000	0.0000
	29.50	2.989	0.0061	0.0437
	30.72	3.113 3.222	0.0097	0.0684
	31.80 36.23	3.671	0.0128 0.0265	0.0866 0.1558
	40,32	4.085	0.0394	0.2047
	45.35	4.595	0.0556	0.2511
	51.69	5.237	0.0767	0.2943
	55.89	5.663	0.0921	0.3167
	60.20 65.30	6.100	0.1078	0.3331
	71.68	6.617 7.263	0.1284 0.1570	0.3471 -0.3542
	76.90	7.792	0.1852	0.3484
	80.25	8.131	0.2088	0.3360
	80.90	8.197	0.2162	0.3339
	82.25	8.334	0.2311	0.3177
	83.55	8.466	single p	ohase
				•

COMPONENTS	•		ORTCINAL N	TEASUDEMENTS .			
1			ORIGINAL MEASUREMENTS:				
(I) NIT	rogen; N ₂ ;	[//2/-3/-9]	Blagoi, Yu. P.; Orobinskii, N. A.				
(2) Prop	ene; C ₃ H ₆ ;	[115-07-1]	Zhur. 1	Fiz. Khim. <u>19</u>	65, 39, 2022-4.		
VARIABLES: T/	′K = 79-91		PREPARED I	BY:			
P/	′KPa = 31-258			C. L. Young			
			<u> </u>	······································			
EXPERIMENT	AL VALUES:						
т/к	<i>P/</i> 10 ⁵ Pa	Mole fraction of nitrogen in liquid, ^x N ₂	т/к	<i>P/</i> 10 ⁵ Pa	Mole fraction of nitrogen in liquid, ^x N ₂		
		N 2			N 2		
90.5	0.4523	0.004	85.95	2.502	0.030		
88.3	0.4123	0.004	85.75	2.474	0.030		
85.55	0.3664 0.3111	0.004 0.004	83.95 83.90	2.084 2.064	0.030 0.030		
90.5	0.933	0.009	81.50	1.621	0.030		
85.95	0.779	0.009	79.4	1.272	0.030		
82.35 83.25	0.666 1.199	0.009 0.015	85.95 85.85	2.531 2.498	0.033 0.033		
81.30	1.092	0.015	84.10	2.116	0.033		
78.6	0.975	0.015	82.75	1.845	0.033		
90.2 87.5	2.158 1.896	0.021 0.021	82.35 79.40	1.776 1.282	0.033 0.033		
84.10	1.601	0.021	79.40	1.224	0.033		
79.6	1.271	0.021	85.85	2.498	0.070		
89.55	2.451 2.053	0.024 0.024	84.20	2.134	0.070		
81.05	1.505	0.024	82.35 78.00	1.781 1.091	0.070 0.070		
87.10	2.531	0.027	85.95	2.531	0.342		
85.05 81.95	2.125 1.679	0.027 0.027	83.00 79.6	1.906 1.298	0.342 0.342		
86.25	2.578	0.030	19.0	1.290	0.542		
	<u></u>						
		AUXILIARY	INFORMATIC)N			
METHOD/APP	ARATUS/PROCEDUF	æ:	SOURCE AN	D PURITY OF MAT	ERIALS:		
Dender	1	61					
fitted Tempera resista measure Samples	with magneti ture measure nce thermome d with Bourd of liquid p omatography.	d with platinum ter; pressure		No details g	ıven.		
			-				
			ESTIMATED				
				$\pm 0.1; \delta P/kPa$	a = IU.D;		
			$^{\circ x}N_{2} =$	±0.001.			
			REFERENCE	:S :			
			1. Blac	joi, Yu. P.;	Orobinskii, N. A.		
					r. 1963, 8, 1378.		
			0.114		<u> </u>		
1			1				
			1				

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Nitrogen; N₂; [7727-37-9] (2) Propene; C₃H₆; [115-07-1]</pre>	Grauso, L.; Fredenslund, A.; Mollerup, J. Fluid Phase Equilibria 1977, 1, 13.
VARIABLES: $T/K = 260-290$	PREPARED BY:
P/MPa = 0.4-16.5	C. L. Young
EXPERIMENTAL VALUES: Mole fraction of nitro	ogen
T/K P/bar in liquid, in va	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32 51 54 59 90 17 93
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	00 43 58 59 34 22 99 00 00 05 35 04
	INFORMATION
	SOURCE AND PURITY OF MATERIALS:
METHOD/APPARATUS/PROCEDURE: Recirculating vapor flow apparatus. Temperature measured with platinum resistance thermometer. Pressure measured with dead weight piston	(1) Purity 99.998 mole per cent.(2) Purity 99.99 mole per cent.
balance. Coexisting samples analysed by gas chromatography. Details in source and ref. 1.	1
	ESTIMATED ERROR:
	$\delta T/K = \pm 0.01; \delta P/bar = \pm 0.02 $; $\delta x_{N_2}, \delta y_{N_2} \leq 0.003.$
	REFERENCES :
	<pre>I. Fredenslund, A.; Mollerup, J.; Christiansen, L. J. Cryogenics <u>1973</u>, 13, 405.</pre>

COMPONENTS:	EVALUATOR:
(1) Nitrogen; N ₂ ; [7727-37-9]	Colin L. Young, School of Chemistry, University of Melbourne,
(2) Propane; C ₃ H ₈ ; [74-98-6]	Parkville, Victoria 3052, AUSTRALIA.
	June 1981.

CRITICAL EVALUATION:

This system has been investigated by five groups. The study of Roof and Baron (1) was restricted to critical loci and is not considered further. Cheung and Wang (2) made a fairly limited study of the system at temperatures between 91 and 128 K at pressures up to 0.5 MPa. These data are classified as tentative but are not considered further because of their limited nature. The data of Grauso et al. (3) are thought to be reliable. The isotherms studied by Grauso et al. (3) at 230, 260 and 290 K are in good agreement with values interpolated from the data of Schindler et al. However there are considerable differences between the data of (4). Poon and Lu (5) and Schindler et al. (4). The isotherms of Poon and Lu at 114.1, 118.3 and 122.2 K are probably more accurate than those of Schindler et al. (4) at similar temperatures since it is probable that the sampling technique used by Schindler $et \ al.$ (4) is less reliable for low nitrogen concentrations in the liquid than the technique used by Poon and Lu (5). Therefore the data of Grauso $et \ al.$ (3) and Poon and Lu (5) are classified as tentative whereas the data of Schindler et al. (4) are classified as doubtful at low temperatures (below 250 K). The limited data of Cannon \underline{et} al (6) are classified as tentative, the data being in fair agreement with the data of Grauso et al. (3) but considerably less accurate. References

```
    Roof, J. G.; Baron, J. D.
    J. Chem. Eng. Data <u>1967</u>, 12, 292.
```

- Cheung, H.; Wang, D. I. J. Ind. Eng. Chem. Fund. <u>1964</u>, 3, 355.
- Grauso, L.; Fredenslund, A.; Mollerup, J. Fluid Phase Equilibria <u>1977</u>, 1, 13.
- Schindler, D. L.; Swift, G. W.; Kurata, F. Hydrocarbon Process. <u>1966</u>, 45, 205.
- Poon, D. P. L.; Lu, B. C. Y. Adv. Cryog. Engng. <u>1973</u>, 19, 292.
- 6. Cannon, W. A.; Robson, J. H.; English, W. D.; Report DAC-60510-F2, <u>1968</u>, (Tech Report, Douglas Missile and Space Systems Division, Astropower Laboratory).

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Cheung, H.; Wang, D. I. J.
	Ind. Eng. Chem. Fund. <u>1964</u> , 3, 355.
(2) Propane; C ₃ H ₈ ; [74-98-6]	
VARIABLES:	PREPARED BY:
T/K = 92-128	C. L. Young
$P/WP_{2} = 0 - 1 - 0 - 6$	c. h. foung
P/MPa = 0.1-0.6 EXPERIMENTAL VALUES:	
Mole fraction of nitro T/K P/bar in liquid,	gen
x _{N2}	
91.9 1.195 0.0157	
91.9 4.046 0.0670 97.4 4.969 0.0610	
103.7 5.838 0.0569	
110.21.8460.0124128.22.3870.0107	
The mole fraction of nitrogen in the	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	INFORMATION SOURCE AND PURITY OF MATERIALS:
METHOD/APPARATUS/PROCEDURE: Static equilibrium cell fitted with magnetic stirrer. Pressure measured on mercury manometer. Temperature measured by thermocouple. Details of apparatus in source reference. Known quantity solvent added to evacuated cell. Metered quantity of solute added. Solubility determined	
METHOD/APPARATUS/PROCEDURE: Static equilibrium cell fitted with magnetic stirrer. Pressure measured on mercury manometer. Temperature measured by thermocouple. Details of apparatus in source reference. Known quantity solvent added to evacuated cell. Metered quantity of	SOURCE AND PURITY OF MATERIALS:
METHOD/APPARATUS/PROCEDURE: Static equilibrium cell fitted with magnetic stirrer. Pressure measured on mercury manometer. Temperature measured by thermocouple. Details of apparatus in source reference. Known quantity solvent added to evacuated cell. Metered quantity of solute added. Solubility determined from equilibrium pressure and mass	SOURCE AND PURITY OF MATERIALS: Not given.
METHOD/APPARATUS/PROCEDURE: Static equilibrium cell fitted with magnetic stirrer. Pressure measured on mercury manometer. Temperature measured by thermocouple. Details of apparatus in source reference. Known quantity solvent added to evacuated cell. Metered quantity of solute added. Solubility determined from equilibrium pressure and mass	SOURCE AND PURITY OF MATERIALS; Not given. ESTIMATED ERROR: δT/K = ±0.2; δP/bar = ±0.0015;
METHOD/APPARATUS/PROCEDURE: Static equilibrium cell fitted with magnetic stirrer. Pressure measured on mercury manometer. Temperature measured by thermocouple. Details of apparatus in source reference. Known quantity solvent added to evacuated cell. Metered quantity of solute added. Solubility determined from equilibrium pressure and mass	SOURCE AND PURITY OF MATERIALS: Not given.
METHOD/APPARATUS/PROCEDURE: Static equilibrium cell fitted with magnetic stirrer. Pressure measured on mercury manometer. Temperature measured by thermocouple. Details of apparatus in source reference. Known quantity solvent added to evacuated cell. Metered quantity of solute added. Solubility determined from equilibrium pressure and mass	SOURCE AND PURITY OF MATERIALS: Not given. ESTIMATED ERROR: $\delta T/K = \pm 0.2; \delta P/bar = \pm 0.0015;$ $\delta x_{N_2} = \pm 2$ (estimated by compiler).
METHOD/APPARATUS/PROCEDURE: Static equilibrium cell fitted with magnetic stirrer. Pressure measured on mercury manometer. Temperature measured by thermocouple. Details of apparatus in source reference. Known quantity solvent added to evacuated cell. Metered quantity of solute added. Solubility determined from equilibrium pressure and mass	SOURCE AND PURITY OF MATERIALS; Not given. ESTIMATED ERROR: δT/K = ±0.2; δP/bar = ±0.0015;
METHOD/APPARATUS/PROCEDURE: Static equilibrium cell fitted with magnetic stirrer. Pressure measured on mercury manometer. Temperature measured by thermocouple. Details of apparatus in source reference. Known quantity solvent added to evacuated cell. Metered quantity of solute added. Solubility determined from equilibrium pressure and mass	SOURCE AND PURITY OF MATERIALS: Not given. ESTIMATED ERROR: $\delta T/K = \pm 0.2; \delta P/bar = \pm 0.0015;$ $\delta x_{N_2} = \pm 2$ (estimated by compiler).
METHOD/APPARATUS/PROCEDURE: Static equilibrium cell fitted with magnetic stirrer. Pressure measured on mercury manometer. Temperature measured by thermocouple. Details of apparatus in source reference. Known quantity solvent added to evacuated cell. Metered quantity of solute added. Solubility determined from equilibrium pressure and mass	SOURCE AND PURITY OF MATERIALS: Not given. ESTIMATED ERROR: $\delta T/K = \pm 0.2; \delta P/bar = \pm 0.0015;$ $\delta x_{N_2} = \pm 2$ (estimated by compiler).
METHOD/APPARATUS/PROCEDURE: Static equilibrium cell fitted with magnetic stirrer. Pressure measured on mercury manometer. Temperature measured by thermocouple. Details of apparatus in source reference. Known quantity solvent added to evacuated cell. Metered quantity of solute added. Solubility determined from equilibrium pressure and mass	SOURCE AND PURITY OF MATERIALS: Not given. ESTIMATED ERROR: $\delta T/K = \pm 0.2; \delta P/bar = \pm 0.0015;$ $\delta x_{N_2} = \pm 2$ (estimated by compiler).
METHOD/APPARATUS/PROCEDURE: Static equilibrium cell fitted with magnetic stirrer. Pressure measured on mercury manometer. Temperature measured by thermocouple. Details of apparatus in source reference. Known quantity solvent added to evacuated cell. Metered quantity of solute added. Solubility determined from equilibrium pressure and mass	SOURCE AND PURITY OF MATERIALS: Not given. ESTIMATED ERROR: $\delta T/K = \pm 0.2; \delta P/bar = \pm 0.0015;$ $\delta x_{N_2} = \pm 2$ (estimated by compiler).

COMPONENT	S:			ORIGINAL	MEASUREMEN	TS:		
(l) Ni	trogen;	N ₂ ; [7727-	37-9]	Schindler, D. L.; Swift, G. W.; Kurata, F.				
(2) Pr	(2) Propane; C ₃ H ₈ ; [74-98-6]				Hydrocarbon Process., <u>1966</u> , 45 (11), 205.			
WARTARY		····						
VARIABLES	= 103-3	53		PREPARED				
P/MPa = 0.7 - 13.8			C. L. Y	loung				
·····						· · · · · · · · · · · · · · · · · · ·		
EXPERIMEN	TAL VALUE	S:						
Т/К	P/bar	in liquid,	rogen in vapor,	т/к	P/bar		rogen in vapor,	
		<i>*</i> N 2	${}^{\mathcal{Y}}$ N 2			* _{N 2}	^y _{N₂}	
353.15	41.37	0.053	0.143 0.230	248.15 223.15	13.79	0.185	0.926 0.9290	
343.15	68.95 41.37	0.139 0.040	0.264 0.225		41.37 68.95	0.077 0.129	0.9680 0.9686	
	55.16 68.95	0.084 0.128	0.307 0.358	198.15	96.53 13.79	0.181	0.9639	
	82.74	0.187	0.375	198.15	55.16	0.029 0.085	0.9812 0.9900	
333.15	41.37	0.049	0.350		68.95	0.137	0.9880	
323.15	68.95 41.37	0.128 0.055	0.475 0.422	173.15	96.53 13.79	0.186 0.032	0.9842 0.9952	
	68.95	0.124	0.547		41.37	0.091	0.9965	
298.15	13.79 41.37	0.009 0.067	0.239 0.652		68.95 96.53	0.142 0.184	0.9947 0.9907	
	68.95	0.127	0.728	143.15		0.046	0.9997	
273.15	96.53 13.79	0.191	0.743		41.37	0.113	0.9993	
2/3.15	41.37	0.018 0.074	0.593 0.818		68.95 96.53	0.152 0.171	0.9962 0.9904	
	68.95	0.130	0.854		124.11	0.182	0.9852	
248.15	96.53 13.79	0.187 0.024	0.859 0.815	123.15	137.90 13.79	0.188 0.062	0.9828 0.9996	
	41.37	0.078	0.914		27.58	0.111	0.9997	
	68.95	0.132	0.927			(con	t.)	
			AUXILIARY	INFORMATI	ON			
METHOD:/2	APPARATU	S/PROCEDURE:	;	SOURCE AN	D PURITY C	OF MATERIALS;		
stirrer.	. Temp	ium cell wit erature meas ance thermon	sured with	(1) Hig 99.	h purity 995 mole	dry grade, per cent.	purity	
platinum resistance thermometer; pressure measured with Bourdon gauge. Propane charged into cell, nitrogen added. Samples of both phases analysed by gas chromatography. Details in ref. 1.			(2) Ins mol	trument o e per cer	grade, purit nt.	ty 99.96		
				ESTIMATEI		$\delta P/bar = \pm 0$.	15.	
						$4\%; \delta y_{N_2} =$		
				REFERENC	ES :			
						; Schindler	· • • •	
				1. 5TU			,	
				Ena		F. Am. Ins		
				Eng	11'5. J.	<u>1966</u> , <i>12</i> , 3	./ .	
L				_ _				

COMPONENTS:	ORIGINAL MEASUREMENTS:
 Nitrogen; N₂; [77 Propane; C₃H₈; [Schindler, D. L.; Swift, G. W.; Kurata, F. Hydrocarbon Process., <u>1966</u> , 45 (11), 205.

EXPERIMENTAL VALUES:

т/К	P/bar	Mole fr of nit in liquid, ^x N ₂	rogen	т/к	P/bar	Mole fra of nitr in liquid, ^x N ₂	
123.15	41.37* 68.95* 96.53* 124.11* 137.90*	0.119 0.128 0.136 0.141	0.9947 0.9927 0.9905 0.9885	103.15	13.79* 41.37* 68.95* 96.53* 124.11*	0.085 0.087 0.089 0.091 0.093	0.9953 0.9943 0.9933 0.9923
103.15	6.89	0.143 0.060	0.9877		137.90*	0.093	0.9913 0.9908

* liquid-liquid insolubility.

COMPONENTS:	المتصور والمتشاقية المتحدي والمرجع						
			ORIGINAL MEASUREMENTS:				
(1) Nitrogen;	11 ₂ ; [7727-	37-9]	Cannon, W. A.; Robson, J. H.; English, W.D.				
(2) Propane;	С ₃ н ₈ ; [74-9	8-6]	Report DAC-60510-F2. Contract NAS7- 548 (1968). (Tech. Report Douglas Missile & Space Systems Division, Astropower Laboratory.)				
VARIABLES:		<u> </u>	PREPARED BY:		<u></u>		
T/K = 172-256 P/MPa = 2.1-4			R. Batt:	ino			
EXPERIMENTAL VALU	ES:		x1 ^b				
P _{N2} /psia	P _N ^a /MPa 2	-150.0°F (172.0 K)	-100.0°F (199.8 K)	-50.2°F (227.5 K)	0.4°F (255.6 K)		
300 300 300 300	2.07 2.07 2.07 2.07	0.0490 0.0482 0.0504 0.0510	0.0405 0.0393 0.0406 0.0424	0.0405 0.0403 0.0392 0.0405	0.0355 0.0348 0.0342 0.0330		
700 700 700 700	4.83 4.83 4.83 4.83	0.112 0.114 0.112 0.110	0.107 0.104 0.105 0.106	0.104 0.102 0.108 0.109	0.0965 0.0970 0.0977 0.0978		
METHOD / APPARATUS /		AUXILIARY	INFORMATION				
About 200 cm ³ was condensed vessel of abo Nitrogen was pressure and for about one the liquid ph flashed to a temperature. then analyzed	of liquid l into a pre but l liter added to th the apparat hour. A s ase was wit gas at a lo The gas sa	propellant ssure capacity. e proper us agitated ample of hdrawn and wer mple was	SOURCE AND PURI (1) Air Proc purity o	lucts and Che grade, 99.9%. ker Chemical	micals, high		

Hydrocarbons

			Hydrod	arbons			407
COMPONE	INTS:			ORIGINAL	MEASUREME	ENTS:	
(1) 1	Nitrogen;	N ₂ ; [7727	-37-9]	Poon, D. P. L.; Lu, B. C. Y.			
1		-	-	Advan. Cryog. Eng. <u>1973</u> , 19, 292.			
(2) 1	Propane;	C ₃ H ₈ ; [74-	98-6]				
VARIABI	FS.		· · · · · · · · · · · · · · · · · · ·	PREPAREI			
VIIIIII	T/K = 114 - 122				Young		
	P/MPa = 0	0.2-2.8					
EXPERIM	ENTAL VALU	ES:		I			
m /w	70 //h = ++		raction	m /12	D /h =		raction
т/к	P/bar		trogen , in vapor,	т/к	P/bar	in liquid	trogen , in vapor,
		$x_{\rm N_2}$	y _{N2}			x_{N_2}	y _{N2}
	1 60	0 0075			1 4 66	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0005
114.1	1.50 1.63	0.0075 0.0086	0.9995	118.3	14.88 19.31	0.0621 0.0760	0.9999
	3.41	0.0169	0.9996		20.51	0.0801	0.9999
	6.58 10.01	0.0335 0.0486	0.9997 0.9998	122.2	21.53 3.03	0.0854 0.0107	1.0 0.9989
	13.73	0.0640	0.9999	10210	3.57	0.0133	0.9989
	16.03	0.0736	0.9999		6.95 10.38	0.0254	0.9994
	16.52 17.79	0.0773 0.0842	1.0 1.0		11.45	0.0380 0.0410	0.9995
	18.00	0.0845	1.0		13.99	0.0486	0.9996
118.3	1.88 4.26	0.0079 0.0175	_ 0.9994		19.31 23.56	0.0672 0.0812	0.9999
	7.40	0.0321	0.9994		25.48	0.0858	0.9999
	10.02	0.0433	0.9998		27.58	0.0869	1.0
	12.24 12.98	0.0511 0.0557	0.9998 0.9998		27.58 27.99	0.0881 0.0888	1.0
			AUXILIARY				
		/PROCEDURE:]		OF MATERIALS: search grad	1
with c	ell consi	apor flow a sting of 10)0 ml			97 mole per	
Jergus body.		with stain] ture measur		(2) Phi	llips Pe	troleum Co.	sample
copper	-constant	an thermoco	ouples.	res	search gr		99.99 mole
Pressu gauges		ed using Bo tic circula		per	cent.		
	harged, v	apor recirc	ulated for 2				
or more	e hours a	nd samples	of vapor and				-
and and	removed	at constant ing gas chr	omatography.				
Detail	s in sour	ce.					
					D ERROR:	&P/ham - 10	0.5
						$\delta P/bar = \pm 0$ $N_2 = \pm 0.000$	
				N 2		N ₂ = 5 5 6 6 6	
				REFERENC	ES:		

COMPONENT	TG •			ORICIMAT	MEACUDENT			
COMPONENTS:				ORIGINAL MEASUREMENTS:				
(1) Nitrogen; N ₂ ; [7727-37-9]				Grauso, L.; Fredenslund, A.; Mollerup, J.				
(2) Pi	ropane;	C ₃ H ₈ ; [74-98	3-6]	Fluid Phase Equilibria <u>1977</u> , 1, 13.				
VARIABLE	S:		<u></u>	PREPAREI) BY:			
5	T/K = 23			{				
]	P/MPa =	0.1-21.9		С. Г.	Young			
EXPERIME	NTAL VALU	ES:		1				
т/к	P/bar	Mole frac of nitro in liquid, ^x N ₂	ogen	Т/К	P/bar	Mole frac of nitro in liquid, ^x N ₂	ogen	
230.0	0.966 4.08 19.66	0.0337	0.0000 0.7498 0.9343	260.0	122.15 152.30 179.83	0.2354 0.2993 0.3721	0.8939 0.8756 0.8478	
	36.84 61.17 83.16 107.79 134.90 169.44 194.84	0.0745 0.1251 0.1676 0.2070 0.2635 0.3244 0.3774	0.9556 0.9608 0.9601 0.9545 0.9445 0.9261 0.9261	290.0	219.19 7.692 20.11 29.47 45.71 56.69 75.79	0.5280 0.0000 0.0238 0.0432 0.0746 0.0968 0.1379	0.7524 0.0000 0.5438 0.6583 0.7423 0.7684 0.7904	
260.0	213.55 3.103 11.89 21.32 32.76 51.23 76.12	0.4193	0.8882 0.0000 0.7116 0.8225 0.8623 0.8909 0.9024		85.30 93.23 100.10 111.90 124.01 137.13 150.26	0.1603 0.1780 0.1932 0.2216 0.2539 0.2908 0.3310	0.7948 0.7966 0.7978 0.7938 0.7874 0.7742 0.7580	
			AUXILIARY					
Recircu Tempera resista measure balance by gas	ulating ature me ance the ed with e. Coe	S/PROCEDURE: vapor flow ap asured with p rmometer. P dead weight p xisting sampl ography. De . 1.	platinum Pressure Diston Les analysed	(1) Pu (2) Pu	urity 99.	OF MATERIALS: 998 mole per 95 mole per d		
					ED ERROR: = ±0.01;	$\delta P/\text{bar} = \pm 0$.02%;	
					^{ε δy} N ₂ <u><</u>	±0.003.		
					edenslun Christ	d, A.; Moller iansen, L. J. <u>1973</u> , <i>13</i> , 4		

COMPONENTS:	EVALUATOR:
(1) Nitrogen; N ₂ ; [7727-37-9]	Colin L. Young, School of Chemistry,
(2) Butane; C ₄ H ₁₀ ; [106-97-8]	University of Melbourne, Parkville, Victoria 3052, AUSTRALIA.
	June 1981.

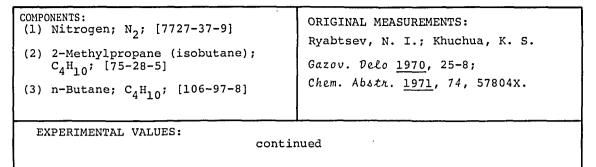
CRITICAL EVALUATION:

This system has been studied by five groups of workers. The data of Lehigh and McKetta (1) were part of a more extensive study of the ternary system ethane-butane-nitrogen and are in only fair agreement with McKetta's earlier data (2). Since Lehigh and McKetta studied just one isotherm and it is not of the highest accuracy it is not considered further here. The data of Frolich *et al.* (3) are in marked disagreement with the data of other workers and are only included in view of the fact that they are often quoted and used. The data are classified as doubtful. The data of Skripka *et al.* (4), McKetta and Roberts (2) and Akers *et al.* (5) are more or less consistent and extrapolated values agree fairly well. These three sets of data are classified as tentative.

References

- 1. Lehigh, W. R.; McKetta, J. J. J. Chem. Eng. Data <u>1966</u>, 11, 180.
- Roberts, L. R.; McKetta, J. J.
 Am. Inst. Chem. Engnrs. J. <u>1961</u>, 7, 173.
- Frolich, P. K.; Tauch, E. J.; Hoban, J. J.; Peer, A. A.
 Ind. Eng. Chem. <u>1931</u>, 23, 548.
- Skripka, V. G.; Barsuk, S. D.; Nikitina, I. E.; Ben'yaninovic, O. A. Gazov. Prom. <u>1964</u>, 14, no. 4, 41.
- Akers, W. W.; Atwell, L. L.; Robinson, J. A. Ind. Eng. Chem. <u>1954</u>, 46, 2539.

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Frolich, P. K.; Tauch, E. J.; Hogan, J.J.; Peer, A. A.
(2) Butane; C ₄ H ₁₀ ; [106-97-8]	Ind. Eng. Chem. <u>1931</u> , 23, 548-50.
VARIABLES:	PREPARED BY:
T/K = 298	,
P/MPa = 1-18	C. L. Young
EXPERIMENTAL VALUES:	
T/K P/MPa Solubilit	zy^* , S Mole fraction of nitrogen, z_{N_2}
298.15 1.0 1.3	35 0.00577
2.0 2.7	
3.0 4.0 4.0 5.3	1
5.0 5.0	· · · · · · · · · · · · · · · · · · ·
6.0 8.0	0.0332
7.0 9.3	
8.0 10.6 9.0 12.0	
9.0 12.0 10.0 13.3	
11.0 14.6	
12.0 16.0	
13.0 17.3	
14.0 18.6 15.0 20.0	
17.0 22.6	0.0887
18.0 24.0	0.0935
gas measured at 101.325 kPa pre by unit volume of liquid measur + calculated by compiler.	ssure and 298.15K dissolved ed under the same conditions.
AUXILIARY	INFORMATION
METHOD 'APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Static equilibrium cell. Liquid	(1) Highest purity available.
saturated with gas and after	
equilibrium established samples	(2) Purity 98 to 99 mole per cent.
removed and analysed by volumetric	
method. Allowance was made for	
vapor pressure of liquid and the	
solubility of the gas at atmospheric	
pressure. Details in source.	ESTIMATED ERROR:
	$\delta T/K = \pm 0.1; \delta x_{N_2} = \pm 5\%.$
	N ₂ REFERENCES:


	ORIGINAL MEASUREMENTS:	
N ₂ ; [7727-37-9]	Akers, W. W.; Atwell, L. L.; Robinson, J. A.	
C ₄ H ₁₀ ; [106-97-8]	Ind. Eng. Chem. <u>1954</u> , 46, 2539.	
	PREPARED BY:	
	C. L. Young	
S:		
Mole fraction of nitrogen in liquid, in vapor, $x_{N_2} y_{N_2}$	Mole fraction T/K P/bar of nitrogen in liquid, in vapor ^x N2 ^y N2	r,
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
AUXILIARY	INFORMATION	
	SOURCE AND PURITY OF MATERIALS:	
ratus with vapor re- external loop. ablished with fixed or and liquid. by thermal conduc-	No details given.	
	ESTIMATED ERROR: $\delta T/K = \pm 0.3; \delta P/bar = \pm 0.3; \delta x_{N_2}, \delta y_{N_2} = \pm 0.001.$ REFERENCES: 1. Akers, W. W.; Burns, J. F.; Fairchild, W. R. Ind. Eng. Chem. <u>1954</u> , 46, 2531.	<i>m</i> .
	of nitrogen in liquid, in vapor, x_{N_2} y_{N_2} 0.0394 0.8611 0.0899 0.8975 0.1955 0.8908 0.2688 0.8879 0.3829 0.8672 0.5449 0.7996 - 0.7239 0.0498 0.6664 0.1282 0.7975 0.2171 0.8433 0.3868 0.7912 - 0.7509 0.5430 0.7235 0.0116 0.5084	Robinson, J. A. Robinson, J. A. Ind. Eng. Chem. 1954, 46, 2539. Ind. Eng. Chem. 1954, 10, 20, 20, 20, 20, 20, 20, 20, 20, 20, 2

			Hydro	carbons			
COMPONEN	ITS:			ORIGINAL	MEASUREME	NTS:	
 Nitrogen; N₂; [7727-37-9] n-Butane; C₄H₁₀; [106-97-8] 				st. Chem	McKetta . Engnrs. J	•	
(2) n	-Butane;	C ₄ H ₁₀ ;[106	-97-8]	113	•		
VARIABLI	T/K =	311-411 = 1.6-23.5	<u> </u>	PREPARED			<u></u>
	P/MPa	- 1.0-23.5		C. L. 1	Young		
EXPERIME	ENTAL VALUE	ES:			····		
т/К	P/bar	Mole fra of nit: in liquid, ^x N ₂	rogen	т/к	P/bar	of ni	raction trogen , in vapor ^y N ₂
310.9	16.3 64.2 124.1 171.1	0.025 0.121 0.164 0.258	0.759 0.890 0.900 0.897	377.6	83.0 94.6 128.1 138.2	0.148 0.177 0.297 0.311	0.585 0.594 0.580 0.534
344.3	207.4 234.6 35.6 73.4 97.0 118.9	0.332 0.388 0.058 0.105 0.149 0.202	0.979 0.849 0.639 0.776 0.791 0.779	410.9	138.9 143.5 36.9 41.1 54.7 57.7	0.311 0.331 0.016 0.034 0.073 0.078	0.526 0.501 - 0.144 0.222 0.231
377.6	138.0 169.0 45.6 58.4	0.256 0.321 0.066 0.112	0.758 0.757 0.479 0.548	, ,	61.2 67.6 70.7	0.085 0.113	0.240 0.243 0.257
			AUXILIARY	INFORMATI	ON		
METHOD/2	APPARATUS	S/PROCEDURE:		SOURCE A	ND PURITY	OF MATERIALS:	······
recircu Tempera and pre gauge. and vap Samples ment.	ulated by ature mea essure me Compon por recir s withdra Details	th sight glas weans of pi asured with t easured with tents charged culated for two by mercur in source b sysis given.	ston pump. hermocouple Bourdon into cell 4 hours. y displace	(2) Res mol	9 mole p	ade, purity er cent. ade, purity ent.	
le carr:							
ecart:				ESTIMATE δT/K =		$\delta P/bar = \pm 0$).3;
le call:				δТ/К =).3;
e carr.				δТ/К =	$\pm 0.06;$ $\delta y_{N_2} =$).3;
				$\delta T/K = \delta x_{\dot{N}2},$	$\pm 0.06;$ $\delta y_{N_2} =$).3;

COMPONENT	FC .	. <u></u>		OPTOTNAL	VEACUDEN		
COMPONENT				ORIGINAL			
	itrogen; N ₂ ; [7727-37-9]					; Barsuk, S. . E; Ben'yami	
(2) n-	•Butane;	C ₄ H ₁₀ ; [106	-97-8]		Prom.	<u>1964</u> , 14, no	o. 4, 41.
VARIABLES	<u> </u>						
VARIADLES	з: т/к ≈]	152-273		PREPARED	BI:		
		= 0.5-19.6		с. г. т	oung		
EXPERIMEN	NTAL VALU					Mole fra	
m /17	<i>P/</i> bar	of nitr	ogen in vapor,	m /12		of nitr	ogen
т/к		^x N ₂	^y N ₂	т/к	P/Dar	in liquid, ^x N ₂	^y N ₂
273.15	4.9	0.0008	-	213.15	117.7	0.1508	0.9922
	9.8	0.0110	0.8810		156.9	0.1894	0.9864
	39.2 78.4	0.0616 0.1195	0.9308 0.9524	193.15	196.1 4.9	0.2236 0.0084	0.9853 0.9960
ĺ	117.7	0.1740	0.9660	C.T.O.C.C.T.	9.8	0.0164	0.9982
	156.9	0.2286	0.9689		39.2	0.0590	0.9998
	196.1	0.2828	0.9689		78.4	0.1120	0.9990
253.15	4.9	0.0050	0.8750		117.7	0.1500	0.9947
	9.8 39.2	0.0132 0.0540	0.9163 0.9707		156.9 196.1	0.1824 0.2068	0.9916 0.9905
	78.4	0.1072	0.9808	173.15	4.9	0.0100	1.000
	117.7	0.1626	0.9792		9.8	0.0186	1.000
	156.9	0.2172	0.9741		39.2	0.0606	1.000
233.5	196.1 4.9	0.2710 0.0062	0.9729 0.9650		78.4 117.7	0.1072 0.1388	0.9993 0.9953
233.3	9.8	0.0145	0.9800		156.9	0.1608	0.9929
	39.2	0.0552	0.9905		196.1	0.1774	0.9925
	78.4	0.1050	0.9911	153.15	4.9	0.0140	1.000
	117.7	0.1556	0.9868		9.8	0.0248 0.0718	1.000
	156.9 196.1	0.2028 0.2464	0.9825 0.9800	•	39.2 78.4	0.1142	1.000 0.9999
213.15	4.9	0.0074	0.9903		117.7		0.9965
	9.8	0.0144	0.9928		159.9	0.1484	0.9945
1	39.2 78.4	0.0576 0.1080	0.9972 0.9982		196.1	0.1560	0.9938
	/0.4						
			AUXILIARI	INFORMATI			
METHOD/A	PPARATU:	S/PROCEDURE:				OF MATERIALS:	
		vapor flow a		(1) Pur	ity 99.	9 mole per ce	ent.
		irrer. Tem platinum res:		(2) Dur	1+12 00	5 mole per ce	n+
		Liquid and		(2) Ful	ILY 99.	2 more per ce	511 L •
		s chromatogr					
	in sou			1			
							ĺ
				1			
				1			
				L			
				ESTIMATE			
				$\delta T/K = $	±0.2;	$\delta P/\text{bar } \pm 1$ %;	$\delta x_{N_2} = \pm 5\%$
				$\delta (1-y_{N_2})$) = ±5%	(estimated h compiler)	ру
				REFERENC	ES:	······	
ł							
l							
1				1			
l				1			

414 Nitro	igen Solubili	lies Above	200 Kr a				
COMPONENTS:		ORIGINAL.	MEASUREMENTS:				
(1) Nitrogen; N ₂ ; [7727-37-9]		· · · · · · · · · · · · · · · · · · ·		hua, K. S.;			
(2) 2-Methylpropane (isobuta)	(2) 2-Methylpropane (isobutane);			Ryabtsev, N. I.; Khuchua, K. S.;			
$C_4 H_{10}; [75-23-5]$	1	Delo <u>1970</u> , 25-					
]				57804X.			
(3) n-Butane; $C_4 H_{10}$; [106-97-	-8]						
VARIABLES:		PREPARED	BY:				
T/K = 258 - 358		1	atovic				
P/MPa = 0.2-9.8							
EXPERIMENTAL VALUES:							
P ^a _{N2} c ^b	pa	c^{b}	pa	c ^b			
¹ N ₂	P ^a N2	C	P ^a N2	U U			
	+/00 -	25 /200	r_{1} + r_{2} 1	5 (259 V)			
$t/^{\circ}C = 25 (298 \text{ K})$ $P^{C} / \text{kg cm}^{-2} = 2.7$	P^{C}/kq	25(298) cm ⁻² =	K) $t/^{\circ}C = -1$ 3.6 $P^{C}/kg cm^{\circ}$	$\frac{5}{2} = 0.9$			
° n-Butane	Is	obutane	0 Ísobu	tane			
4.9 3.2	4.	2.8	5.3	3.3			
9.6 6.1 13.3 8.2	6.7	4.56.0	8.7	5.5			
13.3 8.2 20.1 12.4	8.8 15.1	6.0 10.5	15.0 21.2	9.2 13.9			
27.6 17.0	20.0	13.6	28.8	18.4			
50.5 31.8	29.6 43.2	20.5	49.9	32.5			
66.7 44.8	43.2	31.3	65.7	43.7			
87.9 61.2 98.9 70.5	58.8 77.0	43.8 58.6	82.0 100.2	57.4 73.4			
	85.0	66.7					
$t/^{\circ}C = 45 (318 K)$	97.0	79.0					
$P_{O}^{C} / \text{kg cm}^{-2} = 6.2$ Isobutane	t/°C =	0 (273 к	۱				
2. 1.3	PC/kg	$cm^{-2} = 7$.0				
4.5 3.3	Iso.	butane					
9.5 6.8 19.5 14.2	11.0 17.4	7.0 11.3					
28.3 21.4	31.3	20.4					
37.1 27.9	52.3	36.1					
54.5 43.1 68.0 54.4	68.1 86.1	48.8 65.2					
76.0 64.1	99.6	77.1		ouing nago			
95.0 85.3			ntinued on foll	owing page			
	AUXILIARY	INFORMATI	ON				
METHOD/APPARATUS/PROCEDURE:		SOURCE AN	ND PURITY OF MATER	IALS:			
The apparatus and procedure		(1) So	urce not given.	Minimum			
are described in reference 1.	,		uity 99.997 per				
			rity of 95.9-99	•			
		(3) Pu:	rity of 95.9-99	.9 per cent			
		[
		ESTIMATE	D ERROR:				
1							
		δТ/К	= ±0.1 author'	s estimate			
		REFERENC	ES:				
1		1		hughup P C			
		Gaz	btsev, N. I., K ov. Delo 1968,	(10), 26-8:			
		Chei	n. Abstr. <u>1968</u> ,	69, 69816h.			
		ł					
		•		<u> </u>			

Nitrogen Solubilities Above 200 kPa

- ^a Partial pressure of nitrogen in kg cm⁻².
- ^b Solubility of nitrogen in cm³, reduced to STP, per one gram of isobutane or n-butane.
- ^C Pressure of isobutane or n-butane at given temperature.
- ^d The solubility at different pressures for each temperature was calculated according to the following empirical relationship:

$$C^{b} = A P_{N_{2}}^{3} + B P_{N_{2}}^{2} + E P_{N_{2}}$$

where P_{N_2} is the nitrogen partial pressure in units of kg cm⁻²

and A, B, and E are constants. The values of A, B, and E are given in the following table.

System	t/°C	т/к	10 ⁻⁵ A	10 ⁻⁵ B	10 ⁻⁵ E
Nitrogen/ isobutane	45 25 0 -15	318 298 273 258	3.31 2.5 0.04 1.5	-194.2 -170.0 -170.7 - 62.0	78741.1 74500.0 - 60195.0 64530.0
Nitrogen/ n-butane	25	298	0.62	54.3	59950.0

Nitrogen Solubilities Above 200 kPa

COMPONENT	· S •			ORIGINAL	1EASUREMENT		
	ethylpro	N ₂ ; [7727-37- pane; C ₄ H ₁₀ ;		Robinson, D.B.; Kalra, H.;.; Krishnan, T.: Miranda, R. D. Proc. Annu. Conv., Gas Process.			
	[75-28-	5]		. Assoc	, Tech.	Pap. <u>1975</u> ,	54, 25.
VARIABLES	S:			PREPARED I	BY:		
	= 283-33 Pa = 0.6			С. L. Yo	oung		
EXPERIMEN	NTAL VALUE	S:	· · · · · · · · · · · · · · · · · · ·				
т/к	P/bar	Mole fra of nitr in liquid, ^x N ₂	ogen	;, т/к	P/bar		rogen
283.21	5.65 9.31 13.79 21.37 32.89 52.33 83.63 124.38 169.89 207.39 12.55 15.65 23.37	0.0062 0.0122 0.0198 0.0335 0.0556 0.0899 0.1486 0.2302 0.2949 0.3686 0.0065 0.0111 0.0297	0.5880 0.7390 0.8117 0.8739 0.9038 0.9293 0.9379 0.9358 0.9159 0.8942 0.1799 0.3140 0.5045	338.65 390.93	34.82 52.81 77.29 108.32 138.52 171.61 182.78 31.10 35.58 43.78 56.12 71.77 88.60	$\begin{array}{c} 0.0547\\ 0.0941\\ 0.1509\\ 0.2271\\ 0.3125\\ 0.4128\\ 0.4624\\ 0.0080\\ 0.0236\\ 0.0540\\ 0.1024\\ 0.1623\\ 0.2270\end{array}$	0.7168 0.7586 0.7637 0.7590 0.6897 0.6310 0.0512 0.1286 0.2338 0.3107 0.3451
			AUXILIARY	INFORMATIO	N		
		S/PROCEDURE:				MATERIALS:	
		h two moveable ell contents			le sample cent or l	, purity 99. better.	9 mole
circula with op measured Tempera constan with st ponents piston and ana	ted in extra tical symmetry of a symmetry of	xternal line. stem which all refractive ind sured with ird mocouple and p ge transducers into cell, m: . Samples will gas chromato	Fitted lowed dex. on- pressure s. Com- ixed by ithdrawn	(2) Phil	Llips Pet Lty 99.9 1	roleum Resea mole per cen	
				ESTIMATED		$P/har = \pm 0.0$	
				[-	$v_{N_2} = \pm 0.0$	P/bar = ±0.2 003.	;
				REFERENCE	- •		·
				1	J. Chem	J.; Robins . <i>Eng</i> . <u>197</u>	

COMPONENT	: :	<u></u>		ORIGINAL	MEASUREME	NTS:	
1		2; [7727-37-	-91	Kalra, H.; Ng, HJ.; Miranda, R.D.;			
					nson, D.		
<pre>(2) Propane, 2-methyl-, (isobutane); C₄H₁₀; [75-28-5]</pre>							
Cifu	10; 175-	20-5]		J. Che	m. Eng.	Data. <u>1978</u> ,	23, 321-4.
1				ı			
	-	· · · · · · · · · · · · · · · · · · ·		ļ,			
VARIABLES	T/K = 2	EE 201		PREPARED			
	P/MPa =	0.2-20.8			C.L.	Young	
				·			
EXPERIMEN	NTAL VALUE	S: Mole fra	ction of			Mole fra	ction of
T/K	<i>P/</i> bar	nitro in liquid	ogen in gas	T/K	<i>P/</i> bar	nitro in liquid	ogen in gas
		^x N ₂	y_{N_2}			^x N ₂	^y N ₂
		IN 2					
255.37	2.38 4.19		0.651 0.802	310.87	66.6 91.2	0.114 0.171	0.859 0.870
	7.52	0.0143	0.892		123.4	0.237	0.869
	14.2	0.0251*	0.947		153.1	0.308	0.858
	24.6 41.4	0.0445 0.0758	0.963 0.973		182.8 207.7	0.371 0.436	0.836 0.803
	69.1	0.119	0.968	338.71		0.0065	0.180
1	97.3	0.165	0.967		15.7	0.0111*	0.314
	116.3 138.8	0.197 0.238	0.964 0.962		23.4 34.8	0.0297* 0.0547	0.505
ļ	173.1	0.290	0.957		34.8 36.7	0.0634	0.644
	205.0	0.334*	0.943		77.3	0.151*	0.759
283.21	5.69 9.34	0.0062* 0.0122	0.588		104.4 138.7	0.228 0.324*	0.764 0.751
l	13.8	0.0198	0.812		170.3	0.458	0.676
	21.4	0.0335	0.874	366.32		0.005*	0.103
	32.9 52.3	0.0556 0.0899	0.904 0.929		27.2 45.1	0.026* 0.074*	0.243 0.445
	83.6	0.149	0.938		68.1	0.138	0.542
	124.4	0.230	0.936		93.4	0.214*	0.566
	169.9 207.4	0.295 0.369*	0.916 0.894	394.26	118.9 39.0	0.233* 0.040	0.505
310.87		0.0056*	0.259	001120	51.0	0.088	0.215
	11.7		0.525		60.9	0.130	0.247
	21.9 40.7	0.0332 0.0679	0.717 0.818		64.4 64.9	0.158 0.166	0.231 0.230
*values			ristiansen-				
METHOD: /	יאססססל	US/PROCEDURE	AUXILLAR			OF MATERIALS:	
		cell fitted		(1) Stat	ed minim	um purity 99	.99 mole
moveabl	e pisto:	ns which ena	abled cell		cent.		
content	s to be:	circulated	in external	(2) Phil	lips Petr	roleum sampl	le, research in 99.9
allowed	l measure	ement of rel	ractive	1 molo	e, purity per cent		in 99.9
index.	Temperat	ture measure	ed with iron-		per cen	L •	
		rmocouple ar	nd pressure Per. Compon-				
		nto cell and					
piston	movement	L. Samples	withdrawn				1
and ana	lysed by in ref.	y gas chroma	atography.				
Decarts	11 -6-1	•					
				ESTIMATE			
				1		$\delta P/\text{bar} \leq \pm 0$.	3;
				δx _{N2}	$\delta y_{N_2} = \pm 0.$.005.	
				REFERENC	ES:		
				l. Bess	erer,G.J.	; Rolinson,	D.B.; Can.
				1	-). <u>1971</u> ,49, . L.J.: Fred	651. lenslund, A.
					Inst. Che	em. Eng. 3	
L		-		I			

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen;N ₂ ; [7727-37-9]	Steinbach, H.G.; Steinbrecher, M.
(2) Three butanes, see below	Chem. Tech. (Berlin) <u>1966</u> , 18, 633.
VARIABLES: T/K = 273-293	PREPARED BY:
T/K = 2/3 - 293 P/MPa = 0.41-1.11	R. Battino
EXPERIMENTAL VALUES:	I
	a
Substance	α ^a
1,3-Butadiene; C ₄ H ₆ ; [106-99-	-0] 0.33
Isobutene; C ₄ ^{II} ₈ ; [115-11-7]	0.31
n-Butane; C ₄ H ₁₀ ; [106-97-8]	0.29
ture range of 0 to 20°C (273 to 29 within their experimental error of changes negligibly.	±5% that the Bunsen coefficient
	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The nitrogen was added to a steel bomb of 800 cm ³ capacity containing the butane. Analysis after equilibration was by gas chromatography at atmospheric pressure.	No details given.
	ESTIMATED ERROR:
	$\delta \alpha / \alpha = \pm 0.05$
	04/4 - 20.05
	REFERENCES:

.

COMPONENTS:	EVALUATOR:
 Nitrogen; N₂; [7727-37-9] C₅ to C₁₅ Alkanes (excluding heptane) 	Colin L. Young Department of Physical Chemistry University of Melbourne Parkville, Victoria 3052 Australia.
	October 1980

CRITICAL EVALUATION:

The solubility of nitrogen in alkanes at low pressure and the high pressure solubility in heptane are treated separately. Data on the solubility of nitrogen in alkanes at high pressure are relatively scarce and it is not possible to recommend any data. The following data are classified as tentative.

Pentane + nitrogen	Kalra, Robinson and Besserer (1)
Hexane + nitrogen	Poston and McKetta (2)
	Baranovich and Smirnova (3)
Octane + nitrogen	Baranovich and Smirnova (3)
	Graham and Weale (4)
Decane + nitrogen	Azarnoosh and McKetta (5)
Hexadecane + nitrogen	Sultanov, Skripta and Namoit (6).

The system hexane + nitrogen was also investigated by Tsiklis and Khodeeva (7) but the study was not extensive and the work is rejected for the present purpose.

References

- Kalra, H.; Robinson, D. B.; Besserer, G. J. J. Chem. Eng. Data 1977, 22, 215.
- Poston, R. S.; McKetta, J. J. J. Chem. Eng. Data <u>1966</u>, 11, 364.
- Baranovich, Z. N.; Smirnova, A. M. Zh. Prikl. Khim. <u>1972</u>, 45, 2776.
- Graham, E. B.; Weale, K. E. Progr. Internat. Res. Thermodynamic Transport Props. Symp. on Thermophysical Props. Princeton, 153 (<u>1962</u>).
- Azarnoosh, A.; McKetta, J. J. J. Chem. Eng. Data <u>1963</u>, 8, 494.
- Sultanov, R. G.; Skripta, V. G.; Namoit, A. Yu. Gazov. Delo. 1972, no. 10, 43.
- 7. Tsiklis, D. S.; Khodeeva, S. M. Inzh.-Fiz. Khur. Acad. Nauk. Belorus S.S.R. <u>1958</u>, 11, 62

COMPONENT	S:	<u> </u>		ORIGINAL MEASUREMENTS:				
	-	N ₂ ; [7727- C ₅ H ₁₂ ; []	•	<pre>Kalra, H.; Robinson, D. B.; Besserer, G. J. J. Chem. Eng. Data <u>1977</u>, 22, 215.</pre>				
	= 277-37			PREPARED BY: C. L. Young				
	a = 0.3-:			C. II. 1			<u></u>	
EXPERIMEN T/K	TAL VALUES	: Mole fr of nit in liquid, ^x N ₂	rogen	т/к ,	P/bar	Mole fr of nit: in liquid, ^x N ₂		
277.43	16.63 41.44 69.22 104.0 138.4 172.6 207.3 2.50 4.50 7.79 13.72 21.37 29.03 41.30 63.57 84.25 105.2 125.6 153.2 180.9 207.5	0.025 0.055 0.104 0.149 0.223 0.251 0.0027 0.0055 0.011 0.020 0.031 0.043 0.061 0.095 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.223 0.258 0.288	0.981 0.990 0.988 0.988 0.987 0.985 0.577 0.757 0.856 0.913 0.940 0.950 0.960 0.968 0.970 0.968 0.970 0.969 0.969 0.961	344.26	$\begin{array}{r} 4.14\\ 8.20\\ 14.20\\ 21.44\\ 30.75\\ 42.20\\ 64.33\\ 92.25\\ 122.1\\ 161.7\\ 207.8\\ 8.14\\ 9.93\\ 12.89\\ 19.03\\ 37.37\\ 65.84\\ 105.6\\ 141.1\\ 182.3\\ 207.9\end{array}$	0.0022 0.0086 0.019 0.032 0.048 0.066 0.104 0.146 0.252 0.330 0.0032 0.0079 0.015 0.035 0.071 0.124 0.196 0.266 0.339 0.400	0.323 0.622 0.770 0.838 0.877 0.901 0.924 0.930 0.931 0.930 0.922 0.179 0.320 0.470 0.609 0.774 0.845 0.858 0.862 0.852 0.852 0.837	
			AUXILIARY	INFORMATIC)N			
Glass wi moveable contents line. which a fractive red with and pres ducer. mixed by withdraw	indowed d e pistons s to be d Fitted w llowed me e index. 1 iron-co ssure wit Compone y piston wn and an	onstantan th h strain ga	with two bled cell .n external .system of re- ure measu- ermocouple uge trans- l into cell, Samples as	(1) Pur (2) Fise grad or 1	ity 99.9 cher Scie de, puri better.	OF MATERIALS; 9 mole per c entific pest ty 99.9 mole	icide	

hananananan ni ma

ESTIMATED ERROR: $\delta T/K = \pm 0.05; \quad \delta P/bar = \pm 0.2;$ $\delta x_{N_2} \simeq \delta y_{N_2} = \pm 0.005.$

REFERENCES:

1. Besserer, G. J.; Robinson, D. B. Can. J. Chem. Eng. <u>1971</u>, 49, 651.

COMPONENTS	:		~	ORIGINAL	MEASUREMEN	ITS:		
	-	; [7727-37-9 ne; C ₅ H ₁₂ ; -4])]	<pre>Krishnan, T. R.; Kalra, H.; Robinson, D. B. J. Chem. Eng. Data <u>1977</u>, 22, 282.</pre>				
	_							
VARIABLES:				PREPARED	BY:			
T/I P/I	K = 278-3 MPa = 0.2	77 2-20.8		С. L. Y	'oung			
EXPERIMENT	CAL VALUES:							
т/к	P/bar i	Mole fra of nitr in liquid, ^x N ₂	rogen	т/к	<i>P/</i> bar	Mole fr of nit in liquid, ^x N ₂	rogen	
344.15	9.69 12.24 17.06 28.96 44.51 63.32 90.94 115.38 158.06 207.43 5.07 6.45 9.20 12.10 16.65 26.65 39.54 55.47 77.74 109.25 138.89 174.44 207.78	0.0037 0.0085 0.0205 0.0435 0.112 0.170 0.221 0.300 0.437 0.0027 0.0054 0.0106 0.0153 0.0238 0.0420 0.0598 0.0929 0.130 0.185 0.238 0.297 0.350	0.163 0.310 0.486 0.674 0.757 0.805 0.827 0.835 0.835 0.835 0.255 0.418 0.255 0.418 0.583 0.675 0.752 0.831 0.879 0.899 0.912 0.918 0.919 0.916 0.905	310.82	$\begin{array}{c} 2.24\\ 3.28\\ 5.21\\ 8.24\\ 13.76\\ 24.10\\ 37.75\\ 61.12\\ 96.49\\ 132.00\\ 157.65\\ 181.57\\ 207.77\\ 1.83\\ 4.55\\ 9.89\\ 19.17\\ 32.13\\ 55.61\\ 91.63\\ 130.97\\ 159.85\\ 184.33\\ 205.02 \end{array}$	$\begin{array}{c} 0.0010\\ 0.0030\\ 0.0062\\ 0.0113\\ 0.0226\\ 0.0373\\ 0.0597\\ 0.0970\\ 0.152\\ 0.192\\ 0.244\\ 0.276\\ 0.305\\ 0.0024\\ 0.0051\\ 0.0151\\ 0.0354\\ 0.0504\\ 0.0866\\ 0.143\\ 0.201\\ 0.240\\ 0.260\\ 0.281\\ \end{array}$	0.322 0.546 0.725 0.824 0.992 0.949 0.965 0.965 0.965 0.965 0.965 0.965 0.965 0.953 0.822 0.931 0.968 0.982 0.986 0.991 0.994 0.991 0.985 0.987 0.982	
			AUXILIARY	INFORMATI(ON			
METHOD/APPARATUS/PROCEDURE: Cell fitted with two moveable pistons which enabled cell contents to be circulated in external line. Fitted with optical system which allowed measurement of refractive index. Temperature measured with iron- constantan thermocouple and pressure with strain gauge transducer. Components charged into cell, mixed by piston movement. Samples withdrawn and analysed by gas chromatography. Details in ref. 1.				ESTIMATED ERROR:				
				$\delta T/K = \pm 0.05; \delta P/bar = \pm 0.2;$ $\delta x_{N_2}, \delta y_{N_2} = \pm 0.005.$				
				1	serer, G.	.J.; Robins n.Eng. <u>1971</u>		

.

COMPONENT	rs :			ORIGINAL MEASUREMENTS:				
		N ₂ ; [7727- C ₆ H ₁₄ ; [1]	-	Poston, R. S.; McKetta, J. J. J. Chem. Eng. Data, <u>1966</u> , 11, 364-5.				
VARIABLES: T/K = 311-444 P/MPa = 1.7-34.5				PREPARED BY: C. L. Young				
EXPERIME T/K	NTAL VALUES P/bar	Mole fr of nit	raction rogen in vapor, ^y N2	Mole fraction of nitrogen T/K P/bar in liquid, in vapor, ^{xx} N2 ^y N2				
310.93	17.24 34.46 68.93 103.39 137.85 172.32 206.78 241.25 275.72 310.18 344.65 17.24 34.46 68.93 103.39 137.85 172.32 206.78 241.25 275.72 310.18 344.65	0.026 0.053 0.101 0.135 0.190 0.218 0.253 0.290 0.330 0.359 0.025 0.051 0.099 0.144 0.182 0.211 0.244 0.278 0.311 0.330 0.391	0.958 0.981 0.983 0.989 0.985 0.988 0.986 0.984 0.983 0.975 0.980 0.975 0.980 0.904 0.964 0.973 0.973 0.973 0.973 0.972 0.964 0.959 0.958	377.55	17.24 34.46 68.93 103.39 137.85 172.32 206.78 241.25 275.72 310.18 344.65 17.24 34.46 68.93 103.39 137.85 172.32 206.78 241.25 275.72 290.94 290.87	0.023 0.047 0.095 0.150 0.199 0.242 0.283 0.335 0.380 0.439 0.479 0.021 0.049 0.105 0.162 0.220 0.282 0.342 0.342 0.342 0.342 0.507 0.576 0.601	0.789 0.869 0.921 0.928 0.927 0.926 0.927 0.926 0.927 0.926 0.927 0.926 0.927 0.926 0.927 0.926 0.927 0.926 0.927 0.926 0.927 0.926 0.927 0.926 0.927 0.926 0.927 0.926 0.927 0.928 0.927 0.928 0.927 0.928 0.927 0.928 0.927 0.926 0.927 0.926 0.927 0.926 0.927 0.926 0.927 0.926 0.927 0.926 0.927 0.926 0.927 0.926 0.927 0.926 0.927 0.926 0.927 0.926 0.927 0.926 0.927 0.926 0.927 0.926 0.927 0.926 0.927 0.899 0.893 0.867 0.614 0.882 0.884 0.884 0.854 0.816 0.777 0.772 cont.)	
		<u></u>	AUXILIARY	INFORMATIO	DN			
METHOD/APPARATUS/PROCEDURE: Stainless steel glass windowed cell; vapor recycled using high pressure magnetic pump. Pressure measured using Bourdon gauge. Temperature measured using thermocouples. Samples of both phases withdrawn at constant pressure and analysed by gas chromato- graphy. Details in ref. 1.								
				$\delta x_{N_2}, \delta y$ REFERENCE	$\pm 0.1; \delta P$ $V_{N_2} = \pm 0.$ $\Sigma :$ $Erts, L.$ $J, R.;$ $Chem. En$	<pre>P/bar = ±0.1 002. R.; Azarnoo McKetta, J g. Data <u>1</u></pre>	sh, A.:	

COMP	PONENTS:	ORIGINAL MEASUREMENTS:			
(1)	Nitrogen; N ₂ ;[7727-37-9]	Poston, R. S.; McKetta, J. J. J. Chem. Eng. Data <u>1966</u> , 11, 364- 5.			
(2)	n-Hexane; C ₆ H ₁ ₄ ;[110-54-3]	5.			

EXPERIMENTAL VALUES:

т/к	P/bar	Mole fra of nitr in liguid, ^x N ₂		т/К	P/bar	Mole fra of nitr in liquid, ^x N ₂	
444.25	34.46 68.93 103.39 137.85	0.049 0.116 0.192 0.258	0.567 0.739 0.765 0.751	444.25	172.32 186.93 198.65 201.89	0.331 0.398 0.485 0.505	0.740 0.708 0.693 0.624

...

COMPONEN	TS:	<u> </u>	ORIGINAL MEASUREMENTS:
(1) Ni	itrogen;	N ₂ ; [7727-37-9]	Baranovich, Z. N.; Smirnova, A. M.
	2 .		Zhur. Prikl. Khim. 1972, 45, 2776-8.
(2) n-	-Hexane;	C ₆ H ₁₄ ;[110-54-3]	
,	,		
VARIABLE	s:		PREPARED BY:
	T/K =	233-293 = 0.2-0.7	
	r/mra	- 0.2-0.7	C. L. Young
EVDEDINE	NTAL VALUE	<u> </u>	L <u></u>
EVLEVING	MIAL VALUE	Mole fraction of nitro	ae n
Т/К	<i>P/</i> bar	in liquid,	
		x_{N_2}	
	·····		
233.15	2.0	0.00184	
	3.0	0.00344	
	5.1 7.1	0.00590 0.00849	
253.15	2.0	0.00175	
	3.0	0.00241	
	5.1 7.1	0.00542 0.00755	
263.15	3.0	0.00316	
273.15	7.1 2.0	0.00821 0.00175	
2/3.13	3.0	0.00283	
000 15	5.1	0.00462	
283.15	2.0 7.1	0.00224 0.00862	
293.15	2.0	0.00224	
	3.0 5.1	0.00279 0.00583	
	7.1	0.00928	
		AUXILIARY	INFORMATION
10000/1	DDDDDDD		
	-	/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Static	equilibr: or. Lia	ium cell fitted with uid composition deter-	
mined b	by stripp	ing and measuring gas	No details given.
volumet	crically.	Details in ref. l.	
			1
			ESTIMATED ERROR:
			$\delta T/K = \pm 0.1; \delta P/bar = \pm 0.1;$
			$\delta x_{N_2} = \pm 0.2 \times 10^{-4}$ (estimated by
			N ₂ compiler).
ł			REFERENCES:
}			1. Baranovich, Z. N.; Bogdanova, L.
			P.; Smirnova, A. M.
			Zhur. Prikl. Khim. 1969, 42,
1			1393.
1			T 2 2 2 .
1			

Hydrocarbons

COMPONENTS:	EVALUATOR:
(1) Nitrogen; N ₂ ; $[7727-37-9]$ (2) Heptane; C ₇ H ₁₆ ; $[142-82-5]$	Colin Young, School of Chemistry, University of Melbourne, Parkville, Victoria 3052, Australia. August 1980

CRITICAL EVALUATION:

This system has been investigated at high pressures by four groups. The data of Boomer $et \ all$. (1) are restricted to a pressure of 10.22 MPa at temperatures between 298 K and 388 K. These data are in broad agreement with the results of other workers but are not considered further The data of Akers et al. (2) cover because of their limited nature. the temperature range 305 K to 455 K and are broadly in agreement with the data of Peter and Eicke (3) and Brunner $et \ al.$ (4) when interpolated to 453 K. The data of Peter and Eicke (3) cover the temperature range 376 K to 453 K and that of Brunner, Peter and Wenzel (4) cover the temperature range from 453 K to 497 K. There is rather poor agreement between the two sets of data by Peter and coworkers at 453 K. (Some very small extrapolation is needed as the actual temperatures were 453.95 K The discrepancy is particularly large in the gas phase and 453.15 K.) compositions which are considerably smaller in the nitrogen mole fraction in the 1974 paper than in the 1970 paper.

The three sets of data by Akers *et al*. (2), Peter and Eicke (3) and by Brunner *et al*. (4) are all classified as tentative but the estimated errors quoted are in all three cases too small. The liquid phase compositions are probably not, in general, better than ± 5 % for all three sets. The data by Figuiere et al. (5) are classed as tentative.

References:

- Boomer, E. H.; Johnson, C. A.; Piercey, G. A. Can. J. Research 1938, 16B, 396.
- Akers, W. W.; Kohn, D. M.; Kilgore, C. H. Ind. Eng. Chem. <u>1954</u>, 46, 2536.
- Peter, S.; Eicke, H. F. Ber. Bunsenges. Phys. Chem. <u>1970</u>, 74, 190.
- Brunner, G.; Peter, S.; Wenzel, H. Chem. Eng. J. <u>1974</u>, 7, 99.
- Figuiere, P.; Hom, J.F.; Laugier, S.; Renon, H.; Richon, D.; Szwarc, H. Am. Inst. Chem. Engnts. J. <u>1980</u>, 26, 872-5.

COMPONENTS:	ORIGINAL MEASUREMENTS:				
(1) Nitrogen; N ₂ ; [7727-37-9]	Boomer, E. H.; Johnson, C. A.;				
	Piercey, G. A.				
(2) n-Heptane; C ₇ H ₁₆ ; [142-82-5]	Can. J. Research, <u>1938</u> , 16B, 396.				
VARIABLES:	PREPARED BY:				
T/K = 298-388	C. L. Young				
P/MPa = 10.2					
EXPERIMENTAL VALUES:					
Nole function of situation					
Mole fraction of nitrog T/K P/bar in liquid, in var	or,				
x_{N_2} y_{N_2}					
298.15 102.2 0.120 0.9896 328.15 102.2 0.128 0.9824					
0.133 0.9825 358.15 102.2 0.1396 0.9756					
0.1396 0.9746 388.15 102.2 0.1498 0.9495					
588.15 102.2 0.1498 0.9495					
AUXILIARY	INFORMATION				
AUXILIARY METHOD/APPARATUS/PROCEDURE:	INFORMATION SOURCE AND PURITY OF MATERIALS:				
METHOD/APPARATUS/PROCEDURE: Rocking autoclave stirred by steel	SOURCE AND PURITY OF MATERIALS:				
METHOD/APPARATUS/PROCEDURE: Rocking autoclave stirred by steel piston falling under gravity. Samples	SOURCE AND PURITY OF MATERIALS:				
METHOD/APPARATUS/PROCEDURE: Rocking autoclave stirred by steel piston falling under gravity. Samples of vapor and liquid trapped in two auxiliary high pressure cells.	SOURCE AND PURITY OF MATERIALS:				
METHOD/APPARATUS/PROCEDURE: Rocking autoclave stirred by steel piston falling under gravity. Samples of vapor and liquid trapped in two auxiliary high pressure cells. Equilibrium samples analysed in complicated volumetric and combustion	SOURCE AND PURITY OF MATERIALS:				
METHOD/APPARATUS/PROCEDURE: Rocking autoclave stirred by steel piston falling under gravity. Samples of vapor and liquid trapped in two auxiliary high pressure cells. Equilibrium samples analysed in	SOURCE AND PURITY OF MATERIALS:				
METHOD/APPARATUS/PROCEDURE: Rocking autoclave stirred by steel piston falling under gravity. Samples of vapor and liquid trapped in two auxiliary high pressure cells. Equilibrium samples analysed in complicated volumetric and combustion	SOURCE AND PURITY OF MATERIALS:				
METHOD/APPARATUS/PROCEDURE: Rocking autoclave stirred by steel piston falling under gravity. Samples of vapor and liquid trapped in two auxiliary high pressure cells. Equilibrium samples analysed in complicated volumetric and combustion	SOURCE AND PURITY OF MATERIALS:				
METHOD/APPARATUS/PROCEDURE: Rocking autoclave stirred by steel piston falling under gravity. Samples of vapor and liquid trapped in two auxiliary high pressure cells. Equilibrium samples analysed in complicated volumetric and combustion	SOURCE AND FURITY OF MATERIALS: Not specified.				
METHOD/APPARATUS/PROCEDURE: Rocking autoclave stirred by steel piston falling under gravity. Samples of vapor and liquid trapped in two auxiliary high pressure cells. Equilibrium samples analysed in complicated volumetric and combustion	SOURCE AND FURITY OF MATERIALS: Not specified.				
METHOD/APPARATUS/PROCEDURE: Rocking autoclave stirred by steel piston falling under gravity. Samples of vapor and liquid trapped in two auxiliary high pressure cells. Equilibrium samples analysed in complicated volumetric and combustion	SOURCE AND PURITY OF MATERIALS; Not specified. ESTIMATED ERROR: δT/K = ±0.1; δP/bar ± 0.2;				
METHOD/APPARATUS/PROCEDURE: Rocking autoclave stirred by steel piston falling under gravity. Samples of vapor and liquid trapped in two auxiliary high pressure cells. Equilibrium samples analysed in complicated volumetric and combustion	SOURCE AND FURITY OF MATERIALS: Not specified.				
METHOD/APPARATUS/PROCEDURE: Rocking autoclave stirred by steel piston falling under gravity. Samples of vapor and liquid trapped in two auxiliary high pressure cells. Equilibrium samples analysed in complicated volumetric and combustion	SOURCE AND PURITY OF MATERIALS: Not specified. ESTIMATED ERROR: $\delta T/K = \pm 0.1; \delta P/bar \pm 0.2;$ $\delta x_{N_2}, \delta y_{N_2} \pm 1$ % (estimated by compiler) REFERENCES:				
METHOD/APPARATUS/PROCEDURE: Rocking autoclave stirred by steel piston falling under gravity. Samples of vapor and liquid trapped in two auxiliary high pressure cells. Equilibrium samples analysed in complicated volumetric and combustion	SOURCE AND PURITY OF MATERIALS: Not specified. ESTIMATED ERROR: $\delta T/K = \pm 0.1; \delta P/bar \pm 0.2;$ $\delta x_{N_2}, \delta y_{N_2} \pm 1$ (estimated by compiler)				
METHOD/APPARATUS/PROCEDURE: Rocking autoclave stirred by steel piston falling under gravity. Samples of vapor and liquid trapped in two auxiliary high pressure cells. Equilibrium samples analysed in complicated volumetric and combustion	SOURCE AND PURITY OF MATERIALS: Not specified. ESTIMATED ERROR: $\delta T/K = \pm 0.1; \delta P/bar \pm 0.2;$ $\delta x_{N_2}, \delta y_{N_2} \pm 1$ % (estimated by compiler) REFERENCES: 1. Boomer, E. H.; Johnson, C. A.; Argue, G. H. Can. J. Res. B				

(1) Nitrogen; N ₂ ; [7727-37-9] (2) n-Heptane; C ₇ H ₁₆ ; [142-82-5] VARIABLES: T/K = $305-455$ P/MPa = $7.0-69.1$ EXPERIMENTAL VALUES: Mole fraction of nitrogen P(K) = $R(har)$ $Mole fraction$ P(K) = R(har) $P(har)$ $P(har)$ $P(har)$					<u></u>				
Kilgore, C. H. (2) n-Heptane; C.H.; [142-82-5] VARIABLES: T/K = 305-455 P/MPa = 7.0-69.1 T/K = $\frac{1}{2}$ /Mpa = 7.0-69.1 FEXFERIMENTAL VALUES: Mole fraction T/K = $\frac{1}{2}$ /Mpa = $\frac{1}{10}$ (uid, in vapor $\frac{1}{N_2}$ $\frac{1}{N_2}$	COMPONENT	'S :			ORIGINAL MEASUREMENTS:				
VARIABLES: T/K = 305-455 PREPARED BY: C. L. Young EXPERIMENTAL VALUES: Mole fraction of nitrogen x_N Mole fraction of nitrogen x_N T/K P/bar Mole fraction of nitrogen x_N JN2 N2 N2 Mole fraction of nitrogen x_N JN2 N2 N2 JN2 N2 N2 JN2 N2 N2 JN2 N2 N2 JN2 JN2	(l) Ni	.trogen;	N ₂ ; [7727-3	37-9]					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(2) n-	·Heptane;	C7H16; [14	42-82-5]	Ind. Eng. Chem., <u>1954</u> , 46, 2536.				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	VARIABLES	5:			PREPARED	BY:			
$\begin{array}{c} \mbox{Mole fraction} & \mbox{of nitrogen} & \mbox{in liquid, in vapo} & \mbox{s}_{N_2} & \mbox{s}_{N_$					С. L. Y	loung			
T/K P/bar of nitrogen in liquid, in vapor, m_N_2 T/K P/bar of nitrogen in liquid, in vapor m_N_2 305.37 71.02 0.080 0.99276 352.59 553.30 0.547 0.9592 3105.37 71.02 0.080 0.99276 352.59 553.30 0.547 0.9592 122.31 0.145 0.9961 399.82 73.08 0.116 0.9645 139.41 0.152 0.9980 208.36 0.301 0.9774 184.16 0.201 0.9940 450.57 0.6381 0.9724 229.53 0.244 0.9900 518.83 0.711 0.828 243.04 0.236 0.9921 620.87 0.723 0.834 276.96 0.266 0.9921 620.87 0.723 0.834 551.30 0.437 0.9782 243.04 0.428 0.9353 3152.59 70.33 0.096 0.9822 277.65 - 0.9379 325.59 70.33 0.096 0.9822 277.65 - 0.9379 325.59	EXPERIMEN	TAL VALUES	S:						
$\frac{105.15}{122.31} 0.145 0.9900 \\ 122.31 0.151 0.9975 \\ 139.41 0.152 0.9980 \\ 208.36 0.215 0.9940 \\ 208.36 0.215 0.9950 \\ 208.36 0.215 0.9950 \\ 208.36 0.215 0.9950 \\ 208.36 0.215 0.9950 \\ 208.36 0.215 0.9950 \\ 208.36 0.215 0.9950 \\ 208.36 0.215 0.9950 \\ 217.65 0.387 0.9704 \\ 450.57 0.634 0.9463 \\ 229.53 0.244 0.9900 \\ 518.83 0.721 0.828 \\ 243.04 0.236 0.9921 \\ 620.87 0.753 - 346.46 0.318 0.9861 \\ 213.0 0.505 0.9700 \\ 243.04 0.442 0.9506 \\ 691.20 0.505 0.9700 \\ 243.04 0.442 0.9506 \\ 691.20 0.505 0.9700 \\ 243.04 0.442 0.9506 \\ 691.20 0.505 0.9700 \\ 243.04 0.442 0.9564 \\ 553.30 0.437 0.9962 \\ 277.65 0.291 0.9846 \\ 435.96 0.752 - 0.9379 \\ 245.55 0.187 0.9862 \\ 277.65 0.291 0.9846 \\ 435.96 0.752 - 0.818 \\ 277.65 0.433 0.9757 \\ 208.36 0.247 0.9869 \\ 309.92 - 0.818 \\ 277.65 0.433 0.9757 \\ 208.36 0.247 0.9866 \\ 309.92 - 0.818 \\ 277.65 0.433 0.9757 \\ 208.36 0.247 0.9866 \\ 309.92 - 0.818 \\ 277.65 0.433 0.9757 \\ 208.36 0.247 0.9866 \\ 309.92 - 0.818 \\ 277.65 0.433 0.9757 \\ 208.36 0.247 0.9866 \\ 309.92 - 0.818 \\ 277.65 0.433 0.9757 \\ 208.36 0.752 - 0.818 \\ 277.65 0.433 0.9757 \\ 208.36 0.752 - 0.818 \\ 277.65 0.433 0.9757 \\ 208.36 0.752 - 0.818 \\ 277.65 0.433 0.9757 \\ 208.36 0.752 - 0.818 \\ 277.65 0.433 0.9757 \\ 208.36 0.752 - 0.818 \\ 277.65 0.433 0.9757 \\ 208.36 0.752 - 0.818 \\ 277.65 0.433 0.9757 \\ 208.36 0.752 - 0.818 \\ 208.26 0.752 - 0.818 \\ 20$	т/к	P/bar	of nit: in liquid,	rogen in vapor,	т/К	P/bar	of nit: in liquid,	rogen in vapor,	
METHOD/APPARATUS/PROCEDURE:SOURCE AND PURITY OF MATERIALS:Vapor flow apparatus with vapor re- circulating via external loop. Equilibrium established with fixed quantity of vapor and liquid. Phases analysed by thermal conductivity. Details in ref. 1.SOURCE AND PURITY OF MATERIALS: (1) Dry, purity greater than 99.99 mole per cent.(2) Phillips Petroleum Co. research grade, purity 99.58 mole per cent.(2) Phillips Petroleum Co. research grade, purity 99.58 mole per cent.ESTIMATED ERROR: $\delta T/K = \pm 0.3; \ \delta P/bar = \pm 0.3;$ $\delta x_{N_2}, \ \delta y_{N_2} = \pm 0.001.$ REFERENCES: 1. Akers, W. W.; Burns, J. F.; Fairchild, W. R. Ind. Eng.		105.15 122.31 122.31 139.41 158.65 184.16 208.36 229.53 243.04 276.96 346.46 415.75 553.30 691.20 70.33 145.55 208.36 277.65	0.128 0.145 0.151 0.152 0.170 0.201 0.215 0.244 0.236 0.266 0.318 0.363 0.437 0.505 0.096 0.187 0.247 0.291	0.9900 0.9961 0.9975 0.9880 0.9950 0.9950 0.9950 0.9950 0.9900 0.9930 0.9921 0.9893 0.9881 0.9782 0.9700 0.9882 0.9882 0.9882 0.9882 0.9882	399.82	691.20 73.08 139.41 208.36 277.65 450.57 518.83 551.93 620.87 77.98 173.75 243.04 243.04 277.65 277.65 309.92	0.705 0.116 0.213 0.301 0.387 0.634 0.721 0.711 0.723 0.753 0.128 0.321 0.442 0.428	0.9412 0.9652 0.9645 0.9772 0.9704 0.9463 0.828 0.828 0.828 0.828 0.834 	
Vapor flow apparatus with vapor re- circulating via external loop. Equilibrium established with fixed quantity of vapor and liquid. Phases analysed by thermal conductivity. Details in ref. 1. (1) Dry, purity greater than 99.99 mole per cent. (2) Phillips Petroleum Co. research grade, purity 99.58 mole per cent. ESTIMATED ERROR: $\delta T/K = \pm 0.3; \ \delta P/bar = \pm 0.3; \ \delta x_{N_2}, \ \delta y_{N_2} = \pm 0.001.$ REFERENCES: 1. Akers, W. W.; Burns, J. F.; Fairchild, W. R. Ind. Eng.			<u> </u>	AUXILIARY	INFORMATI(ON			
Vapor flow apparatus with vapor re- circulating via external loop. Equilibrium established with fixed quantity of vapor and liquid. Phases analysed by thermal conductivity. Details in ref. 1. (1) Dry, purity greater than 99.99 mole per cent. (2) Phillips Petroleum Co. research grade, purity 99.58 mole per cent. ESTIMATED ERROR: $\delta T/K = \pm 0.3; \ \delta P/bar = \pm 0.3; \ \delta x_{N_2}, \ \delta y_{N_2} = \pm 0.001.$ REFERENCES: 1. Akers, W. W.; Burns, J. F.; Fairchild, W. R. Ind. Eng.	METHOD/A	PPARATUS	/PROCEDURE :		SOURCE AN	D PURITY (OF MATERIALS:		
$\delta T/K = \pm 0.3; \delta P/bar = \pm 0.3;$ $\delta x_{N_2}, \delta y_{N_2} = \pm 0.001.$ REFERENCES: 1. Akers, W. W.; Burns, J. F.; Fairchild, W. R. Ind. Eng.	Vapor f circula Equilib quantit analyse	low appa ting via rium est y of vap d by the	ratus with v external lo ablished wit or and liqui rmal conduct	oop. ch fixed .d. Phases	mol (2) Phi grad	e per ce llips Pe de, <u>p</u> uri	nt. troleum Co.	research	
					$\delta T/K = \delta x_{N_2}, \delta f$ REFERENCE 1. Ake Fai	$\pm 0.3; \delta$ $y_{N_2} = \pm 0$ ES: ers, W. W rchild, V	.001. .; Burns, J. W. R. Ind.	F.;	

gen; N ₂ ;	[7727-:	37-9]		MEASUREME S.; F	NTS: Eicke, H. F.					
	[7727-3	37-9]	Peter,	s.; P	Eicke, H. F.					
	-	-	1							
						Ber. Bunsenges, Phys. Chem. 1970,				
(2) n-Heptane; C ₇ H ₁₆ ; [142-82-5]										
			PREPARED	BY:		<u></u>				
		-	- 1011100	2						
P/MPa = 0.5-61.3										
			m /v	R/har						
			171	rybai						
	x_{N_2}	y _{N2}			x_{N_2}	y_{N_2}				
					-					
4.5 0.0	0362	0.951	413.15	240.3	0.372	0.961				
9.0 0.0	0747	0.976		343.2	0.528	0.941				
						0.861 0.816				
2.3 0.5	500	0.981		416.8	0.742	-				
			452.95		0.0266	0.671				
					0.157	0.852 0.935				
4.9	-	0.870		132.4	0.232	0.945				
	-					0.956 0.925				
		0.946		304.0	0.673	0.790				
		0.948		313.8	0.742	0.812				
2.2 0.2	234	0.955								
apparatus measured thermomet ed with m ts equili	in ref l with p er. C agnetic brated,	. l. latinum ell con- stirrer. sample	SOURCE AN (1) Lin per (2) Phi	ND PURITY de sampl cent. llips Pe	e, purity 99	"Pure"				
in an ac Nitrogen	etone/C estima	O₂ trap and ted volu-	ESTIMATE $\delta T/K = \delta x_{N_2} = \delta x_{N_2}$ REFERENC 1. Pet	±0.05; ±0.003; ES: er, S.;	$\delta y_{N_2} = \pm 0.0$ Reinhart:	007. z, к.				
	P/MPa = VALUES: bar in 4.5 0. 9.0 0. 7.1 0. 4.2 0. 2.3 0. 6.4 0. 2.9 0. 4.9 0. 4.9 0. 4.9 0. 5.3 0. 2.2 0. 2.5	VALUES: Mole fra bar of nitr in liquid, ^w N ₂ 4.5 0.0362 9.0 0.0747 7.1 0.217 4.2 0.392 2.3 0.500 0.3 0.597 8.4 0.726 2.9 0.780 4.9 - 7.8 - 9.6 0.0323 9.2 0.0667 5.3 0.143 2.2 0.234 RATUS/PROCEDURE: apparatus in ref e measured with p thermometer. C red with magnetic ts equilibrated, various levels i: ysed by freezing in an acetone/C Nitrogen estima	P/MPa = 0.5-61.3 VALUES: Mole fraction of nitrogen in liquid, in vapor, x_{N_2} y_{N_2} 4.5 0.0362 0.951 9.0 0.0747 0.976 7.1 0.217 0.973 4.2 0.392 0.975 2.3 0.500 0.981 0.3 0.597 0.974 8.4 0.726 0.954 2.9 0.780 0.924 4.9 - 0.870 7.8 - 0.910 9.6 0.0323 0.923 9.2 0.0667 0.946 5.3 0.143 0.948 2.2 0.234 0.955 AUXILIARY RATUS/PROCEDURE: apparatus in ref. 1. a measured with platinum thermometer. Cell con- red with magnetic stirrer. nts equilibrated, sample various levels in cell. -ysed by freezing out the	T/K = $376-453$ P/MPa = $0.5-61.3$ C. L. Y VALUES: Mole fraction of nitrogen m_1 in liquid, in vapor, m_{N_2} y_{N_2} 4.5 0.0362 0.951 413.15 9.0 0.0747 0.976 413.15 9.0 0.0747 0.973 413.15 9.0 0.0747 0.973 452.95 2.3 0.500 0.981 452.95 0.3 0.597 0.974 452.95 8.4 0.726 0.946 53 0.3 0.597 0.923 9.23 9.2 0.0667 0.946 5.3 0.143 0.948 2.2 0.234 0.955 SOURCE AN AUXILLARY INFORMATI AUXILLARY INFORMATI AUXILLARY INFORMATI AUXILLARY INFORMATI	P/MPa = 0.5-61.3 C. L. Young VALUES: Mole fraction of nitrogen in liquid, in vapor, x_{N_2} y_{N_2} T/K P/bar 4.5 0.0362 0.951 413.15 240.3 4.5 0.0362 0.951 413.15 240.3 9.0 0.0747 0.976 343.2 7.1 0.217 0.973 392.3 4.2 0.392 0.975 411.9 2.3 0.500 0.981 452.95 19.6 0.3 0.597 0.974 452.95 19.6 2.9 0.780 0.924 88.3 4.9 - 0.870 132.4 7.8 - 0.910 215.7 9.6 0.0323 0.923 274.6 9.2 0.0667 0.946 304.0 5.3 0.143 0.948 313.8 2.2 0.234 0.955 AUXILIARY INFORMATION XATUS/PROCEDURE: apparatus in ref. 1. SOURCE AND PURITY (1) Linde sample yeade, puri	T/K = 376-453 P/MPa = 0.5-61.3 C. L. Young VALUES: Mole fraction of nitrogen in liquid, in vapor, x_{N_2} T/K P/bar Mole fr of nit liquid, in liquid, x_{N_2} 4.5 0.0362 0.951 413.15 240.3 0.372 9.0 0.0747 0.976 343.2 0.528 7.1 0.217 0.973 392.3 0.6639 4.2 0.392 0.975 411.9 0.666 2.3 0.500 0.981 452.95 19.6 0.0266 0.3 0.597 0.974 452.95 19.6 0.0266 2.9 0.780 0.924 88.3 0.157 9.6 0.0323 0.923 274.6 0.502 9.2 0.0667 0.946 304.0 0.673 5.3 0.143 0.948 313.8 0.742 2.2 0.234 0.955 313.8 0.742 sample yer cent. (1) Linde sample, purity 99 0.267 sample yer cent.				

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Brunner, G.; Peter, S.; Wenzel, H.
4	Chem. Eng. J. <u>1974</u> , 7, 99.
(2) n-Heptane; C ₇ H ₁₆ ; [142-82-5]	
VARIABLES: T/K = 453-497	PREPARED BY:
P/MPa = 0.5-27.8	C. L. Young
EXPERIMENTAL VALUES: Mole fraction of nitrog	
T/K P/bar in liquid, in vapo	
<i>w</i> _{N₂} <i>y</i> _{N₂}	
453.15 53 0.101 0.82	
93 0.164 0.885 127 0.222 0.903	
138 0.244 0.910	
190 0.328 0.882 227 0.397 0.881	
227 0.397 0.883 278 0.543 0.853	
472.15 44 0.075 0.735	
97 0.188 0.820 164 0.347 0.838	
168 0.396 0.836	
187 0.416 0.837	
218 0.578 0.790 234 0.586 0.771	
497.15 48 0.087 0.598	
76 0.173 0.706	
109 0.281 0.717 120 0.322 0.730	
142 0.403 0.721	
158 0.461 0.737 183 0.588 0.602	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Static cell of about 1000 cm ³ capacity magnetically stirred. Pressure	(1) Linde sample, purity 99.98 mole per cent by gas chromatography.
measured with Bourdon gauge.	
Temperature measured with nickel- chromium alloy-nickel thermocouple.	(2) Fluka sample, purity 99.7 mole per cent by gas chromatography.
Each phase sampled, n-heptane frozen	per cent by gas chromatography.
and amount estimated, nitrogen	
estimated volumetrically.	
	ESTIMATED ERROR:
	$\delta T/K = \pm 0.5; \delta P/bar = \pm 0.5; \delta x_{N_2},$
	$\delta y_{N_2} = \pm 0.5\%.$
	REFERENCES:

COMPONENTS:	ORIGINAL MEASUREMENTS:			
<pre>(1) Nitrogen; N₂; [7727-37-9] (2) Heptane; C₇H₁₆; [142-82-5]</pre>	Figuiere, P.; Hom, J. F.; Laugier, S.; Renon, H.; Richon, D.; Szwarc, H. Am. Inst. Chem. Engnrs. J. <u>1980</u> , 26,			
	872-5.			
VARIABLES: T/K = 453-497 P/MPa = 1-29	PREPARED BY: C. L. Young			
EXPERIMENTAL VALUES: Mole fraction	Mole fraction			
of nitrogen T/K ^P /MPa in liquid, in gas, ^x N ₂ ^y N ₂	of nitrogen T/K ^P /MPa in liquid, in gas, ^{\$\mathfrac{\mu}{N_2}\$ ^{\$\mu}{N_2}\$}}			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
Values in parentheses are				
AUXILIARY	INFORMATION			
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS;			
Static equilibrium cell fitted with sampling valves which removed samples of 10 ⁻⁹ m ³ . Samples analysed by gas chromatography. Temperature	 (1) Certified purity 99.9 mole per cent. (2) Certified purity 99 mole per cent 			
measured using thermocouples and pressure measured using pressure transducer calibrated against a dead	as determined by GC.			
weight gauge.	ESTIMATED ERROR:			
	$\delta T/K = \pm 0.5; \delta P/MPa = \pm 0.04; \\ \delta x_{N_2}, \delta y_{N_2} = \pm 0.015.$			
	REFERENCES :			

COMPONENT	TC •				MEACUDENE	NTC .		
COMPONEN	15:			ORIGINAL MEASUREMENTS:				
	-	N ₂ ; [7727- C ₈ H ₁₈ ;[111		Graham, E. B.; Weale, K. E. Progr. Internat. Res. Thermodynamic and Transport Properties, Symposium on Thermophysical Properties Princeton, <u>1962</u> , 153.				
VARIABLE	S:	<u></u>	* <u>************************************</u>	PREPARED BY:				
	т/1	K = 323-373 MPa = 10.1-3	0.4	C. L. Y				
EXPERIME	NTAL VALUE	:S:		I			····.	
т/к	P/bar	Mole fra of nit in liquid, ^x N ₂	rogen	Т/К	P/bar	Mole fr of nit in liquid, ^x N ₂	rogen	
323.15	101.3 126.7 152.0 177.3 202.7 228.0 253.3 278.6 283.7 304.0 101.3 126.7 152.0 177.3 202.7 228.0 243.2	$\begin{array}{c} 0.117\\ 0.143\\ 0.166\\ 0.188\\ 0.209\\ 0.229\\ 0.249\\ 0.267\\ \hline \\ 0.285\\ 0.122\\ 0.148\\ 0.172\\ 0.194\\ 0.216\\ 0.237\\ \hline \\ \end{array}$	- 0.9975 - - - 0.9969 - 0.995 0.9948 0.9945	348.15	253.3 278.6 283.7 304.0 50.7 76.0 101.3 121.6 126.7 152.0 177.3 202.7 228.0 243.2 253.3 283.7	0.257 0.277 	- 0.9938 - - 0.9908 0.9903 0.989 0.9885 0.989	
		<u></u>	AUXILIARY	INFORMATI	ON		, ,, , , , , , , , , , , , , , , ,	
Equilib copper attache Pressur oil the equilib duced i pressed Samples (liquid	rium ves of 200 d to sma e measur rmostat, rium ves nto equi gas adm analyse) and vo	S/PROCEDURE: sel made of cm ³ capac 11 sampling ed with Bour magnetic st sel. Solve librium vess itted and ec d by gravime lumetric (ga etails in re	beryllium vessel. don gauge, irrer in nt intro- el, com- uilibrated. tric s)	(1) Com mol (2) Dri ESTIMATE &T/K =	mercial e per ce ed and d D ERROR: ±0.l; δ	OF MATERIALS; sample purient. distilled. P/bar = ±0. N2 ^{-±0.1%} .	ty 99.95	
i				REFERENC	ES: ham, E.	B., Ph.D. T of London,		

COMPONENTS ;		ORIGINAL MEASUREMENTS:
	ogen; N ₂ ; [7727-37-9] tane; C ₈ H ₁₈ ; [111-65-9]	Baranovich, Z. N.; Smirnova, A. M. Zhur. Prikl. Khim. <u>1972</u> , 45, 2776-8.
VARIABLES:	T/K = 233-293 P/MPa = 0.2-0.7	PREPARED BY: C. L. Young
EXPERIMENTAL T/K	VALUES: Mole fraction of ni P/bar in liquid, ^x N ₂	trogen
233.15	2.0 0.00109 3.0 0.00182 5.1 0.00487 7.1 0.00720	
253.15	2.0 0.00131 3.0 0.00233 5.1 0.00465 7.1 0.00749 2.0 0.00109 2.0 0.00109	
273.15	3.0 0.00211 5.1 0.00436 7.1 0.00728 2.0 0.00116 3.0 0.00218 5.1 0.00473	
293.15	7.1 0.00785 2.0 0.00160 3.0 0.00236 5.1 0.00436 7.1 0.00762	
	AUXILIARY	INFORMATION
Static equ agitator. determined	ARATUS/PROCEDURE: iilibrium cell fitted with Liquid composition by stripping and measuring etrically. Details in ref.	SOURCE AND PURITY OF MATERIALS: No details given.
		ESTIMATED ERROR: $\delta T/K = \pm 0.1; \delta P/bar = \pm 0.1; \delta x_{N_2} = \pm 0.2 \times 10^{-4} \text{ (estimated by compiler).}$ REFERENCES: 1. Baranovich, Z. N.; Bogdanovo, L. P. Smirnova, A. M. Zhur. Prikl. Khim. <u>1969</u> , 42, 1393.

			Hydroc	arbons			433
COMPONEN	TS:			ORIGINAL MEASUREMENTS:			
		N ₂ ; [7727-37- ethylpentane; 34-1]		Graham, E. B.; Weale, K. E. Progr. Internat. Res. Thermodynamic and Transport Properties, Symposium on Thermophysical Properties Princeton, <u>196</u> 2, 153.			odynamic Symposium
VARIABLE	S: = 323 - 100			PREPARED	BY:		
	MPa = 0.1			С. L. Y	loung		
EXPERIME	NTAL VALUE	:S:		L		·····	
т/к		Nole fraction In liquid, ^x N ₂	of nitrogen in gas, ^y N ₂		M P/bar i	ole fractior n liquid, ^x N ₂	of nitrogen in gas, ^y N ₂
323.15	1.0 30.4 50.7 101.3 121.6 152.0 202.7 228.0 253.3 278.6 304.0 50.7 101.3 152.0	0.00159 0.048 0.079 0.149 - 0.213 0.268 0.292 0.314 0.333 0.348 0.083 0.155 0.221	- - 0.9942 0.9951 0.9962 0.9944 - - - 0.9895	348.15	177.3 202.7 228.0 253.3 283.7 304.0 50.7 101.3 152.0 177.3 202.7 228.0 253.3 304.0	0.252 0.280 0.307 0.331 - 0.396 0.092 0.171 0.243 0.278 0.311 0.343 0.374 0.430	0.9875 0.9855 0.9844
			AUXILIARY	INFORMATI	ON		
·		S/PROCEDURE:				OF MATERIALS;	
Equilibrium vessel made of beryllium copper of 2×10 ⁵ mm ³ capacity attached to small sampling vessel. Pressure measured with Bourdon gauge; oil thermostat, magnetic stirrer in equi- librium vessel. Solvent introduced					ity 99.9! tilled an	5 mole per c	ent.

ESTIMATED ERROR: $\delta T/K = \pm 0.1; \quad \delta P/bar = \pm 0.5;$ $\delta x_{N_2} = \pm 1\$; \quad \delta y_{N_2} \simeq \pm 0.1\$.$

REFERENCES:

into equilibrium vessel, compressed

gas admitted and equilibrated. Samples analysed by gravimetric (liquid) and volumetric (gas) techniques. Details in ref. 1.

> Graham, E. B. Ph.D. Thesis, University of London, <u>1958</u>.

433

COMPONENTS:	ORIGINAL MEASUREMENTS:			
 (1) Nitrogen; N₂; [7727-37-9] (2) 2,2,4-Trimethylpentane; C₈H₁₈; 	Peter, S.; Ficke, H. F. Ber. Bunsenges. Phys. Chem. <u>1970</u> , 74, 190.			
[540-84-1]				
VARIABLES: T/K = 376-453 P/MPa = 2.0-61.8	PREPARED BY: C. L. Young			
EXPERIMENTAL VALUES:				
Mole fraction of ni T/K P/bar in liquid, i ^x N ₂	trogen n gas, ^y N ₂			
49.0 0.0723 0. 98.1 0.143 0. 245.2 0.335 0. 392.3 0.485 0. 490.3 0.578 0. 588.4 0.704 0.	950 970 976 976 980 965 932			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	870 866 942 950 956 959 940 917 849			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	653 876 934 942 919 877 836			
AUXILIARY	INFORMATION			
METHOD /APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:			
Temperature measured with platinum resistance thermometer. Cell con- tents stirred with magnetic stirrer. Cell contents equilibrated. Sample removed at various levels in cell. Sample analysed by freezing out the hydrocarbon in an acetone/carbon dioxide trap and weighing. Nitrogen estimated volumetrically. Details in ref. 1. Critical data in source ref.	 (1) Linde sample, purity 99.99 mole per cent. (2) Shell AG sample. 			
	ESTIMATED ERROR: $\delta T/K = \pm 0.05; \delta P/bar = \pm 0.5;$ $\delta x_{N_2} = \pm 0.003; \delta y_{N_2} = \pm 0.007.$ REFERENCES: 1. Peter, S.; Reinhartz, K. Z. Phys. Chem. N.F. <u>1960</u> , 24, 103.			

	nyuloc	arbons			435
COMPONENTS:		ORIGINAL	MEASUREMEN	NTS:	
<pre>(1) Nitrogen; N₂; (2) Decane; C₁₀H₂</pre>	Azarnoo J. Cher	osh, A.; m. Eng.	McKetta, Data <u>1963</u>	J.J. , 8, 494.	
VARIABLES: T/K = 31 P/MPa =		PREPARED C. L. Y			
EXPERIMENTAL VALUES:		L			
T/K P/bar i	Mole fraction of nitrogen n liquid, in vapor, ^x N ₂ ^y N ₂	т/к	P/bar	Mole fra of nitu in liquid, ^x N ₂	rogen
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	310.9	234.4 234.4 248.2 275.8 275.8 275.8 293.0 324.1 344.7 6.9 10.3 13.8 17.2 28.96 34.47 48.26 55.16 62.05 65.50 82.74 86.18 117.21	0.2710 0.2690 0.2822 0.2990 0.3050 0.3030 0.3180 0.3380 0.3550 - - - - - - - 0.0422 0.0513 0.0602 0.0780 0.0890 0.0912 0.1130 0.1186 0.1713	0.99870 0.99950 0.99930 0.99850 0.99860 0.99870 0.99680 0.99680 0.9928 0.9970 0.9967 0.99970 0.99993
- <u></u>	AUXILIARY	INFORMATI	ON		
Cell charged with a	ROCEDURE: 11 with windows. with Bourdon gauge. components and mples analysed	SOURCE AU (1) Min (2) Phi gra cen ESTIMATE δT/K =	ND PURITY (imum pur: llips Pet de, purit t. D ERROR: ±0.2; δF ±0.002;	DF MATERIALS: ity 99.9 mol croleum Co., cy \geq 99.43 m $2y \geq 99.43$ m $by \geq 2000$ m	research ole per ; 01 to
					····

COMPONENTS :				ORIGINAL MEASUREMENTS:			
<pre>(1) Nitrogen; N₂; [7727-37-9] (2) Decane; C₁₀H₂₂; [124-18-5]</pre>			Azarnoosh, A.; McKetta, J. J. J. Chem. Eng. Data <u>1963</u> , 8, 494.				
EXPERIM T/K	ENTAL V ^a L <i>P/</i> bar	UES: Mole fra of nitr in liquid, ^x N ₂	ogen	T/K	P/bar	Mole fra of nit in liguid, ^x N ₂	cogen
344.3	120.66 120.66 137.90 144.79 172.4 172.4 179.3 193.1 206.8 206.8 224.0 234.4 241.3 258.5 282.7 293.0 296.5 310.3 324.1 337.8 344.7 5.5 6.9 13.8 20.7 34.5 51.7 55.2 62.1 68.9 75.8 96.5 103.4 110.3 131.0 137.9 144.8 158.6 158.6 158.6	$\begin{array}{c} 0.1630\\ 0.1700\\ 0.1980\\ 0.1935\\ 0.2190\\ 0.2280\\ 0.2270\\ 0.2280\\ 0.2270\\ 0.22510\\ 0.2510\\ 0.2755\\ 0.2780\\ 0.2910\\ 0.3010\\ 0.3270\\ 0.3010\\ 0.3270\\ 0.3339\\ 0.3350\\ 0.3500\\ 0.3590\\ 0.3590\\ 0.3590\\ 0.3590\\ 0.3590\\ 0.3500\\ 0.3590\\ 0.3500\\ 0.3590\\ 0.3500\\ 0.3590$	0.99900 0.99871 0.99841 0.99817 0.99819 0.99819 0.99824 0.99824 0.998250 0.99850 0.99802 0.99757 0.99757 0.99740 0.99649 0.99660 0.99500 0.99500 0.99500 0.99734 0.99660 0.99500 0.9970 0.9965 0.9967 0.9967 0.9967 0.99677 0.99679 0.99614 0.9963 0.99590	377.6	172.4 186.2 189.6 206.8 227.5 234.4 258.6 268.9 275.8 293.0 310.3 327.5 341.3 2.8 4.1 5.5 6.9 10.3 17.2 34.5 55.2 62.1 68.9 93.1 103.4 134.4 172.4 203.4 172.4 203.4 172.4 203.4 172.4 203.4 172.4 203.4 172.4 203.4 172.4 203.4 172.4 203.4 172.4 203.4 213.7 224.1 3275.8 293.0 306.8 324.1 324.1 324.1 324.7 224.1 324.1 324.1 324.7 324.1 324.1 324.7 324.1 324.7 324.1 324.7 324.1 324.1 324.1 324.7 324.1 324.7 324.1 324.7 324.1 324.7 324.1 324.1 324.1 324.7 324.1 324.7 34.7 34.	$\begin{array}{c} 0.2350\\ 0.2410\\ 0.2410\\ 0.260\\ 0.2760\\ 0.2850\\ 0.3070\\ 0.3130\\ 0.3230\\ 0.3230\\ 0.3230\\ 0.3420\\ 0.3650\\ 0.370\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\$	0.99550 0.99330 0.9958 0.9956 - 0.9950 0.9950 0.9945 0.9942 0.9942 0.9932 0.9923 0.6640 0.8140 0.8536 0.9030 0.9506 0.9268 0.99365 0.99365 0.99365 0.9938 0.99302 0.99354 0.99320 0.99324 0.9932 0.9932 0.99340 0.99336 0.99340 0.9924 0.9926 0.9924 0.9926 0.9924 0.9926 0.9926 0.9926 0.9926 0.9926 0.9927 0.9926

	Hydrod	carbons 2
COMPONENTS: (1) Nitrogen; N ₂ ; [7 (2) n-Dodecane; C ₁₂ H		ORIGINAL MEASUREMENTS: Rupprecht, S. D.; Faeth, G.M. NASA CR <u>1981</u> , NASA-CR-3422, 111 pp. Chem. Abstr. <u>1981</u> , 95, 153333x.
VARIABLES: T/K = 297-373 P/MPa = 1-10		PREPARED BY: R. Battino
EXPERIMENTAL VALUES:		
	T/K P ^a /	MPa x ₁
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	03 0.0143 07 0.0265 07 0.0296 32 0.0616 32 0.0685 34 0.1319
	^a Total pressur	те .
	AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDUR	E:	SOURCE AND PURITY OF MATERIALS:
A 1000 cm ³ chamber is filled with va. 500 cm ³ of liquid. Gas is added to the desired pressure. The hamber is agitated to attain quilibrium. Temperatures are read ia thermocouples and pressures ia Heisse bourdon tube gages. A iquid sample is removed and allowed to de-pressurize at tmospheric pressure. The olubility is calculated from the easurement of liquid and gas volumes f the de-pressurized sample. esidual dissolved gas is considered to be negligible		No details given.
		ESTIMATED ERROR: $\delta x_1/x_1 = \pm 0.03$, compiler's estimate.
		REFERENCES:

•

100							
COMPONENT	rs:			ORIGINAL	MEASUREMEN	NTS:	
	-	N ₂ ; [7727-37	-	Namio 10, 4	ot, A. Yu	; Skripka, V ., Gazov. De	
(2) He	exadecane	; C ₁₆ H ₃₄ ;	[544-76-3]	Chem. A	bstr. <u>19</u>	<u>974</u> , 80, 3895	6f
VARIABLE	S: T/K =	323-523		PREPARED	BY:		
	P/MPa	= 5-49		С. L. У	oung		
EXPERIME	NTAL VALUES	5:					
т/к	P/bar	Mole frac of nitro in liquid, ²⁰ N ₂	ogen	т/К	P/bar	Mole fra of nitr in liquid, ^{xx} N ₂	rogen
323.15	49 98 196 294 392	0.073 0.135 0.223 0.282 0.326		473.15 523.15	490 49 98 196 294	0.527 0.1135 0.199 0.369 0.4315	- 0.985 0.99 0.99 0.9885
373.15	490 49 98 196 294 392	0.360 0.078 0.142 0.239 0.306 0.364		573.15	392 441 490 49 98 196	0.516 0.555 0.593 0.127 0.228 0.373	0.985 0.9845 0.983 0.9595 0.973 0.980
423.15	490 98 196 294 392	0.413 0.093 0.158 0.253 0.331 0.399	- - - - -	523.15	294 392 490 539 588 49	0.492 0.598 0.6945 0.738 0.780 0.150	0.973 0.966 0.959 0.948 0.924 0.902
473.15	490 49 98 196 294 392	0.460 0.1015 0.176 0.287 0.377 0.455			98 196 294 392 393.7	0.2695 0.44 0.608 0.837 0.855	0.929 0.935 0.930 0.869 0.855
			AUXILIARY	INFORMATIO	ON		
METHOD / J	APPARATUS	/PROCEDURE:		SOURCE AN	D PURITY (OF MATERIALS:	
		ium cell fitt		(1) No	details	given.	
Samples by free	s of coex ezing out	r, details ir isting phases n-hexadecane ogen volumetr	analysed and		ire sampl .3-287.3	e"; boiling °C.	point
				ESTIMATEI		$\delta P/\text{bar} = \pm 1;$	
						±0.002 (est	
							ompiler).
				REFERENCE	-		
					Namiot,	A. Yu. Gaz	•
				<u>197</u>	<u>'1</u> , 16 (4), б.	
		······		i			

Hydrocarbons

. . .

		пуч	rocarbons	·
COMPONENTS:			ORIGINAL MEA	SUREMENTS:
(1) Nitroge	en; N ₂ ; [772	7-37-9]	Khodeeva	a, S.M.
(2) Cyclohe	exane; C ₆ H ₁₂	; [110-82-7]	Tr. Nauc Azotn. 12, 30	zho-Issledov. Proekt. Inst. Prom. Prod. Org. Sín. <u>1971</u> -9.
VARIABLES:	·	· · · · · · · · · · · · · · · · · · ·	PREPARED BY:	
T/K = 37 P/MPa =				C.L. Young
EXPERIMENTAL V	ALUES:			Mole fraction of
т/к	P/atm	P/MPa	α^+/cm^3g^{-1}	nitrogen in liquid, ^x N ₂
		7.92 8.53 9.00 9.54 10.29 4.75 5.05 5.37 6.30 7.01 7.77 8.02 8.43 10.10 6.58 7.03 7.46 8.18 8.98 s, measured a		0.073 0.080 0.084 0.089 0.097 0.045 0.050 0.053 0.064 0.069 0.078 0.079 0.085 0.100 0.072 0.072 0.074 0.084 0.092 0.096
		AUXILIA	RY INFORMATION	
METHOD/APPARAT	US/PROCEDURE:		SOURCE AND P	URITY OF MATERIALS:
liquid sampl under reduce liquid in sa weighing. A determined h at a known t	e was strip ed pressure. imple determ mount of di oy measuring cemperature	Amount of ined by ssolved gas	less th cent. (2) No deta	lly purified sample, han 0.005 volume per ails given.
			$\delta x_{N_2} =$ REFERENCES: 1. Khodeev Tr. Nau	$\pm 0.5; \delta P/atm = \pm 0.2$

COMPONENTS:	ORIGINAL MEASUREMENTS:		
(1) Nitrogen; N ₂ ; [7727-37-9]	Wild, J.D.; Sridhar, T. Potter, O.E.		
(2) Cyclohexane; C ₆ H ₁₂ ; [110-82-7]	Chem. Eng. J. <u>1978</u> ,15, 209-14.		
VARIABLES:	PREPARED BY:		
T/K = 300-443	C. L. Young, R. Battino		
P/MPa = 0.1-1.9			
EXPERIMENTAL VALUES:			
Pressure r t/°C T/K (psi gauge			
35 308 110-260 80.5 353.7 110-258 110 383 110-255 133 406 110-242 150 423 102-260 170 443 152-268 26.5 299.7 0+ 35 308.0 0+ 45 318.0 0+ 59.5 332.5 0+ + Solubilities determined by gas § Calculated mole fraction at 1 a Henry's law obeyed. .			
AUXILIARY	INFORMATION		
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:		
Static equilibrium cell. Liquid saturated with gas and after equilib- rium established samples removed and analysed by a volumetric method. Allowance was made for the vapor pressure of the liquid and the solubility of the gas at atmospheric pressure. Details in source and ref. (1). In chromatographic method samples of cyclohexane saturated with nitrogen were analysed on a molecular sieve column using helium carrier gas and a thermal conductiv- ity detector.	<pre>(1) High purity, oxygen free. (2) Distilled, boiling point 80.7°C Chromatographic analysis revealed 0.1 mole per cent of hydrocarbon impurity. Refractive index of 1.4201.</pre> ESTIMATED ERROR: $\delta T/K = \pm 0.5; \ \delta x_{N_2} = \pm 1.0\%$ REFERENCES:		
	<pre>1. Frolich, P.K.; Tauch, E.J.; Hogan, J.J.; Peer, A.A. Ind. Eng. Chem. <u>1931</u>,23,548.</pre>		

;

:

.

:

•

MEASUREMENTS: S.; Eicke, H. F. unsenges. Phys. Chem. <u>1970</u> , 190. BY: Young
unsenqes. Phys. Chem. <u>1970</u> , 190. BY:
Zoung
:
N O PURITY OF MATERIALS: de sample, purity 99.99 mole cent. Llips Petroleum pure grade
cent.
ERROR: $\delta x_{N_2} = \pm 0.007.$ $\delta y_{N_2} = \pm 0.007.$: pr, S; Reinhartz, K.
±

CO.(D.O.)77.17		········		
COMPONENT				ORIGINAL MEASUREMENTS:
(1) Nit:	rogen; N	2; [7727-37-9]		Brunner, G.; Peter, S.; Wenzel, H.
				Chem. Eng. J. <u>1974</u> , 7, 99.
(2) Met	hylcyclo	ohexane; C ₇ H ₁₄ ;		
	[108-8]	7-21		
		· -•		
VARIABLES	5:			PREPARED BY:
	/K = 453	-192		C. L. Young
	/MPa = 5			
EXPERIMEN	ITAL VALUE	S:		
		Mole fraction of	of nitro	ogen
т/к	<i>P/</i> bar	in liquid,	in va	
		^{<i>x</i>} N 2	y_{N}	12
452 15	0.5	0.102	0.882	
453.15	85 130	0.102	0.882	
	141	0.178	0.911	
1	271	0.335	0.904	
472 15	371	0.433 0.082	0.866	
472.15	67 84	0.082	0.855	
	139	0.184	0.866	
	151	0.216	0.883	
	212 281	0.285 0.395	0.874	
	320	0.483	0.843	
492.15	52	0.064	0.699	
	102	0.146	0.791	
	153 209	0.235 0.346	0.818	
	205	0.383	0.818	
	245	0.488	0.796	
	256	0.470	0.806	
	277 290	0.650 0.629	0.698	
				· · · · · · · · · · · · · · · · · · ·
		A	UXILIARY	INFORMATION
METHOD / A	PPARATUS	S/PROCEDURE:		SOURCE AND PURITY OF MATERIALS:
Chatte		about 1000 - 3		(1) Linde sample; purity 99.98 mole
		about 1000 cm ³ d ally stirred. I	capa- Pres-	per cent by gas chromatography.
sure me	asured v	vith Bourdon gaud	ge.	For come al far communitation.
Tempera	ture mea	sured with nicke	el	(2) Fluka sample; purity 99.4 mole
		-nickel thermocou oled; methylcycl		per cent by gas chromatography.
		and amount estimation		
nitroge	n estima	ated volumetrical	11y.	
}				
				ESTIMATED ERROR:
				$\delta T/K = \pm 0.5; \delta P/bar = \pm 0.5;$
				$\delta x_{N_2}, \ \delta y_{N_2} = \pm 5\%$
				N2 ⁻ N2
				REFERENCES:
1				
l				

	Hydro	ocarbons	443
COMPONENTS:	/ / / / / / / / / / / / / / / / /	ORIGINAL MEASURE	MENTS:
(1) Nitrogen; N ₂ ; [772	7-37-9]	Miller. P.; 1	Dodge, B.F.
(2) Benzene; C ₆ H ₆ ; [71-	-43-2]	Ind. Eng. Che	em. <u>1940</u> , <i>32</i> ,434-8.
VARIABLES:		PREPARED BY:	
T/K = 303-423 P/MPa = 6.2-30.7		C	C.L. Young
EXPERIMENTAL VALUES:	······································	Mole fraction	of Nitrogen
т/к	P/atm	Liquid, x _{N2}	Vapor, y _{N2}
303.15	120.7 218.1	0.0509 0.08345	
348.15	297.5 61.3 109.0	0.1051 0.0345 0.0598	0.97547 0.98022 0.98048
373.15	155.5 208.0 252.2 298.4 61.9 106.3 155.5	0.08165 0.1062 0.1265 0.1458 0.0396 0.0663 0.0945	0.97953 0.97767 0.97547 0.9534 0.96265 0.96547
398.15	198.3 269.0 301.6 63.6 103.6 151.4 201.5	0.1165 0.1550 0.1750 0.0430 0.0711 0.1037 0.1388	0.96383 0.9168 0.9347 0.9406 0.93945
423.15	201.5 251.0 303.1 297.0	0.1379 0.1716 0.2044 0.2396	0.9409 0.9391 0.93495
		INFORMATION	
METHOD/APPARATUS/PROCEDURE: Single pass flow system. Nitrogen bubbled through a series of three pressure cylinders, two being pre- saturators the third being an equil- ibrium cell which was continually agitated. Gas phase analysed by freezing out benzene and estimating nitrogen volumetrically. Liquid sample analysed using same principle.		fractiona distilled	
		ESTIMATED ERROR: $\delta T/K = \pm 0.1;$ $\pm 0.0005; \delta y_N$ (estimated by REFERENCES:	

COMPONENTS :		ORIGINAL MEASUREMENTS:
(1) Nitro	ogen, N ₂ ; [7727-37-9]	Krichevskii, I. R.; Efremova, G. D.
	· · · · · · · · · · · · · · · · · · ·	Zhur. Fiz. Khim. 1948, 22, 1116.
(2) Benze	ne; C_6H_6 ; [71-43-2]	
VARIABLES:		PREPARED BY:
T/K =		C. L. Young
P/MP2	a = 2.7 - 78.5	
EXPERIMENTAL	VALUES:	
ļ	Nola fuertion of a	i hunnun
т/к	Mole fraction of n P/bar in liquid,	itrogen
	<i>x</i> _{N2}	
288.15	27.2 0.0116	
200.15	50.0 0.0204	
	99.1 0.0395 143.9 0.0547	
	196.6 0.0717	
	260.4 0.0886 306.0 0.100	
	482.3 0.139	
	543 0.150 570 0.154	
	785 0.191	
	AUXILIARY	INFORMATION
METHOD /APP	ARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Static eq	uilibrium cell fitted with stirrer. Pressure measured	(1) Dried.
with Bour	don gauge. Sample of	(2) Dried and purified by fractional
liquid an	alysed by separating the two s, weighing the benzene and	crystallisation; final purity 99.65 mole per cent.
estimatin	g the nitrogen volumetri-	SS.05 more per cent.
cally.	Details in source.	
		ECTIMATED EDDOD.
		ESTIMATED ERROR: $\delta T/K = \pm 0.1; \delta^P/bar = 0.35\%;$
		$\delta x_{N_2} = \pm 0.5\%$.
		N ₂
		REFERENCES :
	<u>.</u>	
L	······································	

COMPONENTS:	ORIGINAL MEASUREMENTS: Tsiklis, D.S.; Shenderei, L.I.;
(1) Nitrogen; N ₂ ; [7727-37-9]	El'natanov, A.I.
(2) Toluene; C ₇ H ₈ ; [108-88-3]	Khim Prom. <u>1963</u> , 348-53.
	Khim. Promysl. <u>1963</u> , 348-53.
	Chem. Abstr. 1963, 59, 14647F.
	enem: Nosen: <u>1903</u> , 97, 14047F.
VARIABLES: T/K = 473-548	PREPARED BY:
P/MPa = 1.5-40.5	V. Katovic
EXPERIMENTAL VALUES: Mole fraction in ga	
×C7 ^{II} 8	×c ₇ ^{II} 8
P ^a /MPa P/atm 205°C 215°C 225°C 250°C (478K) (488K) (498K) (523K) (275°C 205°C 215°C 225°C 250°C 275°C 548K) (478K) (488K) (498K) (523K) (548K)
1.52 15 0.610 0.700 0.775	0.995 0.992 0.995
2.53 25 0.430 0.500 0.575 0.705 4.05 40 0.305 0.350 0.410 0.500	0.905 0.985 0.980 0.985 0.990 0.995 0.675 0.965 0.965 0.970 0.965 0.970
6.08 60 0.225 0.260 0.310 0.360	0.495 0.945 0.945 0.945 0.940 0.940
8.11 80 0.165 0.200 0.215 0.275 10.13 100 0.300 0.160 0.155 0.220	0.330 0.920 0.925 0.920 0.910 0.940 0.225 0.900 0.900 0.895 0.880 0.908
15,20 150 0.075 0.105 0.125 0.170	0.260 0.845 0.895 0.840 0.800 0.775
20.27 200 0.070 0.085 0.105 0.155 25.33 250 0.065 0.090 0.115 1.175 ^b	0.275 0.790 0.785 0.765 0.735 0.695 0.400 0.745 0.725 0.700 0.665 0.600
30.40 300 0.065 0.105 0.115 0.195	0.695 0.675 0.645 0.590 0.580 0.560 0.500
40.53 400 0.115 0.175 0.240	0.580 0.500 0.500
^a Calculated by compiler.	
^D Probably 0.175.	
AUXILIARY	INFORMATION
	SOURCE AND PURITY OF MATERIALS:
Solubility was measured in a thermo-	(1) Purified from oxygen by
statted autoclave. Samples of	ammoniacal copper solution.
solution and gas phase were analyzed for nitrogen and	(2) Purified by extraction with
toluene (1).	H_2SO_4 , Na amalgam and water.
	Dried with P ₄ O ₁₀ .
	ESTIMATED ERROR:
	$\delta x/x = \pm 0.03$, compiler's estimate.
	REFERENCES:
	(1) Tsiklis, D.S.; Kofman, A.M., Russ.
	J. Phys. Chem. <u>1961</u> , 35, 1120.

COMPONENTS:		ORIGINAL MEASUREMENTS:		
(1) Nitrogen; N ₂ ; [7]	727-37-9]	Krichevskii, I.R.; Lebedeva, E.S.		
(2) Methanol; CH ₄ O;		Zhur. Fiz. Khim, <u>1947</u> , 21,715-7.		
VARIABLES:				
T/K = 273 - P/MPa = 4.		PREPARED BY: C.L. Young		
EXPERIMENTAL VALUES: T/K	Mo P/bar	le fraction of nitrogen in liquid, ${x_{_{ m N_2}}}$		
273.15	49.0 99.1 147 197	0.0109 0.0211 0.0304 0.0391		
298.15	49.0 99.1 147 197 245	0.0116 0.0229 0.0321 0.0418 0.0505		
323.15	49.0 99.1 147 197 245 295	0.0123 0.0243 0.0346 0.0452 0.0542 0.0542 0.0634		
343.15	49.0 99.1 147 197 245 284	0.0131 0.0260 0.0373 0.0489 0.0598 0.0598		
		INFORMATION		
METHOD/APPARATUS/PROCEDUR	2:	SOURCE AND PURITY OF MATERIALS:		
Not clear from origin	al paper.	<pre>(1) Contained 0.4 mole per cent oxygen,</pre>		
		(2) Purity better than 99.9 mole per cent.		
		ESTIMATED ERROR:		
		$\delta T/K = \pm 0.1; \ \delta P/bar = \pm 0.5\%; \ \delta x_{N_2} = \pm 1\%.$ (estimated by compiler).		
		REFERENCES:		

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N_2 ; [7727-37-9] (2) Ethanol; C_2H_6O ; [64-17-5]	Frolich, P. K.; Tauch, E. J.; Hogan, J. J.; Peer, A. A. Ind. Eng. Chem. <u>1931</u> , 23, 548-50.
VARIABLES: T/K = 298 P/MPa = 1-17	PREPARED BY: C. L. Young
EXPERIMENTAL VALUES:	
T/K P/MPa Solubilit	x_y^* , S Mole fraction of nitrogen [†]
298.15 1.0 1.2 2.0 2.3 3.0 3.3 4.0 4.2 5.0 5.1 6.0 6.0 7.0 7.0 8.0 7.9 9.0 8.9 10.0 9.8 11.0 10.8 12.0 11.8 13.0 12.8 14.0 13.7 15.0 14.5 16.0 15.4 17.0 16.2 * Data taken from graph in origin measured at 101.325 kPa pressur unit volume of liquid measured * Calculated by compiler.	0.0055 0.0079 0.0100 5 0.0122 5 0.0143 0.0165 5 0.0187 0.0209 5 0.0231 5 0.0254 5 0.0254 5 0.0276 0.0298 0.0318 0.0336 0.0356 0.0374 al article. Volume of gas e and 298.15 K dissolved by
	INFORMATION
METHOD APPARATUS / PROCEDURE: Static equilibrium cell. Liquid saturated with gas and after equilibrium established samples	SOURCE AND PURITY OF MATERIALS: Stated that the materials
removed and analysed by volumetric method. Allowance was made for vapor pressure of liquid and the solubility of the gas at atmospheric pressure. Details in source.	were the highest purity available.
	ESTIMATED ERROR: $\delta T/K = \pm 0.1; \delta x_{N_2} = \pm 5\%.$
	REFERENCES:

448 Nitrogen Solubilities Above 200 kPa ORIGINAL MEASUREMENTS: COMPONENTS: Shakhova, S. F.; Zubchenko, Yu. P.; (1) Nitrogen; N₂; [7727-37-9] Kaplan, L. K. (2) 4-Methyl-1, 3-dioxolan-2-one Khim. Prom. <u>1973</u>, 49, 108. (Propylene carbonate); C₄H₆O₃; [108 - 32 - 7]VARIABLES: PREPARED BY: T/K = 283 - 323C. L. Young P/MPa = 6.4-12.5EXPERIMENTAL VALUES: Mole fraction of nitrogen in liquid, vol^{α^*}/vol T/K P/bar x_{N_2} 0.00849 283.15 66.67 2.25 83.39 0.0104 2.76 2.95 90.28 0.0111 95.14 0.0115 3.06 107.91 0.0130 3.46 298.15 63.73 0.00886 2.35 75.49 0.0101 2.68 77.92 0.0107 2.84 80.96 0.0112 2.97 88.25 0.0117 3.10 91.70 0.0121 3.22 100.72 0.0136 3.62 112.77 0.0154 4.11 0.00987 63.23 2.62 323.15 71.64 0.0111 2.95 79.34 0.0120 3.18 91.09 0.0138 3.69 102.84 0.0155 4.13 109.32 0.0162 4.33 115.21 0.0168 4.50 125.04 0.0181 4.82 quoted in original paper, appears to be volume of gas at T/K = 273.15 and P = 1 atmosphere absorbed by unit volume of liquid at room temperature. AUXILIARY INFORMATION METHOD /APPARATUS/PROCEDURE: SOURCE AND PURITY OF MATERIALS: Mixture stirred by ball in rocking autoclave. Samples of liquid analy-(1) Purity 99.99 mole per cent. sed by volumetric method. Details (2) Distilled; purity 99.9 mole per in source. cent determined by gas chromatography. ESTIMATED ERROR: $\delta T/K = \pm 0.1; \quad \delta P/bar = \pm 0.1;$ $\delta x_{N_2} =$ ±5% (estimated by compiler). **REFERENCES:**

COMPONENTS :	·····	·····	ORIGINA	L MEASUREMENTS:	·····		
				Khodeeva, S. M.; Dymova, R. P.			
<pre>(1) Nitrogen; N₂; [//2/-3/-9] (2) Cyclohexanone; C₆H₁₀O; [108-94-1]</pre>			Tr. Naucho-Issledov. Proekt. Inst.				
				tn. Prom. Org			
			39-4	•	<i>5.n</i> . <u>1571</u> , <i>12</i> ,		
ARIABLES:			PREPARE	D BY:			
T/K = P/MPa	348-473 = 4-10			С. L.	Young		
EXPERIMENTAL	VALUES:			<u></u>	. <u> </u>		
T/K	P/atm	P/MPa		Mole fraction in liquid,	of nitrogen in gas,		
17K	- / a ciii	- / H a		^x N ₂	^y N ₂		
348.15	39.7	4.02		0.018	-		
	42.3 45.0	4.29 4.56		0.019 0.021			
	47.2	4.78		-	0.997		
	51.6	5.23		-	0.998		
	55.3	5.60		0.025	-		
	59.6 64.5	6.04 6.54		0.027	0.993		
	68.5	6.94		-	0.995		
	72.3	7.33		0.032	-		
	78.7	7.97		-	0.991 0.992 -		
	82.4 90.2	8.35 9.14		0.038	0.992 -		
	93.1	9.43		0.038	-		
373.15	24.0	2.43		0.013	-		
	34.9	3.54		0.017	-		
	38.7	3.92 4.30		-	0.992 0.989		
	42.4 47.1	4.77		0.023	-		
	49.4	5.01		0.023	-		
	53.0	5.37		-	0.991		
	57.2	5.80		- (cc	0.989 ont.)		
		AUXILIARY	INFORMA	TION			
ETHOD/APPARA	TUS/PROCEDURE:	- <u></u>	SOURCE	AND PURITY OF MATH	ERIALS:		
Volumetric	method in which		(1)	Specially purif	ied sample,		
saturated	liquid sample was	s stripped		less than 0.005	o volume per		
	ler reduced press		1	cent impurity.			
-							
	liquid in sample		(2)	Distilled, no i	mpurity		
-	veighing and amound		•	detected by GC.			
gas dissol	ved by measuring	the					
volume at	known temperature	e and					
pressure. Some details in source.			ESTIMAT	TED ERROR:			
• •					1		
				$K = \pm 0.5; \delta^P/a$	$t = \pm 0.2;$		
			δx _N	$= \pm 18.$			
			REFEREN	NCES:			
			1				

COMPONENT	S:		ORIGINAL MEASUREMENTS: Khodeeva, S. M.; Dymova, R. P.		
(l) Nitrog	en; N ₂ ; [7727·	-37-9]			
<pre>(2) Cyclohexanone; C₆H₁₀O; [108-94-1]</pre>			Tr. Naucho-Issledov. Proekt. Inst. Azotn. Prom. Org. Sin. <u>1971</u> , 12, 39-46.		
EXPERIMEN	TAL VALUES:				
T/K	P/atm	P/MPa	Mole fraction in liquid,	in gas,	
			^{<i>w</i>} N ₂	y_{N_2}	
373.15	62.3	6.31	0.030		
	64.8	6.57	0.032	-	
	65.0	6.59	0.034	-	
	68.3 71.6	6.92 7.25		0.990 0.989	
	77.2	7.82	0,043	-	
	80.2	8.13	0.041	-	
	83.2	8.43	-	0.991	
	84.6	8.57	-	0.988	
	90.4	9.16	-	0.986	
	92.4	9.36	0.049	-	
	96.1	9.74	0.045	-	
423.15	46.0	4.66	0.027	-	
	47.1	4.77	0.028	0.980	
	48.8 53.4	4.94 5.41	0.028	0.987	
	57.3	5.81	-	0.978	
	65.5	6.64	0.039	-	
	68.3	6.92	0.041	-	
	68.6	6.95	0.040	-	
	71.0	7.19	0.041	-	
	73.7	7.47	0.044		
	74.6 75.1	7.56	-	0.977	
	75.1	7.61 7.76	-	0.975 0.979	
	77.4	7.84	-	0.982	
	80.1	8.12	-	0.982	
	81.0	8.21	-	0.975	
	84.3	8.54	-	0.979	
	86.5	8.76	0.051	-	
	92.0	9.32	0.054	-	
473.15	47.4	4.80	0.036	-	
	49.8	5.05	0.035 0.038	-	
	56.4 56.9	5.71 5.77	0.038	-	
	61.9	5.// 6.27	-	0.963	
	65.9	6.68	-	0.958	
	67.9	6.88	-	0.961	
	71.8	7.28	-	0.967	

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Nitrogen; N₂; [7727-37-9]</pre>	Shakhova, S. F.; Zubchenko, Yu. P.; Kaplan, L. K.
<pre>(2) Pentanedioic acid, -dimethyl ester, (dimethyl glutarate); C₇H₁₂O₄; [1119-40-0]</pre>	Khim. Prom. <u>1973</u> , 49, 108-10.
VARIABLES:	PREPARED BY:
T/K = 313 P/MPa = 5.6-14.2	C. L. Young
EXPERIMENTAL VALUES:	
Mole fraction of nitrogen T/K P/bar in liquid, vol ^{a*} N ₂	/vol
313.15 55.9 0.0246 3.83 86.8 0.0355 5.60	
110.3 0.0451 7.18 142.3 0.0580 9.37	
* quoted in original paper, appears to volume of gas at T/K = 273.14 and P l atmosphere absorbed by unit volume liquid at room temperature. AUXILIARY METHOD /APPARATUS/PROCEDURE:	of INFORMATION SOURCE AND PURITY OF MATERIALS:
Mixture stirred by ball in rocking autoclave. Sample of liquid analysed by a volumetric method. Details in source.	(1) Purity 99.99 mole per cent.(2) Analytic grade sample.
	ESTIMATED ERROR: $\delta T/K = \pm 0.1; \delta P/bar = \pm 0.1;$ $\delta x_{N_2} = \pm 5$ % (estimated by compiler). REFERENCES:
	1

.

ļ

Nitrogen Solubilities Above 200 kPa

COMPONENTS:	ORIGINAL MEASUREMENTS:			
(1) Nitrogen; N ₂ ; [7727-37-9]	Shakhova, S. F.; Zubchenko, Yu. P.; Kaplan, L. K.			
(2) 1,2,3-Propanetriol, triacetate;	Khim. Prom. <u>1973</u> , 49, 108-10.			
(Glycerol triacetate); C ₉ H ₁₄ O ₆ ;				
[102-76-1]				
VARIABLES:	PREPARED BY:			
T/K = 288-323 P/MPa = 6.8-14.7	C. L. Young			
EXPERIMENTAL VALUES:				
Mole fraction T/K P/bar of nitrogen vol ^a */vol in liquid, ^x N ₂	Mole fraction T/K P/bar of nitrogen vol ^{a*} /vol in liquid, ^x N ₂			
288.15 80.96 0.0286 3.49	308.15 97.58 0.0381 4.69			
82.38 0.0303 3.70 90.69 0.0320 3.92	105.88 0.0410 5.07 120.68 0.0458 5.63			
91.19 0.0318 3.89 92.12 0.0331 4.06	143.68 0.0544 6.81 323.15 79.13 0.0391 3.91			
101.53 0.0354 4.35	102.03 0.0523 5.23			
109.53 0.0358 4.40 111.05 0.0375 4.61	107.40 0.0551 5.51 107.91 0.0549 5.49			
131.92 0.0449 5.57	108.11 0.0617 6.17			
308.15 67.69 0.0273 3.33 82.88 0.0346 4.24	124.53 0.0630 6.30 135.88 0.0691 6.91			
94.13 0.0369 4.54	146.62 0.0730 7.30			
AUXILIARY	INFORMATION			
METHOD /APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:			
Mixture stirred by ball in rocking autoclave. Sample of liquid	(1) Purity 99.99 mole per cent.			
analysed by volumetric method. Details in source.	(2) Distilled and dried; purity 99.4 mole per cent.			
	ESTIMATED ERROR: $\delta T/K = \pm 0.1; \delta P/bar = \pm 0.1; \delta x_{N_2}$ $= \pm 5\%$ (estimated by compiler). REFERENCES:			

ī

١

	s containing Oxygen 4		
COMPONENTS:	ORIGINAL MEASUREMENTS:		
(1) Nitrogen; N ₂ ; [7727-37-9]	Zubchenko, Yu.P.; Shakhova, S.F. Tr. Ni.i Proekt.In-ta Azat.		
(2) 2,5,8,11,14-Pentaoxapentadecane,			
(Tetramethylene glycol dimethyl-			
ester); $C_{10}H_{22}O_5$; [143-24-8]	Prom-sti i Produktov Organ. Sinteza		
	1975, (33), 13-15.		
	Chem. Abstr. <u>1977</u> , 86, 89113K.		
VARIABLES:	PREPARED BY:		
T/K = 313			
P/MPa = 2.8-14.0	C.L. Young		
EXPERIMENTAL VALUES:	L		
	α+ Mole fraction of		
T/K P/atm P/MPa	vol/vol nitrogen in liquid,		
	<i>x</i> _{N₂}		
313.15 27.15 2.79	1.73 0.0146		
313.15 27.15 2.79 49.4 5.01	1.73 0.0146 2.97 0.0247		
79.4 8.05	4.68 0.0384		
111.3 11.27	6.80 0.0549		
138.4 14.02	7.99 0.0639		
of liquid at room temperatu			
AUXILIARY	INFORMATION		
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:		
Mixture stirred by ball in rocking	(1) Purity 99.99 mole per cent.		
autoclave. Sample of liquid analysed			
by a volumetric method. Details in ref. (1).	(2) No details given.		
	ESTIMATED ERROR:		
	$\delta T/K = \pm 0.1; \ \delta P/atm = \pm 0.1;$		
	$\delta \pi / K = \pm 0.1; \ \delta P / atm = \pm 0.1; \ \delta x_{N_2} = \pm 5\%.$		
	$\delta x_{N_2} = \pm 5$ %. (estimated by compiler).		
	$\delta x_{N_2} = \pm 5$ %. (estimated by compiler). REFERENCES:		
	$\delta x_{N_2} = \pm 5$ %. (estimated by compiler).		
	<pre>δx_{N2} = ±5%. (estimated by compiler). REFERENCES: 1. Shakhova, S.F.; Zubchenko, Yu.P.; Kaplan, L.K.</pre>		
	$\delta x_{N_2} = \pm 5\%.$ (estimated by compiler). REFERENCES: 1. Shakhova, S.F.; Zubchenko,		
	<pre>δx_{N2} = ±5%. (estimated by compiler). REFERENCES: 1. Shakhova, S.F.; Zubchenko, Yu.P.; Kaplan, L.K.</pre>		

COMPONENTS:	ORI	GINAL MEASUREMENTS	:	
(1) Nitrogen; N ₂ ; [7727-37-9]	Не	Hess, L. G.; Tilton, V. V.		
<pre>(2) 1,2-Epoxyethane (ethylene oxide); C₂H₄0;[75-21-8]</pre>	In	d. Eng. Chem. <u>1</u>	<u>950</u> , 42, 1251-8.	
VARIABLES:	PRE	PARED BY:		
T/K = 303-318K P/MPa = 0.21-0.48		R. Battino		
EXPERIMENTAL VALUES:				
t/°C T ^a /K F	/psig	P ^a /MPa	Solubility ^b	
30 303	30	0.21	0.02	
30 303 30 303	40 50	0.28 0.34	0.1 0.19	
45 318	50	0.34	0.11	
45 318	60	0.41	0.18	
45 318	70	0.48	0.25	
AUXILI	ARY INF(DRMATION		
METHOD /APPARATUS / PROCEDURE :		RCE AND PURITY OF	MATERIALS:	
These are average values of solubility as determined on a laboratory scale and using apparatus and procedures similar that of Wan and Dodge (1).		No details g		
		IMATED ERROR:	are crude.	
· · · · · ·		ERENCES: Wan, S.W.; Dod Ind. Eng. Chem	ge, B.F. . <u>1940</u> , 32, 95.	

•

COMPONENTS -				
COMPONENTS:		ORIGINAL MEASUREMENTS:		
<pre>(1) Nitrogen; N₂; (2) Methane, chl CHClF₂;</pre>	lorodifluoro-;	<pre>Maslennikova, V. Ya.; Goryunova, N. P.; Tsiklis, D. S. Zhur. Fiz. Khim. <u>1967</u>, 41, 735.</pre>		
VARIABLES:		PREPARED BY:		
T/K = 295-3 P/MPa = 2.5		C. L. Young		
EXPERIMENTAL VALUES:				
	ole fraction of nit			
T/K P/bar in	n liquid, in y_1			
295.15 25.3 50.7 76.0 101.3 126.7 152.0 177.3	0.035 0.1 0.135 0.1 0.185 0.1 0.185 0.1 0.185 0.1 0.141 0.1	4 9 0 9 63		
194.5 313.15 25.3 50.7 76.0 101.3 126.7 152.0	0.57 0. 0.025 0. 0.085 0. 0.14 0. 0.205 0. 0.29 0. 0.42 0.	65 85 6 85 73 -		
162.1 333.15 25.3 50.7 76.0 101.3 126.7 128.7	0.515 0.1 0.003 0.0 0.067 0.1 0.14 0.2 0.39 0.4 0.435 0.4	15 45 9 2 45 8		
	·····	Y INFORMATION		
given as referend described. It i	PROCEDURE: n in source. Ref. ce in which apparatu s not clear which c catus described were	s mole per cent oxygen. f		
		<pre>ESTIMATED ERROR:</pre>		

COMPONENT	c .			OPTOTNAT	MEACIDENE	NTC -	
$\begin{array}{c} \text{COMPONENTS:} \\ (1) \text{Nitragenery} \text{New } \begin{bmatrix} 7727 - 27 - 9 \end{bmatrix} \end{array}$				ORIGINAL MEASUREMENTS:			
(1) Nitrogen; N ₂ ; [7727-37-9]			Nohka, J.; Sarashina, E.; Arai, Y.; Saito, S.				
<pre>(2) Methane, chlorodifluoro-; CHClF₂; [75-45-6]</pre>			Saito, S. J. Chem. Eng. Japan <u>1973</u> , 6, 10.				
VARIABLES				PREPARED	BY:		
	/K = 273-3 /MPa = 2.5			С. L. Y	oung	·	
EXPERIMEN	TAL VALUES:	Mole fra			<u></u>	Mole fraction	
T/K	<i>P</i> /bar	of nit:		T/K	<i>P/</i> bar	of nitr	
	·	in liquid, ^x N ₂	^y N ₂	,		in liquid, ^x N ₂	in gas, ^Y N2
272 15		0.0267	0 755	209 15	154 2	0 215	0 720
273.15	25.3 50.7		0.852	298.15	154.2 165.9	0.315 0.347	0.730 0.704
	76.0	0.129	0.873		174.0	0.382	0.680
	101.3 126.7		0.876 0.869		179.0 185.9	0.409 0.463	0.660 0.618
	144.3	0.265	0.859	323.15	30.4	0.0217	0.258
	160.5 183.1	0.301 0.350	0.845 0.825		50.7 76.0	0.0638 0.121	0.472 0.561
	200.8	0.399	0.801		101.3	0.185	0.580
298.15	215.3 25.3		0.766		130.7 134.4	0.291 0.327	0.540 0.524
298.15	25.3 50.7	0.0268 0.0749	0.498 0.688		134.4	0.359	0.524
	50.7	0.0753	0.697	348.15		0.0261	0.149
	76.0 95.8	0.164	0.741		49.7 64.3	0.0429 0.0820	0.198 0.278
	101.3	0.178	0.755 0.763		74.0	0.114	0.308
	101.3 126.7	0.181 0.232	0.761 0.753		82.6 91.2	0.145 0.198	0.316 0.281
	142.4	0.279	0.748		5212	0.120	00001
	<u></u>						
	- <u></u>	<u></u>	AUXILIARY	INFORMATIO	 ON		
METHOD /	APPARATUS	/PROCEDURE:		SOURCE AN	D PURITY	OF MATERIALS:	
Static	cell fitte	ed with magnet				ter than 99.9	mole per
stirrer liguid	. Temper in glass	rature measure thermometer an	ed with	cent.			
sure me	asured wit	th Bourdon gau	ige.	(2) No details given.			
		n established es analysed by					
chromat		Details in r					
and 2.							
				ESTIMATEI	ERROR:		
						$P/bar = \pm 0.1;$	δx _{N2} ,
				$\delta y_{N_2} =$	±1% (est	imated by com	piler).
				REFERENCE	ES:		
				Maed	nishi, (a, S. <i>)</i> , <i>1</i> , 109	G.; Arai, Y.; V. Chem. Eng. D.	Saito, S.; Japan
				2. Sara	shina, H	E.; Arai, Y.; 7. Japan <u>1971</u>	

ł

	Containing Halogen 457
COMPONENTS: (1) Nitrogen; N ₂ ; [7727-39-9] (2) Methane, dichlorodifluoro-; CCl ₂ F ₂ ; [75-71-8]	<pre>ORIGINAL MEASUREMENTS: Maslennikova, V. Ya.; Goryunova, N. P.; Tsiklis, D. S. Zhur. Fiz. Khim. <u>1967</u>, 41, 735.</pre>
VARIABLES: T/K = 295-348 P/MPa = 2.5-17.8	PREPARED BY: C. L. Young
EXPERIMENTAL VALUES: Mole fraction of nitrog T/K P /bar in liquid, in ga x_{N_2} y_{N_3}	as,
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE; Few details given in source. Ref. 1 given as reference in which apparatus described. It is not clear which of the several apparatus described were used.	<pre>SOURCE AND PURITY OF MATERIALS: (1) Nitrogen containing up to 0.5 mole per cent oxygen. (2) Technical grade sample. (2) Technical grade sample. ESTIMATED ERROR:</pre>
	Physico-chemical Experiment at High and Ultra High Pressures, Isd. Khimiya, Moscow, <u>1965</u> .

I

458 Nitrogen S	Nitrogen Solubilities Above 200 kPa					
COMPONENTS :	ORIGINAL MEASUREMENTS:					
(1) Nitrogen; N ₂ ; [7727-37-9]	Frolich, P. K.; Tauch, E. J.;					
	Hogan, J. J.; Peer, A. A.					
(2) Methane, tetrachloro- (Carbon	Ind. Eng. Chem. <u>1931</u> , 23, 548-50.					
tetrachloride); CCl ₄ ;						
[56-23-5]						
VARIABLES: T/K = 298	PREPARED BY:					
P/MPa = 1.0-12.0	C. L. Young					
EXPERIMENTAL VALUES:	Mole function of nitrogen					
T/K P/MPa Solu	Mole fraction of nitrogen bility, S in liquid,					
	x _{N2} [†]					
298.15 1.0	1.55 0.0061					
2.0 3.0	3.05 0.0120 4.6 0.0179					
4.0	6.1 0.0236					
5.0	7.65 0.0295 9.2 0.0352					
7.0	10.7 0.0407					
8.0	12.25 0.0464					
9.0 10.0	13.75 0.0517 15.3 0.0572					
11.0	16.8 0.0625					
12.0	18.35 0.0679					
[†] Calculated by compiler.	sured under the same conditions.					
	LIARY INFORMATION					
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:					
	SOURCE AND FURTH OF PATERIALS;					
Static equilibrium cell. Liqui	.d					
saturated with gas and after						
equilibrium established samples	Stated that the materials					
removed and analysed by volumetr	ic were the highest purity					
method. Allowance was made for	available.					
vapor pressure of liquid and the						
solubility of the gas at atmosph	1 1					
pressure. Details in source.	ESTIMATED ERROR:					
	$\delta T/K = \pm 0.1; \delta x_{N_2} = \pm 5\%.$					
	REFERENCES:					
}						

	Containing Halogen 455		
COMPONENTS:	ORIGINAL MEASUREMENTS:		
 (1) Nitrogen; N₂; [7727-37-9] (2) Methane, tetrafluoro-; CF₄; [75-73-0] 	Eckert, C. A.; Prausnitz, J. M. Am. Inst. Chem. Eng. J. <u>1965</u> , 11, 886.		
VARIABLES:	PREPARED BY:		
T/K = 70-116 P/kPa = 28-862	C. L. Young		
EXPERIMENTAL VALUES:			
	bgen apor, N ₂		
69.57 0.2958 0.452 0.999 69.90 0.2782 0.268 0.999 75.81 0.6116 0.185 0.999 78.06 0.3570 0.067 0.999 85.28 1.7580 0.516 0.999 81.51 1.1363 0.238 0.999 81.83 0.6327 0.113 0.996 85.28 1.7580 0.479 0.999 85.28 1.7580 0.479 0.999 89.96 1.1570 0.105 0.996 95.33 3.717 0.329 0.997 107.94 8.619 0.564 0.992 116.24 1.9443 0.025 0.963	9+ 9 9 9 9 5 9 3 7 2		
AUXILIARY	INFORMATION		
METHOD /APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS;		
Recirculating vapor flow apparatus with a heavy-wall glass cell. Temperature measured with thermo- couple. Pressure measured with Bourdon gauge. Samples of both phases analysed by gas chromato- graphy.	 Matheson sample, purity 99.998 mole per cent. DuPont sample, purity 99.8 mole per cent. 		
	ESTIMATED ERROR: $\delta T/K = \pm 0.05; \delta P/bar = \pm 0.007 \text{ up to}$ 2 bar; ± 0.02 above 2 bar; δx_{N_2} , $\delta y_{N_2} = \pm 0.005 \text{ or better.}$ REFERENCES:		

Nitrogen Solubilities Above 200 kPa

COMPONENTS	:			ORIGINAL MEASUREMENTS:					
(1) Nitrogen; N ₂ [7727-37-9]						Chaikovskii, V.F.; Zakharov, N.D.; Grezin, A.K.; Matyash, Yu. I.			
<pre>(2) Chlorotrifluoromethane; CClF₃; [75-72-9]</pre>							. Tekhnol <u>1976</u>		
	rafluoro - 73-0]	methane	; CF ₄ ;		Cho	em. Abstr.	<u>1977</u> , 86, 749	47n.	
			······································						
VARIABLES:	= 193.1		16		PREPA	ARED BY:			
	a = 3.0-		15		v.	Katovic			
					i i				
EXPERIMENT	EXPERIMENTAL VALUES:								
						Nitrogen			
	In Liquid	In Gas	In Liquid	In Ga:		In Liquid	In Gas		
P/MPa	× _{N2}	y _{N2}	× _{N2}	y _{N2}		× _{N2}	y _{N2}		
Freon-14		etraflu	oromethan T/K = 1	3	5	T/K = 20	2 1 5		
3.4	1/K = 1 0.189	0.610	1/K = .	0.5		0.145	0.460		
3.4	0.189	0.610	0.185	0.5		0.143	0.490		
3.8	0.224	0.641	0.202	0.5		0.180	0.513		
4.0	0.241 0.258	0.651 0.655	0.220 0.238	0.5		0.198 0.215	0.530 0.540		
4.2	0.258	0.655	0.255	0.6		0.235	0.546		
4.6	0.292	0.659	0.272	0.6		0.253	0.550		
4.8	0.310	0.660	0.290	0.60		0.270	0.551		
5.0	0.327 0.345	0.660 0.659	0.307 0.327	0.60		0.287 0.310	0.551 0.546		
5.4	0.363	0.656	0.347	0.60		0.335	0.533		
5.6	0.387	0.652	0.370	0.5		0.365	0.511		
5.8	0.413 0.442	0.646 0.633	0.400 0.450	0.5		0.413	0.460		
6.2	0.442	0.633	0.450	0.5.	55				
			co	ontinu	led c	n followin	ng page		
ļ		<u> </u>							
			AUXI	LIARY	INFOR	MATION			
METHOD/APP	ARATUS/PRO	CEDURE:			SOUR	CE AND PURIT	Y OF MATERIALS:		
			mined usir			99.9% pu			
an appar	atus des	cribed	in the pap	per.		99.5% pur			
Ine comp	osition e was de	or the . termine	liquid and d by a gas	1	(2')99.5% pu	re.		
chromato			u vj u ya:	•	1				
[-			[
					1				
1					1				
}					1				
1									
					ESTI	MATED ERROR:	· · · · · · · · · · · · · · · · · · ·		
ļ							estimate by a		
					δ	$x/x = \pm 0.0$)2, compiler's	estimate	
					PFFF	RENCES :			
						. 6201121			
					}				

1

I

COMPONENTS	5:			ORIGINAL MEASUREMENTS:
	rogen; N ₂ ;			Chaikovskii, V.F.; Zakharov, N.D.; Grezin, A.K.; Matyash, Yu. I.
(2) Ch [75	lorotrifluc 5-72-9]	romethan	e; CClF ₃ ;	Kholod. Tekh. Tekhnol <u>1976</u> , 22, 51-4.
(2') Tet [75	rafluorome -73-0]	thane; CF	·4 '	Chem. Abstr. <u>1977</u> , 86, 74947n.
EXPERIM	IENTAL VALU	ES:	con	tinued
	In Liquid	In Gas	In Liquid	In Gas
P/MPa	× _{N2}	y _{N2}	× _{N2}	y _{N2}
Freon-	-13; CClF ₃ ;	Chlorot: 233.15		hane 258.15
3.0 3.5	0.120 0.145	0.710 0.740	0.090 0.115	0.550 0.590
4.0	0.170	0.770	0.140	0.625
4.5	0.195	0.780	0.160	0.645
5.0	0.220	0.795	0.185	0.665
5.5 6.0	0.240 0.265	0.805 0.810	0.210 0.235	0.675 0.680
6.5	0.205	0.810	0.260	0.680
7.0	0.315	0.815	0,285	0.680
7.5	0.340	0.820	0.310	0.685
8.0	0.365	0.815	0.330	0.670
8.5	0.385	0.810	0.355	0.660
9.0 9.5	0.410	0.805 0.795	0.380	0.650
9.5	0.440	0.795		

. -

462 Nitrogen Solubili	ties Above 200 kPa
COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Shakhova, S. F.; Zubchenko, Yu. P.; Kaplan, L. K.
<pre>(2) Pyrrolidinone, l-methyl-; (N-methylpyrrolidinone); C₅H₉NO;</pre>	Khim. Prom. <u>1973</u> , 49, 108-10.

T/K = 283 - 333C. L. Young P/MPa = 4.3 - 13.5EXPERIMENTAL VALUES: Mole Mole fraction fraction α* α* of nitrogen T/K P/bar T/K P/bar of nitrogen in liquid, vol/vol in liquid, vol/vol *x*_{N₂} [∞]N₂ 283.15 52.49 0.0085 1.99 298.15 92.21 0.0158 3.73 0.0168 66.67 2.43 100.51 3.95 0.0104 66.67 0.0108 2.54 106.49 0.0178 4.20 0.0119 0.0183 4.33 2.80 107.40 75.49 82.88 0.0128 3.00 114.80 0.0194 4.58 3.16 124.53 5.10 85.82 0.0215 0.0134 333.15 99.60 0.0159 3.75 52.99 0.0112 2.63 0.0172 4.05 73.06 0.0147 3.47 106.90 107.40 0.0170 4.00 81.47 0.0163 3.83 0.0175 92.21 0.0180 4.26 111.86 4.12 298.15 42.66 0.0074 1.72 100.21 0.0188 4.43 0.0095 103.45 52.99 2.23 0.0203 4.80 62.25 81.36 0.0115 2.69 120.17 0.0233 5.53 6.29 134.86 0.0264 0.0141 3.32 Values quoted in original paper, appears to be volume of gas at T/K =273.15 and P = 1 atmosphere absorbed by unit volume of liquid at room temperature.

PREPARED BY:

AUXILIARY INFORMATION							
ETHOD /APPARATUS/PROCEDURE: Mixture stirred by ball in rocking autoclave. Sample of liquid analysed by a volumetric method. Details in source.	SOURCE AND PURITY OF MATERIALS: (1) Purity 99.99 mole per cent. (2) Purity 99.9 mole per cent.						
	ESTIMATED ERROR: $\delta T/K = \pm 0.1; \delta P/bar = \pm 0.1; \delta x_{N_2}$ $= \pm 5\%$ (estimated by compiler).						
	REFERENCES :						

[872-50-4]

VARIABLES:

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Nitrogen; N₂; [7727-37-9] (2) 2-Pyrrolidinone, 1,5-dimethyl- (5-methyl-N-methylpyrrolidinone); C₆H₁₁NO; [5075-92-3]</pre>	Shakhova, S. F.; Zubchenko, Yu. P.; Kaplan, L. K. Khim. Prom. <u>1973</u> , 49, 108-10.
VARIABLES:	PREPARED BY:
T/K = 283-323 P/MPa = 7.5-14.2	C. L. Young
EXPERIMENTAL VALUES:	
Mole fraction of nitrogen vol ^{a;} in liquid, vol ^{a;} N ₂	*/vol
102.95 0.0232 4.	.96 .85 .48
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.93 .58 .58 .35 .41 .55 .10 .08
323.15 84.81 0.0232 4. 104.47 0.0289 6. 124.12 0.0325 6.	85 . 06 81 53
<pre>* quoted in original paper, appears to volume of gas at T/K = 273.15 and P l atmosphere absorbed by unit volume liquid at room temperature.</pre>	=
AUXILIARY	INFORMATION
METHOD /APPARATUS/PROCEDURE: Mixture stirred by ball in rocking	SOURCE AND PURITY OF MATERIALS: (1) Purity 99.9 mole per cent.
autoclave. Sample of liquid analysed by a volumetric method. Details in source.	(2) Purity 99.3 mole per cent.
	ESTIMATED ERROR: $\delta T/K = \pm 0.1; \delta P/bar = \pm 0.1; \delta x_{N_2}$
	<pre>= ±5% (estimated by compiler). REFERENCES:</pre>

COMPONENTS :		ORIGINAL ME	ACHDENENTE	
	N [7727-27-0]	1		lling, C.W.
	; N ₂ ; [7727-37-9]			-
(2) Dog blood	1.	J. Biol.	Chem. <u>193</u>	<u>6</u> , <i>113</i> , 273-8.
VARIABLES:		PREPARED BY	•	
T/K = 311 P/kPa = 10	0-600	I KEFARED BI	С.L. Ус	oung
EXPERIMENTAL VAL	.UES: t∕°C	= 38		
P ⁺ /mmHg	P [†] bar O ₂ capacity	Water Content /g cm ⁻³	L	<i>L</i> ₀ /cm ³ g ⁻¹
715 1481 3071 4508	0.953 20.14 1.975 4.094 6.010	0.8069	0.0138 0.0136 0.0136 0.0134	0.0171 0.0169 0.0169 0.0169
701 1460 3006 4524 712	0.935 20.06 1.947 4.008 6.032 0.949 21.55	0.8965	0.0141 0.0142 0.0135 0.0138 0.0139	0.0157 0.0158 0.0151 0.0154 0.0179
1471 3006 4434	1.961 4.008 5.912		0.0127 0.0137 0.0135	0.0164 0.0176 0.0174
698 1474 4494	0.931 Not given N 1.965 5.992	lot given	0.0148 0.0146 0.0142	
	P^{\intercal} partial pressure of L Ostwald coefficient L_0 Volume of nitrogen water.	:	er gram of	
	AUXILIARY	INFORMATION		
METHOD/APPARATUS	/PROCEDURE:	SOURCE AND	PURITY OF MAT	CERIALS:
	ed from cannulated	(1) NO de	etails give	en.
with nembutal out in a reco Blood saturat	y of dogs anesthetized Experiment carried compression chamber. ed with nitrogen and ted using a Van Slyke	chil stop	led to O°C	sed immediately or and kept in ainer and used
		ESTIMATED E	RROR:	
		δт/к	= ±0.005;6	$\delta L = \pm 0.05$
		(est	imated by c	compiler)
		REFERENCES:		
		1		; Neill, J.M. <u>1924</u> , <i>61</i> ,523.

Biological Fluids

\$}

•

,

ş

,

		2.010310				400	
COMPONENTS:			ORIGINAL MEAS	SUREMENTS:			
(l) Nitrogen	; N ₂ ; [7727	-37-9]	Hawkins, J.A.; Shilling, C.W.				
(2) _{Ox} blood	•		J. Biol.	Chem. <u>1936</u>	<i>, 113</i> , 273-8.		
					<u></u>		
VARIABLES: T/K = P/kPa	= 311 a = 76-606		PREPARED BY:	C.L. You	ng		
EXPERIMENTAL VA	LUES:	t/°C	i	<u> </u>			
+.	+	·		_	_		
P ⁺ /mmHg	<i>P'/</i> bar	O2 capacity	Water Content /g cm ⁻³	<i>L</i>	L_0 /cm ³ g ⁻¹		
567	0.756	15.70	0.8223	0.0135	0.0164		
1562	2.082	_0		0.0133	0.0162		
2913	3.884	10 10	0 0117	0.0126	0.0154		
703 1510	0.937 2.013	18.18	0.8113	0.0140 0.0137	0.0173 0.0169		
2936	3.914			0.0132	0.0163		
4215	5.620			0.0133	0.0164		
699 2960	0.932 3.946	18.50	0.8079	0.0134 0.0132	0.0166 0.0163		
4472	5.962			0.0132	0.0158		
701	0.935	20.01	0.8799	0.0132	0.0150		
2967	3.956			0.0132	0.0150	1	
4544 698	6.058 0.931	18.86	0.8122	0.0124 0.0133	0.0141 0.0164	i	
4461	5.948	10.00	0.0122	0.0133	0.0164		
	P ⁺ parts	lal pressure of	nitrogen	·····			
	L Ostwa	ald coefficient					
	L ₀ Volur	ne of nitrogen	absorbed pe	r gram of v	water.		
			<u></u>				
		AUXILIARY	INFORMATION				
METHOD/APPARATU	S/PROCEDURE:		SOURCE AND PURITY OF MATERIALS:				
Blood collec	tod from -		(1) No det	ails given.	•		
of calves.	Experiment	carried out	(2) Oxalated and used immediately or				
in a recompr	ession chan	nber. Blood	chilled to O°C and kept in				
saturated wi	th nitroger	and amount	stoppe:	red_contair	ner and used		
us (1).	ing a Van S	Slyke apparat-	within	a day.			
45 (1).							
			[
			ESTIMATED ER	ROR:			
			δT/K =	$\pm 0.05;\delta L =$	±0.001.		
			ł	ated by com			
			REFERENCES:				
			l. Van Sly	/ke, D.D.;	Neill, J.M.		
			J. Bioi	l. Chem. <u>19</u>	24, 61,523.		
						ĺ	

COMPONENTS	•			ORIGINAL MEASUREMENTS:					
(1) Nitrogen; N_2 ; [7727-37-9]								Prausn	itz, J. M.
(2) Oxygen; O_2 ; [7782-44-7]						m. Inst.			
(2) Oxygen; O_2 ; [7702-44 7] (3) Carbon dioxide; CO_2 ; [124-38-9]						1965, 11			
(J) carbo	a uzonzac	/ 002/	[+ 0-	• •					
VARIABLES:					PREF	ARED BY:		·	
т/к =	273						a 7	17	
P/MPa	. = 5-11						С. Б.	Young	
EXPERIMENT	TAL VALUES:		· · · ·		I	Mole fra	ationa		
			·	in li	iqui	d		in gas	
т/к	P/psi	P/MPa	<i>x</i> _{N₂}	<i>x</i>	D ₂	[∞] CO₂	y _{N2}	^y o₂	^y co₂
273.15	755 822	5.21 5.67	0.006 0.007	0.0)31)42	0.963 0.951	0.048 0.043	0.174 0.220	0.778 0.737
]	974	6.72	0.032	0.0	040	0.928	0.151	0.170	0.679
	952 1064	6.56 7.34	0.031 0.050	0.0		0.933 0.917	0.158 0.217	0.154 0.127	0.688 0.656
	1035	7.14	0.051	0.0		0.917	0.217	0.110	0.662
	1174	8.09	0.047	0.0		0.891	0.166	0.207	0.627
	1104 1185	7.61 8.17	0.040 0.051	0.0		0.905 0.891	0.154 0.186	0.200 0.189	0.646 0.625
	1340	9.24	0.080	0.0	_	0.865	0.242	0.151	0.607
	1440 1535	9.93 10.58	0.082 0.087	0.0		0.837 0.808	0.214 0.186	0.183 0.207	0.603 0.607
			AUXI 1			RMATION			
METHOD / APF	PARATUS/PROC	EDURE :			SOURCE AND PURITY OF MATERIALS:				
Recircul	ating flo	w appara	tus in		All components were Coleman				
which li	quid from	bottom	of cell	is	grade and had specified				
returned	l to top o	f cell.	The		purity of at least 99.99				
samples	of both p	hases we	re		mole per cent.				
analysed	l as vapor	. Carb	on dioxi	de					
removed	with "Asc	arite" a	nd oxyge	n	1				
removed	by reacti	on with	copper a	t					
1 .	Details				EST	MATED ERRO)R:	·····	
						$T/K = \pm 0$, $\delta y = \pm$	1%
					(estimated	l by com	piler).	
					REF	ERENCES:			·

	4			
COMPONENTS:	ORIGINAL MEASUREMENTS:			
(1) Nitrogen; 11 ₂ ; [7727-37-9]	Cannon, V. A.; Robson, J. H.; English, N. D.			
(2) Oxygen fluoride; OF ₂ ; [7783-41-7]	Report DAC-60510-F2. Contract NAS7- 548 (1968). (Tech. Report Douglas Missile & Space Systems Division, Astropower Laboratory.)			
VARIABLES:	PREPARED BY:			
T/K = 145-172 P/MPa = 2.1-4.8	R. Battino			
EXPERIMENTAL VALUES:	x ₁ b			
P _{II2} /psia P ^a /14Pa -199. 2 (144.				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	34 0.140 0.0645 28 0.143 0.0571			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17 ^C 16 ^C 04 0.509 0.362			
700 4.83 700 4.83	0.496 0.359 0.499 0.356			
AUXILIARY	INFORMATION			
ETHOD/APPARATUS/PROCEDURE: About 200 cm ³ of liquid propellant was condensed into a pressure	SOURCE AND PURITY OF MATERIALS: (1) Air Products and Chemicals, hig			
vessel of about 1 liter capacity. Nitrogen was added to the proper pressure and the apparatus agitated	purity grade, 99.9%.(2) Allied Chemical Corporation,			
for about one hour. A sample of the liquid phase was withdrawn and flashed to a gas at a lower temper- ature. The gas sample was then analyzed by gas chromatography.	98.5%.			
	ESTIMATED ERROR:			
	ESTIMATED ERROR: $\delta T/K = \pm 0.2$ $\delta P/P = \pm 0.02$ $\delta x_1/x_1 = \pm 0.02$			
	$\delta T/K = \pm 0.2$ $\delta P/P = \pm 0.02$			
	$\delta T/K = \pm 0.2$ $\delta P/P = \pm 0.02$ $\delta x_1/x_1 = \pm 0.02$			
	$\delta T/K = \pm 0.2$ $\delta P/P = \pm 0.02$ $\delta x_1/x_1 = \pm 0.02$			

.

~ 1

COMPONENT	S:	<u></u>		ORIGINAL MEASUREMENTS:					
	rogen; 1 ogen sul	Besserer, G. J.; Robinson, D. B. J. Chem. Eng. Da ta <u>1975</u>, 20, 157 .							
	[7783-06								
VARIABLES	S :		<u></u>	PREPARED	BY:				
	/K = 256 /MPa = 1			с. г. т	oung				
EXPERIMEN	NTAL VALU	ES:							
T/K	P/bar	Mole fra of nitr in liquid, ^x N ₂	ogen	т/к	P/bar	in	Mole fra of nitr liquid, ^x N ₂	ogen	
344.26	71.2 86.5 103.6 120.7 137.9 155.1 172.4	0.0290 0.0448 0.0636 0.0849 0.111 0.146	0.148 0.242 0.281 0.321 0.342 0.357 0.330	300.04	70.0 87.2 103.2 120.6 137.5 155.0		0.0153 0.0239 0.0317 0.0401 0.0495 0.0570 0.0663	0.488 0.576 0.628 0.653 0.674 0.684 0.691	
321.87	177.2 34.7 40.7 54.5 69.4 85.5 102.5 119.8 139.8 157.0 172.4	0.161 0.0000 0.0129 0.0220 0.0325 0.0451 0.0571 0.0702 0.0825 0.0979	0.331 0.000 0.108 0.265 0.364 0.429 0.429 0.478 0.516 0.525 0.538 0.539	277.65	17.3 34.1 52.7 68.3 86.2 103.5 121.0		0.0762 0.0844 0.0957 0.0000 0.0035 0.0102 0.0186 0.0241 0.0314 0.0377 0.0416	0.695 0.694 0.693 0.000 0.271 0.582 0.698 0.743 0.769 0.791 0.798	
300.04	189.6 206.8 20.7 35.2	0.113 0.126 0.0000 0.0071	0.543 0.533 0.000 0.332		137.9 155.1 172.4 189.8		0.0468 0.0540 0.0586 0.0642 (0.806 0.810 0.806 0.811 cont.)	
			AUXILIARY	INFORMATI	ON				
Cell fi which e circula Fitted allowed index. iron-co pressur Compone by pist drawn a	tted wit nabled of ted in a with op measure Temper nstantar e with s nts char on mover nd analy	JS/PROCEDURE th two moveal cell contents an external tical system ement of ref: rature measure thermocoup strain gauge rged into cell ment. Samp ysed by gas of s in source	ole pistons s to be line. which ractive red with le and transducer. ll and mixed les with- chromato-	(1) Hig pur (2) Mat bet	h purit ity of heson s ter tha $0 \in RROR:$ $\pm 0.05;$ $y_{N_2} = \pm$	y sa 99.9 amp] n 99	Le, CP gr 0.8 mole p (bar = ±0	per cent. ade purity per cent.	
								son, D. B. <u>1</u> , 49, 651.	

COMPONE	ENTS:			ORIGINAL MEASUREMENTS:			
(1) Ni	trogen;	N ₂ ; [7727-37	-9]	Besserer, G. J.; Robirson, D. B. J. Chem. Eng. D ata <u>1975</u> , 20, 157.			
(2) Hyd	lrogen s [7783-	ulfide; H ₂ S 06-4]	;	<u></u>			
EXPERIM	AENTAL V	ALUES:	conti	nued			
T/K	P/bar	Mole frac of nitro in liquid, ^x N ₂	ogen	т/к	P/bar	Mole frac of nitro in liquid, ^x N ₂	ogen
	206.8 17.7 34.3 53.3 69.6 86.5 104.5	0.0084 0.0145 0.0176 0.0230		256.43	121.8 138.4 155.8 172.9 190.2 207.0	0.0390 0.0430	0.887 0.887 0.892 0.891 0.886 0.890

COMPONENTS :			ORIGINAL MEASUREMENTS:
(1) Nitroge	n; N ₂ : [7727-37-9]		Kalra, H.; Krishnan, T. R.; Robinson, D. B.
	n sulfide; H ₂ S; 783-06-4]	J. Chem. Eng. Data <u>1976</u> , 21, 222.	
VARIABLES:	· · · · · · · · · · · · · · · · · · ·		PREPARED BY:
	200-228 = 0.1-13.8		C. L. Young
EXPERIMENTAL V	/ALUES:	L	
т/к ^р /1	Mole fraction of m bar in liquid, : ^x N ₂	nitrog in gas ^Y N2	
10 12 44 70 9 13 228.00 1 1 34 5 8 10	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.654 0.902 0.950 0.968 0.985 0.985 0.987 0.987 0.987 0.987 0.987 0.987 0.985 0.985 0.985 0.928 0.955 0.928 0.955 0.955	2 7 0 8 8 3 2 2 3 4 4 8 9 9 3 5 5
	AUXI	LIARY	INFORMATION
METHOD/APPARA	ATUS/PROCEDURE:		SOURCE AND PURITY OF MATERIALS:
METHOD/APPARATUS/PROCEDURE: Cell fitted with two moveable pistons which enabled cell contents to be circulated in external line. Fitted with optical system which allowed measurement of refractive index. Temperature measured with iron- constantan thermocouple and pressure with strain gauge transducer. Components charged into cell, mixed by piston movement. Samples with- drawn and analysed by gas chromato- graphy. Details in ref. 1.			 Linde sample, purity 99.99+ mole per cent. Matheson sample, purity 99.8+ mole per cent. ESTIMATED ERROR:
			$\delta T/K = \pm 0.05; \delta^P/bar = \pm 0.2;$ $\delta x_{N_2}, \delta y_{N_2} = \pm 0.003.$
			REFERENCES: 1. Besserer, G. J.; Robinson, D. B. <i>Can. J. Chem. Eng.</i> <u>1971</u> , 49, 651.

COMPONENTS:		wiscena	neous Fluids	i	47		
Sour outfillo			ORIGINAL	MEASUREMENTS:	· · · · · · · · · · · · · · · · · · ·		
(1) Nitrogen; N ₂ ; [7727-37-9]			Cannon, W.D.	, W.A.; Robso	n, J.H.; English,		
(2) Chlorine trifluoride; ClF ₃ ; [7790-91-2]			548 Kissl	Report DAC-60510-F2. Contract NAS7- 548 (1968). (Tech. Report Douglas Missle & Space Systems Division, Astropower Laboratory.)			
VARIABLES:		<u> </u>	PREPARED	BY:	<u> </u>		
T/K = 20							
P/MPa = 1	2.1-4.8		к. ва	attino			
EXPERIMENTAL	L VALUES:		10 ² × ₁	b			
P _{N2} /psia	P ^a /MPa N2	-99.1°F - (200.3K) (49.8°F 227.7K)	-0.2°F (255.3K)	50.3°F (283.3K)		
300	2.07	0.729	0.837	0.867	1.04		
300 300	2.07 2.07	0.790 0.760	0.867 0.994	0.917 0.950	1.07 1.07		
300	2.07	0.802	0.961	0.850	1.10		
700 700	4.83 4.83	1.93 1.88	1.81 1.87	1.98 2.13	2.34 2.40		
700 700 700	4.83 4.83	1.87 1.94	1.81 1.83	2.04	2.40 2.49 2.48		
		AUXILIAR	Y INFORMATI	ION			
	RATUS/PROCEDU	₹E:		ION ND PURITY OF MA	TERIALS :		
About 200	cm ³ of lig	RE: uid propellant	SOURCE A (1) A	ND PURITY OF MA	and Chemicals,		
About 200 was conder vessel of Nitrogen w pressure a for about liquid pha flashed to temperatur	cm ³ of ligned into a about 1 livas added to and the approved the second secon	WE: uid propellant pressure ter capacity. o the proper aratus agitated A sample of the hdrawn and a lower s sample was the	SOURCE A (1) A h (2) A 9	ND PURITY OF MA ir Products a igh purity gr	and Chemicals,		
About 200 was conder vessel of Nitrogen w pressure a for about liquid pha flashed to temperatur	cm ³ of ligned into a about 1 livas added to and the approximation of the about 1 lives was with a gas at a c. The gas	WE: uid propellant pressure ter capacity. o the proper aratus agitated A sample of the hdrawn and a lower s sample was the	SOURCE A (1) A h (2) A 9	ND PURITY OF MA ir Products a igh purity gr llied Chemica	and Chemicals, cade, 99.9%.		
About 200 was conder vessel of Nitrogen w pressure a for about liquid pha flashed to temperatur	cm ³ of ligned into a about 1 livas added to and the approximation of the about 1 lives was with a gas at a c. The gas	WE: uid propellant pressure ter capacity. o the proper aratus agitated A sample of the hdrawn and a lower s sample was the	SOURCE A (1) A h (2) A 9 h ESTIMATE $\delta T/K$ $\delta P/P$	ND PURITY OF MA ir Products a igh purity gr llied Chemica 9.0%.	and Chemicals, cade, 99.9%.		
About 200 was conder vessel of Nitrogen w pressure a for about liquid pha flashed to temperatur	cm ³ of ligned into a about 1 livas added to and the approximation of the about 1 lives was with a gas at a c. The gas	WE: uid propellant pressure ter capacity. o the proper aratus agitated A sample of the hdrawn and a lower s sample was the	SOURCE A (1) A h (2) A 9 h ESTIMATE $\delta T/K$ $\delta P/P$	ND PURITY OF MA ir Products a igh purity gr llied Chemica 9.0%. CD ERROR: $= \pm 0.2$ $= \pm 0.2$ $= \pm 0.02$ $1 = \pm 0.02$	and Chemicals, cade, 99.9%.		
About 200 was conder vessel of Nitrogen w pressure a for about liquid pha flashed to temperatur	cm ³ of ligned into a about 1 livas added to and the approximation of the about 1 lives was with a gas at a c. The gas	WE: uid propellant pressure ter capacity. o the proper aratus agitated A sample of the hdrawn and a lower s sample was the	SOURCE A (1) A h (2) A 9 h ESTIMATE $\delta T/K$ $\delta P/P$ $\delta x_1/x$	ND PURITY OF MA ir Products a igh purity gr llied Chemica 9.0%. CD ERROR: $= \pm 0.2$ $= \pm 0.2$ $= \pm 0.02$ $1 = \pm 0.02$	and Chemicals, cade, 99.9%.		

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen, N. (7777-27-0)	
 Nitrogen; N₂; [7727-37-9] Chlorine pentafluoride; ClF₅; 	Sukhoverkhov, V. F.; Garanin, V. F.; Podzolko, L. G.
[13637-63-3]	Doklady Chem. Akad. Nauk SSR, <u>1979</u> , 246, 1379-83.
	Chm. Abstr. <u>1979</u> , 91, 113159f.
VARIABLES:	PREPARED BY:
T/K = 293 P/MPa = 0.5-9	R. Battino
EXPERIMENTAL VALUES:	
P/MPa	Solubility/volume per cent
0.49 1.13 2.26 3.72 5.98 7.95 8.88	1.62 2.40 4.41 5.91 7.80 12.40 11.80
^a At 20°C or 293 K. ^b Extrapolation to zero pressu: 42.8 MPa/mole fraction.	re gave a Henry's Law constant of
AUXILIAR	Y INFORMATION
AUXILIAR METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
	SOURCE AND PURITY OF MATERIALS: (1) 99.9 vol. per cent. (2) 99.9 per cent or better by gas

.

ł

Wiscellan	eous Fluids 47		
COMPONENTS:	ORIGINAL MEASUREMENTS:		
(1) Nitrogen; N ₂ ; [7727-37-9]	Cannon, W. A.; Robson, J. H.; English, W.D.		
(2) Chlorine pentafluoride;	Report DAC-60510-F2. Contract NAS7-		
ClF ₅ ; [13637-63-3]	548 (1968). (Tech. Report Douglas Missile & Sapce Systems Division,		
	Astropower Laboratory.)		
VARIABLES:	PREPARED BY:		
T/K = 200-283	D. Datting		
P/MPa = 2.1-4.8	R. Battino		
EXPERIMENTAL VALUES:	$50.8^{\circ}\text{F} \times 1^{\circ}$		
	000101		
^N 2 ⁻ ^N 2 (199.8 К) (22	27.2 K) (255.4 K) (283.3 K)		
300 2.07 0.0357 0.	.0331 0.0333 0.0291		
	0326 0.0340 0.0311		
	.0330 0.0336 0.0294 .0323 0.0333 0.0289		
700 4.83 0.0834 0.	0745 0.0754 0.0775		
	0731 0.0769 0.0752		
	0.0748 0.0758 0.0758 0747 0.0776 0.0760		
	0.0700		
AUXILIARY	INFORMATION		
ME THOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:		
About 200 cm ³ of liquid propellant			
was condensed into a pressure vessel of about 1 liter capacity. Nitrogen	(1) Air Products and Chemicals, high purity grade, 99.9%.		
was added to the proper pressure and			
the apparatus agitated for about one hour. A sample of the liquid phase	(2) Probable purity greater than 99% by weight.		
was withdrawn and flashed to a gas at			
a lower temperature. The gas sample was then analyzed by gas chromato-			
graphy.			
	ESTIMATED ERROR:		
	$\delta T/K = \pm 0.2$		
	$\delta P/P = \pm 0.02$ $\delta x_1/x_1 = \pm 0.02$		
	+ <u>1</u>		
	REFERENCES:		

COMPONENTS:			ORIGINAL MEASUR	EMENTS :			
<pre>(1) Nitrogen; N₂; [7727-37-9] (2) Perchloryl fluoride; ClF₆; [56077-96-4] VARIABLES: T/K = 172-256 P/MPa = 2.1-4.8</pre>			Cannon, W. A.; Robson, J. H.; English, W.D.				
			Report DAC-60510-F2. Contract NAS7- 548 (1968). (Tech. Report Douglas Missile & Space Systems Division, Astropower Laboratory.)				
			PREPARED BY:		·····		
			R. Batt	ino			
EXPERIMENTAL VAL	UES:		b				
	2		x1 ^b				
P _{N2} /psia	P ^a /MPa 2	-150.0°F (172.0 K)	-100.1°F (199.8 K)	-50.3°F (227.4 K)	0.0°F (255.4 К)		
300 300	2.07	0.0568	0.0495	0.0448	0.0400		
300	2.07	0.0543 0.0592	0.0500 0.0487	0.0460 0.0443	0.0382 0.0388		
300	2.07	0.0598	0.0504	0.0446	0.0387		
700	4.83	0.128	0.115	0.109	0.0960		
700 700	4.83 4.83	0.130 0.131	0.114 0.111	0.107 0.108	0.0964 0.0948		
700	4.83	0.126	0.113	0.105	0.0942		
		AUXILIARY	INFORMATION				
METHOD/APPARATUS	6/PROCEDURE :	AUXILIARY	INFORMATION SOURCE AND PURI	TY OF MATERIALS	5:		
liquid phase flashed to a	³ of liquid d into a pre out l liter added to th the apparat e hour. A s was withdra gas at a lo The gas sa	propellant essure capacity. he proper us agitated sample of the wwn and ower ample was then	SOURCE AND PURI (1) Air Pro high pu (2) Pennsal	TY OF MATERIALS oducts and Ch writy grade, t Chemical C	emicals, 99.9%.		
About 200 cm was condense vessel of ab litrogen was pressure and for about on liquid phase flashed to a temperature.	³ of liquid d into a pre out l liter added to th the apparat e hour. A s was withdra gas at a lo The gas sa	propellant essure capacity. he proper us agitated sample of the wwn and ower ample was then	SOURCE AND PURI (1) Air Pro high pu (2) Pennsal	ducts and Ch rity grade, t Chemical C	emicals, 99.9%.		
About 200 cm was condense vessel of ab litrogen was pressure and for about on liquid phase flashed to a temperature.	³ of liquid d into a pre out l liter added to th the apparat e hour. A s was withdra gas at a lo The gas sa	propellant essure capacity. he proper us agitated sample of the wwn and ower ample was then	SOURCE AND PURI (1) Air Pro high pu (2) Pennsal ESTIMATED ERROF δT/K = ±0.2 δP/P = ±0.0	ducts and Ch rity grade, t Chemical C	emicals, 99.9%.		
About 200 cm was condense vessel of ab litrogen was pressure and for about on liquid phase flashed to a temperature.	³ of liquid d into a pre out l liter added to th the apparat e hour. A s was withdra gas at a lo The gas sa	propellant essure capacity. he proper us agitated sample of the wwn and ower ample was then	SOURCE AND PURI (1) Air Pro- high pu (2) Pennsal ESTIMATED ERROF $\delta T/K = \pm 0.2$ $\delta P/P = \pm 0.0$ $\delta x_1/x_1 = \pm 0$	ducts and Ch rity grade, t Chemical C	emicals, 99.9%.		
About 200 cm was condense vessel of ab litrogen was pressure and for about on liquid phase flashed to a temperature.	³ of liquid d into a pre out l liter added to th the apparat e hour. A s was withdra gas at a lo The gas sa	propellant essure capacity. he proper us agitated sample of the wwn and ower ample was then	SOURCE AND PURI (1) Air Pro high pu (2) Pennsal ESTIMATED ERROF δT/K = ±0.2 δP/P = ±0.0	ducts and Ch rity grade, t Chemical C	emicals, 99.9%.		
About 200 cm was condense vessel of ab litrogen was pressure and for about on liquid phase flashed to a temperature.	³ of liquid d into a pre out l liter added to th the apparat e hour. A s was withdra gas at a lo The gas sa	propellant essure capacity. he proper us agitated sample of the wwn and ower ample was then	SOURCE AND PURI (1) Air Pro- high pu (2) Pennsal ESTIMATED ERROF $\delta T/K = \pm 0.2$ $\delta P/P = \pm 0.0$ $\delta x_1/x_1 = \pm 0$	ducts and Ch rity grade, t Chemical C	emicals, 99.9%.		

COMPONENTS:	ORIGINAL MEASUREMENTS:			
	Dean, M. R.; Walls, W. S.			
(1) Nitrogen; N ₂ ; [7727-37-9]	Ind. Eng. Chem. 1947, 39,1049.			
(2) Sulphur Dioxide; SO ₂ ;	,			
[7446-09-5]				
VARIABLES: T/K = 241-301	PREPARED BY:			
P/MPa = 1.6-3.6	C. L. Young			
EXPERIMENTAL VALUES:				
Mole fraction of T/K <i>P</i> /bar in liquid,	nitrogen in gas,			
w _{N2}	y _{N2}			
301.4835.50.0143301.4835.50.0134	0.843 0.849			
209.26 15.5 0.0051	0.693			
253.15 17.4 0.0055 241.10 35.5 0.0078	0.958 0.989			
241.10 18.1 0.0033	0.972			
	•			
AUXII				
	JARY INFORMATION			
METHOD /APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:			
Twin steel static cell. Pressure	SOURCE AND PURITY OF MATERIALS: (1) Purity about 99.7 mole per cent.			
Twin steel static cell. Pressure and volume of cell varied by intro	SOURCE AND PURITY OF MATERIALS: (1) Purity about 99.7 mole per cent.			
Twin steel static cell. Pressure and volume of cell varied by intro ducing mercury. Pressure measure with Bourdon gauge. Analysis of	SOURCE AND PURITY OF MATERIALS: (1) Purity about 99.7 mole per cent. d (2) Refrigeration grade sample from			
Twin steel static cell. Pressure and volume of cell varied by intro ducing mercury. Pressure measure with Bourdon gauge. Analysis of samples of both gas and liquid pha	SOURCE AND PURITY OF MATERIALS: (1) Purity about 99.7 mole per cent. - d (2) Refrigeration grade sample from			
Twin steel static cell. Pressure and volume of cell varied by intro ducing mercury. Pressure measure with Bourdon gauge. Analysis of samples of both gas and liquid pha carried out by Orsat analysis.	SOURCE AND PURITY OF MATERIALS: (1) Purity about 99.7 mole per cent. d (2) Refrigeration grade sample from ses Virginia Smelting Co. Purity			
Twin steel static cell. Pressure and volume of cell varied by intro ducing mercury. Pressure measure with Bourdon gauge. Analysis of	SOURCE AND PURITY OF MATERIALS: (1) Purity about 99.7 mole per cent. d (2) Refrigeration grade sample from Ses Virginia Smelting Co. Purity			
Twin steel static cell. Pressure and volume of cell varied by intro ducing mercury. Pressure measure with Bourdon gauge. Analysis of samples of both gas and liquid pha carried out by Orsat analysis.	SOURCE AND PURITY OF MATERIALS: (1) Purity about 99.7 mole per cent. - d (2) Refrigeration grade sample from ses Virginia Smelting Co. Purity			
Twin steel static cell. Pressure and volume of cell varied by intro ducing mercury. Pressure measure with Bourdon gauge. Analysis of samples of both gas and liquid pha carried out by Orsat analysis.	SOURCE AND PURITY OF MATERIALS: (1) Purity about 99.7 mole per cent. d (2) Refrigeration grade sample from ses Virginia Smelting Co. Purity			
Twin steel static cell. Pressure and volume of cell varied by intro ducing mercury. Pressure measure with Bourdon gauge. Analysis of samples of both gas and liquid pha carried out by Orsat analysis.	SOURCE AND PURITY OF MATERIALS: (1) Purity about 99.7 mole per cent. d (2) Refrigeration grade sample from Virginia Smelting Co. Purity about 99.6 mole per cent. ESTIMATED ERROR:			
Twin steel static cell. Pressure and volume of cell varied by intro ducing mercury. Pressure measure with Bourdon gauge. Analysis of samples of both gas and liquid pha carried out by Orsat analysis.	SOURCE AND PURITY OF MATERIALS: (1) Purity about 99.7 mole per cent. d (2) Refrigeration grade sample from Virginia Smelting Co. Purity about 99.6 mole per cent. ESTIMATED ERROR:			
Twin steel static cell. Pressure and volume of cell varied by intro ducing mercury. Pressure measure with Bourdon gauge. Analysis of samples of both gas and liquid pha carried out by Orsat analysis.	SOURCE AND PURITY OF MATERIALS: (1) Purity about 99.7 mole per cent. (2) Refrigeration grade sample from Virginia Smelting Co. Purity about 99.6 mole per cent. ESTIMATED ERROR: $\delta T/K = \pm 0.1; \delta P/bar = \pm 0.1; \delta x_{N_2} = \pm 0.0003; \delta y_{N_2} = \pm 0.002$ (estimated by compiler).			
Twin steel static cell. Pressure and volume of cell varied by intro ducing mercury. Pressure measure with Bourdon gauge. Analysis of samples of both gas and liquid pha carried out by Orsat analysis.	SOURCE AND PURITY OF MATERIALS: (1) Purity about 99.7 mole per cent. (2) Refrigeration grade sample from Virginia Smelting Co. Purity about 99.6 mole per cent. ESTIMATED ERROR: $\delta T/K = \pm 0.1; \delta P/bar = \pm 0.1; \delta x_{N_2} = \pm 0.0003; \delta y_{N_2} = \pm 0.002$ (estimated by			
Twin steel static cell. Pressure and volume of cell varied by intro ducing mercury. Pressure measure with Bourdon gauge. Analysis of samples of both gas and liquid pha carried out by Orsat analysis.	SOURCE AND PURITY OF MATERIALS: (1) Purity about 99.7 mole per cent. (2) Refrigeration grade sample from Virginia Smelting Co. Purity about 99.6 mole per cent. ESTIMATED ERROR: $\delta T/K = \pm 0.1; \delta P/bar = \pm 0.1; \delta x_{N_2} = \pm 0.0003; \delta y_{N_2} = \pm 0.002$ (estimated by compiler).			
Twin steel static cell. Pressure and volume of cell varied by intro ducing mercury. Pressure measure with Bourdon gauge. Analysis of samples of both gas and liquid pha carried out by Orsat analysis.	SOURCE AND PURITY OF MATERIALS: (1) Purity about 99.7 mole per cent. (2) Refrigeration grade sample from Virginia Smelting Co. Purity about 99.6 mole per cent. ESTIMATED ERROR: $\delta T/K = \pm 0.1; \delta P/bar = \pm 0.1; \delta x_{N_2} = \pm 0.0003; \delta y_{N_2} = \pm 0.002$ (estimated by compiler).			
Twin steel static cell. Pressure and volume of cell varied by intro ducing mercury. Pressure measure with Bourdon gauge. Analysis of samples of both gas and liquid pha carried out by Orsat analysis.	SOURCE AND PURITY OF MATERIALS: (1) Purity about 99.7 mole per cent. (2) Refrigeration grade sample from Virginia Smelting Co. Purity about 99.6 mole per cent. ESTIMATED ERROR: $\delta T/K = \pm 0.1; \delta P/bar = \pm 0.1; \delta x_{N_2} = \pm 0.0003; \delta y_{N_2} = \pm 0.002$ (estimated by compiler).			
Twin steel static cell. Pressure and volume of cell varied by intro ducing mercury. Pressure measure with Bourdon gauge. Analysis of samples of both gas and liquid pha carried out by Orsat analysis.	SOURCE AND PURITY OF MATERIALS: (1) Purity about 99.7 mole per cent. (2) Refrigeration grade sample from Virginia Smelting Co. Purity about 99.6 mole per cent. ESTIMATED ERROR: $\delta T/K = \pm 0.1; \delta P/bar = \pm 0.1; \delta x_{N_2} = \pm 0.0003; \delta y_{N_2} = \pm 0.002$ (estimated by compiler).			

l

COMPONENTS:		EVALUATOR:
(1)Nitrogen; N ₂ ;	[7727-37-9]	Colin L. Young, School of Chemistry
(2)Ammonia; NH ₃ ;	[7664-41-7]	University of Melbourne Parkville, Victoria 3052 Australia.
		November 1981

CRITICAL EVALUATION:

This system has been studied in detail by Wiebe and coworkers (1), (2) and by Lindroos and Dodge (3). The data of Wiebe and coworkers cover the pressure range 2.5 to 100 MPa whereas the data of Lindroos and Dodge are for a higher pressure range from 98 to 380 MPa. There is moderate agreement between the two sets of data although the data of Lindroos and Dodge are less precise. The data of Heise (4), which are limited to 298.15 K, are in fair agreement with those of Wiebe and Tremearne (1). All four sets of data are classified as tentative. There are a considerable number of studies of the phase equilibria of this system which are not evaluated in detail here since they do not fall into the category of gas solubility.

Tskilis (5) studied the solubility of ammonia in nitrogen at 75°C and 80°C at pressures between 10 and 450 MPa and made a limited study of the solubility of nitrogen in ammonia at 75°C between 165 and 260 MPa. Krichevskii and coworkers (6), (7) have also made a study of the phase behaviour of this mixture.

Matous, Sobr and Novak (8) studied the quaternary system argon + methane + nitrogen + ammonia. These data are not evaluated here.

Cannon, Robson and English (9) studied the solubility of nitrogen in ammonia at temperatures between 200 K and 283 K at pressures of 2 MPa and 4.8 MPa. Their data are classified as tentative. While the data are broadly consistent with the data of Wiebe and coworkers (1), (2) no detailed comparison is possible because of the lack of any other data over an overlapping range of temperature and pressure.

References:

1.	Wiebe, R.; Tremearne, T. H. J. Amer. Chem. Soc. <u>1933</u> , 55, 975.
2.	Wiebe, R.; Gaddy, V. L. J. Amer. Chem. Soc. <u>1937</u> , 59, 1984.
3.	Lindroos, A. E.; Dodge, B. F. Chem. Eng. Progr. Symp. Ser. No. 3
	<u>1952</u> , 48, 10.
4.	Heise, F. Ber. Bunsenges Phys. Chem. <u>1972</u> , 76, 938.
5.	Tskilis, D. S. Trudy Gos. Inst. Azot. Prom. <u>1951</u> , 3, 12.
6.	Krichevskii, I. R.; Bol'shakov, P. E. Zh. Fiz. Khim. <u>1941</u> , 15, 184
7.	Krichevskii, I. R.; Efremova, G. D. Zh. Fiz. Khim. 1952, 26, 1117.
8.	Matous, J.; Sobr, J.; Novak, J. P. Coll. Czech. Chem. Comm. 1970,
	35, 3757.
9.	Cannon, W. A.; Robson, J. H.; English, W. D. Report DAC-60510-F2,
	1968. (Tech. Report, Douglas Missile and Space Systems
	Division Astropower Laboratory).

2.5 5.1 10.1 20.3	975-8. PREPARED BY:	
[7664-41-7] -101 /MPa & 2.5 5.1 10.1 20.3	J. Amer. Chem. 975-8. PREPARED BY: C. I Solubility, S [†] 2.22	Soc. <u>1933</u> , 55, L. Young Mole fraction of nitrogen in liquid,
/MPa 5 2.5 5.1 10.1 20.3	C. I Solubility, S [†]	*Mole fraction of nitrogen in liquid,
2.5 5.1 10.1 20.3	2.22	nitrogen in liquid,
2.5 5.1 10.1 20.3	2.22	nitrogen in liquid,
5.1 10.1 20.3		
40.5 60.8 81.1 01.3	12.04 22.48 37.02 45.43 51.10 54.83	0.00168 0.00434 0.00907 0.01679 0.02736 0.03337 0.03738 0.03999
Volume of gas red	luced to 273.15 K an	d l atmosphere Ionia.
AUXILIA	RY INFORMATION	
um cell. with dead weight samples analysed hitrogen at low	 (1) Purity 99.9 m impurity argo oxygen. (2) Water content ESTIMATED ERROR: 	ole per cent, n and trace of 0.07 mole per cent.
	Volume of gas red pressure, dissolv	im cell. with dead weight samples analysed hitrogen at low temperatures. $(1) Purity 99.9 m impurity argo oxygen. (2) Water content ESTIMATED ERROR: \delta T/K = \pm 0.05; \delta x_{N_2} = \pm 1\%.$

476 Wittogen Solubilit	ies Adove 200 kFd
COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Wiebe, R.; Gaddy, V.L.
(2) Ammonia; NH ₃ ; [7664-41-7]	J. Am. Chem. Soc. <u>1937</u> , 59,1984-7.
VARIABLES: T/K = 273-373	PREPARED BY:
P/MPa = 5.1-101.3	C.L. Young
EXPERIMENTAL VALUES: 10 ²	x Mole fraction of nitrogen
T/K P/bar	in liquid, $10^2 x_{N_2}$
273.15 101.32	0.597
202.65 405.30	1.032 1.553
607.95	1.860
810.60 1013.25	2.088 2.206
323.15 50.66	0.501
101.32 202.65	1.289 2.680
405.30	4.730
607.95	6.052
810.60 1013.25	6.877 7.362
348.15 101.32	1.598
202.65	4.045 8.398
405.30 607.95	11.910
810.60	14.265
1013.25 363.15 354.64	15.518 11.170
505.15 506.62	19.095
557.29	24.660 1.534
373.15 101.32 202.65	6.155
303.97	12.798
329.31	15.202
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Rocking equilibrium cell. Pressure measured with dead weight tester. Liquid samples analysed by stripping out nitrogen at low pressure and low temperatures. Details in ref. 1.	No details given but thought to be of high purity as in ref. 1.
	ESTIMATED ERROR:
	$\delta T/K = \pm 0.1; \ \delta P/bar = \pm 0.1; \ \delta x_{N_2} = \pm 0.5\%.$ (estimated by compiler)
	REFERENCES :
	1. Wiebe, R.; Tremearne, T.H. J. Amer. Chem. Soc. <u>1933</u> , 55,975.

			Miscellar	eous Fluids			4
COMPONENT	'S :			ORIGINAL MEASUREMENTS:			
 Nitrogen; N₂; [7727-37-9] (2) Ammonia; NH₃; [7664-41-7] 			Lindroos, A. E.; Dodge, B. F. Chem. Eng. Progr. Symp. Ser. No. 3, <u>1952</u> , 48, 10.				
VARIABLES: T/K = 303-383 P/MPa = 76-381			PREPARED BY: C. L. Young				
				<u> </u>			
EXPERIMENTAL VALUES: Mole fraction						Mole fraction	
т/К	P/bar	of nitr in liquid, ^x N ₂		т/к	<i>P/</i> bar	of nit: in liquid, ^x N ₂	ogen* in gas, ^y N2
303.15	1073 1062 1241 1231 1845	0.044 0.049 0.062	0.915	323.15	2841 3301 3271 3814	0.915	0.060
	1832 2272 2257 2927 2913 3060 3042 3655	0.941 0.942 0.885 0.959	0.050	348.15	1086 1364 1359 1834 1818 2094	0.938 0.147 0.158 0.148 	- 0.689 0.728 - 0.776 0.150
323.15	3628 984 973 1161 1159 1370 1362 1851 1837 2276	0.072 0.071 	0.048 0.849 0.858 0.867 0.908	358.15	2084 2276 2264 2871 2856 3256 3230 3716 3704 1121	0.792 0.903 	0.096 0.116 0.072 0.106
	2265		<u> </u>	INFORMATIO	N		(cont.)
Details static Pressur	in sour cell fit	S/PROCEDURE: cce. High p tted with sti ced with mang ge.	ressure rrer.	SOURCE AND (1) Pur:) PURITY (ity 99.9	DF MATERIALS: 9 mole per c 8 mole per c	
					±0.2; δ ±0.5% (e	<pre>P/bar = ±10; stimated by</pre>	1 2

	COMPONENTS:	ORIGINAL MEASUREMENTS:
l		OKIGINAL MADONIMATI.
	(1) Nitrogen; N ₂ ; [7727-37-9]	Lindroos, A. E.; Dodge, B. F. Chem. Eng. Progr. Symp. Ser. No. 3,
	(2) Ammonia; NH ₃ ; [7664-41-7]	<u>1952</u> , 48, 10.

г/к 358.15	<pre>P/bar 1114 1353 1345 1369 1364 1834 1823 2099 2084 2101 2087 2295 2274 2313 2298</pre>	Mole fr: of nit: in liquid x _{N2} - 0.244 0.276 0.236 0.739 - 0.674 0.801	0.522 0.562 0.641 0.654 0.186 0.218		1781 1892 1979 1934 1920 1902 1988 2060 2031	Mole fra of nitr in liquid, ^x N ₂ 0.386 0.409 0.496 0.472	:ogen*
	1114 1353 1345 1369 1364 1834 1823 2099 2084 2101 2087 2295 2274 2313	in liquid ^x N ₂ - 0.244 0.276 0.236 0.739 - 0.674 -	in gas, ^y N ₂ 0.522 0.562 0.641 - 0.654 0.186 0.218 -		1781 1892 1979 1934 1920 1902 1988 2060 2031	in liquid, ^w N ₂ 0.386 0.409 0.496 -	in gas ^y N ₂ 0.360 0.360 0.362
358.15	1353 1345 1369 1364 1834 1823 2099 2084 2101 2087 2295 2274 2313	0.244 0.276 0.236 0.739 0.674	0.522 0.562 0.641 0.654 0.186 0.218	373.15	1892 1979 1934 1920 1902 1988 2060 2031	0.386 0.409 0.496	0.360 0.360 0.362
358.15	1353 1345 1369 1364 1834 1823 2099 2084 2101 2087 2295 2274 2313	0.276 0.236 0.739 0.674	0.562 0.641 0.654 0.186 0.218	373.15	1892 1979 1934 1920 1902 1988 2060 2031	0.409	0.360
	1345 1369 1364 1834 1823 2099 2084 2101 2087 2295 2274 2313	0.276 0.236 0.739 0.674	0.641 - 0.654 0.186 0.218		1979 1934 1920 1902 1988 2060 2031	0.409	0.362
	1369 1364 1834 1823 2099 2084 2101 2087 2295 2274 2313	0.276 0.236 0.739 0.674	0.641 0.654 0.186 0.218		1934 1920 1902 1988 2060 2031	0.496	0.362
	1364 1834 1823 2099 2084 2101 2087 2295 2274 2313	0.236	- 0.654 0.186 0.218		1920 1902 1988 2060 2031	0.496	-
	1834 1823 2099 2084 2101 2087 2295 2274 2313	0.236	0.654 0.186 0.218 		1902 1988 2060 2031	_	-
	1823 2099 2084 2101 2087 2295 2274 2313	0.739	0.186 0.218		1988 2060 2031	_	0.395
	2084 2101 2087 2295 2274 2313	0.674	0.218		2031	0.472	
	2101 2087 2295 2274 2313	0.674	0.218				-
	2087 2295 2274 2313	0.674	-				0.378
	2295 2274 2313	-			2090 2084	0.489	0.382
	2274 2313		0.127		2084 2094	0.489	- 0.356
			-		2084	0.830	-
	2298	_	0.202		2148	0.809	-
		0.609	-		2145	-	0.317
	3329	0.921			2217	-	0.190
	3312 3806	0.925	0.080		2194 2283	0.915 0.892	-
	3780	-	0.103		2275	0.092	0.260
365.15	1369	-	0.587		2340	_	0.149
	1367	0.569	-		2317	0.829	-
	1654	-	0.361		2535	-	0.162
	1642 1829	0.365 0.465	-		2525	0.916	-
	1819	0.465	0.627		2556 2525	0.808	0.132
	1841	-	0.641		2817	_	0.145
	1834	0.647	-		2803	0.916	
	1931	-	0.443		3305	-	0.120
	1921	0.452	-		3285	0.917	-
	1928 1920	0.462	0.471		3791 3779	0.922	-
	1920	-	0.471	383.15	2053	- 0.429	0.115
	1923	0.514	-	505.15	2042	-	0.425
	1930	0.545	-		2505	0.404	_
	1923	-	0.537		2494	-	0.403
	1982	-	0.541		2851	0.404	-
	1949 2076	0.547 0.559	_		2840 3059	0.568	0.398
	2066	-	0.548		3045	0.508	0.207
	2111	-	0.312		3311	-	0.137
	2101	0.548	-		3289	0.915	-
	2243	0.579	-		3498	_	0.154
	2222 2300	- 0.899	0.282		3482	0.916	-
	2300		0.176		3801 3782	0.918	0.147
	3315	0.920	-	323.15	763	0.065	U.I.4/
	3302	-	0.098		758	0.068	_
	3756	0.925	-		754	0.073	-
73.15	3701 1795	- 0.364	0.116		703 988	0.052	-
			haretre-	a offert		0.072 re the term	-

ł

		the second s			
COMPONENTS:			ORIGINAL M	EASUREMENTS:	
(l) Nitrogen	7-37-9]	Cannon, N.A.; Robson, J.H.; English, W.D.			
(2) Ammonia;	64-41-7]	Report DAC-60510-F2. Contract NA 548 (1968). (Tech. Report Dougl Missile & Space Systems Division Astropower Laboratory.)			
VARIABLES:		and a state of the	PREPARED B	Y:	
T/K = 200-28 P/MPa = 2.1-			R. Bat	tino	
EXPERIMENTAL VAL	UES:		10 ² x ₁		
P _{IJ2} /psia	P ^a /MPa 2		-50.0°F (244.3 K)	0.0°F (255.4 K)	50.0°F (283.2 К)
300 300 300 300 300	2.07 2.07 2.07 2.07	0.026 0.028 0.034 0.031	0.070 0.078 0.064 0.060	0.104 0.094 0.102 0.100	0.136 0.130 0.131 0.122
700 700 700 700	4.83 4.83 4.83 4.83	0.065 0.071 0.072 0.071	0.130 0.142 0.140 0.133	0.236 0.222 0.220 0.222	0.353 0.342 0.334 0.352
	tion solu	oility at indica	ated parti	ai pressur	e
	tion solu		-		e
			INFORMATION	7	-
METHOD/APPARATUS About 200 cm was condensed of about 1 1: was added to the apparatus hour. A sam	/PROCEDURE: ³ of liqu: d into a p iter capace the proper s agitateco ple of the n and flass emperature hen analyz	AUXILIARY id propellant pressure vessel pity. Nitrogen er pressure and d for about one e liguid phase shed to a gas e. The gas	INFORMATION SOURCE AND (1) Air hig (2) J.	PURITY OF M/ Products h purity g	-

COMPONENTS:		ORIGINAL MEASURE	EMENTS:
(1) Argon; Ar; [7440- CH ₄ ; [74-82-8] + 1			Sobr, J.; Novak, J.P.
[7727-37-9]		Coll. Czech. 3757-61.	Chem. Commun. <u>1970</u> , 35,
(2) Ammonia; NH ₃ ; [76)	54-41-7]		
VARIABLES:		PREPARED BY:	·
T/K = 243 - 303		R. Battino	
P/i1Pa = 2.8-4.7	·		
EXPERIMENTAL VALUES:	<u></u>	<u></u>	
+ / 90	т ^а /к	s°/ml g ⁻¹	103
t/°C	T /K	S°/mi g	10 ³ x ₁
	46.5 atm (4.	71 MPa)	
-30	243.15	5.40	4.09
	273.15 283.15	8.30 8.90	6.27 6.73
30	303.15	9.90	7.48
-30	27.3 atm (2. 243.15	3.55	2.69
-20	253.15	4.00	3.03
	263.15 273.15	4.35 4.70	3.30 3.56
10	283.15	4.75	3.60
20 30	293.15 303.15	4.80 4.65	3.64 3.53
C Mole fraction indicated to	tal gas pressure 12.9 mol per cen	ture (all composition	oonents) dissolved at
	L	INFORMATION	
METHOD/APPARATUS/PROCEDURE	:		
Rocking autoclave app		SOURCE AND FORT	TY OF MATERIALS:
Details in paper.	aratus.	(1) Supplied Ar - 99.	d by MCHZ - Ostrava: 99%; N ₂ - 99.99%;
Details in paper.	aratus.	(1) Supplied Ar - 99.	l by MCHZ - Ostrava:
Details in paper.	aratus.	(1) Supplied Ar - 99. CH ₄ - 95	l by MCHZ - Ostrava: 99%; N ₂ - 99.99%;
Details in paper.	aratus.	(1) Supplied Ar - 99. CH ₄ - 95 (2) Better t	l by MCHZ - Ostrava: 99%; N ₂ - 99.99%; 5-96% (remainder N ₂).
Details in paper.	aratus.	(1) Supplied Ar - 99. CH ₄ - 95 (2) Better t	l by MCHZ - Ostrava: 99%; N ₂ - 99.99%; 5-96% (remainder N ₂).
Details in paper.	aratus.	(1) Supplied Ar - 99. CH ₄ - 95 (2) Better t	d by MCHZ - Ostrava: 99%; N ₂ - 99.99%; 5-96% (remainder N ₂). Chan 99%. Distilled
Details in paper.	aratus.	 (1) Supplied Ar - 99. CH₄ - 95 (2) Better t twice. 	d by MCHZ - Ostrava: 99%; N ₂ - 99.99%; 5-96% (remainder N ₂). Chan 99%. Distilled
Details in paper.	aratus.	 (1) Supplied Ar - 99. CH₄ - 95 (2) Better t twice. 	d by MCHZ - Ostrava: 99%; N ₂ - 99.99%; 5-96% (remainder N ₂). Chan 99%. Distilled
Details in paper.	aratus.	 (1) Supplied Ar - 99. CH₄ - 95 (2) Better t twice. 	d by MCHZ - Ostrava: 99%; N ₂ - 99.99%; 5-96% (remainder N ₂). Chan 99%. Distilled
Details in paper.	aratus.	(1) Supplied Ar - 99. CH ₄ - 95 (2) Better t twice. ESTIMATED ERROR $\delta x/x = \pm 0.0$	d by MCHZ - Ostrava: 99%; N ₂ - 99.99%; 5-96% (remainder N ₂). Chan 99%. Distilled
Details in paper.	aratus.	(1) Supplied Ar - 99. CH ₄ - 95 (2) Better t twice. ESTIMATED ERROR $\delta x/x = \pm 0.0$	d by MCHZ - Ostrava: 99%; N ₂ - 99.99%; 5-96% (remainder N ₂). Chan 99%. Distilled
Details in paper.	aratus.	(1) Supplied Ar - 99. CH ₄ - 95 (2) Better t twice. ESTIMATED ERROR $\delta x/x = \pm 0.0$	d by MCHZ - Ostrava: 99%; N ₂ - 99.99%; 5-96% (remainder N ₂). Chan 99%. Distilled
Details in paper.	aratus.	(1) Supplied Ar - 99. CH ₄ - 95 (2) Better t twice. ESTIMATED ERROR $\delta x/x = \pm 0.0$	d by MCHZ - Ostrava: 99%; N ₂ - 99.99%; 5-96% (remainder N ₂). Chan 99%. Distilled

COMPONENTS:	
	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Heise, F.
(2) Ammonia; NH ₃ ; [7664-41-7]	Вел. Bunsenges. Phys. Chem. <u>1972</u> , 76, 956.
VARIABLES:	PREPARED BY:
T/K = 298 P/MPa = 3.0-20.5	C. L. Young
EXPERIMENTAL VALUES:	
	ogen apor, N ₂
298.15 29.5 0.00209 0.62 58.4 0.00515 0.78 85.45 0.00800 0.84 205.1 0.01780 0.90	48 22
	INFORMATION
AUXILIARY METHOD/APPARATUS/PROCEDURE: Static rocking equilibrium cell. Liquid and gas samples removed after equilibrium established. Samples analysed by freezing out ammonia in liquid nitrogen trap. Details in source and ref. 1.	 INFORMATION SOURCE AND PURITY OF MATERIALS: (1) Messer-Griessheim sample, purity better than 99.95 mole per cent. (2) Gerling and Holtz sample, purity better than 99.8 mole per cent as determined by gas chromatography and mass spectrometry.

COMPONENTS:	ORIGINAL MEASUREMENTS:			
 (1) Nitrogen; N₂; [7727-37-9] (2) Nitrous oxide; N₂O; 	Zeininger, H. Chemie-IngTechn. <u>1972</u> , 44, 607-12.			
[10024-97-2]				
VARIABLES:	PREPARED BY:			
T/K = 213-253 P/MPa = 0.6-8.2	C. L. Young			
EXPERIMENTAL VALUES: Mole fraction	Mole fraction			
of nitrogen T/K $P/10^5$ Pa in liquid, in gas,	of nitrogen T/K P/10 ⁵ Pa in liquid, in gas,			
$\frac{x_{N_2}}{y_{N_2}}$	x_{N_2} y_{N_2}			
213.15 5.7 <0.01 0.198				
10.4 <0.01 0.537 16.3 0.008 0.700	67.6 0.096 0.739 75.0 0.109 0.749			
22.6 0.026 0.780 29.2 0.023 0.807	81.2 0.124 0.786 253.15 23.8 <0.01 0.179			
35.3 0.052 0.827	28.0 <0.01 0.269			
42.6 0.058 0.828 47.9 0.083 0.833	32.4 0.012 0.382 36.1 0.023 0.412			
56.8 0.087 0.852 66.0 0.106 0.857	39.2 0.023 0.464 43.6 0.027 0.484			
73.4 0.151 0.863	46.3 0.027 0.507			
233.15 16.3 <0.01 0.407 19.3 <0.01 0.445	51.6 0.055 0.523 56.9 0.053 0.524			
24.1 <0.01 0.532	63.0 0.075 0.549			
31.9 <0.01 0.632 41.6 0.042 0.660	69.8 0.084 0.570 75.2 0.093 0.594			
47.5 0.058 0.689 52.7 0.062 0.704	82.0 0.102 0.603			
AUXILIARY	INFORMATION			
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:			
Static equilibrium cell stirred	Nitrous oxide was "pure" as			
with a steel ball. Samples of	determined by gas chromatography.			
gas and liquid phases removed and				
analysed by mass spectrometry.				
Care was taken to avoid large changes in pressure during sampling				
by taking small samples. Details				
in source.	ESTIMATED ERROR:			
	$\delta T/K = \pm 0.3; \delta P/10^5 Pa = \pm 0.2;$			
	$\delta x_{N_2} = \pm 0.008; \delta y_{N_2} = \pm 0.009.$			
	REFERENCES:			

Т

ł

OMDONENTO			ODIOTIVAL			
COMPONENTS:	. M . [3303 0	· 7-01	ORIGINAL MEASUREMENTS: Cannon, W. A.; Robson, J. H.;			
	(1) Nitrogen; N ₂ ; [7727-37-9]				, J. H.;	
(2) Nitryl Fluoride; FNO ₂ ; [10022-50-1]			English, W. D. Report DAC-60510-F2. Contract NAS7- 548 (1968). (Tech. Report Douglas Missile & Space Systems Division, Astropower Laboratory.)			as
VARIABLES:			PREPARED BY:			
T/K = 172- P/MPa = 2.				ttino		
EXPERIMENTAL VAL	LUES:			<u></u>		
P _{II2} /psia	P ^a /MPa N2	-149.5°F (172.3 K)	10 ² x1 ^b -99.1°F (200.3 K)	-49.6°F (227.7 K)		
300	2.07	3.04	1.91	1.92	1.34	
300 300	2.07 2.07	2.75 2.78	2.05	1.86 1.92	1.41	
300	2.07	2.98		1.86		
700 700	4.83 4.83	6.58 6.66	4.95 4.69	4.26 4.33 ^C	4.20 4.28	
					·	
		AUXILIARY	INFORMATION			
		AUXILIARY	<u>,</u>			
was condense of about 1 1 was added to the apparatu	³ of liquid p d into a pres iter capacity the proper p s agitated fo	propellant ssure vessel 7. Nitrogen pressure and pr about one	SOURCE AND PUR (1) Air Pro	ducts and (grade, 99.9	Chemicals, h 9%.	igh
About 200 cm was condense of about 1 1 was added to the apparatu hour. A sam was withdraw a lower temp	³ of liquid p d into a pres iter capacity the proper p	propellant ssure vessel y. Nitrogen pressure and pr about one quid phase to a gas at gas sample	SOURCE AND PUF (1) Air Pro purity (2) Ozark M	ducts and (grade, 99.9	Chemicals, h 9%.	igh
About 200 cm was condense of about 1 1 was added to the apparatu hour. A sam was withdraw a lower temp was then ana	³ of liquid p d into a pres iter capacity the proper p s agitated for ple of the lin n and flashed erature. The	propellant ssure vessel y. Nitrogen pressure and pr about one quid phase to a gas at gas sample	SOURCE AND PUF (1) Air Pro purity (2) Ozark M	ducts and C grade, 99.9 Nahoning Cor	Chemicals, h 9%.	igh
About 200 cm was condense of about 1 1 was added to the apparatu hour. A sam was withdraw a lower temp was then ana	³ of liquid p d into a pres iter capacity the proper p s agitated for ple of the lin n and flashed erature. The	propellant ssure vessel y. Nitrogen pressure and pr about one quid phase to a gas at gas sample	SOURCE AND PUF (1) Air Pro purity (2) Ozark M ESTIMATED ERRO $\delta T/K = \pm 0.2$ $\delta P/P = \pm 0.0$	ducts and C grade, 99.9 Nahoning Cor DR: 2	Chemicals, h 9%.	igh
About 200 cm was condense of about 1 1 was added to the apparatu hour. A sam was withdraw a lower temp was then ana	³ of liquid p d into a pres iter capacity the proper p s agitated for ple of the lin n and flashed erature. The	propellant ssure vessel y. Nitrogen pressure and pr about one quid phase to a gas at gas sample	SOURCE AND PUF (1) Air Pro purity (2) Ozark M ESTIMATED ERRC δT/K = ±0.2	ducts and C grade, 99.9 Nahoning Cor DR: 2	Chemicals, h 9%.	igh
About 200 cm was condense of about 1 1 was added to the apparatu hour. A sam was withdraw a lower temp was then ana	³ of liquid p d into a pres iter capacity the proper p s agitated for ple of the lin n and flashed erature. The	propellant ssure vessel y. Nitrogen pressure and pr about one quid phase to a gas at gas sample	SOURCE AND PUF (1) Air Pro purity (2) Ozark M ESTIMATED ERRO $\delta T/K = \pm 0.2$ $\delta P/P = \pm 0.0$ $\delta x_1/x_1 = \pm 0$	ducts and C grade, 99.9 Nahoning Cor DR: 2	Chemicals, h 9%.	igh
About 200 cm was condense of about 1 1 was added to the apparatu hour. A sam was withdraw a lower temp was then ana	³ of liquid p d into a pres iter capacity the proper p s agitated for ple of the lin n and flashed erature. The	propellant ssure vessel y. Nitrogen pressure and pr about one quid phase to a gas at gas sample	SOURCE AND PUF (1) Air Pro purity (2) Ozark M ESTIMATED ERRO $\delta T/K = \pm 0.2$ $\delta P/P = \pm 0.0$ $\delta x_1/x_1 = \pm 0$	ducts and C grade, 99.9 Nahoning Cor DR: 2	Chemicals, h 9%.	igh

ENTS:	OBTOTINAL MELOWER	MENIRÓ -	
	ORIGINAL MEASUREMENTS:		
Nitrogen; N ₂ ; [7727-37-9]	Cannon, M. A.; Robson, J. H.; English, W. D.		
Nitrogen trifluoride; NF ₃ ; [7783-54-2]	Report DAC-60510-F2. Contract NAS7- 548 (1968). (Tech. Report Douglas Missile & Space Systems Division, Astropower Laboratory.)		
LES:	PREPARED BY:		
/K = 133-172 / $/KPa = 2.1-4.8$	R. Battino		
MENTAL VALUES:	x1 ^b	·····	
/psia P. ^a /MPa -220.2°F N2 (133.0 K)	-199.6°F (144.5 K)	-175.1°F (158.1 K)	
002.070.441002.070.446002.070.432002.070.434	0.264 0.264 0.268 0.264	0.183 0.192 0.183 0.183	0.134 0.133 0.135 0.137
00 4.83 00 4.83 00 4.83 00 4.83 00 4.83	0.715 0.713 0.731 0.731	0.522 0.535 0.531 0.526	0.382 0.367 0.394 0.389
		essure.	
		essure.	
AUXILIARY			
D/APPARATUS/PROCEDURE: ut 200 cm ³ of liqu: condensed into a p about 1 liter capao added to the prope the apparatus agit ut one hour. A sar uid phase was witho shed to a gas at a perature. The gas n analyzed by gas o	AUXILIARY id propellant pressure vessel city. Nitrogen er pressure tated for mple of the drawn and lower sample was	 id propellant pressure vessel city. Nitrogen er pressure tated for mple of the drawn and lower sample was chromatography. (1) Air Prod high pur (2) Air Prod 99.8%. ESTIMATED ERROR ôT/K = ±0.2 ôP/P = ±0.02 	AUXILIARY INFORMATION id propellant pressure vessel city. Nitrogen er pressure tated for mple of the drawn and lower sample was chromatography. ESTIMATED ERROR:

Ŧ

l

1

-

		Miscellane			
COMPONENTS:			ORIGINAL M	EASUREMENTS:	
(1) Nitroger	ı; ^M 2; [7727	7-37-9]	Cannon, N.D.	W.A.; Robson	, J.H.; English,
(2) Tetraflu [10036-4		ne; N ₂ F ₄ ;	Report DAC-60510-F2. Contract NAS7- 548 (1968). (Tech. Report Douglas Missile & Space Systems Division, Astropower Laboratory.)		
VARIABLES:		<u></u>	PREPARED B	Y:	
T/K =] P/MPa =	144-228 = 2.1-4.8		R. Bat	ttino	
EXPERIMENTAL V	ALUES:		b		
P _{N2} /psia	P ^a /MPa 2		×1 ^b 150.2°F 171.9 K)	-100.7°F (199.4 K)	-50.1°F (227.5 K)
300 300 300 700 700 700 700 700	2.07 2.07 2.07 4.83 4.83 4.83 4.83	0.189 0.190 0.183 0.182 0.421 0.421 0.425 0.425	0.111 0.112 0.114 0.112 0.240 0.240 0.257 0.253	0.0893 0.0904 0.0899 0.0875 0.206 0.209 0.206 0.215	0.0611 0.0634 0.0634 0.0619 0.167 0.167 0.166 0.165
a Calculate b Mole frac					
1.					
1.		AUXILIARY	INFORMATIO	N	
1.				N D PURITY OF MATE	CRIALS ;
b Mole frac METHOD/APPARAT About 200 cm condensed in about 1 lite	US/PROCEDURE: n ³ of liquid nto a pressuer capacity.	d propellant was ure vessel of . Nitrogen was	SOURCE ANI (1) Air pur) PURITY OF MATE Products and ity grade; 99	Chemicals, high
b Mole frac METHOD/APPARAT About 200 cm condensed in about 1 lite added to the apparatus ac A sample of withdrawn ar lower temper	US/PROCEDURE: n ³ of liquic nto a pressuer capacity. e proper pre gitated for the liquid nd flashed to rature. The	d propellant was ure vessel of . Nitrogen was essure and the about one hour	SOURCE ANI (1) Air pur (2) Air) PURITY OF MATE Products and	l Chemicals, high 9.9%. 1 chemicals,
b Mole frac METHOD/APPARAT About 200 cm condensed in about 1 lite added to the about 1 lite added to the apparatus ac A sample of withdrawn ar lower temper was then and	US/PROCEDURE: n ³ of liquic nto a pressuer capacity. e proper pre gitated for the liquid nd flashed to rature. The	d propellant was ure vessel of . Nitrogen was essure and the about one hour phase was to a gas at a e gas sample	SOURCE ANI (1) Air pur (2) Air 99.	D PURITY OF MATE Products and ity grade; 99 products and 5% by weight.	l Chemicals, high 9.9%. 1 chemicals,
b Mole frac METHOD/APPARAT About 200 cm condensed in about 1 lite added to the apparatus aq A sample of Withdrawn ar lower temper was then and	US/PROCEDURE: n ³ of liquic nto a pressuer capacity. e proper pre gitated for the liquid nd flashed to rature. The	d propellant was ure vessel of . Nitrogen was essure and the about one hour phase was to a gas at a e gas sample	SOURCE ANI (1) Air pur (2) Air 99. ESTIMATED $\delta T/K$ $\delta P/P$	D PURITY OF MATE Products and ity grade; 99 products and 5% by weight.	l Chemicals, high 9.9%. 1 chemicals,
b Mole frac METHOD/APPARAT About 200 cm condensed in about 1 lite added to the apparatus aq A sample of Withdrawn ar lower temper was then and	US/PROCEDURE: n ³ of liquic nto a pressuer capacity. e proper pre gitated for the liquid nd flashed to rature. The	d propellant was ure vessel of . Nitrogen was essure and the about one hour phase was to a gas at a e gas sample	SOURCE ANI (1) Air pur (2) Air 99. ESTIMATED $\delta T/K$ $\delta P/P$	PURITY OF MATE Products and ity grade; 99 products and 5% by weight. ERROR: = ±0.2 = ±0.02 1 = ±0.02	l Chemicals, high 9.9%. 1 chemicals,
b Mole frac METHOD/APPARAT About 200 cm condensed in about 1 lite added to the apparatus aq A sample of Withdrawn ar lower temper was then and	US/PROCEDURE: n ³ of liquic nto a pressuer capacity. e proper pre gitated for the liquid nd flashed to rature. The	d propellant was ure vessel of . Nitrogen was essure and the about one hour phase was to a gas at a e gas sample	SOURCE ANI (1) Air pur (2) Air 99. ESTIMATED $\delta T/K$ $\delta P/P$ $\delta x_1/x$	PURITY OF MATE Products and ity grade; 99 products and 5% by weight. ERROR: = ±0.2 = ±0.02 1 = ±0.02	l Chemicals, high 9.9%. 1 chemicals,
b Mole frac METHOD/APPARAT About 200 cm condensed in about 1 lite added to the apparatus aq A sample of Withdrawn ar lower temper was then and	US/PROCEDURE: n ³ of liquic nto a pressuer capacity. e proper pre gitated for the liquid nd flashed to rature. The	d propellant was ure vessel of . Nitrogen was essure and the about one hour phase was to a gas at a e gas sample	SOURCE ANI (1) Air pur (2) Air 99. ESTIMATED $\delta T/K$ $\delta P/P$ $\delta x_1/x$	PURITY OF MATE Products and ity grade; 99 products and 5% by weight. ERROR: = ±0.2 = ±0.02 1 = ±0.02	l Chemicals, high 9.9%. 1 chemicals,

.,

COMPONENTS:

(1)Nitrogen; N₂; [7727-37-9]

(2)Carbon dioxide; CO₂; [124-38-9]

EVALUATOR:

Colin L. Young, School of Chemistry, University of Melbourne, Parkville, Victoria 3052, Australia.

CRITICAL EVALUATION:

This system has been studied in detail by Zenner and Dana (1) at 273, 232 and 218 K. Their measurements are in good agreement with the data of Somait and Kidnay (2) at 270 K and the limited data of Arai *et al*. (3) who studied this mixture at 253, 273 and 288 K. Kaminishi and Toriumi (4) studied this system at a series of temperatures between 233 and 298 K while their data are not of the highest accuracy there is fair agreement both with Zenner and Dana's results (1) at 273 K and with the results of Arai *et al*. (3) at 253 K. The data of Yorizane *et al*. (5) are in agreement with those of Zenner and Dana at 273 K. The data in these five papers (1-5) are in substantial agreement and are classified as tentative. The data of Somait and Kidnay (2) are almost certainly the most reliable of these five sets of data. We do not feel that any particular set of data is sufficiently accurate and over a sufficiently wide range of temperature and pressure to be classified as recommended.

The data of Krichevskii $et \ allowship$ (6) cover the temperature range 288 to 303 K. Their data are not in good agreement with the data of Arai $et \ allowship$ (3) at 288 K and are not of the highest accuracy. Their data are therefore classified as doubtful.

Tskilis (7) studied the phase behaviour of this system at pressures between 400 and 700 MPa at 273 K. These data are not generally considered to be solubility data and are not evaluated here. The data of Abdulayev (8) and Kulikov (9) are presented in the form of graphs only and are not considered further.

References

1.	Zenner, G. H.; Dana, L. I. Chem. Eng. Progr. Symp. Ser. No. 44
	<u>1963</u> , <i>59</i> , 36.
2.	Somait, F. A.; Kidnay, A. J. J. Chem. Eng. Data <u>1978</u> , 23, 301.
3.	Arai, Y.; Kaminishi, G.; Saito, S. J. Chem. Eng. Japan <u>1971</u> , 2,
	113.
4.	Kaminishi, G.; Toriumi, T. Kogyo Kagaku Zaashi. <u>1966</u> , 69, 175.
5.	Yorizane, M.; Yoshimura, S.; Masuoka, M. Kagaku Kogaku 1970, 34,
	953.
6.	Krichevskii, I. R.; Khazonova, N. E.; Lesnevskaya, L. S.;
	Sandalova, L. Yu. <i>Khim. Prom.</i> <u>1962</u> , 38, 169.
7.	Tsiklis, D. S. Zh. Fiz. Khim. <u>1946</u> , 20, 18.
8.	Abdulayev, Ya. A. Zh. Fiz. Khim. <u>1939</u> , 13, 986.
9.	Kulikov, N. E. Tr. Gork. Politekh. Inst. <u>1969</u> , 25, 18.

Miscellaneous Fluids

COMPONEN	NTS:			ORIGINAL MEASUREMENTS:
(1) Ni	trogen; N ₂	2; [7727-37-	-9]	Krichevskii, I. R.; Khazonova, N. E.; Lesnevskaya, L. S.; Sandalova, L.
(2) Ca	rbon Dioxi	.de; CO ₂ ;	[124-38-9]	Yu.
	20011 020112		[Khim. Prom. 1962, 38, 169.
]				,,
VARIABL	ES:	<u></u>		PREPARED BY:
Т	/K = 288-3	03		C. L. Young
P	/MPa = 6.1	-10.2		C. D. Toung
EXPERIM	ENTAL VALUES	: (SMOOTHE	:D)	
	m 1.		ion of nitr	
T/K	<i>P/</i> bar	in liquid,	ing ^y N	
		^{<i>x</i>} N ₂	νN	2
288.15	60.8	0.025	0.09	0
	70.9	0.050	0.15	8
	81.1 91.2	0.074 0.102	0.19 0.21	
	101.3	0.161	0.20	5
293.15	101.5 60.8	0.187 0.009	0.18 0.03	
295.15	70.9	0.037	0.03	
	81.1 91.2	0.068 0.102	0.14 0.15	
	98.8	0.140	0.14	
298.15	70.9 81.1	0.024 0.059	0.05	
l	91.2	0.086	0.10	
201 15	92.2	0.093	0.09	
301.15	70.9 81.1	0.006 0.043	0.01 0.06	
	86.1	0.060	0.06	7
303.15	87.1 76.0	0.064 0.015	0.06	
	81.1	0.031	0.04	
	84.1	0.033	0.03	5
		_		INFORMAŢION
METHOD .	/APPARATUS	/PROCEDURE:		SOURCE AND PURITY OF MATERIALS:
			netic stir-	No details given.
		measured wi in source.		
juuge.	Decaris	III Source.		
1				
				ESTIMATED ERROR:
				$\delta T/K = \pm 0.05; \delta P/bar = \pm 0.3;$
		-		$\delta x_{N_2} \simeq \delta y_{N_2} = \pm 0.003.$
				DEDEDRINGUA
				REFERENCES:
			i	

ł

I

COMPONENTS	5:			ORIGINAL	MEASUREMEN	VTS:	
(l) Nitro	ogen; N	2; [7727-37	-9]	Zenner	с, G. H.;	Dana, L. I	Γ.
(2) Carbo	on dioxid	de; CO ₂ ; [124-38-9]	Chem. 59,	Eng. Pro No. 44,	g. Symp. Se 36-41.	r. <u>1963</u> ,
VARIABLES	·		•	DDEDADED			
	/K = 218-	-273		PREPARED BY:			
	/MPa = 0.				C. L.	Young	
EXPERIMENT	TAL VALUES	:					
Т/К	P/MPa	Mole fra of nitr in liquid, ^x N ₂	ogen	т/К	P/MPa	of ni	raction trogen , in gas, ^y N ₂
273.15	6.04 6.03 4.83 6.31 7.99	0.0521 0.0512 0.0265 0.058 0.0952	0.2885 0.292 0.198 0.310 0.373	232.85	9.68 7.97 6.66 13.89	0.219 0.155 0.121 0.096 0.268	0.765 0.756 0.756 0.738 0.708
232.85	9.59 10.97 11.66 11.86 3.55 1.76	0.0375 0.0208	0.396 0.3845 0.354 0.3045 0.628 0.372	218.15	13.06 1.28 2.28 3.85 5.85 7.83	0.237 0.009 0.023 0.048 0.066 0.117	0.747 0.525 0.710 0.804 0.836 0.844 0.844
	11.97 9.88 7.52 10.23 11.11	0.168 0.141 0.109 0.1565 0.1857	0.740 0.740 0.746 0.753		9.87 11.77 13.16 13.15	0.1522 0.1892 0.218 0.2183	0.847 0.830 0.815 0.813
			<u></u>				
			AUXILIARY	INFORMATI	.on		
Static k with dea ture mea thermome and gas dioxide hydroxid	ad weight asured wi eter. S analysed from san de soluti	OCEDURE: Pressure mea t tester. Ith resistan Samples of 1 I by removin mple with po Ion. Nitro metrically.	Tempera- ce iquid g carbon tassium	(1) No (2) Pur	details (OF MATERIALS; given. no other det	ails
					$\pm 0.2;$ $\delta y_{N_2} = \pm 0$	SP/MPa = ±0. 0.002 (estin con	
	<u>,</u>						

Miscellaneous Flu	uids
-------------------	------

Miscellane	eous Fluids	491
COMPONENTS:	ORIGINAL MEASUREMENTS:	
 (1) Nitrogen; N₂; [7727-37-9] (2) Carbon dioxide; CO₂; [124-38-9] 	Kaminishi, G.; Toriumi, T. <i>Kogyo Kagaku Zaashi</i> <u>1966</u> , 69 175-8.	,
VARIABLES:	PREPARED BY:	
T/K = 233-298 P/MPa = 0.4-1.3	C. L. Young	
EXPERIMENTAL VALUES:		
Т/К ^Р /МРа	Mole fraction of nitrogen in liquid, in ga x_{N_2} y_{N_2}	
298.15 7.42 293.15 8.22 8.44	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	14 18
8.84 288.15 8.44	0.090 0.15 0.051 0.17 0.083 0.20	75
273.15 9.63 11.01 11.38	0.076 0.35 0.133 0.39 0.188 0.37 0.215 0.36	95 77
253.15 5.27 6.84 10.18 11.73	- 0.38 0.059 0.50 0.095 0.56 - 0.59 0.210 0.58	32 - 99 58 66 52
12.74 233.15 5.07	0.246 0.55 0.066 0.70	
AUXILIARY	INFORMATION	
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:	
Static equilibrium cell with agitator. Pressure measured with Bourdon gauge. After equilibrium established sample removed and analysed by volumetric and gravi- metric techniques. Carbon dioxide absorbed in potassium hydroxide solution.	Better than 99.5 mole per	cent.
	ESTIMATED ERROR: $\delta T/K = \pm 0.05; \delta P/MPa = \pm 0.0$ $\delta x_{N_2}, \delta y_{N_2} = \pm 0.003 (\text{estimat})$ REFERENCES: REFERENCES:	ed by

COMPONENTS:	ORIGINAL MEASUREMENTS:				
(l) Nitrogen; N ₂ ; [7727-37-9] (2) Carbon dioxide; CO ₂ ; [124-38-9]	Vorizane, M.; Yoshimura, S.; Masuoka, H. <i>Kagaku Kogaku</i> <u>1970</u> , <i>34</i> , 953-7.				
VARIABLES:	PREPARED BY:				
T/K = 273 P/MPa = 3.5-11.8	C.L. Young				
EXPERIMENTAL VALUES: T/K Ptotal/MPa	Mole fraction of nitrogen in liquid, in vapor				
	<i>w</i> _{N2} <i>y</i> _{N2}				
273.15 3.49 4.05 5.07 6.08 6.08 7.09 8.11 8.11 9.12 9.63 10.13 11.15 11.65 11.75 11.82					
AUXILIARY	INFORMATION				
METHOD APPARATUS/PROCEDURE: Vapor recycle equilibrium cell with magnetic pump. Temperature measured with platinum resistance thermometer and pressure measured with Bourdon gauge. Vapor and liquid sampled simultaneously and expanded to 200 cm at room temperature, analysed using GC. Details in source.	SOURCE AND PURITY OF MATERIALS: No details given.				
	ESTIMATED ERROR: $\delta T/K = \pm 0.1; \ \delta P/MPa = \pm 0.03; \ \delta x_{N_2}, \ \delta y_{N_2} = \pm 0.003 - 0.005.$ (estimated by compiler). REFERENCES:				

,

	OUS Fluids 49:				
COMPONENTS:	ORIGINAL MEASUREMENTS:				
<pre>(1) Nitrogen; N₂; [7727-37-9] (2) Carbon dioxide; CO₂;</pre>	Arai, Y.; Kaminishi, G.; Saito, S. J. Chem. Eng. Japan <u>1971</u> , 2, 113.				
[124-38-9]					
VARIABLES:	PREPARED BY:				
T/K = 253-288 P/MPa = 7.1-14.3	C. L. Young				
EXPERIMENTAL VALUES:					
Mole fraction of nitro T/K P/bar in liquid, ^x N ₂	gen				
253.15 89.8 0.132 106.2 0.174 127.9 0.243 143.2 0.347					
273.15 71.1 0.071 94.5 0.128 118.0 0.254					
288.15 77.8 0.060 90.9 0.103 96.3 0.132 97.6 0.155					
AUXILIARY	INFORMATION				
METHOD /APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:				
Glass capillary cell fitted with magnetic stirrer. Pressure measured with a dead weight gauge. Tempera-					
ture measured with mercury in glass thermometer. Details in source. Mixtures of known composition charged into cell. Bubble point determined from plots of volume against pres- sure. Dew point determined visually. Details in source.	<pre>(2) Showa Tansan Industry Co. sample, purity > 99.9 mole per cent.</pre>				
	ESTIMATED ERROR:				
	$\delta T/K = \pm 0.01; \delta P/bar = \pm 0.1;$ $\delta x_{N_2} \approx \pm 1$ % (estimated by compiler).				
	REFERENCES:				

				200 KF d				
S: rogen; N	2; [7727-37	7-9]	ORIGINAL MEASUREMENTS: Somait, F.A. Kidnay, A.J.					
bon diox	ide; CO ₂ ; [124-38-9]	J. Chem. Eng. Data. <u>1978</u> ,23,301-5.					
			 					
C/K = 270			PREPAREI	^{о ву:} с.	L. Young			
		<u></u>	l	· · · · · · · · · · · · · · · · · · ·	<u></u>			
P/bar	nitr in liquid	ogen in gas	т/к	P/bar	Mole frac nitro in liquid ^x Na			
	N ₂	° N 2			N 2	- IN 2		
31.99 34.25 36.27 38.00 39.52 41.22 42.05 42.81 45.90 47.60 47.74 51.52 56.99 60.49 64.44 70.93 77.21 83.80	0.0000 0.0040 0.0078 0.0108 0.0135 0.0168 0.0182 0.0197 0.0263 0.0289 0.0292 0.0368 0.02476 0.0545 0.0630 0.0778 0.0921 0.1080	0.0000 0.0472 0.0851 0.1140 0.1331 0.1598 0.1683 0.2156 0.2323 0.2325 0.2674 0.3069 0.3280 0.3473 0.3770 0.3961 0.4126	270.00	86.13 89.82 92.92 96.26 102.04 107.14 110.53 112.52 115.49 118.18 118.86 119.48 120.24 120.73 121.35 121.96 123.41	$\begin{array}{c} 0.1142\\ 0.1231\\ 0.1319\\ 0.1430\\ 0.1585\\ 0.1769\\ 0.1904\\ 0.1986\\ 0.2142\\ -\\ 0.2332\\ 0.2360\\ 0.2486\\ 0.2454\\ 0.2454\\ 0.2555\\ 0.2556\\ -\\ 0.3530 \end{array}$	0.4139 0.4190 0.4173 0.4210 0.4188 0.4134 0.4094 0.4061 0.3986 0.3857 0.3800 0.3808 0.3762 0.3720 0.3664 0.3640 0.3524 0.3530		
		AUXILIARY	INFORMAT	ION				
APPARATI	JS/PROCEDURI	2:	SOURCE A	AND PURITY	OF MATERIALS			
lating w aphragm d with p eter and Cell st er stirr analyse thermal	yapor flow a pump. Temp latinum res pressure w tirred with cer. Vapor d by gas ch conductivi	apparatus perature sistance with Bourdon two and liquid promatography						
			$\begin{array}{l} \delta T/K = \\ 100 \text{ ba} \\ \delta y_{\text{N}_2} = \end{array}$	±0.2; δ r; ±0.1 ±0.002.	above 100 b	015 up to ar; δx_{N_2} ;		
	rogen; N bon diox F(K = 27) /MPa = TAL VALUE P/bar 31.99 34.25 36.27 38.00 39.52 41.22 42.05 42.81 45.90 47.60 47.60 47.60 47.60 47.60 47.60 47.60 47.60 47.60 47.60 47.60 47.60 47.81 45.90 64.44 70.93 77.21 83.80 APPARATI lating v aphragm d with peter and cell stress analyse thermal	rogen; N ₂ ; [7727-37 bon dioxide; CO ₂ ; [$\frac{1}{2}$; $\frac{1}{2}$; $\frac{1}{2}$;	rogen; N ₂ ; [7727-37-9] bon dioxide; CO ₂ ; [124-38-9] $\sum_{K=270}^{NPa} = 3.2-12.3$ TAL VALUES: P/bar Mole fraction of nitrogen in liquid in gas m_{N_2} y_{N_2} 31.99 0.0000 0.0000 34.25 0.0040 0.0472 36.27 0.0078 0.0851 38.00 0.0108 0.1140 39.52 0.0135 0.1331 41.22 0.0168 0.1598 42.05 0.0182 0.1683 42.81 0.0197 0.1783 45.90 0.0263 0.2156 47.60 0.0289 0.2323 47.74 0.0292 0.2325 51.52 0.0368 0.2674 56.99 0.0476 0.3069 60.49 0.0545 0.3280 64.44 0.0630 0.3473 70.93 0.0778 0.3770 77.21 0.0921 0.3961 83.80 0.1080 0.4126 AUXILIARY APPARATUS/PROCEDURE: lating vapor flow apparatus aphragm pump. Temperature d with platinum resistance eter and pressure with Bourdon Cell stirred with two er stirrer. Vapor and liquid analysed by gas chromatography thermal conductivity detector	rogen; N ₂ ; [7727-37-9] bon dioxide; CO ₂ ; [124-38-9] J. Ch J. Ch	rogen; N ₂ ; [7727-37-9] Somait, F.A. bon dioxide; CO ₂ ; [124-38-9] J. Chem. Eng $Z_{K} = 270$ //MPa = 3.2-12.3 PREPARED BY: C. TAL VALUES: P/bar Mole fraction of nitrogen in liquid in gas x_{N_2} y_{N_2} T/K P/bar 31.99 0.0000 0.0000 270.00 86.13 34.25 0.0040 0.0472 89.82 36.27 0.0078 0.0140 96.26 38.00 0.0108 0.1140 96.26 39.52 0.0135 0.1331 102.04 41.22.50 0.0168 0.1598 107.14 42.05 0.0182 0.1683 110.53 112.52 115.49 47.00 0.0289 0.2323 118.18 118.18 51.52 0.0368 0.2674 118.86 115.49 47.04 0.0292 0.2325 118.66 120.24 64.44 0.0630 0.3473 120.73 120.73 70.93 0.0778 0.3770 121.35 122.96 83.80 0.1080 0.4126 123.41 AUXILIARY INFORMATION AUXILIARY INFORMATION	resgen; N ₂ ; [7727-37-9] Somait, F.A. Kidnay, A.J bon dioxide; CO ₂ ; [124-38-9] J. Chem. Eng. Data. 19 J. Mathematical Science of the second science of the seco		

Miscellaneous Fluids						495			
 Nitrogen; N₂; [7727-37-9] Carbon dioxide; CO₂; [124-38-9] 				Rou F	ORIGINAL MEASUREMENTS: Rousseau, R. W.; Matange, J. N.; Ferrell, J. K.				
<pre>(3) Hydrogen sulfide; H₂S; [7783-06-4] (4) Methanol; CH₄O; [67-56-1]</pre>					Am. Inst. Chem. Engnrs. J. <u>1981</u> , 27, 605-13.				
VARIABLES:				PREPA	RED BY:				
	= 258-273 a = 1-4	i	_	с	. L. Yo	ung			
EXPERIMENT	TAL VALUES:				Mole f:	ractions			
			in liqu			in vapor			
P/atm	P/MPa	^х сн _з он	^x co ₂	× _{N2}	× _{H2} S	^x co ₂	× _{N2}	^x H2S	
			т/к =	258.15					
9.3	0.94	0.908	0.074		0.015	0.544	0.403	0.052	
20.8 29.6	2.11 3.00	0.768 0.646	0.210 0.331		0.019	0.611 0.589	0.365 0.400	0.024 0.010	
40.1	4.06	0.742	0.235		0.016	0.458	0.542		
			T/K =	273.15					
	0.93	0.900	0.085	0.002			0.284	0.031	
	2.15		0.234			0.801		0.035	
29.0 39.8	2.94 4.03		0.283	0.003	0.018	0.774 0.585	0.204 0.376	0.022 0.039	

AUXILIARY INFORMATION					
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:				
Recirculating vapor-liquid equilibrium cell. Pressure in cell measured with Heise gauge calibrated against a dead weight tester. Temperature measured with copper- constantan thermocouple. Composition of gas and liquid samples determined by gas chromatography.	 (1) Purity 99.999 mole per cent. (2) Purity 99.99 mole per cent. (3) A 15.1 mole per cent mixture in pure nitrogen. (4) Purity 99.95 mole per cent. (4) Purity 99.95 mole per cent. ESTIMATED ERROR: δT/K = ±0.1; δP/MPa = ±0.01; δx, δy = ±0.005 (estimated by compiler) REFERENCES:				

.

ORIGINAL MEASUREMENTS:
Cannon, V.A.; Robson, J.H.; English,
Report DAC-60510-F2. Contract NAS7- 548 (1968). (Tech. Report Douglas Missile & Space Systems Division, Astropower Laboratory.)
PREPARED BY: R. Battino
x ₁ ^b x ₁ ^b x ₁ ^b
°F -149.9°F -99.8°F -50.4°F K) (172.1K) (199.9K) (227.4K)
4 0.0768 0.0613 0.0423
5 0.0775 0.0605 0.0406 4 0.0788 0.0578 0.0396
6 0.0781 0.0592 0.0395
4 0.195 0.166 0.140
4 0.196 0.168 0.140 4 0.166 0.137
4 0.166 0.137 4 0.166 0.139
Y INFORMATION
SOURCE AND PURITY OF MATERIALS:
(1) Air Products and Chemicals, high pruity grade, 99.9%.
(2) Callery Chemical Company, 99.0%.
ESTIMATED EDDOD-
ESTIMATED ERROR:
$\delta T/K = \pm 0.2$ $\delta P/P = \pm 0.02$
$\begin{array}{l} \delta T/K = \pm 0.2 \\ \delta P/P = \pm 0.02 \\ \delta x_1/x_1 = \pm 0.02 \end{array}$
$\delta P/P = \pm 0.02$
$\begin{array}{l} \delta P / P = \pm 0.02 \\ \delta x_1 / x_1 = \pm 0.02 \end{array}$

COMPONENTS:						
			ORIGINAL MEASUREME	ENTS:		
(1) Nitrogen; N ₂ ; [7727-37-9]			Cannon, W.A.; W.D.		H.: English,	
(2) Trimethylk [593-90-8]	corane; C ₃ H ₉	Β;	Report DAC-60510-F2. Contract NAS7- 548 (1968). (Tech. Report Douglas Missile & Space Systems Division, Astropower Laboratory.)			
VARIABLES:			PREPARED BY:			
T/K = 20 P/I1Pa =			R. Battino			
EXPERIMENTAL VALUE	S:		<u> </u>	·	<u></u>	
P /psia N 2	P ^a /MPa N 2	-99.8°F (199.9 K)	10 ² х1 ^b -45.5°F (230.1 К)	0.0°F (255.4 K)	50.0°F (283.2 K)	
300 300 300 300	2.07 2.07 2.07 2.07 2.07	3.88 3.98 4.04 4.02	3.68 3.68 3.70 3.66	3.65 3.78 3.77 3.72	3.60 3.60 3.46 3.38	
700 700 700 700	4.83 4.83 4.83 4.83	8.60 8.74	8.40 8.48	8.28 8.18	8.94 9.08 9.06 9.18	
		AUXILIARY	INFORMATION			
METHOD/APPARATUS/P About 20 cm ³ o was condensed vessel of abou Nitrogen was a pressure and t for about one liquid phase w flashed to a g temperature. then analyzed	of liquid pro- into a press at l liter ca added to the the apparatu hour. A san yas withdrawn yas at a low The gas sam	opellant sure apacity. proper s agitated mple of the n and er ple was	SOURCE AND PURITY (1) Air Produc purity gra (2) Orgmet Che	ts and Cher de, 99.9%.	micals, high pstead,	

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Nitrogen; N₂; [7727-37-9] (2) Methane; CH₄; [74-82-8] (3) Carbon dioxide; CO₂; [124-38-9]</pre>	Sarashina, E.; Arai, Y.; Saito, S. J. Chem. Eng. ^J apan <u>1971</u> , 4, 377.
VARIABLES: T/K = 233-273 P/MPa = 6-10	PREPARED BY: C. L. Young
EXPERIMENTAL VALUES:	<u>Mole fraction</u> n liquid in vapor

		1010 11000101				
			iquid	in vapor		
T/K P/atm P/MPa	^{<i>x</i>} N ₂	^{<i>x</i>} Сн ₄	y_{N_2}	${}^{\mathcal{Y}}$ CH4		
273.15	60	6.08	0.037	0.013	0.229	0.046
			0.032	0.033	0.169	0.116
			0.023	0.052	0.124	0.170
			0.015	0.075	0.072	0.237
	80	8.11	0.079	0.026	0.306	0.064
			0.071	0.050	0.253	0.120
			0.060	0.077	0.205	0.169
			0.057	0.091	0.182	0.196
			0.049	0.112	0.149	0.237
			0.038	0.146	0.100	0.290
			0.030	0.165	0.075	0.315
			0.024	0.179	0.061	0.334
			0.020	0.190	0.047	0.344
	100	10.13	0.141	0.004	0.381	0.007
	100		0.132	0.039	0.316	0.070
			0.126	0.082	0.247	0.123
			0.125	0.103	0.220	0.149
			0.120	0.115	0.200	0.158
253.15	60	6.08	0.052	0.038	0.342	0.195
	50	0.00	0.032	0.110	0.174	0.374
			0.024	0.131	0.113	0.439

(cont.)

AUXILIARY INFORMATION

METHOD /APPARATUS / PROCEDURE :

Static cell fitted with magnetic stirrer. Temperature measured with liquid in glass thermometer and pressure measured with Bourdon gauge. Gas-liquid chromatography was used to analyse the equilibrium compositions.

SOURCE AND PURITY OF MATERIALS;

No details given.

ESTIMATED ERROR: $\delta T/K = \pm 0.05; \quad \delta^P/MPa = \pm 0.01;$ $\delta x, \quad \delta y = \pm 2$ % (estimated by compiler).

REFERENCES:

```
1. Kaminishi, G.; Arai, Y.;
Saito, S.; Maeda, S.
Chem. Eng. Japan
<u>1968</u>, 1, 109.
```

COMPONENTS: Of (1) Nitrogen; N_2 ; [7727-37-9] (2) Methane; CH_4 ; [74-82-8]

(3) Carbon dioxide; CO₂; [124-38-9]

ORIGINAL MEASUREMENTS: Sarashina, E.; Arai, Y.; Saito, S. J. Chem. Eng. Japan <u>1971</u>, 4, 377.

EXPERIMENTAL VALUES:

			Mole fraction				
			in 1	iquid	in	vapor	
т/к	P/atm	P/MPa	* _{N2}	^x CH ₄	y _{N2}	y _{CH4}	
253.15	80	8.11	0.102	0.022	0.525	0.062	
		,	0.094	0.046	0.439	0.144	
			0.086	0.072	0.372	0.210	
			0.075	0.117	0.289	0.297	
			0.071	0.135	0.259	0.324	
			0.065	0.153	0.230	0.348	
			0.054	0.206	0.169	0.409	
			0.047	0.240	0.127	0.456	
			0.035	0.282	0.092	0.494	
			0.028	0.312	0.066	0.510	
	100	10.13	0.136	0.097	0.393	0.182	
			0.131	0.143	0.331	0.239	
			0.127	0.163	0.301	0.259	
			0.123	0.178	0.277	0.280	
233.15	60	6.08	0.063	0.044	0.561	0.168	
			0.059	0.080	0.444	0.279	
			0.046	0.126	0.286	0.439	
			0.034	0.174	0.205	0.521	
			0.024	0.223	0.124	0.610	
	80	8.11	0.104	0.023	0.682	0.060	
			0.100	0.064	0.574	0.176	
			0.086	0.108	0.464	0.279	
			0.086	0.197	0.332	0.406	
			0.083	0.228	0.285	0.449	
			0.066	0.236	0.247	0.486	
			0.064	0.318	0.185	0.541	
			0.059	0.398	0.121	0.589	
	100	10.13	0.144	0.127	0.486	0.244	
			0.139	0.174	0.399	0.316	
			0.140	0.206	0.368	0.339	
			0.148	0.224	0.361	0.349	
			0.156	0.246	0.345	0.357	

-

COMPONENTS:				IORICIN	L MEASUREME	NTC .		
							ъ т	•
(1) Nitrogen; N ₂ ; [7727-37-9]					it, F.A.;			
		[74-82-8]		J. C	hem. Eng.	Data.	<u>1978</u> , 23,	301-5.
(3)Carbon	Dioxid	e; CO ₂ ; []	L24-38-9]					
	K = 270			PREPARI		Voung		
P/M	MPa = 4	.6-8.6			C.H.	. Young		
EXPERIMENTAL	VALUES:	<u> </u>						
T/K	P/bar	Mole frac ^x N ₂	ctions in 1 ^x CH4	liquid ^x CO₂	Mole fra ^Y N2	Ctions is ^y CH4	n gas ^Y CO₂	
		N 2	CH4	02	• N 2	• CH 4	~CO2	
270.00	45.60	0.0000 0.0129	0.0538 0.0271	0.9462	0.0000 0.0959	0.2300 0.1251	0.7700 0.7791	
		0.0226	0.0060	0.9714	0.1850	0.0269	0.7881	
	CO 70	0.0250	0.0000	0.9750	0.2115	0.0000	0.7885	
	60.79	0.0000 0.0071	0.1226 0.1071	0.8774 0.8858	0.0000 0.0336	0.3519 0.3145	0.6481 0.6520	
		0.0093	0.1024	0.8883	0.0441 0.1173	0.3035 0.2233	0.6525 0.6594	
		0.0239 0.0297	0.0690 0.0564	0.9072 0.9139	0.1237 0.1563	0.2178 0.1822	0.6585	
		0.0442	0.0240	0.9318	0.2508	0.0815	0.6677	
		0.0461 0.0560	0.0192 0.0000	0.9347 0.9440	0.2656 0.3290	0.0655 0.0000	0.6689 0.6710	
	86.13	0.1142	0.0000	0.8858	0.4139	0.0000	0.5861	
		0.0887 0.0885	0.0671 0.0688	0.8442 0.8428	0.2689 0.2656	0.1406 0.1433	0.5905 0.5912	
		0.0667	0.1233	0.8099	0.1747	0.2322	0.5931	
		0.0652 0.0600	0.1302 0.1442	0.8046 0.7958	0.1670 0.1473	0.2394 0.2592	0.5936 0.5936	
		- 0.0422	- 0.1929	- 0.7649	0.1172 0.0877	0.2874 0.3105	0.5954 0.6018	
		0.0408	0.1959	0.7634	0.0825	0.3161	0.6014	
		0.0301 0.0152	0.2322 0.2863	0.6985	0.0535 0.0210	0.3374 0.3474	0.6316	
		0.0155	0.2864	0.6981	0.0208	0.3479	0.6313	cont.
			AUXILIAR	Y INFORMA	TION			
METHOD:/APPA	ARATUS/	PROCEDURE :		SOURCE	AND PURITY	OF MATERIA	LS:	
Recirculati	ing vap	or flow ap	paratus					
with diaphr measured wi	agm pu th pla	mp. Tempe tinum resi	rature stance		No det	ails give	∋n	
thermometer gauge. Cel	and p	ressure wi	th Bowdon			-		
propeller s	stirrer	. Vapor a	nd liquid					
samples ana using a the								
Details in			-	-				
				ESTIMAT	ED ERROR:			
					= ±0.2; δP :0.1 above			
				± 0.00		100 Dar,	, 0 <i>2 , 0g</i>	-
				REFEREN	ICES			

				1			
COMPONENT			ORIGIN	IAL MEASU	REMENTS:		
(1) Nitro	[7727-37-	-9]	Soma	it, F.A.	; Kidnay,	A.J.	
	-					. –	
(2) Metha	ne; CH4;	[74-82-8]	J	J. C	hem. Eng	}. Data.	<u>1978</u> ,23,301-5.
(3) Carbo	n Dioxid	e; CO ₂ ; [124-38-9]				I
				.i			
EXPERIMEN	TAL VALU	ES:Mole f:	ractions in	n liquid	Mole	fractions	in gas
т/к	<i>P/</i> bar	<i>*</i> _{N₂}	x_{CH_4}	^x CO₂	y_{N_2}	^y ch₄	^y co₂
270.00	86.13	0.0112	0.3026	0.6862	-	-	-
		0.0076	0.3280	0.6645	0.0097	0.3323	0.6579
	96.26	0.1430	0.0000	0.8570	0.4210	0.0000	0.5790
		0.1216	0.0696	0.8088	0.3237 0.2900	0.0897 0.1207	0.5866 0.5893
1		0.1159	0.0818	0.8023	0.2611	0.1452	0.5937
		0.1092	0.0993	0.7915	0.2326	0.1711	0.5963
}		0.1079	0.1085		0.2248	0.1769	0.5983
		0.1090	0.1098	0.7812	0.2238	0.1775	0,5986
		0.1045	0.1287	0.7668	0.1988	0,1975	0.6037
		0.1015		0.7463	0.1728	0.2166	0.6107
		-	U, 1J22 ·	-	0.1631	10.2205	0.6164
1		0.0971	0.1635	0.7394	0.1597	0.2239	0.6164
		0.0941	0.1705	0.7355	0.1482	0.2287	0.6231
ļ		0.0941	0.1741	0.7298	0.1475	0.2281	0.6243
{		0.0946	0.1743	0.7311	0.1445	0.2297	0.6259
		0.0948	0.1810	0.7243	0.1398	0.2332	0.6270
}		0.0947	0.1781	0.7272	0.1398	0.2318	0.6298
}		0.0948	0.1868	0.7185	0.1304	0.2510	0.0290
		0.0948	0.1882	0.7174	0.1313	0.2329	0.6359
		0.0945	0.1905	0.7151	0.1303	0.2325	0.6363
1		0.0945	0.1941	0.7102	0.1286	0.2333	0.6380
		0.0944	0.1982	0.7075	0.1224	0.2336	0.6440
		0.0960	0.2008	0.7032	0.1198	0.2313	0.6490
		0.0986	0.2008	0.6915	0.1152	0.2313	0.6542
		0.1045	0.2260	0.6696	0.1045	0.2260	0.6696
1	111.46	0.1950	0.0000	0.8050	0.4080	0.0000	0.5920
		0.1897	0.0415	0.7688	0.3285	0.0594	0.6121
1		0.1898	0.0613	0.7489	0.2929	0.0808	0.6263
		0.1917	0.0640	0.7443		0.0825	0.6314
		0.2643	0.0921	0.6436	0.2643	0.0921	0.6436
1							

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Grové, N.H.; Whiteley, F.J.
(2) Santowax R;	J. Appl. Chem. <u>1960</u> , 10, 101.
,,	
VARIABLES:	PREPARED BY:
T/K = 507-682 P/MPa = 0.2-0.5	C. L. Young
EXPERIMENTAL VALUES:	
T/K ^P /bar Solubility [*] Ostwa Coeffic	lld Sient
507 3.93 13.0 0.131 510 2.54 7.0 0.110	
511 1.84 5.3 0.115	
600 2.16 9.3 0.187 600 2.98 12.3 0.179	
609 4.72 22.7 0.210	
679 2.49 12.3 0.223 679 3.45 16.3 0.214	
682 5.38 29.0 0.224	
* moles of nitrogen per mg of Santo	wax B.
-	
AUXILIARY	INFORMATION
	SOURCE AND PURITY OF MATERIALS:
Static cell with null pressure trans- ducer. Pressure measured with	(1) No details given.
Bourdon gauge. Temperature measured	(2) Analysis by infra-red method
with thermocouple. Sample placed in cell and gas added at room tempera-	showed sample to be 11.8% o- terpheny1, 56.3% m-terpheny1,
ture. Cell then heated to experimen-	29.3% p-terphenyl, 2.6% diphenyl
tal temperature. Pressures on both sides of transducer kept approxi-	and higher polyphenyls. Obtained from Monsanto Chemicals Ltd.
mately equal. Details in source.	
	ESTIMATED ERROR:
	$\delta T/K = \pm 1; \delta P/bar = \pm 0.01; \delta(solu-$
	bility) = ±10%
	DETERDENCE
	REFERENCES :

Miscellaneous Fluids					
COMPONENTS:	ORIGINAL MEASUREMENTS:				
 (1) Nitrogen; N₂; [7727-37-9] (2) Hydrocarbon Blend (Heavy naphtha) 	Frolich, P. K.; Tauch, E. J.; Hogan, J. J.; Peer, A. A. Ind. Eng. Chem. <u>1931</u> , 23, 548-50.				
VARIABLES: T/K = 298 P/MPa = 1.0-14.2	PREPARED BY: C. L. Young				
EXPERIMENTAL VALUES:	L				
T/K P/atm P/MPa	solubility [*] , S				
298.15 10 1.0 20 2.0 30 3.0 40 4.1 50 5.1 60 6.1 70 7.1 80 8.1 90 9.1 100 10.1 110 11.1 120 12.2 130 13.2 140 14.2 * Volume of gas measured at 101. dissolved by unit volume of lic conditions.	2.15 3.3 4.5 5.45 6.4 7.2 8.0 9.85 10.65 11.4 12.75 14.15 				
AUXILIARY	INFORMATION				
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:				
Static equilibrium cell. Liquid saturated with gas and after equilibrium established samples removed and analysed by volumetric method. Allowance was made for vapor pressure of liquid and the solubility of the gas at atmospheric pressure. Details in source.	 Nitrogen was of the highest purity available. Density 0.8003 g cm⁻³, vapor pressure 80 mmHg at 298.15 K. 				

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Frolich, P. K.; Tauch, E. J.; Hogan, J. J.; Peer, A. A.
(2) Hydrocarbon Blend (Gas oil)	Ind. Eng. Chem. <u>1931</u> , 23, 548-50.
VARIABLES:	PREPARED BY:
T/K = 298 P/MPa = 1.0-14.2	C. L. Young
EXPERIMENTAL VALUES:	En
T/K P/atm P/MP	a Solubility [*] , S
298.15 10 1. 20 2. 30 3. 40 4. 50 5. 60 6. 70 7. 80 8. 90 9. 100 10. 110 11. 120 12. 130 13. 140 14.2 * Volume of gas measured at 101. dissolved by unit volume of 1. conditions.	2.2 3.25 4.28 4.25 4.28 4.25 4.28 4.25 4.28 4.25 4.28 4.25 4.28 4.25 4.28 4.28 4.25 4.28 4
AUXILIARY	INFORMATION
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
Static equilibrium cell. Liquid saturated with gas and after equilibrium established samples removed and analysed by volumetric method. Allowance was made for vapor pressure of liquid and the solubility of the gas at atmospheric pressure. Details in source.	 (1) Nitrogen was of the highest purity available. (2) Density 0.8319 g cm⁻³, vapor pressure 2 mmHg at 298.15 K. ESTIMATED ERROR: δT/K = ±0.1; δS = ±5%. REFERENCES:

COMPONENTS: (1) Nitrogen; N ₂ ; [7727-37-9]	ORIGINAL MEASUREMENTS: Findl, E.; Brande, H.; Edwards, H.
(2) Fuel RJ-1	U. S. Dept. Comm., Office Tech. Ser. Report No. AD 274 623, <u>1960</u> , 216 pp.
	Chem. Abstr. <u>1963</u> , 58, 6628c.
VARIABLES:	PREPARED BY:
T/K = 310.9 - 533.2 $p_1/kPa = 172.4 - 274.4$ (25 - 398 psia)	H. L. Clever
METHOD/APPARATUS/PROCEDURE	

The solubility apparatus was constructed of two concentric glass tubes sealed at the end by invar steel caps and silicone O-rings. The caps had attachments for flexible tubes to admit solvent and gas, and to circulate the thermostating fluid.

The inner tube was of *TRUE-BORE* glass tubing. It contained the solvent and a glass ball 0.0083 inch smaller than the tube diameter. The ball was used for both stirring on gas dissolution and viscosity measurements on the gas saturated solution. A steel scale beside the inner tube allowed determination of the solvent volume to within 0.3 per cent.

The thermostating liquid (white mineral oil) circulated in the space between the two tubes.

The solvent was initially saturated with air. The amount of dissolved air was known from a previous Orsat analysis.

The solute gas was contained in a steel bottle at 700 psig maintained at a temperature of 150 \pm 1°F. There were two pressure gages. A differential gage between the gas bottle and a reference bottle to measure the pressure drop when gas was admitted to the apparatus, and a Bourdon gage to measure the final total pressure in the cell.

The solvent was added to the cell until the vapor/liquid ratio reached about 0.15. The cell and its contents were heated to the temperature of the measurement. The gas was admitted, and the test cell rocked for 10 minutes more than the time required to reach a stable pressure. The amount of gas dissolved was calculated from the pressure drop in the gas reservoir and the total pressure in the cell. The partial pressure of the gas in the

AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: (continued) cell was calculated taking into account the initial dissolved air, the solvent vapor pressure, and the Compressibility of the gas. Both the Ostwald coefficient and the volume of gas at standard conditions per unit weight of solvent were calculated. The results were presented in large scale graphs. The results on the data sheets are values read from the graphs by the compiler.	 SOURCE AND PURITY OF MATERIALS: (1) Nitrogen. Stated to be of high purity. (2) Fuel. The fuel was specified as MIL-F-25558 Grade RJ-1 formerly designated as Shell UMF, Grade C. A table of fuel characteristics was included in the report.
Other experimental details and results were in an earlier report of the authors (1).	ESTIMATED ERROR: $\delta T / {}^{\circ}F = \pm 1$ $\delta p / 1b \text{ in}^{-2} = \pm 1$ $\delta L / L = \pm 0.02 \text{ (minimum), max.} \approx 0.05$
	REFERENCES: 1. Schlagel, L. A.; Findl, E.; Edwards, H. Ing Er. Rept. 183, Thompson Products, Inc. Inglewood Lab., Inglewood, CA, USA, Aug 19, <u>1955</u> .

COMPONENTS: (1) Nitrogen; N ₂ ; [7	727-37-9	9]	ORIGINAL MEASUREMENTS: Findl, E.; Brande, H.; Edwards, H.		
(2) Fuel RJ-1			U. S. Dept. Comm., Office Tech. Ser Report No. <i>AD 274 623</i> , <u>1960</u> , 216 pp		
			Chem. Abstr.	<u>1963</u> , 58, 6628c.	
EXPERIMENTAL VALUES:		cont	inued	· · · · · · · · · · · · · · · · · · ·	
Tempe	rature	Nitrogen	Kuenen	Ostwald	
t/°C	т/к	Pressure p ₁ /psia	Coefficient	Coefficient L/cm ³ cm ⁻³	
100	310.9	12.5 12.6 59.0 60.0 110.0 121.0 209.0 222.0 309.0 309.0 408.0 410.0	 0.79 0.77 1.38 1.52 2.27 2.34 2.87 3.18	0.101 0.095 0.085 0.100 0.100 0.090 0.094 0.099 0.104 0.110 0.100 0.110 (0.100) ¹	
200	366.5	15.0 59.0 108.0 208.0 209.0 309.0 309.0 406.0	0.51 0.88 0.94 1.80 1.80 2.55 2.71 3.69	$\begin{array}{c} 0.152\\ 0.139\\ 0.127\\ 0.139\\ 0.140\\ 0.139\\ 0.131\\ 0.141\\ 0.144\\ (0.141)^1 \end{array}$	
300	422.0	56.0106.0205.0307.0307.0404.5405.0	1.12 1.97 2.18 3.08 3.26 4.27 4.19	0.175 0.185 0.166 0.188 0.175 0.186 0.190 0.180 (0.182) ¹	
400	477.6	106.0 198.0 200.0 300.0 397.5 400.0	1.12 2.13 2.15 3.30 4.52 4.41	0.197 0.200 0.208 0.213 0.208 (0.205) ¹	
500	533.2	19.0 81.0 183.0 184.0 285.0 287.5 380.0 382.5	0.30 1.04 2.43 2.55 3.70 3.71 5.21 5.05	0.247 0.241 0.258 0.245 0.257 0.265 0.265 0.266 (0.258) ¹	

	eous Fiulas 507
COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Rupprecht, S. D.; Faeth, G.M.
(2) Jet A(79) fuel	NASA CR <u>1981</u> , NASA-CR-3422, 111 pp.
	Chem. Abstr. 1981, 95, 153333x.
VARIABLES:	PREPARED BY:
T/K = 298-374 P/MPa = 1-10	R. Battino
EXPERIMENTAL VALUES:	
T/K P ^a /N	MPa x ₁
298.15 1.0	03 0.0094
373.15 1.0	03 0.0116
298.65 2.0 373.65 2.0	
298.40 4.8	82 0.0458
373.15 4.8 296.65 10.3	
373.15 10.3	34 0.1186
^a Total press	ure.
	(
	INFORMATION
·	-
METHOD/APPARATUS/PROCEDURE: A 1000 cm ³ chamber is filled with	SOURCE AND PURITY OF MATERIALS:
A 1000 cm ³ chamber is filled with ca. 500 cm ³ of liquid. Gas is added	
to the desired pressure. The chamber is agitated to attain equilibrium.	
Temperatures are read via thermocouples and pressures via	(2) 0.8381 sp. gr. at 60°F. Boiling range is 434.82-600.93K
Heisse bourdon tube gages. A	
liquid sample is removed and allowed to de-pressurize at atmospheric	
pressure. The solubility is calculated from the measurement of	
liquid and gas volumes of the	
de-pressurized sample. Residual dissolved gas is considered to be	ESTIMATED ERROR:
negligible.	$\delta_{x_1}/x_1 = \pm 0.03$, compiler's estimate.
	REFERENCES :
1	

,

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Nitrogen; N ₂ ; [7727-37-9]	Rupprecht, S.D.; Faeth, G.M.
(2) Jet A(80) fuel	NASA CR <u>1981</u> , NASA-CR-3422, 111 pp.
	Chem. Abstr. <u>1981</u> , 95, 153333x.
VARIABLES:	PREPARED BY:
T/K = 298 - 373	
P/MPa = 1-10	R. Battino
EXPERIMENTAL VALUES:	I
T/K P ^a /I	MPa × _l
299.15 1.0	03 0.0121
373.15 1.0	0.0135
298.65 2.0 373.15 2.0	
298.65 4.1	82 0.0594
373.15 4.1 299.15 10.1	82 0.0680 34 0.1242
373.15 10.1	
^a Total pressu:	re.
AUXILIARY	INFORMATION
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
	SOURCE AND FURTH OF PATERIALS,
A 1000 cm ³ chamber is filled with ca. 500 cm ³ of liquid. Gas is	(1) No details given.
added to the desired pressure. The chamber is agitated to attain	
equilibrium. Temperatures are read	(2) 0.8095 sp.gr. at 60°F. Boiling range 444.26-547.59K.
via thermocouples and pressures via Heisse bourdon tube gages. A	
liquid sample is removed and allowed	
to de-pressurize at atmospheric pressure. The solubility is	
calculated from the measurement	
of liquid and gas volumes of the de-pressurized sample. Residual	ESTIMATED ERROR:
dissolved gas is considered to be negligible.	
	$\delta x_1/x_1 = \pm 0.03$ compiler's estimate
	PEPEPENana
·	REFERENCES:
	1

AIR SOLUBILITIES

•--

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Air	Baldwin, R. R.; Daniel, S. G.
(2) Water; H ₂ O; [7732-18-5]	J. Appl. Chem. 1952, 2, 161-5.
(=,	J. Inst. Petrol., London <u>1953</u> , 39, 105-24.
VARIABLES:	PREPARED BY:
T/K = 293.15 $p_1/kPa = 101.325$	P. L. Long H. L. Clever
EXPERIMENTAL VALUES:	
Temperature t/°C T/K α/cm	Bunsen Ostwald efficient Coefficient $(STP)cm^{-3}atm^{-1}$ L/cm^{3} cm ⁻³
20.0 293.15	0.01858 0.01994 0.01875 0.02012
AUXILIARY	
	INFORMATION
METHOD/APPARATUS/PROCEDURE:	
METHOD/APPARATUS/PROCEDURE: 1. Degassing. The liquid is deaerated by passage through a continously evacuated vessel. The liquid is sat- urated with the gas, then degassed again.	<pre>INFORMATION SOURCE AND PURITY OF MATERIALS: (1) Air. From compressed air line. Dried and freed from CO₂. (2) Water. Distilled.</pre>
1. Degassing. The liquid is deaerated by passage through a continously evacuated vessel. The liquid is sat- urated with the gas, then degassed	SOURCE AND PURITY OF MATERIALS: (1) Air. From compressed air line. Dried and freed from CO ₂ .

COMPONENTS:	····.			ORIGINAL MEASUREMENTS:		
(l) Air			i	McKee, O. L. Jr.		
(2) Water; H ₂ O; [7732-18-5]				Ph. D. thesis, <u>1953</u> Purdue University W. Lafayette, IN USA		
VARIABLES:				PREPARED BY:		
		3.15, 294.8 450 - 20,68		H. L. Clever		
EXPERIMENTAL VAL	UES: Tem	perature	Tota	l Air		
		T/K	Pressu	$\frac{1}{2} re \qquad Solubility \\ n^{-2} S/cm^{3} (STP) g^{-1}$		
	32		500	······································		
			1000	1.52 1.72 1.75		
			1500			
			2000			
			3000			
	71	294.8	500	0.44		
			1000	1.12 1.17		
	70	294.3	1500	1.64 1.65 .		
	71	294.8	2000	2.13 2.10		
	66	292.0	3000			
	67 71	292.6 294.8		2.97 2.85		
	about 5		at 0.75	imated to range from to about 2 per cent at 0.		
				INFORMATION		
METHOD/APPARATUS	PROCEDUI	RE:		SOURCE AND PURITY OF MATERIALS:		
The apparatus		(1) Mag	usod	(1) Air. Source not given.		
with modifica	ations t	o improve	the	(2) Water. Distilled water. Boiled		
temperature of improve the s				for three hours before use.		
phase.						
				ESTIMATED ERROR:		
Total Pressur	e:			See statement under the table above.		
		n/kD=				
	/atm	p/kPa		REFERENCES :		
500 1000	34.0	3450 6895		1. Zoss, L. M.		
2000 1	L02.1 L36.1	10340 13790		Ph. D. Thesis, 1952. Purdue University		
	204.1	20680		W. Lafayette, IN USA		
1 atm = 101.3	325 kPa	≡ 14.6960	lb in ⁻²			

COMPONENTS:	ORIGINAL MEASUREMENTS:				
(1) Air	Eichelberger, V.C.				
(2) Water; H ₂ O; [7732-18-5]	Ind. Eng. Chem. <u>1955</u> , 47, 2223-8.				
VARIABLES:	PREPARED BY:				
T/K = 298-338 P/IIPa = 6.8-24.2	R. Battino				
EXPERIMENTAL VALUES:					
Temper- ^P Air/ ^P Air ^a / Solu- ature psig MPa bilit					
65°C 970 6.787 0.78 (338.2 K) 1475 10.27 1.14 1645 11.44 1.27 1935 13.44 1.42 2430 16.85 1.73 3430 23.74 2.27	(318.2 K) 1310 9.131 1.13 1950 13.54 1.61 2200 15.27 1.78 2540 17.61 2.02				
25°C 1050 7.339 1.15 (298.2 K) 1850 12.85 1.83 2775 19.23 2.58 3420 23.68 2.98	3500 24.23 2.54				
AUXILIARY	INFORMATION				
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS;				
A pressure vessel is charged up to pressure with gas and liquid and rocked for several hours. After equilibration a sample is removed into	(1) From standard cylinder.				
a buret where the liquid and gas volumes are measured at atmospheric pressure.	(2) Distilled.				
	ESTIMATED ERROR:				
	<pre>δT/K = ±0.1 δSolubility/Solubility = ±0.03, compiler's estimate.</pre>				
	REFERENCES :				

<pre>COMPONENTS: (1) Air (2) Sodium Chloride; NaCl; [7647-14-5] (brines) (2) Water; H₂O; [7732-18-5]</pre>					CASUREMENT ger, W. C Chem. <u>19</u>	•	2223-8.
EXPERIMENTA P _{Air} /psig		25°C (2 g NaCl/ _b å soln.	298.2 K) Solu-	45°C (31 g NaCl/ _b	.8.2 K) Solu- bilityc	65°C (33 g NaCl/,	38.2 K) Solu- bility ^c
2500		0 30 99	2.36 2.04 1.36 0.77	0 30 98 203	1.985 1.71 1.20 0.75	0 30 97	1.76 1.51 1.135 0.705
3500	24.23	0 30 99 203 305	3.05 2.63 1.77 0.98 0.55		1.50 0.945		2.30 1.96 1.43 0.92

^a Calculated by compiler. Partial pressure of air (absolute).

^b Concentration of brine solution given as g NaCl/liter of solution.

^C Solubility in units of ml air (STP) per ml brine solution. Gas volumes <u>not</u> corrected for non-ideality of gas at pressure of measurement.

d These are smoothed values read from graphs by the authors.

COMPONENTS:				ORIG	INAL MEASUR	EMENTS:		
	(1) Air				ORIGINAL MEASUREMENTS: Eichelberger, W. C.			
(2) Sodium Chl	<pre>(2) Sodium Chloride; NaCl; [7647-14-5]; (brines)</pre>				. Eng. Ch	em. <u>1955</u> ,	47, 2223	-8.
(3) Water; H ₂ O; [7732-18-5]								
	·····							
VARIABLES: T/K = 2	98-338			PREF	ARED BY:			
	7.0-24.2	2			R. Bat	ttino		
EXPERIMENTAL VALUES	3:	2500 /-			4500 (0	10 0	6500 (00	
	////	25°C (2	98.2 Solu	K) 	45°C (3	Solu-	65°C (33 g NaCl/b	
P _{Air} /psig P ^a A		g NaCl/ l soln.b				Dility	£ SOIN.	
1000 6	.994	0 30	1.10		0 30	0.91 0.77	0 30	0.83 0.67
		99	0.6	5	98	0.54	97 197	0.50 0.31
		201 305	0.3		203 304	0.34 0.205	197 309	0.19
1500 10	.44	0	1.5	4	0	1.29	0	1.15
		30 99	1.3		30 98	1.105 0.78	30 97	0.97 0.725
		201	0.5		203	0.485	197	0.45
		305	0.2	85	304	0.28	250 309	0.34 0.275
2000 1	3.89	0	1.90		0	1.64	0	1.465
		30 99	1.69		30 98	1.41 1.00	30 97	1.25 0.94
		203	0.6		203	0.62	197	0.58
		305	0.30	6	304	0.355	250 309	0.45 0.36
							on follow	
		AUX	ILIARY	INFO	RMATION			
METHOD/APPARATUS/PI	ROCEDURE:			SOU	RCE AND PURI	TY OF MATE	RIALS:	
A pressure ves	sel is ch	narged up	to	(1) From standard cylinders.				
pressure with rocked for sev	qas and 1	liquid an	d	(2) Raw brine from Syracuse plant				
equilibration	a sample	is remov	ed	of Solray Process Division.				
into a gas bur and gas volume	et where	the liqu	id	(3) Distill	ed.		
atmospheric pr		isureu ac		ļ				
				VCT	IMATED ERROF			
					$K = \pm 0.1$			
					olubility			3
				REF	ERENCES:			
1								
L				I				

Air Soli	ubilities	51
COMPONENTS:	ORIGINAL MEASUREMENTS:	
(1) Air	Kobe, K. A.; Kenton, F. H.	
 (2) Sulfuric acid; H₂SO₄; [7664-93-9] (3) Sodium sulfate; Na₂SO₄; [7757-82-6] 	Ind. Eng. Chem., Anal. Ed. <u>1938</u> , 10, 76–7.	
(4) Water; H ₂ O; [7732-18-5]		
VARIABLES:	PREPARED BY:	
T/K = 298.15 $p_1/kPa = 101.325$	P. L. Long H. L. Clever	
EXPERIMENTAL VALUES:		-
Temperature Solvent Air t/°C T/K Volume Volume v/cm³ Absorbed v ₁ /cm³	Bunsen Ostwald Coefficient Coefficient a/cm ³ (STP)cm ⁻³ atm ⁻¹ L/cm ³ cm ⁻³	
25 298.15 99.54 0.51 49.54 0.27	0.0047 ^a 0.0051 ^a 0.0049 0.0053	
The solvent is a mixture of 800 g H ₂ O		
200 g Na _p	SO ₄ (anhydrous)	
2	, (Conc., 36 normal)	
-	4 (center, et normal)	
Thus the molality of the solution is		
m ₂ /mol kg	$^{-1} = 0.90 (H_2 SO_4)$	
m_/mol kg	$^{-1} = 1.76 (Na_2SO_4)$	
AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
The apparatus is described in detail in an earlier paper (1). The appara- tus consists of a gas buret, a	<pre>(1) Air. Source not given. Purity stated to be 99+ per ce</pre>	
pressure compensator, and a 200 cm ³		ent
bulb. The absorption bulb is attached	(2, 3) Sulfuric acid and sodium sulfate. Sources not given. Analytical grade.	ent
bulb. The absorption bulb is attached to a shaking mechanism.	sulfate. Sources not given.	ent
bulb. The absorption bulb is attached to a shaking mechanism. The solvent and the gas are placed in the absorption bulb. The bulb is shaken until equilibrium is reached.	sulfate. Sources not given. Analytical grade.	ent
bulb. The absorption bulb is attached to a shaking mechanism. The solvent and the gas are placed in the absorption bulb. The bulb is shaken until equilibrium is reached. The remaining gas is returned to the buret. The difference in the final and initial volumes is taken as the	sulfate. Sources not given. Analytical grade.	ent
bulb. The absorption bulb is attached to a shaking mechanism. The solvent and the gas are placed in the absorption bulb. The bulb is shaken until equilibrium is reached. The remaining gas is returned to the buret. The difference in the final and initial volumes is taken as the	sulfate. Sources not given. Analytical grade. (4) Water. Distilled.	ent
The solvent and the gas are placed in the absorption bulb. The bulb is shaken until equilibrium is reached. The remaining gas is returned to the buret. The difference in the final	<pre>sulfate. Sources not given. Analytical grade. (4) Water. Distilled. ESTIMATED ERROR: δα/α = ±0.02 (compilers)</pre>	≥nt
bulb. The absorption bulb is attached to a shaking mechanism. The solvent and the gas are placed in the absorption bulb. The bulb is shaken until equilibrium is reached. The remaining gas is returned to the buret. The difference in the final and initial volumes is taken as the	sulfate. Sources not given. Analytical grade. (4) Water. Distilled. ESTIMATED ERROR:	ent
bulb. The absorption bulb is attached to a shaking mechanism. The solvent and the gas are placed in the absorption bulb. The bulb is shaken until equilibrium is reached. The remaining gas is returned to the buret. The difference in the final and initial volumes is taken as the	<pre>sulfate. Sources not given. Analytical grade. (4) Water. Distilled. ESTIMATED ERROR: δα/α = ±0.02 (compilers) REFERENCES: 1. Kobe, K. A.; Williams, J. S. Ind. Eng. Chem., Anal. Ed.</pre>	∍nt

			• · · · · · · · · · · · · · · · · · · ·		
COMPONENTS:			ORIGINAL MEASUREMENTS:		
(1) Air (2) Carbon	diovide.co ··	124-38-01	Kobe, K. A.; Kenton,	F. H.	
	dioxide;CO ₂ ;		Ind. Eng. Chem., Anal	. Ed. 1938,	
	c acid;H ₂ SO ₄ ;		10, 76-7.	<u> </u>	
(4) SOATUM [7757-8	sulfate; Na ₂ S 2-6]	⁵⁰ ₄ ;			
	H ₂ 0; [7732-18	3-5]			
VARIABLES:			PREPARED BY:		
	= 298.15		P. L. Long		
<i>р₁/к</i> Ра	= 101.325		H. L. Cle	ever	
			1	<u></u>	
EXPERIMENTAL V Temperature	Gae	Solvent Air a	nd Bunsen	Ostwald	
+/°C 7/K	Composition volume	Volume CO,		Coefficient	
<i>c</i> / <i>c</i> 1/K		V/cm ³ Volum	e α/cm ³ (STP)cm ⁻³ atm ⁻¹	$L/cm^{3}cm^{-3}$	
	per cent	Absor			
		v _/c			
25 298.15	5% CO ₂	49.54 0.6	7 0.0124	0.0135	
	95% Air	49.54 0.6	7		
25 298.15	10% CO2	49.54 1.1	7 0.0215	0.0235	
	2 90% Air		6		
or 000 15				0 0445	
25 298.15	20% CO2			0.0447	
	80% Air	49.54 2.2	3		
			$-^{1} = 0.90 (H_2 SO_4)$ $-^{1} = 1.76 (Na_2 SO_4)$		
		AUXILIARY	INFORMATION		
in an earlie	us is describ	The appara-	SOURCE AND PURITY OF MATER (1,2) Air and carbon Source not give stated to be 99	dioxide. n. Purity	
pressure con	mpensator, an	$d a 200 \text{ cm}^3$		-	
bulb. The al	osorption bul	ury leveling b is attached	(3,4) Sulfuric acid a sulfate. Sourc	es not given.	
to a shaking	g mechanism.		Analytical grad	e.	
		are placed in	(5) Water. Distilled	•	
	ion bulb. The L equilibrium				
The remainin	ng gas is ret	urned to the			
	lifference in volumes is t		ESTIMATED ERROR:		
volume of ga		anen as the			
			$\delta \alpha/cm^3 = \pm 0.005 (a)$	authors)	
			DDDDDDU000		
			REFERENCES: 1. Kobe, K. A.; Will <i>Ind. Eng. Chem.</i> , <u>1935</u> , 7, 37.	iams, J. S. Anal. Ed.	
]		
			1		

	Iubilities 51
COMPONENTS: (1) Air	ORIGINAL MEASUREMENTS: Ijams, C. C.
(2) Alkanes; C_7H_{16} , C_8H_{18} , and $C_{10}H_{22}$	Ph.D. thesis, <u>1941</u> Vanderbilt University Nashville, TN
VARIABLES: T/K = 298.15	PREPARED BY:
P/kPa = 101.325	H. L. Clever
EXPERIMENTAL VALUES:	
Coeff:	sen Ostwald icient Coefficient xL
Heptane; C ₇ H ₁₆ 298.15 0.2	
Octane; C ₈ H ₁₈ ; 298.15 0.2	
2,2,4-Trimethy isooctane; C ₈ I	/lpentane or H ₁₈ ; [540-84-1]
298.15 0.2	226 0.247
Decane; C ₁₀ H ₂₂	; [124-18-5]
298.15 0.1	.65 0.180
The Ostwald coef calculated by th	ficient value was ne compiler.
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: A Van Slyke-Neill Manometric Apparatus manufactured by the Eimer and Amend Co. was used. The procedure of Van Slyke (1) for pure liquids was modified so that small solvent sample (2 cm ³) could	 SOURCE AND PURITY OF MATERIALS: (1) Air. Air Reduction Co. Purity 99.5 per cent. (2) Alkanes. Purified. Vapor pressure and boiling point also reported in the thesis.
be used with almost 100 per cent recovery of the solvent. An improved temperature control	
System was used.	ESTIMATED ERROR:
	δT/K = 0.05
	REFERENCES: 1. Van Slyke, D. D. <i>J. Biol. Chem.</i> <u>1939</u> , 130, 545.

Course and the second s				
COMPONENTS:		ORIGINAL MEASUREMENTS:		
(l) Air		Baldwin, R. R.; Daniel, S. G.		
(2) 2,2,4-Trimethylp isooctane; C ₈ H ₁₈	entane or ; [540-84-1]	J. Appl. Chem. <u>1952</u> , 2, 161-5.		
100000000, 08.18	,	J. Inst. Petrol., London <u>1953</u> , 39, 105-24.		
VARIABLES:		PREPARED BY:		
T/K = 293.1 $p_1/kPa = 101.3$	5 25	P. L. Long H. L. Clever		
EXPERIMENTAL VALUES:				
	T/K Buns Coeffi α/cm³(SI	$\begin{array}{llllllllllllllllllllllllllllllllllll$		
		240 0.258		
	AUX11.1 ARY	INFORMATION		
METHOD ADDADATIC ADDOCEDUDE				
METHOD/APPARATUS/PROCEDURE The liquid is deaerat through a continously vessel. The gas is pa liquid air trap to re carbon dioxide, then thermostated coil to the temperature of th then through the liqu saturation is reached	ed by passing it evacuated ssed through a move water and through a long bring the gas to be experiment, id until	 line. Dried and freed from CO₂. (2) 2,2,4-Trimethylpentane. Source not given. 		
The air-saturated lig and the gas is colled				
		ESTIMATED ERROR: $\delta p/p = \pm 0.01$ $\delta \alpha/\alpha = \pm 0.01$		
		REFERENCES:		

	Air Sol	ubilities 51
COMPONENTS:		ORIGINAL MEASUREMENTS:
(1) Air		Rupprecht, S. D.; Faeth, G. M.
(2) n-Dodecane; C ₁₂ H ₂₆	5; [112-40-3]	NASA CR <u>1981</u> , NASA-CR-3422, 111 pp.
	•	Chem. Abstr. 1981, 95, 153333x.
VARIABLES:		PREPARED BY:
T/K = 249 - 373		
P/MPa = 1-10		R. Battino
EXPERIMENTAL VALUES:	······································	
	т/к р ^а /	MPa x ₁
-	-, ,	
	248.82 l. 373.15 l.	
	297.40 2.	
	373.15 2. 297.65 4.	07 0.0330 82 0.0722
	373.15 4.	82 0.0768
	297.15 10. 373.15 10.	
-		
	^a Total pressur	_
	Total pressur	₽•
		•
······································		INFORMATION
METHOD/APPARATUS/PROCEDURE: A 1000 cm ³ chamber is		SOURCE AND PURITY OF MATERIALS:
ca. 500 cm ³ of liquid.	Gas is added to	
the desired pressure.	The chamber is	No dotaile given
agitated to attain equ Temperatures are read	via thermo-	No details given.
couples and pressures	via Heisse	
bourdon tube gauges. is removed and allowed	A liquid sample to de-pressur-	
ize at atmospheric pre	ssure.	
Solubility is calculat measurement of liquid		
volumes of the de-pres	surized	
sample. Residual diss considered to be negli		ESTIMATED ERROR:
,	5	$\delta x_1/x_1 = \pm 0.03$, compiler's estimate
		REFERENCES:

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Air (2) Aliphatic alcohols:</pre>	Ijams, C. C. Ph. D. thesis, <u>1941</u>
	Vanderbilt University
1-Heptanol; C ₇ H ₁₆ O; [111-70-6] 1-Octanol; C ₈ H ₁₈ O; [111-87-5]	Nashville, TN, USA
VARIABLES:	PREPARED BY:
T/K = 298.15	H. L. Clever
p/kPa = 101.325	
EXPERIMENTAL VALUES:	I
T/K Buns Coeff α/cm ³ (St	Sen Ostwald Lcient Coefficient TP) cm ⁻¹ atm ⁻¹ $L/cm^3 cm^{-3}$
1-Heptanol	
298.15 0.1	0.121
l-Octanol	
298.15 0.1	0.118
AUXILIARY	
METHOD/APPARATUS/PROCEDURE:	INFORMATION
A Van Slyke-Neill Manometric Apparatus manufactired by the Eimer	SOURCE AND PURITY OF MATERIALS: (1) Air. Air Reduction Co.
A Van Slyke-Neill Manometric	 SOURCE AND PURITY OF MATERIALS: (1) Air. Air Reduction Co. Purity 99.5 per cent. (2) Aliphatic alcohols. Purified. Vapor pressure and boiling
A Van Slyke-Neill Manometric Apparatus manufactired by the Eimer and Amend Co. was used. The procedure of Van Slyke (1) for pure liquids was modified so that the small solvent sample (2 cm ³) could be used with almost 100 per	 SOURCE AND PURITY OF MATERIALS: (1) Air. Air Reduction Co. Purity 99.5 per cent. (2) Aliphatic alcohols. Purified. Vapor pressure and boiling point also reported in the thesis.
A Van Slyke-Neill Manometric Apparatus manufactired by the Eimer and Amend Co. was used. The procedure of Van Slyke (1) for pure liquids was modified so that the small solvent sample (2 cm ³) could be used with almost 100 per cent recovery of the solvent. An improved temperature control	 SOURCE AND PURITY OF MATERIALS: (1) Air. Air Reduction Co. Purity 99.5 per cent. (2) Aliphatic alcohols. Purified. Vapor pressure and boiling
A Van Slyke-Neill Manometric Apparatus manufactired by the Eimer and Amend Co. was used. The procedure of Van Slyke (1) for pure liquids was modified so that the small solvent sample (2 cm ³) could be used with almost 100 per cent recovery of the solvent. An improved temperature control	 SOURCE AND PURITY OF MATERIALS: (1) Air. Air Reduction Co. Purity 99.5 per cent. (2) Aliphatic alcohols. Purified. Vapor pressure and boiling point also reported in the thesis.
A Van Slyke-Neill Manometric Apparatus manufactired by the Eimer and Amend Co. was used. The procedure of Van Slyke (1) for pure liquids was modified so that the small solvent sample (2 cm ³) could be used with almost 100 per cent recovery of the solvent. An improved temperature control	<pre>SOURCE AND PURITY OF MATERIALS: (1) Air. Air Reduction Co. Purity 99.5 per cent. (2) Aliphatic alcohols. Purified. Vapor pressure and boiling point also reported in the thesis. ESTIMATED ERROR:</pre>

Air Sol	ubilities 5
COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Air	Christoff, A.
<pre>(2) 1,1'-Oxybisethane or diethy1 ether; C₄H₁₀O; [60-29-7]</pre>	Z. Phys. Chem. <u>1912</u> , 79, 456-60.
VARIABLES: T/K = 273.15 - 288.15 p/kPa = Atmospheric	PREPARED BY: H. L. Clever
EXPERIMENTAL VALUES:	I
Temperature t/°C T/K	Ostwald Coefficient $L/cm^3 cm^{-3}$
0 273.15 10 283.15 15 288.15	0.290 0.287 0.286
AUXILIARY METHOD/APPARATUS/PROCEDURE: The apparatus is a modified Ostwald apparatus described by Just (1) and modified by Skirrow (2). The apparatus consists of a thermostated gas buret and an absorption flask.	INFORMATION SOURCE AND PURITY OF MATERIALS: (1) Air. Stated to be dry air. (2) Diethtylether. Merck and Co. Stated to be pure and anhydrous.
The modification involes the use of vapor free gas in the gas buret. A correction is made for the vapor pressure of the liquid. A steel capillary tube with a stopcock, which prevents the gas and the liquid vapor from mixing in the buret, is used to connect the absorption flask and the gas buret.	ESTIMATED ERROR: $\delta L/L = \pm 0.03$

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Air	Ijams, C. C.
(2) 1-Bromoheptane; C ₇ H ₁₅ Br;	Ph.D. thesis, <u>1941</u>
[629-04-9]	Vanderbilt University
	Nashville, TN
1	
	,
VARIABLES:	PREPARED BY:
T/K = 298.15	
P/kPa = 101.325	H. L. Clever
EXPERIMENTAL VALUES:	
EXPERIMENTAL VALUES:	
T/K Bunse	n Ostwald
Coeffic	ient Coefficient
α	L
298.15 0.12	0.132
	· · · · · · · · · · · · · · · · · · ·
The Ostwald coeff	
calculated by the	compiler.
	• ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ
······	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
1	
A Van Slyke-Neill Manometric Apparatus manufactured by the Eimer	(1) Air. Air Reduction Co. Purity 99.5 per cent.
and Amend Co. was used.	Fully 55.5 per cent.
and manena co, was used.	(2) 1-Bromoheptane. Purified.
The procedure of Van Slyke (1) for	Vapor pressure and boiling
pure liquids was modified so that	point also reported
small solvent sample (2 cm ³) could	in the thesis.
be used with almost 100 per cent	
recovery of the solvent.	
An improved temperature control	
system was used.	POTIMET PROD
	ESTIMATED ERROR:
	$\delta T/K = 0.05$
1	
	REFERENCES :
1	 Van Slyke, D. D. J. Biol. Chem. <u>1939</u>, 130, 545.
	0. DUUL. OHEIII. 1335, 100, 343.
1	
1	
]
1	• • • • •

COMPONENTS:		
	ORIGINAL MEASUREMENTS:	
<pre>(1) Air (2) l-Bromo-1,1,2,2,3,3,4,4,5,6,6,6-</pre>	Wesseler, E. P.; Iltis Clark, L. C. Jr.	, R.;
dodecafluoro-5-(trifluoromethyl)-	J. Fluorine Chem., 1977	, 9, 137-46.
hexane; $C_7 F_{15} Br;$		
[50279-29-3]		
VARIABLES:	PREPARED BY:	
T/K = 298	C. L. Young	
EXPERIMENTAL VALUES:		
	+ +	
T/K Solubility [†] of air Solubilit		
S _{air}	s _{O₂}	S _{N2}
298.15 36.0	10.2	25.8
298.15 50.0	10.2	23.0
		•
+		
[†] volume of gas absorbed (meas	ured at atmospheric pressu:	
		re)
per 100 ml of fluorocarbon.		re)
	(Total pressure was the	
per 100 ml of fluorocarbon.	(Total pressure was the	
per 100 ml of fluorocarbon.	(Total pressure was the	
per 100 ml of fluorocarbon.	(Total pressure was the	
per 100 ml of fluorocarbon.	(Total pressure was the	
per 100 ml of fluorocarbon. barometric pressure, assumed	(Total pressure was the	
per 100 ml of fluorocarbon. barometric pressure, assumed AUXILIARY	(Total pressure was the to be 1 atmosphere by the INFORMATION	compiler.)
per 100 ml of fluorocarbon. barometric pressure, assumed	(Total pressure was the to be l atmosphere by the	compiler.)
per 100 ml of fluorocarbon. barometric pressure, assumed AUXILIARY METHOD/APPARATUS/PROCEDURE: Air bubbled through fluorocarbon in	(Total pressure was the to be 1 atmosphere by the INFORMATION SOURCE AND PURITY OF MATERIALS:	compiler.)
per 100 ml of fluorocarbon. barometric pressure, assumed AUXILIARY METHOD/APPARATUS/PROCEDURE:	(Total pressure was the to be 1 atmosphere by the INFORMATION SOURCE AND PURITY OF MATERIALS (1) No details given.	compiler.)
per 100 ml of fluorocarbon. barometric pressure, assumed AUXILIARY METHOD/APPARATUS/PROCEDURE: Air bubbled through fluorocarbon in	(Total pressure was the to be 1 atmosphere by the INFORMATION SOURCE AND PURITY OF MATERIALS: (1) No details given. (2) Pennwalt Corp. samp.	compiler.)
per 100 ml of fluorocarbon. barometric pressure, assumed AUXILIARY METHOD/APPARATUS/PROCEDURE: Air bubbled through fluorocarbon in stirred cell. When saturation	(Total pressure was the to be 1 atmosphere by the INFORMATION SOURCE AND PURITY OF MATERIALS (1) No details given.	compiler.)
per 100 ml of fluorocarbon. barometric pressure, assumed AUXILIARY METHOD/APPARATUS/PROCEDURE: Air bubbled through fluorocarbon in stirred cell. When saturation achieved samples of liquid removed with hypodermic Precision Sampling	(Total pressure was the to be 1 atmosphere by the INFORMATION SOURCE AND PURITY OF MATERIALS: (1) No details given. (2) Pennwalt Corp. samp.	compiler.)
per 100 ml of fluorocarbon. barometric pressure, assumed AUXILIARY METHOD/APPARATUS/PROCEDURE: Air bubbled through fluorocarbon in stirred cell. When saturation achieved samples of liquid removed with hypodermic Precision Sampling 50 µl Pressure Lok syringe. Five	(Total pressure was the to be 1 atmosphere by the INFORMATION SOURCE AND PURITY OF MATERIALS: (1) No details given. (2) Pennwalt Corp. samp.	compiler.)
per 100 ml of fluorocarbon. barometric pressure, assumed AUXILIARY METHOD/APPARATUS/PROCEDURE: Air bubbled through fluorocarbon in stirred cell. When saturation achieved samples of liquid removed with hypodermic Precision Sampling 50 µl Pressure Lok syringe. Five samples taken and chromatographed.	(Total pressure was the to be 1 atmosphere by the INFORMATION SOURCE AND PURITY OF MATERIALS: (1) No details given. (2) Pennwalt Corp. samp.	compiler.)
per 100 ml of fluorocarbon. barometric pressure, assumed AUXILIARY METHOD/APPARATUS/PROCEDURE: Air bubbled through fluorocarbon in stirred cell. When saturation achieved samples of liquid removed with hypodermic Precision Sampling 50 µl Pressure Lok syringe. Five samples taken and chromatographed. Average peak heights compared with	(Total pressure was the to be 1 atmosphere by the INFORMATION SOURCE AND PURITY OF MATERIALS: (1) No details given. (2) Pennwalt Corp. samp boiling pt. 120 °C.	compiler.)
per 100 ml of fluorocarbon. barometric pressure, assumed AUXILIARY METHOD/APPARATUS/PROCEDURE: Air bubbled through fluorocarbon in stirred cell. When saturation achieved samples of liquid removed with hypodermic Precision Sampling 50 µl Pressure Lok syringe. Five samples taken and chromatographed. Average peak heights compared with those for injections of known amounts	(Total pressure was the to be 1 atmosphere by the INFORMATION SOURCE AND PURITY OF MATERIALS: (1) No details given. (2) Pennwalt Corp. samp boiling pt. 120 °C.	compiler.)
per 100 ml of fluorocarbon. barometric pressure, assumed AUXILIARY METHOD/APPARATUS/PROCEDURE: Air bubbled through fluorocarbon in stirred cell. When saturation achieved samples of liquid removed with hypodermic Precision Sampling 50 µl Pressure Lok syringe. Five samples taken and chromatographed. Average peak heights compared with those for injections of known amounts of air. Chromatographic column	(Total pressure was the to be 1 atmosphere by the INFORMATION SOURCE AND PURITY OF MATERIALS: (1) No details given. (2) Pennwalt Corp. samp boiling pt. 120 °C.	compiler.)
per 100 ml of fluorocarbon. barometric pressure, assumed AUXILIARY METHOD/APPARATUS/PROCEDURE: Air bubbled through fluorocarbon in stirred cell. When saturation achieved samples of liquid removed with hypodermic Precision Sampling 50 µl Pressure Lok syringe. Five samples taken and chromatographed. Average peak heights compared with those for injections of known amounts of air. Chromatographic column consisted of 13X molecular sieve at	(Total pressure was the to be 1 atmosphere by the INFORMATION SOURCE AND PURITY OF MATERIALS: (1) No details given. (2) Pennwalt Corp. samp boiling pt. 120 °C.	compiler.)
per 100 ml of fluorocarbon. barometric pressure, assumed AUXILIARY METHOD/APPARATUS/PROCEDURE: Air bubbled through fluorocarbon in stirred cell. When saturation achieved samples of liquid removed with hypodermic Precision Sampling 50 µl Pressure Lok syringe. Five samples taken and chromatographed. Average peak heights compared with those for injections of known amounts of air. Chromatographic column	(Total pressure was the to be 1 atmosphere by the INFORMATION SOURCE AND PURITY OF MATERIALS: (1) No details given. (2) Pennwalt Corp. samp boiling pt. 120 °C.	compiler.)
per 100 ml of fluorocarbon. barometric pressure, assumed AUXILIARY METHOD/APPARATUS/PROCEDURE: Air bubbled through fluorocarbon in stirred cell. When saturation achieved samples of liquid removed with hypodermic Precision Sampling 50 µl Pressure Lok syringe. Five samples taken and chromatographed. Average peak heights compared with those for injections of known amounts of air. Chromatographic column consisted of 13X molecular sieve at	(Total pressure was the to be 1 atmosphere by the INFORMATION SOURCE AND PURITY OF MATERIALS: (1) No details given. (2) Pennwalt Corp. samp boiling pt. 120 °C.	compiler.)
per 100 ml of fluorocarbon. barometric pressure, assumed AUXILIARY METHOD/APPARATUS/PROCEDURE: Air bubbled through fluorocarbon in stirred cell. When saturation achieved samples of liquid removed with hypodermic Precision Sampling 50 µl Pressure Lok syringe. Five samples taken and chromatographed. Average peak heights compared with those for injections of known amounts of air. Chromatographic column consisted of 13X molecular sieve at	<pre>(Total pressure was the to be l atmosphere by the INFORMATION SOURCE AND PURITY OF MATERIALS; (1) No details given. (2) Pennwalt Corp. samp: boiling pt. 120 °C. ESTIMATED ERROR:</pre>	compiler.)
per 100 ml of fluorocarbon. barometric pressure, assumed AUXILIARY METHOD/APPARATUS/PROCEDURE: Air bubbled through fluorocarbon in stirred cell. When saturation achieved samples of liquid removed with hypodermic Precision Sampling 50 µl Pressure Lok syringe. Five samples taken and chromatographed. Average peak heights compared with those for injections of known amounts of air. Chromatographic column consisted of 13X molecular sieve at	<pre>(Total pressure was the to be l atmosphere by the INFORMATION SOURCE AND PURITY OF MATERIALS; (1) No details given. (2) Pennwalt Corp. samp: boiling pt. 120 °C. ESTIMATED ERROR:</pre>	compiler.)
per 100 ml of fluorocarbon. barometric pressure, assumed AUXILIARY METHOD/APPARATUS/PROCEDURE: Air bubbled through fluorocarbon in stirred cell. When saturation achieved samples of liquid removed with hypodermic Precision Sampling 50 µl Pressure Lok syringe. Five samples taken and chromatographed. Average peak heights compared with those for injections of known amounts of air. Chromatographic column consisted of 13X molecular sieve at	<pre>(Total pressure was the to be l atmosphere by the INFORMATION SOURCE AND PURITY OF MATERIALS; (1) No details given. (2) Pennwalt Corp. samp: boiling pt. 120 °C. ESTIMATED ERROR:</pre>	compiler.)
per 100 ml of fluorocarbon. barometric pressure, assumed AUXILIARY METHOD/APPARATUS/PROCEDURE: Air bubbled through fluorocarbon in stirred cell. When saturation achieved samples of liquid removed with hypodermic Precision Sampling 50 µl Pressure Lok syringe. Five samples taken and chromatographed. Average peak heights compared with those for injections of known amounts of air. Chromatographic column consisted of 13X molecular sieve at	<pre>(Total pressure was the to be l atmosphere by the INFORMATION SOURCE AND PURITY OF MATERIALS; (1) No details given. (2) Pennwalt Corp. samp: boiling pt. 120 °C. ESTIMATED ERROR:</pre>	compiler.)

524 Nitrogen Solublin		
COMPONENTS:	ORIGINAL MEASUREMENTS:	
(1) Air	Wesseler, E. P.; Ilt:	is, R.;
(2) 1-Chloro-1,1,2,2,3,3,4,4,5,6,6,6-	Clark, L. C. Jr.	
dodecafluoro-5-(trifluoromethyl)-	J. Fluorine Chem., <u>19</u>	<u>77</u> , 9, 137-46.
hexane; C ₇ F ₁₅ Cl; [63243-37-8]		
VARIABLES:	PREPARED BY:	
T/K = 298	C. L. You	na
EXPERIMENTAL VALUES:		
T/K Solubility of air Solubility	† v of oxvgen Solubilit	v of nitrogen
	S _{O2}	S _{N2}
S _{air}	-O ₂	N 2
298.15 37.4	10.5	26.9
+		
† volume of gas absorbed (meas		
⁺ volume of gas absorbed (meas per 100 ml of fluorocarbon.		
	(Total pressure was the	e
per 100 ml of fluorocarbon.	(Total pressure was the	e
per 100 ml of fluorocarbon.	(Total pressure was the	е
per 100 ml of fluorocarbon.	(Total pressure was the	е
per 100 ml of fluorocarbon.	(Total pressure was the	е
per 100 ml of fluorocarbon. barometric pressure, assumed	(Total pressure was the to be l atmosphere by the total pressure was	e
per 100 ml of fluorocarbon. barometric pressure, assumed AUXILIARY	(Total pressure was the to be 1 atmosphere by t) INFORMATION	e he compiler.)
per 100 ml of fluorocarbon. barometric pressure, assumed AUXILIARY METHOD/APPARATUS/PROCEDURE:	(Total pressure was the to be l atmosphere by the total pressure was	e he compiler.)
per 100 ml of fluorocarbon. barometric pressure, assumed AUXILIARY METHOD/APPARATUS/PROCEDURE: Air bubbled through fluorocarbon in	(Total pressure was the to be 1 atmosphere by the INFORMATION SOURCE AND PURITY OF MATERIA	e he compiler.)
per 100 ml of fluorocarbon. barometric pressure, assumed AUXILIARY METHOD/APPARATUS/PROCEDURE: Air bubbled through fluorocarbon in stirred cell. When saturation	(Total pressure was the to be 1 atmosphere by t) INFORMATION SOURCE AND PURITY OF MATERIA (1) No details given.	e he compiler.) LS:
per 100 ml of fluorocarbon. barometric pressure, assumed AUXILIARY METHOD/APPARATUS/PROCEDURE: Air bubbled through fluorocarbon in	(Total pressure was the to be 1 atmosphere by t) INFORMATION SOURCE AND PURITY OF MATERIA	e he compiler.) LS:
per 100 ml of fluorocarbon. barometric pressure, assumed AUXILIARY METHOD/APPARATUS/PROCEDURE: Air bubbled through fluorocarbon in stirred cell. When saturation	(Total pressure was the to be 1 atmosphere by t) INFORMATION SOURCE AND PURITY OF MATERIA (1) No details given.	e he compiler.) LS: mple,
per 100 ml of fluorocarbon. barometric pressure, assumed AUXILIARY METHOD/APPARATUS/PROCEDURE: Air bubbled through fluorocarbon in stirred cell. When saturation achieved samples of liquid removed	(Total pressure was the to be 1 atmosphere by the INFORMATION SOURCE AND PURITY OF MATERIA (1) No details given. (2) Pennwalt Corp. sat	e he compiler.) LS: mple,
per 100 ml of fluorocarbon. barometric pressure, assumed AUXILIARY METHOD/APPARATUS/PROCEDURE: Air bubbled through fluorocarbon in stirred cell. When saturation achieved samples of liquid removed with hypodermic Precision Sampling	(Total pressure was the to be 1 atmosphere by the INFORMATION SOURCE AND PURITY OF MATERIA (1) No details given. (2) Pennwalt Corp. sat	e he compiler.) LS: mple,
per 100 ml of fluorocarbon. barometric pressure, assumed AUXILIARY METHOD/APPARATUS/PROCEDURE: Air bubbled through fluorocarbon in stirred cell. When saturation achieved samples of liquid removed with hypodermic Precision Sampling 50 µl Pressure Lok syringe. Five samples taken and chromatographed.	(Total pressure was the to be 1 atmosphere by the INFORMATION SOURCE AND PURITY OF MATERIA (1) No details given. (2) Pennwalt Corp. sat	e he compiler.) LS: mple,
per 100 ml of fluorocarbon. barometric pressure, assumed AUXILIARY METHOD/APPARATUS/PROCEDURE: Air bubbled through fluorocarbon in stirred cell. When saturation achieved samples of liquid removed with hypodermic Precision Sampling 50 µl Pressure Lok syringe. Five samples taken and chromatographed. Average peak heights compared with	(Total pressure was the to be 1 atmosphere by the INFORMATION SOURCE AND PURITY OF MATERIA (1) No details given. (2) Pennwalt Corp. sate boiling pt. 108 °	e he compiler.) LS: mple,
per 100 ml of fluorocarbon. barometric pressure, assumed AUXILIARY METHOD/APPARATUS/PROCEDURE: Air bubbled through fluorocarbon in stirred cell. When saturation achieved samples of liquid removed with hypodermic Precision Sampling 50 µl Pressure Lok syringe. Five samples taken and chromatographed. Average peak heights compared with those for injections of known amounts	(Total pressure was the to be 1 atmosphere by the INFORMATION SOURCE AND PURITY OF MATERIA (1) No details given. (2) Pennwalt Corp. sate boiling pt. 108 °	e he compiler.) LS: mple,
per 100 ml of fluorocarbon. barometric pressure, assumed AUXILIARY METHOD/APPARATUS/PROCEDURE: Air bubbled through fluorocarbon in stirred cell. When saturation achieved samples of liquid removed with hypodermic Precision Sampling 50 µl Pressure Lok syringe. Five samples taken and chromatographed. Average peak heights compared with those for injections of known amounts of air. Chromatographic column	(Total pressure was the to be 1 atmosphere by the INFORMATION SOURCE AND PURITY OF MATERIA (1) No details given. (2) Pennwalt Corp. sate boiling pt. 108 ° ESTIMATED ERROR:	e he compiler.) LS: mple, C.
per 100 ml of fluorocarbon. barometric pressure, assumed AUXILIARY METHOD/APPARATUS/PROCEDURE: Air bubbled through fluorocarbon in stirred cell. When saturation achieved samples of liquid removed with hypodermic Precision Sampling 50 µl Pressure Lok syringe. Five samples taken and chromatographed. Average peak heights compared with those for injections of known amounts of air. Chromatographic column consisted of 13X molecular sieve at	(Total pressure was the to be 1 atmosphere by the INFORMATION SOURCE AND PURITY OF MATERIA (1) No details given. (2) Pennwalt Corp. sate boiling pt. 108 °	e he compiler.) LS: mple, C.
per 100 ml of fluorocarbon. barometric pressure, assumed AUXILIARY METHOD/APPARATUS/PROCEDURE: Air bubbled through fluorocarbon in stirred cell. When saturation achieved samples of liquid removed with hypodermic Precision Sampling 50 µl Pressure Lok syringe. Five samples taken and chromatographed. Average peak heights compared with those for injections of known amounts of air. Chromatographic column	(Total pressure was the to be 1 atmosphere by the INFORMATION SOURCE AND PURITY OF MATERIA (1) No details given. (2) Pennwalt Corp. sate boiling pt. 108 ° ESTIMATED ERROR:	e he compiler.) LS: mple, C.
per 100 ml of fluorocarbon. barometric pressure, assumed AUXILIARY METHOD/APPARATUS/PROCEDURE: Air bubbled through fluorocarbon in stirred cell. When saturation achieved samples of liquid removed with hypodermic Precision Sampling 50 µl Pressure Lok syringe. Five samples taken and chromatographed. Average peak heights compared with those for injections of known amounts of air. Chromatographic column consisted of 13X molecular sieve at	<pre>(Total pressure was the to be l atmosphere by t) INFORMATION SOURCE AND PURITY OF MATERIA (1) No details given. (2) Pennwalt Corp. sat boiling pt. 108 ° boiling pt. 108 ° K = ±0.3; δS = ±2</pre>	e he compiler.) LS: mple, C.
per 100 ml of fluorocarbon. barometric pressure, assumed AUXILIARY METHOD/APPARATUS/PROCEDURE: Air bubbled through fluorocarbon in stirred cell. When saturation achieved samples of liquid removed with hypodermic Precision Sampling 50 µl Pressure Lok syringe. Five samples taken and chromatographed. Average peak heights compared with those for injections of known amounts of air. Chromatographic column consisted of 13X molecular sieve at	(Total pressure was the to be 1 atmosphere by the INFORMATION SOURCE AND PURITY OF MATERIA (1) No details given. (2) Pennwalt Corp. sate boiling pt. 108 ° ESTIMATED ERROR:	e he compiler.) LS: mple, C.
per 100 ml of fluorocarbon. barometric pressure, assumed AUXILIARY METHOD/APPARATUS/PROCEDURE: Air bubbled through fluorocarbon in stirred cell. When saturation achieved samples of liquid removed with hypodermic Precision Sampling 50 µl Pressure Lok syringe. Five samples taken and chromatographed. Average peak heights compared with those for injections of known amounts of air. Chromatographic column consisted of 13X molecular sieve at	<pre>(Total pressure was the to be l atmosphere by t) INFORMATION SOURCE AND PURITY OF MATERIA (1) No details given. (2) Pennwalt Corp. sat boiling pt. 108 ° boiling pt. 108 ° K = ±0.3; δS = ±2</pre>	e he compiler.) LS: mple, C.
per 100 ml of fluorocarbon. barometric pressure, assumed AUXILIARY METHOD/APPARATUS/PROCEDURE: Air bubbled through fluorocarbon in stirred cell. When saturation achieved samples of liquid removed with hypodermic Precision Sampling 50 µl Pressure Lok syringe. Five samples taken and chromatographed. Average peak heights compared with those for injections of known amounts of air. Chromatographic column consisted of 13X molecular sieve at	<pre>(Total pressure was the to be l atmosphere by t) INFORMATION SOURCE AND PURITY OF MATERIA (1) No details given. (2) Pennwalt Corp. sat boiling pt. 108 ° boiling pt. 108 ° K = ±0.3; δS = ±2</pre>	e he compiler.) LS: mple, C.
per 100 ml of fluorocarbon. barometric pressure, assumed AUXILIARY METHOD/APPARATUS/PROCEDURE: Air bubbled through fluorocarbon in stirred cell. When saturation achieved samples of liquid removed with hypodermic Precision Sampling 50 µl Pressure Lok syringe. Five samples taken and chromatographed. Average peak heights compared with those for injections of known amounts of air. Chromatographic column consisted of 13X molecular sieve at	<pre>(Total pressure was the to be l atmosphere by t) INFORMATION SOURCE AND PURITY OF MATERIA (1) No details given. (2) Pennwalt Corp. sat boiling pt. 108 ° boiling pt. 108 ° Source and the sate boiling pt. 108 °</pre>	e he compiler.) LS: mple, C.
per 100 ml of fluorocarbon. barometric pressure, assumed AUXILIARY METHOD/APPARATUS/PROCEDURE: Air bubbled through fluorocarbon in stirred cell. When saturation achieved samples of liquid removed with hypodermic Precision Sampling 50 µl Pressure Lok syringe. Five samples taken and chromatographed. Average peak heights compared with those for injections of known amounts of air. Chromatographic column consisted of 13X molecular sieve at	<pre>(Total pressure was the to be l atmosphere by t) INFORMATION SOURCE AND PURITY OF MATERIA (1) No details given. (2) Pennwalt Corp. sat boiling pt. 108 ° boiling pt. 108 ° Source and the sate boiling pt. 108 °</pre>	e he compiler.) LS: mple, C.

,

Air Solu	ıbilities	52
COMPONENTS:	ORIGINAL MEASUREMENTS:	<u> </u>
(1) Air	Wesseler, E. P.; Iltis, R.;	
(2) 1-Bromo-1,1,2,2,3,3,4,4,5,5,6,6,-	Clark, L. C. Jr.	
7,7,8,8,8-heptadecafluorooctane	J. Fluorine Chem., 1977, 9,	137-46.
(Perfluorooctylbromide); C ₈ F ₁₇ Br; [423-55-2]		
VARIABLES:	PREPARED BY:	
T/K = 298	TREFACED DT.	
	C. L. Young	
EXPERIMENTAL VALUES:		
	,	
T/K Solubility [†] of air Solubilit	$\mathtt{y}^{ op}$ of oxygen Solubility $^{ op}$ of	nitroge
S _{air}	s ₀₂ s _{N2}	
5		
298.15 34.1 [§]	9.8 24.	3
[§] there is a typographical	error in the original paper.	
per 100 ml of fluorocarbo	easured at atmospheric pressur n. (Total pressure was the med to be 1 atmosphere by the	e).
per 100 ml of fluorocarbo barometric pressure, assu compiler.)	n. (Total pressure was the	e).
per 100 ml of fluorocarbo barometric pressure, assu compiler.)	n. (Total pressure was the med to be 1 atmosphere by the	e).
METHOD /APPARATUS/PROCEDURE:	n. (Total pressure was the med to be 1 atmosphere by the INFORMATION SOURCE AND PURITY OF MATERIALS:	e).
METHOD/APPARATUS/PROCEDURE: Air bubbled through fluorocarbon in	n. (Total pressure was the med to be 1 atmosphere by the INFORMATION SOURCE AND PURITY OF MATERIALS:	e).
METHOD/APPARATUS/PROCEDURE: Air bubbled through fluorocarbon in stirred cell. When saturation	n. (Total pressure was the med to be 1 atmosphere by the INFORMATION SOURCE AND PURITY OF MATERIALS: (1) No details given. (2) 3M sample, boiling pt.	e).
METHOD /APPARATUS/PROCEDURE: Air bubbled through fluorocarbon in stirred cell. When saturation achieved samples of liquid removed	n. (Total pressure was the med to be 1 atmosphere by the INFORMATION SOURCE AND PURITY OF MATERIALS: (1) No details given.	e).
METHOD/APPARATUS/PROCEDURE: Air bubbled through fluorocarbon in stirred cell. When saturation achieved samples of liquid removed with hypodermic Precision Sampling	n. (Total pressure was the med to be 1 atmosphere by the INFORMATION SOURCE AND PURITY OF MATERIALS: (1) No details given. (2) 3M sample, boiling pt.	e).
METHOD/APPARATUS/PROCEDURE: Air bubbled through fluorocarbon in stirred cell. When saturation achieved samples of liquid removed with hypodermic Precision Sampling 50 µl Pressure Lok syringe. Five	n. (Total pressure was the med to be 1 atmosphere by the INFORMATION SOURCE AND PURITY OF MATERIALS: (1) No details given. (2) 3M sample, boiling pt.	e).
METHOD/APPARATUS/PROCEDURE: Air bubbled through fluorocarbon in stirred cell. When saturation achieved samples of liquid removed with hypodermic Precision Sampling 50 µl Pressure Lok syringe. Five samples taken and chromatographed.	n. (Total pressure was the med to be 1 atmosphere by the INFORMATION SOURCE AND PURITY OF MATERIALS: (1) No details given. (2) 3M sample, boiling pt.	e).
METHOD/APPARATUS/PROCEDURE: Air bubbled through fluorocarbon in stirred cell. When saturation achieved samples of liquid removed with hypodermic Precision Sampling 50 µl Pressure Lok syringe. Five samples taken and chromatographed. Average peak heights compared with	n. (Total pressure was the med to be 1 atmosphere by the INFORMATION SOURCE AND PURITY OF MATERIALS: (1) No details given. (2) 3M sample, boiling pt. 140.5 °C.	e).
<pre>volume of gas absorbed (m per 100 ml of fluorocarbo barometric pressure, assu compiler.) AUXILIARY METHOD/APPARATUS/PROCEDURE: Air bubbled through fluorocarbon in stirred cell. When saturation achieved samples of liquid removed with hypodermic Precision Sampling 50 µℓ Pressure Lok syringe. Five samples taken and chromatographed. Average peak heights compared with those for injections of known amounts</pre>	n. (Total pressure was the med to be 1 atmosphere by the INFORMATION SOURCE AND PURITY OF MATERIALS: (1) No details given. (2) 3M sample, boiling pt. 140.5 °C.	e) -
<pre>volume of gas absorbed (m per 100 ml of fluorocarbo barometric pressure, assu compiler.) AUXILIARY METHOD/APPARATUS/PROCEDURE: Air bubbled through fluorocarbon in stirred cell. When saturation achieved samples of liquid removed with hypodermic Precision Sampling 50 µl Pressure Lok syringe. Five samples taken and chromatographed. Average peak heights compared with those for injections of known amounts of air. Chromatographic column</pre>	n. (Total pressure was the med to be 1 atmosphere by the INFORMATION SOURCE AND PURITY OF MATERIALS: (1) No details given. (2) 3M sample, boiling pt. 140.5 °C.	e)
<pre>volume of gas absorbed (m per 100 ml of fluorocarbo barometric pressure, assu compiler.) AUXILIARY METHOD/APPARATUS/PROCEDURE: Air bubbled through fluorocarbon in stirred cell. When saturation achieved samples of liquid removed with hypodermic Precision Sampling 50 µl Pressure Lok syringe. Five samples taken and chromatographed. Average peak heights compared with those for injections of known amounts of air. Chromatographic column consisted of 13X molecular sieve at</pre>	n. (Total pressure was the med to be 1 atmosphere by the INFORMATION SOURCE AND PURITY OF MATERIALS: (1) No details given. (2) 3M sample, boiling pt. 140.5 °C.	e) .
<pre>volume of gas absorbed (m per 100 ml of fluorocarbo barometric pressure, assu compiler.) AUXILIARY METHOD/APPARATUS/PROCEDURE: Air bubbled through fluorocarbon in stirred cell. When saturation achieved samples of liquid removed with hypodermic Precision Sampling 50 µl Pressure Lok syringe. Five samples taken and chromatographed. Average peak heights compared with those for injections of known amounts of air. Chromatographic column</pre>	n. (Total pressure was the med to be 1 atmosphere by the INFORMATION SOURCE AND PURITY OF MATERIALS: (1) No details given. (2) 3M sample, boiling pt. 140.5 °C. ESTIMATED ERROR:	e).
<pre>volume of gas absorbed (m per 100 ml of fluorocarbo barometric pressure, assu compiler.) AUXILIARY METHOD/APPARATUS/PROCEDURE: Air bubbled through fluorocarbon in stirred cell. When saturation achieved samples of liquid removed with hypodermic Precision Sampling 50 µl Pressure Lok syringe. Five samples taken and chromatographed. Average peak heights compared with those for injections of known amounts of air. Chromatographic column consisted of 13X molecular sieve at</pre>	<pre>n. (Total pressure was the med to be 1 atmosphere by the INFORMATION SOURCE AND PURITY OF MATERIALS: (1) No details given. (2) 3M sample, boiling pt. 140.5 °C. ESTIMATED ERROR: δT/K = ±0.3; δS = ±2%.</pre>	e)
<pre>volume of gas absorbed (m per 100 ml of fluorocarbo barometric pressure, assu compiler.) AUXILIARY METHOD/APPARATUS/PROCEDURE: Air bubbled through fluorocarbon in stirred cell. When saturation achieved samples of liquid removed with hypodermic Precision Sampling 50 µl Pressure Lok syringe. Five samples taken and chromatographed. Average peak heights compared with those for injections of known amounts of air. Chromatographic column consisted of 13X molecular sieve at</pre>	n. (Total pressure was the med to be 1 atmosphere by the INFORMATION SOURCE AND PURITY OF MATERIALS: (1) No details given. (2) 3M sample, boiling pt. 140.5 °C. ESTIMATED ERROR:	e).
<pre>volume of gas absorbed (m per 100 ml of fluorocarbo barometric pressure, assu compiler.) AUXILIARY METHOD/APPARATUS/PROCEDURE: Air bubbled through fluorocarbon in stirred cell. When saturation achieved samples of liquid removed with hypodermic Precision Sampling 50 µl Pressure Lok syringe. Five samples taken and chromatographed. Average peak heights compared with those for injections of known amounts of air. Chromatographic column consisted of 13X molecular sieve at</pre>	<pre>n. (Total pressure was the med to be 1 atmosphere by the INFORMATION SOURCE AND PURITY OF MATERIALS: (1) No details given. (2) 3M sample, boiling pt. 140.5 °C. ESTIMATED ERROR: δT/K = ±0.3; δS = ±2%.</pre>	e).
<pre>volume of gas absorbed (m per 100 ml of fluorocarbo barometric pressure, assu compiler.) AUXILIARY METHOD/APPARATUS/PROCEDURE: Air bubbled through fluorocarbon in stirred cell. When saturation achieved samples of liquid removed with hypodermic Precision Sampling 50 µl Pressure Lok syringe. Five samples taken and chromatographed. Average peak heights compared with those for injections of known amounts of air. Chromatographic column consisted of 13X molecular sieve at</pre>	<pre>n. (Total pressure was the med to be 1 atmosphere by the INFORMATION SOURCE AND PURITY OF MATERIALS: (1) No details given. (2) 3M sample, boiling pt. 140.5 °C. ESTIMATED ERROR: δT/K = ±0.3; δS = ±2%.</pre>	e) -
<pre>volume of gas absorbed (m per 100 ml of fluorocarbo barometric pressure, assu compiler.) AUXILIARY METHOD/APPARATUS/PROCEDURE: Air bubbled through fluorocarbon in stirred cell. When saturation achieved samples of liquid removed with hypodermic Precision Sampling 50 µl Pressure Lok syringe. Five samples taken and chromatographed. Average peak heights compared with those for injections of known amounts of air. Chromatographic column consisted of 13X molecular sieve at</pre>	<pre>n. (Total pressure was the med to be 1 atmosphere by the INFORMATION SOURCE AND PURITY OF MATERIALS: (1) No details given. (2) 3M sample, boiling pt. 140.5 °C. ESTIMATED ERROR: δT/K = ±0.3; δS = ±2%.</pre>	e).
<pre>volume of gas absorbed (m per 100 ml of fluorocarbo barometric pressure, assu compiler.) AUXILIARY METHOD/APPARATUS/PROCEDURE: Air bubbled through fluorocarbon in stirred cell. When saturation achieved samples of liquid removed with hypodermic Precision Sampling 50 µl Pressure Lok syringe. Five samples taken and chromatographed. Average peak heights compared with those for injections of known amounts of air. Chromatographic column consisted of 13X molecular sieve at</pre>	<pre>n. (Total pressure was the med to be 1 atmosphere by the INFORMATION SOURCE AND PURITY OF MATERIALS: (1) No details given. (2) 3M sample, boiling pt. 140.5 °C. ESTIMATED ERROR: δT/K = ±0.3; δS = ±2%.</pre>	e).

COMPONENTS:		
	ORIGINAL MEASUREMENTS:	
 Air Octadecafluorooctane (Perfluorooctane); C₈F₁₈; [307-34-6] 	Wesseler, E. P.; Iltis Clark, L. C. Jr. J. Fluorine Chem., <u>1977</u>	
VARIABLES:	PREPARED BY:	
T/K = 298	C. L. Young	
EXPERIMENTAL VALUES:		<u> </u>
T/K Solubility [†] of air Solubility ^S air	y [†] of oxygen Solubility [†] S _{O2}	of nitrogen S _{N2}
298.15 37.4	10.5	26.9
	INFORMATION	
AUXILIARY METHOD/APPARATUS/PROCEDURE: Air bubbled through fluorocarbon in stirred cell. When saturation achieved samples of liquid removed with hypodermic Precision Sampling 50 µl Pressure Lok syringe. Five samples taken and chromatographed. Average peak heights compared with those for injections of known amounts of air. Chromatographic column consisted of 13X molecular sieve at 70 °C. Helium was used as carrier.	<pre>INFORMATION SOURCE AND PURITY OF MATERIALS (1) No details given. (2) PCR sample, boiling</pre>	

A	ir Solubilities 527
COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Air	Wesseler, E. P.; Iltis, R.;
(2) Octadecafluorodecahydro-	Clark, L. C. Jr.
naphthalene (Perfluorodecalin	n); J. Fluorine Chem., <u>1977</u> , 9, 137-46.
$C_{10}F_{18};$ [306-94-5]	
VARIABLES:	PREPARED BY:
T/K = 298	C. L. Young
EXPERIMENTAL VALUES:	· · · · · ·
m/r galubilitut af air galub	oility [†] of oxygen Solubility [†] of nitrogen
Sair	S ₀₂ S _{N2}
298.15 29.8	8.6 21.2
	· · ·
[†] volume of gas absorbed ((measured at atmospheric pressure)
	oon. (Total pressure was the
_	sumed to be 1 atmosphere by the compiler.)
·····	
·	LIARY INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Air bubbled through fluorocarbon	in (1) No details given
stirred cell. When saturation	(2) ISC Chemicals Ltd. sample,
achieved samples of liquid remove	ed boiling pt. 142 °C.
with hypodermic Precision Samplin	nd.
50 µl Pressure Lok syringe. Fi	ve
samples taken and chromatographed	1.
Average peak heights compared wit	:h
those for injections of known amo	ounts
of air. Chromatographic column	ESTIMATED ERROR:
consisted of 13X molecular sieve	at $\delta T/K = \pm 0.3; \delta S = \pm 2$ %.
70 °C. Helium was used as carri	er.
	REFERENCES :

COMPONENTS: (1) Air (2) 1,1,1,2,4,4,5,7,7,8,10,10,11,13,- 13,14,16,16,17,17,18,18,18- Tricosafluoro-5,8,11,14-tetrakis (trifluoromethyl)-3,6,9,12,15- pentaoxaoctadecane; C1,7HF35O5; [37486-69-4] VARIABLES: T/K = 298	ORIGINAL MEASUREMENTS: Wesseler, E. P.; Iltis Clark, L. C. Jr., J. Fluorine Chem., <u>1977</u> PREPARED BY: C. L. Young	, 9, 137-46.
EXPERIMENTAL VALUES: T/K Solubility [†] of air Solubilit; ^S air	y [†] of oxygen Solubility [†] S _{O2}	of nitrogen S _{N2}
298.15 31.8	8.6	23.2
per 100 ml of fluorocarbon. barometric pressure, assumed AUXILIARY		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS	:
Air bubbled through fluorocarbon in stirred cell. When saturation achieved samples of liquid removed with hypodermic Precision Sampling 50 μ & Pressure Lok syringe. Five samples taken and chromatographed. Average peak heights compared with those for injections of known amounts of air. Chromatographic column consisted of 13X molecular sieve at 70 °C. Helium was used as carrier.	 (1) No details given. (2) DuPont sample, boil 224 °C. 	
	REFERENCES :	

COMPONENTS:	ORIGINAL MEASUREMENTS:	
(1) Air	Wesseler, E. P.; Iltis	, R.;
(2) L1822 (large mixture of com-	Clark, L. C. Jr.	
pounds from the electrochemical	J. Fluorine Chem., <u>1977</u>	<i>9</i> , <i>9</i> , 137-46.
fluorination of decalin)		
VARIABLES:	PREPARED BY:	··· <u>··</u> ··· ··· ··· ··· ··· ··· ··· ···
	C. L. Young	r
T/K = 298		
EXPERIMENTAL VALUES:		
T/K Solubility [†] of air Solubili	tv^{\dagger} of oxygen Solubility^{\dagger}	of nitrogen
-	S _{O2}	S _{N2}
^S air	-0 ₂	N 2
298.15 32.0	9.0	23.0
290.13		
+		
† volume of gas absorbed (meas		
		ire)
per 100 ml of fluorocarbon.	(Total pressure was the	
	(Total pressure was the	
per 100 ml of fluorocarbon.	(Total pressure was the	
per 100 ml of fluorocarbon.	(Total pressure was the	
per 100 ml of fluorocarbon.	(Total pressure was the	
per 100 ml of fluorocarbon.	(Total pressure was the	
per 100 ml of fluorocarbon. barometric pressure, assume	(Total pressure was the d to be l atmosphere by the	
per 100 ml of fluorocarbon. barometric pressure, assume AUXILIARY	(Total pressure was the d to be l atmosphere by the INFORMATION	e compiler.)
per 100 ml of fluorocarbon. barometric pressure, assume	(Total pressure was the d to be l atmosphere by the	e compiler.)
per 100 ml of fluorocarbon. barometric pressure, assume AUXILIARY METHOD/APPARATUS/PROCEDURE:	(Total pressure was the d to be 1 atmosphere by the INFORMATION SOURCE AND PURITY OF MATERIALS	e compiler.)
per 100 ml of fluorocarbon. barometric pressure, assume AUXILIARY METHOD/APPARATUS/PROCEDURE: Air bubbled through fluorocarbon in	(Total pressure was the d to be 1 atmosphere by the INFORMATION SOURCE AND PURITY OF MATERIALS (1) No details given.	e compiler.)
per 100 ml of fluorocarbon. barometric pressure, assume AUXILIARY METHOD/APPARATUS/PROCEDURE: Air bubbled through fluorocarbon in stirred cell. When saturation	(Total pressure was the d to be 1 atmosphere by the INFORMATION SOURCE AND PURITY OF MATERIALS	e compiler.)
per 100 ml of fluorocarbon. barometric pressure, assume AUXILIARY METHOD/APPARATUS/PROCEDURE: Air bubbled through fluorocarbon in	(Total pressure was the d to be 1 atmosphere by the INFORMATION SOURCE AND PURITY OF MATERIALS (1) No details given.	e compiler.)
per 100 ml of fluorocarbon. barometric pressure, assume AUXILIARY METHOD/APPARATUS/PROCEDURE: Air bubbled through fluorocarbon in stirred cell. When saturation achieved samples of liquid removed	(Total pressure was the d to be 1 atmosphere by the INFORMATION SOURCE AND PURITY OF MATERIALS (1) No details given.	e compiler.)
per 100 ml of fluorocarbon. barometric pressure, assume AUXILIARY METHOD/APPARATUS/PROCEDURE: Air bubbled through fluorocarbon in stirred cell. When saturation achieved samples of liquid removed with hypodermic Precision Sampling	(Total pressure was the d to be 1 atmosphere by the INFORMATION SOURCE AND PURITY OF MATERIALS (1) No details given.	e compiler.)
per 100 ml of fluorocarbon. barometric pressure, assume AUXILIARY METHOD/APPARATUS/PROCEDURE: Air bubbled through fluorocarbon in stirred cell. When saturation achieved samples of liquid removed with hypodermic Precision Sampling 50 µl Pressure Lok syringe. Five	(Total pressure was the d to be 1 atmosphere by the INFORMATION SOURCE AND PURITY OF MATERIALS (1) No details given.	e compiler.)
per 100 ml of fluorocarbon. barometric pressure, assume AUXILIARY METHOD/APPARATUS/PROCEDURE: Air bubbled through fluorocarbon in stirred cell. When saturation achieved samples of liquid removed with hypodermic Precision Sampling 50 µℓ Pressure Lok syringe. Five samples taken and chromatographed.	(Total pressure was the d to be 1 atmosphere by the INFORMATION SOURCE AND PURITY OF MATERIALS (1) No details given.	e compiler.)
per 100 ml of fluorocarbon. barometric pressure, assume AUXILIARY METHOD/APPARATUS/PROCEDURE: Air bubbled through fluorocarbon in stirred cell. When saturation achieved samples of liquid removed with hypodermic Precision Sampling 50 µl Pressure Lok syringe. Five	(Total pressure was the d to be 1 atmosphere by the INFORMATION SOURCE AND PURITY OF MATERIALS (1) No details given.	e compiler.)
per 100 ml of fluorocarbon. barometric pressure, assume AUXILIARY METHOD/APPARATUS/PROCEDURE: Air bubbled through fluorocarbon in stirred cell. When saturation achieved samples of liquid removed with hypodermic Precision Sampling 50 µℓ Pressure Lok syringe. Five samples taken and chromatographed.	(Total pressure was the d to be 1 atmosphere by the INFORMATION SOURCE AND PURITY OF MATERIALS (1) No details given. (2) 3M sample.	e compiler.)
per 100 ml of fluorocarbon. barometric pressure, assume AUXILIARY METHOD/APPARATUS/PROCEDURE: Air bubbled through fluorocarbon in stirred cell. When saturation achieved samples of liquid removed with hypodermic Precision Sampling 50 µL Pressure Lok syringe. Five samples taken and chromatographed. Average peak heights compared with those for injections of known amount.	(Total pressure was the d to be 1 atmosphere by the INFORMATION SOURCE AND PURITY OF MATERIALS (1) No details given. (2) 3M sample.	e compiler.)
per 100 ml of fluorocarbon. barometric pressure, assumed AUXILIARY METHOD/APPARATUS/PROCEDURE: Air bubbled through fluorocarbon in stirred cell. When saturation achieved samples of liquid removed with hypodermic Precision Sampling 50 µl Pressure Lok syringe. Five samples taken and chromatographed. Average peak heights compared with those for injections of known amounts of air. Chromatographic column	(Total pressure was the d to be 1 atmosphere by the INFORMATION SOURCE AND PURITY OF MATERIALS (1) No details given. (2) 3M sample.	e compiler.)
per 100 ml of fluorocarbon. barometric pressure, assume AUXILIARY METHOD/APPARATUS/PROCEDURE: Air bubbled through fluorocarbon in stirred cell. When saturation achieved samples of liquid removed with hypodermic Precision Sampling 50 μℓ Pressure Lok syringe. Five samples taken and chromatographed. Average peak heights compared with those for injections of known amount of air. Chromatographic column consisted of 13X molecular sieve at	(Total pressure was the d to be 1 atmosphere by the INFORMATION SOURCE AND PURITY OF MATERIALS (1) No details given. (2) 3M sample.	e compiler.)
per 100 ml of fluorocarbon. barometric pressure, assumed AUXILIARY METHOD/APPARATUS/PROCEDURE: Air bubbled through fluorocarbon in stirred cell. When saturation achieved samples of liquid removed with hypodermic Precision Sampling 50 µl Pressure Lok syringe. Five samples taken and chromatographed. Average peak heights compared with those for injections of known amounts of air. Chromatographic column	(Total pressure was the d to be 1 atmosphere by the INFORMATION SOURCE AND PURITY OF MATERIALS (1) No details given. (2) 3M sample. ESTIMATED ERROR: $\delta T/K = \pm 0.3; \delta S = \pm 2$ %.	e compiler.)
per 100 ml of fluorocarbon. barometric pressure, assume AUXILIARY METHOD/APPARATUS/PROCEDURE: Air bubbled through fluorocarbon in stirred cell. When saturation achieved samples of liquid removed with hypodermic Precision Sampling 50 μℓ Pressure Lok syringe. Five samples taken and chromatographed. Average peak heights compared with those for injections of known amount of air. Chromatographic column consisted of 13X molecular sieve at	(Total pressure was the d to be 1 atmosphere by the INFORMATION SOURCE AND PURITY OF MATERIALS (1) No details given. (2) 3M sample.	e compiler.)
per 100 ml of fluorocarbon. barometric pressure, assume AUXILIARY METHOD/APPARATUS/PROCEDURE: Air bubbled through fluorocarbon in stirred cell. When saturation achieved samples of liquid removed with hypodermic Precision Sampling 50 μℓ Pressure Lok syringe. Five samples taken and chromatographed. Average peak heights compared with those for injections of known amount of air. Chromatographic column consisted of 13X molecular sieve at	(Total pressure was the d to be 1 atmosphere by the INFORMATION SOURCE AND PURITY OF MATERIALS (1) No details given. (2) 3M sample. ESTIMATED ERROR: $\delta T/K = \pm 0.3; \delta S = \pm 2$ %.	e compiler.)
per 100 ml of fluorocarbon. barometric pressure, assume AUXILIARY METHOD/APPARATUS/PROCEDURE: Air bubbled through fluorocarbon in stirred cell. When saturation achieved samples of liquid removed with hypodermic Precision Sampling 50 μℓ Pressure Lok syringe. Five samples taken and chromatographed. Average peak heights compared with those for injections of known amount of air. Chromatographic column consisted of 13X molecular sieve at	(Total pressure was the d to be 1 atmosphere by the INFORMATION SOURCE AND PURITY OF MATERIALS (1) No details given. (2) 3M sample. ESTIMATED ERROR: $\delta T/K = \pm 0.3; \delta S = \pm 2$ %.	e compiler.)
per 100 ml of fluorocarbon. barometric pressure, assume AUXILIARY METHOD/APPARATUS/PROCEDURE: Air bubbled through fluorocarbon in stirred cell. When saturation achieved samples of liquid removed with hypodermic Precision Sampling 50 μℓ Pressure Lok syringe. Five samples taken and chromatographed. Average peak heights compared with those for injections of known amount of air. Chromatographic column consisted of 13X molecular sieve at	(Total pressure was the d to be 1 atmosphere by the INFORMATION SOURCE AND PURITY OF MATERIALS (1) No details given. (2) 3M sample. ESTIMATED ERROR: $\delta T/K = \pm 0.3; \delta S = \pm 2$ %.	e compiler.)
per 100 ml of fluorocarbon. barometric pressure, assume AUXILIARY METHOD/APPARATUS/PROCEDURE: Air bubbled through fluorocarbon in stirred cell. When saturation achieved samples of liquid removed with hypodermic Precision Sampling 50 μℓ Pressure Lok syringe. Five samples taken and chromatographed. Average peak heights compared with those for injections of known amount of air. Chromatographic column consisted of 13X molecular sieve at	(Total pressure was the d to be 1 atmosphere by the INFORMATION SOURCE AND PURITY OF MATERIALS (1) No details given. (2) 3M sample. ESTIMATED ERROR: $\delta T/K = \pm 0.3; \delta S = \pm 2$ %.	e compiler.)

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Air	Wesseler, E. P.; Iltis, R.;
(2) FC75 (mainly perfluorobutyltetra-	Clark, L. C. Jr.
hydrofuran and perfluoropropyl-	J. Fluorine Chem., <u>1977</u> , 9, 137-46.
tetrahydropyran)	
VARIABLES:	PREPARED BY:
	C I Young
T/K = 298	C. L. Young
EXPERIMENTAL VALUES:	Lu
	of oxygen Solubility † of nitrogen
Sair	S ₀₂ S _{N2}
<u></u>	
298.15 37.7	10.5 27.2
298.15 37.7	10.5
* • • • • • • •	the streamber is programal
	measured at atmospheric pressure)
-	on. (Total pressure was the
j –	umed to be 1 atmosphere by the
compiler.)	
	· · · · · · · · · · · · · · · · · · ·
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS;
Air bubbled through fluorocarbon in	(1) No details given.
stirred cell. When saturation	
achieved samples of liquid removed	(2) 3M sample.
with hypodermic Precision Sampling	
50 µl Pressure Lok syringe. Five	
samples taken and chromatographed.	
Average peak heights compared with	
those for injections of known amounts	
of air. Chromatographic column	ESTIMATED ERROR:
consisted of 13X molecular sieve at	$\delta T/K = \pm 0.3; \delta S = \pm 2\%.$
70 °C. Helium was used as carrier.	
	REFERENCES.
	REFERENCES:
]
]

COMPONENTS :	ORIGINAL MEASUREMENTS:
	Amster, A. B.; Levy, J. B.
<pre>(1) Air (2) Nitric acid, propyl ester or l-propyl nitrate; C₃H₇NO₃; [627-13-4]</pre>	J. Am. Rocket Soc. <u>1959</u> , 29, 870-1.
VARIABLES: T/K = "Room temperature" p/kPa = 31 - 88	PREPARED BY: M. E. Derrick H. L. Clever
EXPERIMENTAL VALUES: Temperature Air Pr	essure ¹ Solubility ¹
p_1/mmH	$p_1/kPa = 10^6 m_1/mol g^{-1}$
"Room 230 temperature" 230 240 240	31 1.6 31 1.75 32 1.75 32 1.6
440 440 440 450 450 475 560	59 3.6 59 3.4 59 3.5 60 3.1 60 3.75 63 3.75 75 3.8
620 620 620	83 5.4 83 5.5 83 5.5
650 660 660	87 5.1 88 5.6 88 5.8
and solubility, moles graph in the paper. T	he values of pressure, mmHg, air per g of liquid, from a he air partial pressure was ng the ester vapor pressure re
-	(INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The apparatus consists of an absorp- tion flask connected by a flexible spiral to a mercury filled capillary (1). A weighed quantity of liquid is placed in the flask. The gas is shaken with the degassed liquid. The volume of the gas is taken as the volume of the flask minus the volume	tu tube. (2) Nitric acid, propyl ester. Source and purity not given.
of the liquid. The solubility is calculated from Solubility/mol $g^{-1} = V\Delta p/WRT$ V = the gas volume Δp = the pressure change T = the temperature W = the weight of the liquid. The compilers converted the solubility values above to a Bunsen coefficient α/cm^3 (STP) cm ⁻³ atm ⁻¹ = 0.14 ₂ ± 0.01 ₄ at a temperature of 293.15 K.	ESTIMATED ERROR:

	ORIGINAL MEASUREMENTS:	1
(1) Air	Wesseler, E. P.; Iltis	, R.;
(2) 1,1,2,2,3,3,4,4,4-Nonafluoro-	Clark, L. C. Jr.	
N,N-bis(nonafluorobutyl)-l-but-	J. Fluorine Chem., <u>1977</u>	, 9, 137-46.
anamine (Perfluorotributylamine);		
C ₁₂ F ₂₇ N; [311-89-7]		
VARIABLES:	PREPARED BY:	
T/K = 298	C I Young	
1/K = 250	C. L. Young	
EXPERIMENTAL VALUES:		
T/K Solubility [†] of air Solubilit	y of oxygen Solubility	of nitrogen
S _{air}	S ₀₂	S _{N2}
all	02	N 2
298.15 30.7	8.6	22.1
		Ì
+		[
[†] volume of gas absorbed (meas		re)
per 100 ml of fluorocarbon.		
barometric pressure, assumed	to be 1 atmosphere by the	commilar)
		comprise.
		compiler.)
		COMPILEI./
		compiler.)
		comprise.
AUXILIARY	INFORMATION	comprise.
METHOD/APPARATUS/PROCEDURE:	INFORMATION SOURCE AND PURITY OF MATERIALS	
METHOD/APPARATUS/PROCEDURE: Air bubbled through fluorocarbon in	SOURCE AND PURITY OF MATERIALS	
METHOD/APPARATUS/PROCEDURE: Air bubbled through fluorocarbon in stirred cell. When saturation	SOURCE AND PURITY OF MATERIALS (1) NO details given.	;
METHOD/APPARATUS/PROCEDURE: Air bubbled through fluorocarbon in	SOURCE AND PURITY OF MATERIALS	;
METHOD/APPARATUS/PROCEDURE: Air bubbled through fluorocarbon in stirred cell. When saturation	SOURCE AND PURITY OF MATERIALS (1) NO details given.	;
METHOD/APPARATUS/PROCEDURE: Air bubbled through fluorocarbon in stirred cell. When saturation achieved samples of liquid removed	SOURCE AND PURITY OF MATERIALS (1) NO details given.	;
METHOD/APPARATUS/PROCEDURE: Air bubbled through fluorocarbon in stirred cell. When saturation achieved samples of liquid removed with hypodermic Precision Sampling	SOURCE AND PURITY OF MATERIALS (1) NO details given.	;
METHOD/APPARATUS/PROCEDURE: Air bubbled through fluorocarbon in stirred cell. When saturation achieved samples of liquid removed with hypodermic Precision Sampling 50 µl Pressure Lok syringe. Five samples taken and chromatographed.	SOURCE AND PURITY OF MATERIALS (1) NO details given.	;
METHOD/APPARATUS/PROCEDURE: Air bubbled through fluorocarbon in stirred cell. When saturation achieved samples of liquid removed with hypodermic Precision Sampling 50 µL Pressure Lok syringe. Five samples taken and chromatographed. Average peak heights compared with	SOURCE AND PURITY OF MATERIALS (1) NO details given.	;
METHOD/APPARATUS/PROCEDURE: Air bubbled through fluorocarbon in stirred cell. When saturation achieved samples of liquid removed with hypodermic Precision Sampling 50 µl Pressure Lok syringe. Five samples taken and chromatographed. Average peak heights compared with those for injections of known amounts	SOURCE AND PURITY OF MATERIALS (1) No details given. (2) 3M sample, boiling p	;
METHOD/APPARATUS/PROCEDURE: Air bubbled through fluorocarbon in stirred cell. When saturation achieved samples of liquid removed with hypodermic Precision Sampling 50 µl Pressure Lok syringe. Five samples taken and chromatographed. Average peak heights compared with those for injections of known amounts of air. Chromatographic column	SOURCE AND PURITY OF MATERIALS (1) No details given. (2) 3M sample, boiling p ESTIMATED ERROR:	;
METHOD/APPARATUS/PROCEDURE: Air bubbled through fluorocarbon in stirred cell. When saturation achieved samples of liquid removed with hypodermic Precision Sampling 50 μ & Pressure Lok syringe. Five samples taken and chromatographed. Average peak heights compared with those for injections of known amounts of air. Chromatographic column consisted of 13X molecular sieve at	SOURCE AND PURITY OF MATERIALS (1) No details given. (2) 3M sample, boiling p	;
METHOD/APPARATUS/PROCEDURE: Air bubbled through fluorocarbon in stirred cell. When saturation achieved samples of liquid removed with hypodermic Precision Sampling 50 µl Pressure Lok syringe. Five samples taken and chromatographed. Average peak heights compared with those for injections of known amounts of air. Chromatographic column	SOURCE AND PURITY OF MATERIALS (1) No details given. (2) 3M sample, boiling p ESTIMATED ERROR:	;
METHOD/APPARATUS/PROCEDURE: Air bubbled through fluorocarbon in stirred cell. When saturation achieved samples of liquid removed with hypodermic Precision Sampling 50 μ & Pressure Lok syringe. Five samples taken and chromatographed. Average peak heights compared with those for injections of known amounts of air. Chromatographic column consisted of 13X molecular sieve at	SOURCE AND PURITY OF MATERIALS (1) No details given. (2) 3M sample, boiling p ESTIMATED ERROR:	;
METHOD/APPARATUS/PROCEDURE: Air bubbled through fluorocarbon in stirred cell. When saturation achieved samples of liquid removed with hypodermic Precision Sampling 50 μ & Pressure Lok syringe. Five samples taken and chromatographed. Average peak heights compared with those for injections of known amounts of air. Chromatographic column consisted of 13X molecular sieve at	SOURCE AND PURITY OF MATERIALS (1) No details given. (2) 3M sample, boiling p ESTIMATED ERROR: $\delta T/K = \pm 0.3; \delta S = \pm 2$ %.	;
METHOD/APPARATUS/PROCEDURE: Air bubbled through fluorocarbon in stirred cell. When saturation achieved samples of liquid removed with hypodermic Precision Sampling 50 μ & Pressure Lok syringe. Five samples taken and chromatographed. Average peak heights compared with those for injections of known amounts of air. Chromatographic column consisted of 13X molecular sieve at	SOURCE AND PURITY OF MATERIALS (1) No details given. (2) 3M sample, boiling p ESTIMATED ERROR: $\delta T/K = \pm 0.3; \delta S = \pm 2$ %.	;
METHOD/APPARATUS/PROCEDURE: Air bubbled through fluorocarbon in stirred cell. When saturation achieved samples of liquid removed with hypodermic Precision Sampling 50 μ & Pressure Lok syringe. Five samples taken and chromatographed. Average peak heights compared with those for injections of known amounts of air. Chromatographic column consisted of 13X molecular sieve at	SOURCE AND PURITY OF MATERIALS (1) No details given. (2) 3M sample, boiling p ESTIMATED ERROR: $\delta T/K = \pm 0.3; \delta S = \pm 2$ %.	;
METHOD/APPARATUS/PROCEDURE: Air bubbled through fluorocarbon in stirred cell. When saturation achieved samples of liquid removed with hypodermic Precision Sampling 50 μ & Pressure Lok syringe. Five samples taken and chromatographed. Average peak heights compared with those for injections of known amounts of air. Chromatographic column consisted of 13X molecular sieve at	SOURCE AND PURITY OF MATERIALS (1) No details given. (2) 3M sample, boiling p ESTIMATED ERROR: $\delta T/K = \pm 0.3; \delta S = \pm 2$ %.	;

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Air	Vibrans, F. C.
(2) Animal and vegetable oils	0il and Soap <u>1935</u> , 12, 14-5.
VARIABLES:	PREPARED BY:
T/K = 296-318 p/kPa = 101.3	P. L. Long H. L. Clever
EXPERIMENTAL VALUES:	

T/K	Solubi	lity, c	m³ (273	.15 K,	l atm)	air per 100 cm³
	Experi	ments	·····			Av.
Corn oil						
296 - 299 318	7.28 6.98	7.38 7.14	7.30			7.32 7.06
Cottonseed oil						
296 - 299 318	7.18 7.12	7.12 6.93	7.23	7.24	7.22	7.20 7.02
Hydrogenated Con	ttonseed of	L1				
318	7.20	7.36				7.28
Steam rendered :	lard					
318	7.22	7.13				7.17

AUXILIARY INFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
	(1) Air. No information.	
Van Slyke manometric method (1).	(2) Corn oil. Commercial sample bought on the market. Representa- tive of its class.	
	Cottonseed oil. Commercial sample bought on the market. Representa- tive of its class.	
	Lard. From a mixture of killing and cutting fats. Steam rendered.	
	ESTIMATED ERROR:	
	$\delta T/K = \pm 3 \text{ at room temperature} \\ \pm 2 \text{ at } 318 \text{ K} (45 \ ^{\circ}\text{C}) \\ \delta c/c = \pm 0.04 \text{ (Author)}$	
	REFERENCES:	
	<pre>1. Van Slyke, D. D. J. Biol. Chem. <u>1924</u>, 61, 523.</pre>	

~

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Air	Schaffer, P. S.; Haller, H. S.
(2) Animal and vegetable oils	0il and Soap <u>1943</u> , 20, 161
VARIABLES:	PREPARED BY: P. L. Long H. L. Clever
	5 K, l atm) Air per 100 cm³
Cottonseed oil	
313	8.7
Butter oil 313	10.1
333	9.6
Lard	
313	8.8
	INFORMATION
METHOD /APPARATUS / PROCEDURE :	SOURCE AND FURITY OF MATERIALS:
METHOD/APPARATUS/PROCEDURE: The apparatus consists of a reaction flask connected to a water-jacketed	
METHOD/APPARATUS/PROCEDURE: The apparatus consists of a reaction flask connected to a water-jacketed gas buret, a mercury leveling bulb, and a differential manometer. The reaction flask is attached to a	SOURCE AND PURITY OF MATERIALS: (1) Air. Source not given.
METHOD/APPARATUS/PROCEDURE: The apparatus consists of a reaction flask connected to a water-jacketed gas buret, a mercury leveling bulb, and a differential manometer. The reaction flask is attached to a shaking mechanism in an air bath. A 50 cm ³ sample of oil is placed in the flask. Heat and vacuum are applied to remove dissolved gases. The sample is cooled to the temperature of the	 SOURCE AND PURITY OF MATERIALS: (1) Air. Source not given. Commercial cylinder. (2) Cottonseed oil. Good grade of commercial product. Butter oil. Obtained from butter prepared in the lab from fresh cream
METHOD/APPARATUS/PROCEDURE: The apparatus consists of a reaction flask connected to a water-jacketed gas buret, a mercury leveling bulb, and a differential manometer. The reaction flask is attached to a shaking mechanism in an air bath. A 50 cm ³ sample of oil is placed in the flask. Heat and vacuum are applied to remove dissolved gases. The sample is cooled to the temperature of the measurement. Air is admitted, a zero reading is taken. The sample is shaken until it takes up no more gas	<pre>SOURCE AND PURITY OF MATERIALS: (1) Air. Source not given. Commercial cylinder. (2) Cottonseed oil. Good grade of commercial product. Butter oil. Obtained from butter prepared in the lab from fresh cream. Lard. Good grade of commercial product. ESTIMATED ERROR:</pre>
METHOD/APPARATUS/PROCEDURE: The apparatus consists of a reaction flask connected to a water-jacketed gas buret, a mercury leveling bulb, and a differential manometer. The	 SOURCE AND PURITY OF MATERIALS: (1) Air. Source not given. Commercial cylinder. (2) Cottonseed oil. Good grade of commercial product. Butter oil. Obtained from butter prepared in the lab from fresh cream. Lard. Good grade of commercial product.

	Air Solu	Ibilities	535
COMPONEN	TS:	ORIGINAL MEASUREMENTS:	
(l) A	Air	Vernon, H. M.	
(2) F	Fats (oils)	Proc. Royal Soc., Ser. B. <u>1907</u> , 79, 366 - 371.	
VARIABLE	S: T/K = 288, 310, 318 $p_1/kPa = 101.3$ (760 mmHg)	PREPARED BY: H. L. Clever	
EXPERIME	NTAL VALUES:		
Т/К	The Air Saturated Fat	was Analyzed to Contain	-
	Oxygen, Nitrogen, cm ³ (STP)/100 cm ³ cm ³ (STP)/10	Carbon Dioxide; Total 0 cm ³ cm ³ (STP)/100 cm ³ Bunse 10 ² 0	n'
Olive	oil		
288 310	2.20, 2.23, 5.23, 5.30, 2.42 2.28 Av. 5.27 5 2.33, 2.36, 5.19, 5.23, 2.30 2.33 Av. 5.15 5	0.19, 0.24, .26 Av. 0.16 0.20 Av. 7.74 0.17, 0.13, .19 Av. 0.18 0.16 Av. 7.68	
Cod-li	ver oil		{
288 310	2.34, 2.31, 4.95, 5.15, 2.22 2.29 Av. 5.07 5 2.21, 2.22, 5.05, 5.10, 5.08 5	0.19, 0.25, .06 Av. 0.19 0.21 Av. 7.56 0.18, 0.24, .08 Av. 0.20 0.21 Av. 7.51	
Lard			
318	2.23, 2.40, 5.05, 5.09, 2.35 2.33 Av. 5.18 5	0.12, 0.12, .11 Av. 0.15 0.13 Av. 7.57	
¹ Air	Bunsen Coefficient, $10^2 \alpha/cm^3$ (SI	$P) cm^{-3} atm^{-1}$.	
	AUXILIARY	INFORMATION	
METHOD/A	APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
room t violen severa stand bubble was th g of i contai cent s well d of oil ½ hour	n the observations made at emperature, the oil was shaken tly with air in a bottle for 1 minutes, and was allowed to 1 to 1½ hours till all air s had risen to the surface. It en weighed, and about 40 - 50 t were sucked into a vacuum fla ning 70 - 100 cm ³ of 0.5 per ulfuric acid, which had been egassed by boiling. The mixture and dilute acid was boiled for . The gas was pumped off and ed in a Haldane gas analysis	2. Fats. A table of the oil properties is reproduced below. Cod-liver Olive Lard Solid.Pt. 010 -6(?) 27-30 °C skSp. Grav. 0.928 ¹⁵ ₁₅ 0.917 ¹⁵ ₁₅ 0.899 I ₂ Value 123-168 79-88 50-70 % % % ESTIMATED ERROR: The author mentions that the unsaturated oils take up	515
appara A oil pr was he the te vigoro utes, anothe	tus (1). t the higher temperatures, the esaturated at room temperature ated to several degrees above mperature of measurment. It was usly shaken with air for 2 min- warmed again, and shaken for r 2 minutes. It was held for ½ n a water bath and then treated		

- 1 41

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Air	Schmidt-Nielsen, S.
(2) Fats (oils)	Ann. Acad. Sci. Fenn., Ser. A. <u>1927</u> , 29 (No. 12), 7 pp.
VARIABLES:	PREPARED BY:
T/K = 293, 323 $p_1/kPa = 101$ (1 atm)	H. L. Clever
EXPERIMENTAL VALUES: T/K Solubility/ cm ³ (STP) per 1	Oxygen Content of .00 g the Dissolved Gas Volume %
Cottonseed oil 293 5.0 323 6.4	32.4 16.2
Cod-liver oil 293 9.6 323 9.0	21.8 23.5
Herring oil 293 5.9 323 5.7	10.8
Linseed oil 293 10.1 323 10.4	19.1 10.0
Corn oil 293 4.7 323 6.4	29.6 11.6
Olive oil 293 5.0 323 6.1	28.7 15.7
Mineral oil 293 8.4 323 8.1	30.6 30.5
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
. The oil is degassed for two hours in a vacuum.	No information.
The oil stands for 24 hours with the dry air.	
The dissolved gas is removed from the oil by a Barcroft blood gas pump, and the gas volume is measured.	
The oxygen content of the dissolved gas is determined.	ESTIMATED ERROR:
Except for the mineral oil, these are unsaturated sytems which react with the oxygen. If the oils were allowed to stand for some time with the dissolved air in them, the percentage of O_2 fell, and in some cases only pure N_2 was left. Less oxygen was recovered at 323 K than at 293 K. This is in accord with ideas of autoxidation.	ADDITIONAL EXPERIMENTAL VALUES: Air solubility in hardened whale fat (m. p. 40 - 42 °C)was: 323 K 10.3 with 82.2 % nitrogen 373 K 6.1 with 83.1 % nitrogen 378 K 6.3 with 91.7 % nitrogen after 12, 12, and 120 hours, respec.

COMPONENTS:		ORIGINAL MEASUREMENTS:
(l) Air		Baldwin, R. R.; Daniel, S. G.
(2) Oils		J. Appl. Chem. <u>1952</u> , 2, 161-5.
		J. Inst. Petrol., London <u>1953</u> , 39, 105-24.
VARIABLES:		PREPARED BY:
T/K = 273 $p_1/kPa = 101$	15 - 373.15 325	P. L. Long H. L. Clever
EXPERIMENTAL VALUES:		
T/K	Bunsen Coefficient α/cm ³ (STP)cm ⁻³ atm	Ostwald Coefficient $L/cm^3 cm^{-3}$
	, viscosity 615 cen ol wt 670	tistokes at 100 ⁰ F,
293.15	0.0783	0.0840
	viscosity 268 cen Diecular weight 610	tistokes at 100 °F,
273.15 293.15	0.0794	0.0794
333.15		0.0850 0.1015
373.15	0.0818	0.112
	viscosity 181 cen Decular weight 570	tistokes at 100 °F, .
293.15	0.0843	0.0926
Oil A4, viscosity 80.3 ce mean molecular weight 530		
293.15	0.0878	0.0942
	viscosity 34.9 ce lecular weight 400	ntistokes at 100 °F,
273.15	0.0920	0.0920
293.15 333.15	0.0903 0.0919	0.0969 0.1121
373.15	0.0926	0.1265
Oil B, viscosity 260 cent: mean molecular weight 630		istokes at 100 °F,
293.15	0.0752	0.0807
METHOD/APPARATUS/PROCEDURE: 1. Degassing. The liquid is deaerated by passage through a continously evacuated vessel. The liquid is sat- urated with the gas, then degassed again. 2. Saturation of the liquid with the gas. The gas is passed through a liquid air trap to remove water and carbon dioxide, then through a thermostated coil to bring it to the		 SOURCE AND PURITY OF MATERIALS: (1) Air. From compressed air line. Dried and freed from CO₂. (2) Oils. The oils conform to DTD-472E specifications. The mol wts were determined by f.p. depression in naphthalene to ± 5 %. Other properties are given in 1953 paper ESTIMATED ERROR: δp/p = ± 0.01
thermostated coil t temperature of the		$\frac{\delta p}{\delta \alpha} = \pm 0.01$
then bubbled throug up to five hours. 3. To determine the dissolved in the sa the saturated liqui evacuated vessel an The gas released by transferred to the fer operations reco	h the liquid for amount of gas turated liquid, d is placed in an d buret system. the liquid is buret. Five trans-	trace of the gas. The last trace (2 - 5 %) is removed by boiling the liquid.

COMPONENTS:		ORIGINAL MEASUREMENTS:
(l) Air		Clark, F. M.
(2) Mineral oils		J. Franklin Inst. <u>1933</u> , 215, 39 - 67.
VARIABLES:		PREPARED BY:
T/T = 298, 37 $p_1/kPa = 101.3$		H. L. Clever
EXPERIMENTAL VALUES:		
Temperature	Per cent Diss	olved by Volume Under
t/°C T/K	Atmospheric C	Conditions ¹
	% Nitrogen	% Oxygen % Air
Asphaltic Mine at 37.8 °C and	eral Oil, Sayb 1 150 at 100 °	olt Viscosity/s is 100 C.
25 298	6.2	2.1 8.3
100 373	4.64	0.16 4.8
Paraffin Miner at 100 °C.	cal Oil, Saybo	lt Viscosity/s is 150
100 373	6.4	1.2 7.6
Mixed Mineral at 37.8 °C.	Oil, Saybolt	Viscosity/s is 100
	4.6	0.6 5.2
Transformer Ty	ype Mineral Oi	1
25 298		10.8
		12.7
¹ The per cent v	dissolved is based on gas	
volumes reduce at the tempera		d 760 mmHg with oil voľumes est.
		INFORMATION
METHOD/APPARATUS/PROCEDURE:		SOURCE AND PURITY OF MATERIALS:
The gas is removed saturated oil by displace		1. Air. No information.
carbon dioxide. The gas	is collected	2. Oils. See descriptions in the
over concentrated KOH so absorbes the carbon diox		table above.
In addition to the	data above	
there are figures in the	e paper	
which (i) show air solubility in transformer oil as a function of temperature from -15 to 120 °C, and (ii) show the rate of air take-up by		
transformer mineral oil		ESTIMATED ERROR:
The paper also cont	ains data on	The error in the per cent volume solubility of air may be 5 - 10 %.
the solubility of oxygen hydrogen and carbon diox	, nitrogen,	(compiler)
transformer mineral oil.		REFERENCES :
ļ		
1		

Air Solubilities

COMPONENTS:

ORIGINAL MEASUREMENTS:

(1) Air	Gemant, A.
(2) Mineral oils	Trans. Faraday Soc. <u>1936</u> , 32, 694 - 701.
VARIABLES: T/T = 288 - 293, 353 $p_1/kPa = 101.3$ (1 atm)	PREPARED BY: H. L. Clever
	n. h. crever
EXPERIMENTAL VALUES: $t_1/{}^{\circ}C$ Oil Oil Specific Mass/g Volume/g cm ⁻¹ at t_1 at 80°C	Air Bunsen ² Absorbed v ¹ Coefficient k ³ V/cm ³ (STP) α at t_1
Silvertown Lubricants, Russian origin 16 108.95 1.164 1.225	n, British Standard Specification A.30. 12.48 0.64 0.092 -0.001
Specification A.O.	nsas and Oklahoma), British Standard
Silvertown Lubricants, Russian Origin	12.62 0.63 0.088 -0.002 , British Standard Specification B.30. 12.04 0.66 0.088 +0.001
Silvertown Lubricants, USA Origin (Pe Specification B.0.	ennsylvania), British Standard
16108.601.1761.239Silvertown Lubricants, British Standa	
20 107.3 1.165 1.224 Shell-Mex and B. P., 21 ⁰ C viscosity	12.25 0.52 0.092 -0.007
poise. 20 106.2 1.211 1.280	
Shell-Mex and B. P., 21 ^o C viscosity 20 115.3 1.083 1.135	2.0 poise, 60 °C viscosity 0.21 poise. 9.80 0.66 0.073 +0.020
Vacuum Oil Co., Mobiloil BB viscosity 20 111.6 1.139 1.189	data. 10.60 0.46 0.078 -0.003
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
About 130 cm ³ of oil was placed in a glass bulb, weighed, and the oil degassed by vacuum pumping and vigor- ous shaking for five hours.	
The degassed oil was brought into contact with air. The system shaken for 20 minutes and the air uptake measured on a Hg manometer system at the temperature t_1 .	
In a second experiment the diff- erence in air absorbed between t_1 and 80 $^{\circ}\mathrm{C}$ was directly measured.	
The Bunsen coefficient at t_1 and its temperature coefficient over the t_1 to 80 °C temperature interval, k, were given. Thus $\alpha_{80} = (1 + k)\alpha_{t_1}$.	REFERENCES :
v/cm^3 is the additional air absorbe between t_1 and 80 °C.	
² Bunsen α/cm^3 (STP) cm ⁻³ atm ⁻¹	
<pre>³ k the Bunsen coefficent temperature coefficient for the t₁ to 80 °C temperature interval.</pre>	
NRA - U	

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Air	Schweitzer, P.H.; Szebehely, V.G.
(2) Fuels, see below	J. Appl. Phys. 1950, 21, 1218-24.
VARIABLES:	PREPARED BY:
T/K = 294	R. Battino
P/kPa = 101	
EXPERIMENTAL VALUES:	
Kinetic	
Viscosity $\rho^{a}/g \text{ cm}^{-3}$ γ^{b}/g	cm ⁻¹ Solubility Constant 10 ² L ^C
/centistokes	(%)
Diesel F	uel
4.4	11.98 11.98
Aircraft En	gine Fuel
1.67 0.780 0.02	
0.6350 0.723 0.01 0.6350 0.692 0.01	
0.0550 0.052 0.01	01 23.14 23.14
^b Surface tension at 294 K. (Au to be g s ⁻² .) ^c Calculated by compiler. Ostwa constant/100). Measurements a	ld coefficient (= solubility
AUXILIARY	INFORMATION
METHOD / APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
The method consisted of shaking a container partly filled with a known amount of liquid and taking accurate pressure measurements before and after equilibration.	No details given.
	ESTIMATED ERROR:
	$\delta L/L = \pm 0.05$, compiler's estimate
	DEPENSION
	REFERENCES :
ł	

.

•

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Air	Baldwin, R. R.; Daniel, S. G.
(2) Hydrocarbon fuels	J. Appl. Chem. <u>1952</u> , 2, 161-5.
Kerosene	J. Inst. Petrol., London <u>1953</u> , 39, 105-24.
VARIABLES: T/K = 273-293 $p_1/kPa = 101.325$	PREPARED BY: P. L. Long H. L. Clever
EXPERIMENTAL VALUES:	- <u> </u>
T/K Bunsen Coefficie α/cm ³ (STP)c	Ostwald nt Coefficient m ⁻³ atm ⁻¹ L/cm ³ cm ⁻³
100 Octane fuel C,	
293.15 0.24	
100 Octane fuel D,	
293.15 0.23	
Kerosene, density 4	
273.15 0.13 293.15 0.13	
100 octane fuel C2 %2100 octane fuel D1.5 %1	2 % 14 % 72.5 % 2 % 53 % 22 % and D contained 4.0 and 4.8 cm ³
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: 1. Degassing. The liquid is deaerated by passage through a continously evacuated vessel. The liquid is sat- urated with the gas, then degassed again. 2. Saturation of liquid with gas. The gas is passed through a liquid air trap to remove water and carbon di- oxide, then through a thermostated coil to bring the gas to the temper- ature of the experiment, and then bubbled through the liquid up to five hours. 3. To determine the amount of gas dissolved, the saturated liquid is placed in a vessel attached to a calibrated buret. The vessel and bure are initially evacuated. The gas released by the liquid is transferred to the buret. Five operations and transfers recover all but a trace of the gas. The last trace (2 - 5 %) is removed by boiling the liquid.	(1) AIF. From compressed air line. Dried and freed from CO ₂ . (2) 100 Octane fuels C and D. Molecular weight estimated to be 100. Composition as above. Kerosene. Mean molecular weight measured, obtained 165. Composition as above. Other liquid properties in paper. ESTIMATED ERROR: $\delta p/p = \pm 0.01$ $\delta \alpha/\alpha \pm 0.01$
	_ <u>_</u>

541

-

COMPONENTS:	ORIGINAL ME	ASUREMENTS:		
(1) Air		Derry, L. D.; Evans, E. B.; Faulkner, B. A.; Jelfs, E. C. G.		
(2) Aviation fuels, Kerosenes	J. Inst.	Petrol. 1952, 38, 475-525.		
		<u></u> ,,		
VARIABLES:	PREPARED BY	:		
т/к = 289 к	R. Ba	ttino		
2, 205 1				
EXPERIMENTAL VALUES:	Specific	b .		
Fuel No.	Gravity ^a 60/60°F	α^{b}/cm^{3} (STP) $cm^{-3}atm^{-1}$		
ତ ପ)°F (288.7K)			
14 15	0.7990 0.8120	0.1452 0.1376		
16	0.8120	0.1322		
17 18	0.7890 0.7820	0.1398 0.1353		
19	0.7665	0.1528		
20 21	0.8285 0.8080	0.1231 0.1391		
^a At 288.7 K.				
1				
solubility w	icient. Paper which they defi	ned as 100α .		
solubility w	which they defi	ned as 100α .		
solubility w	which they defi	ned as $100\overline{\alpha}$. ontinued on following page		
solubility w	which they defi c	ned as $100\overline{\alpha}$. ontinued on following page		
SOLUBILITY W AUXI METHOD/APPARATUS/PROCEDURE:	which they defi c LLIARY INFORMATION	ned as 100α. ontinued on following page PURITY OF MATERIALS:		
AUXI METHOD/APPARATUS/PROCEDURE: Used an apparatus similar to tha described in CRC Method F-16-245	which they defi c c c c c c c c c c c c c c c c c c c	ned as 100a. ontinued on following page PURITY OF MATERIALS: etails given.		
Solubility W AUXI METHOD/APPARATUS/PROCEDURE: Used an apparatus similar to tha	which they defi c LLIARY INFORMATION (1) No d (1) No d (2) The	ned as 100α. ontinued on following page PURITY OF MATERIALS: etails given. properties of the fuels are n in table II in the original		
AUXI METHOD/APPARATUS/PROCEDURE: Used an apparatus similar to tha described in CRC Method F-16-245 for the determination of the air	which they defi c c c c c c c c c c c c c c c c c c c	ned as 100α. ontinued on following page PURITY OF MATERIALS: etails given. properties of the fuels are n in table II in the original		
AUXI METHOD/APPARATUS/PROCEDURE: Used an apparatus similar to tha described in CRC Method F-16-245 for the determination of the air	which they defi c c c c c c c c c c c c c c c c c c c	ned as 100α. ontinued on following page PURITY OF MATERIALS: etails given. properties of the fuels are n in table II in the original		
AUXI METHOD/APPARATUS/PROCEDURE: Used an apparatus similar to tha described in CRC Method F-16-245 for the determination of the air	which they defi c c c c c c c c c c c c c c c c c c c	ned as 100α. ontinued on following page PURITY OF MATERIALS: etails given. properties of the fuels are n in table II in the original		
AUXI METHOD/APPARATUS/PROCEDURE: Used an apparatus similar to tha described in CRC Method F-16-245 for the determination of the air	which they defi c c c c c c c c c c c c c c c c c c c	ned as 100α. ontinued on following page PURITY OF MATERIALS; etails given. properties of the fuels are n in table II in the original r.		
AUXI METHOD/APPARATUS/PROCEDURE: Used an apparatus similar to tha described in CRC Method F-16-245 for the determination of the air	which they defi c c c c c c c c c c c c c c c c c c c	ned as 100α. ontinued on following page PURITY OF MATERIALS; etails given. properties of the fuels are n in table II in the original r.		
AUXI METHOD/APPARATUS/PROCEDURE: Used an apparatus similar to tha described in CRC Method F-16-245 for the determination of the air	c LLIARY INFORMATION (1) No d (1) No d (2) The give pape ESTIMATED 1	ned as 100α. ontinued on following page PURITY OF MATERIALS; etails given. properties of the fuels are n in table II in the original r.		
AUXI METHOD/APPARATUS/PROCEDURE: Used an apparatus similar to tha described in CRC Method F-16-245 for the determination of the air	c LLIARY INFORMATION (1) No d (1) No d (2) The give pape ESTIMATED 1	ned as 100a. ontinued on following page PURITY OF MATERIALS: etails given. properties of the fuels are n in table II in the original r. ERROR: ±0.02, compiler's estimate.		
AUXI METHOD/APPARATUS/PROCEDURE: Used an apparatus similar to tha described in CRC Method F-16-245 for the determination of the air	which they defi LLIARY INFORMATION (1) No d (1) No d (2) The give pape ESTIMATED 1 $\delta \alpha / \alpha =$ REFERENCES	ned as 100a. ontinued on following page PURITY OF MATERIALS: etails given. properties of the fuels are n in table II in the original r. ERROR: ±0.02, compiler's estimate.		
AUXI METHOD/APPARATUS/PROCEDURE: Used an apparatus similar to tha described in CRC Method F-16-245 for the determination of the air	which they defi LLIARY INFORMATION (1) No d (1) No d (2) The give pape ESTIMATED 1 $\delta \alpha / \alpha =$ REFERENCES	ned as 100a. ontinued on following page PURITY OF MATERIALS: etails given. properties of the fuels are n in table II in the original r. ERROR: ±0.02, compiler's estimate. :		
AUXI METHOD/APPARATUS/PROCEDURE: Used an apparatus similar to tha described in CRC Method F-16-245 for the determination of the air	which they defi LLIARY INFORMATION (1) No d (1) No d (2) The give pape ESTIMATED 1 $\delta \alpha / \alpha =$ REFERENCES	ned as 100a. ontinued on following page PURITY OF MATERIALS: etails given. properties of the fuels are n in table II in the original r. ERROR: ±0.02, compiler's estimate. :		

COMPONENTS:		C	RIGINAL MEASUR	REMENTS:	
(l) Air			Derry, L. D.; Evans, E. B.; Faulkner, B. A.; Jelfs, E. C. G.		
(2) Aviation fuel	.s, Kerosenes	נ	. Inst. Petrol		
EXPERIMENTAL VAL	UES:	conti	nued		
Fuel Number	0°F (255.4K)	60°F	STP) cm ⁻³ atm ⁻¹ 65°F (291.5K)	108°F	
14 16 19 22 23 21	0.161 0.136	0.145 0.132	0.152 0.147 0.132 0.139		0.155 0.143
18 20	0.141		0.135 0.123	0.135	

^a Bunsen coefficient. Calculated by compiler from a "solubility coefficient", k, where α = 7.60k.

. -

~

,

.

•

Air Solubilities

	plittes
COMPONENTS:	ORIGINAL MEASUREMENTS:
(l) Air	Logvinyuk, V. P.; Makarenkow, V. V.; Malyshev, V. V.; Panchenkov, G. M.
(2) Hydrocarbon fuels and oil	Khim. Tekhnol. Topl. Masel. <u>1970</u> ,
	15(5), 27-9. Chem. Technol. Fuels Oils (Eng.trans.
	<u>1970</u> , 15, 353-5.
VARIABLES:	PREPARED BY:
T/K = 293.15 $p_1/kPa = 101.325$	S. A. Johnson H. L. Clever
EXPERIMENTAL VALUES:	
T/K Bunsen Coefficien α/cm³(STP)cm	Ostwald Coefficient $atm^{-1} L/cm^{3} cm^{-3}$
Hydrocarbon fuel, T-1,	density $\rho_{4}^{20}/g \ cm^{-3} = 0.816$
293.15 0.139	0.149
Hydrocarbon fuel, TS-1,	density $\rho_{4}^{20}/g \text{ cm}^{-3} = 0.775$
293.15 0.148	0.159
Hydrocarbon fuel, T-6,	density $\rho_{4}^{20}/g \ cm^{-3} = 0.84$
293.15 0.132	0.142
Hydrogenated fuel, den	sity $\rho_{1}^{20}/g \text{ cm}^{-3} = 0.832$
293.15 0.132	0.142
Oil, MK-8, density ρ_{μ}^2	$^{\circ}/a \ cm^{-3} = 0.855$
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
293.15 0.091 0.093	
0.094 0.095	
<u> </u>	Av. 0.100
	the Ostwald coefficients.
	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The details of the apparatus and procedure are described in reference (1) which was not available to the compilers.	No information other than density data in the table above.
The liquid is saturated with air to	
equilibrium at 20 °C and atmospheric pressure. The gas saturated oil in	
poured into another apparatus and vacuumized, liberation of the gas	
being carried out as described in (1).	
After returning the apparatus to atmospheric pressure, the volume of	ESTIMATED ERROR:
the liberated gas is measured.	$\delta \alpha / \alpha = \pm 0.06 \text{ or less}$ (Authors)
REFERENCES :	
1. Gogitidze, L. D.; Logvinyuk, V. P. Makarenkov, V. V.; Panchenkov,G.M. Malyshev,V.V.; Yakovlevskii, V. V. Method of Evaluating the Operating Properties of Jet Fuels and Lubri- cating Materials (in Russian), Mashinostroenie [See Izv. Vyssh. Uchebn. Zaved. Mashinostr.] 1966	REFERENCES (Continued) 2. Borisov, V.D.; Gogitidze,L.D.;Logvinyuk, V.P.; Makarenkov, V.V.; Malyshev, V.V.; Panchenkov, G.M.; Yakovlevskii,V.V. Apparatus for the determination of the amount of gas dissolved in a fluid, See Chem. Abstr. <u>1966</u> , 65, 16041d.

COMPONENTS:			ORIGINAL MEASUREME	INTS:	
(1) Air	1) Air		Schweitzer, P. H.; Szebehely, V. G.		
(2) Lubricating Oil	(2) Lubricating Oils, see below		J. Appl. Phys. 1950, 21, 1218-24.		
	(_,				
VARIABLES:			PREPARED BY:		
T/K = 294					
P/kPa = 101			R. Battino		
EXPERIMENTAL VALUES:					
Kinetic Viscosity			Solubili , Constar	·+ ⁻	
/centistokes	$\rho^a/g \text{ cm}^{-3}$	γb/g	cm ⁻¹ (%)	10 ² L ^C	
	HEA	AVY LUBF	RICATING OIL		
823-974	0.882	0.02		7.74	
823-974 762-974			8.14 8.15	8.14 8.15	
762-974			8.24	8.24	
762-974 562-670	0.883	0.03	8.61 8.62	8.61 8.62	
325-411	0.880	0.03		9.05	
249-346 88.7	0.869	0.02	93 9.11 9.18	9.11 9.18	
	T.TC	HT LUBE	CATING OIL		
17.5	0.870	0.02	9.70	9.70	•
17.5	0.870 0.938	0.02	74 9.95 59 10.72	9.95 10.72	
17.5	0.867	0.02	86 11.30	11.30	
a Density at	294 к.				
^b Surface te	nsion at 294	4 K. (Pr	esumably the un	it is	
really gs ⁻		0 a ta			
Laiculateu	00). Measur	cements	ald coefficient at 70°F (294 K)	•	
	A	UXILIARY	INFORMATION		
METHOD/APPARATUS/PROCED			SOURCE AND PURITY	OF MATERIALS:	
The method consister container partly fi	ed of shakin illed with a	g a known			
amount of liquid ar	nd taking ac	curate		*	
pressure measuremen after equilibration		na	No detai	ls given	
			ESTIMATED ERROR:		
				aomnilaria oa	timato
				, compiler's es	ctila CE
			DEPEDENCIO-		
			REFERENCES:		

545

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Air	Findl, E.; Brande, H.; Edwards, H.
(2) Fuel RJ-1	U. S. Dept. Comm., Office Tech. Ser. Report No. <i>AD 274 623</i> , <u>1960</u> , 216 pp. <i>Chem. Abstr.</i> <u>1963</u> , 58, 6628c.
VARIABLES: T/K = 310.9 - 533.2 $p_1/kPa = 172.4 - 274.4$ (25 - 398 psia)	PREPARED BY: H. L. Clever
(25 - 398 psia)	

METHOD/APPARATUS/PROCEDURE:

1

The solubility apparatus was constructed of two concentric glass tubes sealed at the end by invar steel caps and silicone O-rings. The caps had attachments for flexible tubes to admit solvent and gas, and to circulate the thermostating fluid.

The inner tube was of TRUE-BOFE glass tubing. It contained the solvent and a glass ball 0.0083 inch smaller than the tube diameter. The ball was used for both stirring on gas dissolution and viscosity measurements on the gas saturated solution. A steel scale beside the inner tube allowed determination of the solvent volume to within 0.3 per cent.

The thermostating liquid (white minearl oil) circulated in the space between the two tubes.

The solvent was initially saturated with air. The amount of dissolved air was known from a previous Orsat analysis.

The solute gas was contained in a steel bottle at 700 psig maintained at a temperature of $150 \pm 1^{\circ}$ F. There were two pressure gages. A differential gage between the gas bottle and a reference bottle to measure the pressure drop when gas was admitted to the apparatus, and a Bourdon gage to measure the final total pressure in the cell.

The solvent was added to the cell until the vapor/liquid ratio reached about 0.15. The cell and its contents were heated to the temperature of the measurement. The gas was admitted, and the test cell rocked for 10 minutes more than the time required to reach a stable pressure. The amount of gas dissolved was calculated from the pressure drop in the gas reservoir and the total pressure in the cell. The partial pressure of the gas in the

AUXILIARY INFORMATION

METHOD/APPARATUS/PROCEDURE: (continued) cell was calculated taking into account the initial dissolved air, the solvent vapor pressure, and the compressibility of the gas. Both the Ostwald coefficient and the volume of gas at standard conditions per unit weight of solvent were calculated. The results were presented in large scale graphs. The results on the data sheets are values read from the graphs by the compiler.	 SOURCE AND PURITY OF MATERIALS: (1) Air. Stated to be of high purity. (2) Fuel. The fuel was specified as MIL-F-25558 Grade RJ-1 formerly designated as Shell UMF, Grade C. A table of fuel characteristics was included in the report.
Other experimental details and results were in an earlier report of the authors (1).	ESTIMATED ERROR: $\delta T/^{\circ}F = \pm 1$ $\delta p/1b \text{ in}^{-2} = \pm 1$ $\delta L/L = \pm 0.02 \text{ (minimum), max.} \simeq 0.05$
	REFERENCES: 1. Schlagel, L. A.; Findl, E.;
	Edwards, H. Ing Er. Rept. 183, Thompson Products, Inc. Inglewood Lab., Inglewood, CA, USA, Aug 19, <u>1955</u> .

COMPONENTS:				MEASUREMENTS:		
(1) Air			Findl, E.	Findl, E.; Brande, H.; Edwards, H.		
(2) Fuel RJ-1			ot. Comm., Office Tech. Ser. 0. <i>AD 274 623</i> , <u>1960</u> , 216 pp.			
			Chem. Abs	tr. <u>1963</u> , 58, 6628c.		
EXPERIMENTAL VALUE	S:	C	ontinued	······································		
Tempe	rature	Air	Solubility	Ostwald		
<i>t</i> /°F	<i>Т/</i> К	Pressure p ₁ /psia	cm ³ (STP) g ⁻¹	Coefficient L/cm ³ cm ⁻³		
100	310.9	16		0.116		
		17 63	0.40	0.120 0.119		
		63	0.52	0.121		
		113 113	0.92 0.95	0.115 0.121		
		214	1.68	0.112		
		214	1.76	0.120		
		313 414	2.57 3.47	0.121 0.119,0.126		
			••••	(0.119) ¹		
200	366.5	17.5		0.153		
		18 60		0.167 0.136		
		62.5		0.169		
		113 113	1.11 1.14	0.155 0.163		
		212	2.10	0.155		
		212	2.12	0.159		
		311 313	2.99	0.149 0.149		
		411	4.04	0.157		
		412.5	4.03	0.158 (0.155) ¹		
300	422.0	17.5		0.264		
		59 110	0.79 1.61	0.230 0.263		
	-	112	1.52	0.241		
		207.5	3.07	0.235		
		210 309	4.17-	0.241 0.235		
		310	4.37	0.246		
		408 410	5.67 5.72	0.240 0.242		
		110	51/2	$(0.240)^{1}$		
400	477.6	102.5	1.50	0.270		
		203 303	3.00 4.50	0.275 0.275		
		402.5	5.99	0.280		
		403		0.275 (0.275) ¹		
500	533.2	87.5	1.43	0.314		
		87.5 190	1.46 3.08	0.316 0.314		
		190		0.316		
		287.5	4.62	0.314		
		387 390		0.317 0.316		
				(0.315) ¹		
				ld coefficient		
		≡ pounds] 6.89476 ki	per square in Pa.	ch absolute.		

COMPONENTS:		
	· · · · · · · · · · · · · · · · · · ·	ORIGINAL MEASUREMENTS:
(1) Air		Rupprecht, S. D.; Faeth, G. M.
(2) Jet A(79) fuel		NASA CR 1981, NASA-CR-3422, 111 pp.
		Chem. Abstr. 1981, 95, 153333x.
		Chem. Abszh. <u>1981</u> , 75, 155555X.
VARIABLES:		PREPARED BY:
T/K = 295-373 P/MPa = 1-10		R. Battino
r/Mra - 1-10		K. Battino
EXPERIMENTAL VALUES:		
	т/к Р ^а /	MDD Y
	1/K F /	MPa x ₁
	295.82 1.	03 0.0118
	373.15 l. 296.65 2.	
	373.15 2.	
	298.15 4. 373.15 4.	
	297.15 10.	34 0.1184
	373.15 10.	34 0.1306
_		
a	Total pressur	e.
······	AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:		SOURCE AND PURITY OF MATERIALS:
A 1000 cm ³ chamber is find	illed with	
	Gas is added	(1) No dotoila cinor
to the desired pressure. is agitated to attain eq		(1) No details given.
Temperatures are read vi couples and pressures vi		(2) 0.8381 sp. gr. at 60°F. Boiling range is 434.82-600.93K.
bourdon tube gages. A 1	iquid sample	
is removed and allowed to pressurize at atmospheric		
The solubility is calcul		
the measurement of liqui volumes of the de-pressu		
the measurement of liqui volumes of the de-pressu sample. Residual dissol	ved gas is	ESTIMATED ERROR:
the measurement of liqui volumes of the de-pressu	ved gas is	ESTIMATED ERROR: $\delta x_1/x_1 = \pm 0.03$, compiler's estimate
the measurement of liqui volumes of the de-pressu sample. Residual dissol	ved gas is	
the measurement of liqui volumes of the de-pressu sample. Residual dissol	ved gas is	$\delta x_1 / x_1 = \pm 0.03$, compiler's estimate
the measurement of liqui volumes of the de-pressu sample. Residual dissol	ved gas is	$\delta x_1 / x_1 = \pm 0.03$, compiler's estimate
the measurement of liqui volumes of the de-pressu sample. Residual dissol	ved gas is	$\delta x_1/x_1 = \pm 0.03$, compiler's estimate
the measurement of liqui volumes of the de-pressu sample. Residual dissol	ved gas is	$\delta x_1/x_1 = \pm 0.03$, compiler's estimate

COMPONENTS:		ORIGINAL MEASUREMENTS:		
(1) Air		Rupprecht, S. D.; Faeth, G. M.		
(2) Jet A(80) fuel		NASA CR <u>1981</u> , NASA-CR-3422, 111 pp.		
		Chem. Abstr. <u>1981</u> , 95, 153333x.		
VARIABLES:	,,,,,,,_,_,_,_,	PREPARED BY:		
T/K = 297-373		PREPARED BI:		
P/MPa = 1-10		R. Battino		
EXPERIMENTAL VALUES:				
	T/K P ^a /I	MPa x _l		
	297.65 1.			
3	373.15 1.	0.0150		
:	298.15 2.0 373.15 2.0	0.0312		
	297.15 4.3 373.15 4.3			
:	297.40 10. 373.15 10.	34 0.1512		
-				
u	Total pressur	ce.		
	AUXILIARY	INFORMATION		
METHOD / APPARATUS / PROCEDURE :		SOURCE AND PURITY OF MATERIALS:		
A 1000 cm^3 chamber is fill	led with			
ca. 500 cm ³ of liquid. (added to the desired pres		(1) No details given.		
chamber is agitated to at equilibrium. Temperature	tain:	(2) 0.8095 sp.gr. 60°F. Boiling		
via thermocouples and pre	essures	range 444.26-547.59K.		
via Heisse bourdon tube g liquid sample is removed				
to de-pressurize at atmos pressure. The solubility				
calculated from the measu	irement of			
liquid and gas volumes of de-pressurized sample.				
dissolved gas is consider	the	ESTIMATED ERROR:		
negligible	the Residual			
negligible.	the Residual	ESTIMATED ERROR: $\delta x_1/x_1 = \pm 0.03$, compiler's estimate		
negligible.	the Residual			
negligible.	the Residual	$\delta x_1 / x_1 = \pm 0.03$, compiler's estimate		
negligible.	the Residual	$\delta x_1 / x_1 = \pm 0.03$, compiler's estimate		
negligible.	the Residual	$\delta x_1/x_1 = \pm 0.03$, compiler's estimate		
negligible.	the Residual	$\delta x_1 / x_1 = \pm 0.03$, compiler's estimate		

549

~ ~ ~

SYSTEM INDEX

* *

Underlined page numbers refer to evaluation text and those not underlined to compiled tables. All compounds are listed as in Chemical Abstracts. For example, toluene is listed as benzene, methyl-, dimethylsulfoxide is listed as methane, sulfinylbis-. Since nitrogen is usually one of the compounds it is omitted in the listing.

А

A	
Acetamide (agueous) Acetamide, N-methyl- Acetic acid	<u>84</u> , 93 261 221
Acetic acid (aqueous)	45-47, 54 , 77
Acetic acid (ternary and multicomponent)	357 - 360
Acetic acid, cobalt salt (aqueous) Acetic acid, copper (2+) salt (aqueous)	$\frac{45-47}{45-47}, \frac{54}{54}, 77$
Acetic acid, copper (2+) sait (aqueous) Acetic acid, ethyl ester	$\frac{43-47}{224}$
Acetic acid, ethyl ester (ternary)	105, 107, 108
Acetic acid, manganese (2+) salt (aqueous)	<u>45-47</u> , <u>54</u> , 77
Acetic acid, mercury (2+) salt (aqueous)	<u>45-47</u> , <u>54</u> , 77
Acetic acid, methyl ester Acetic acid, 2-methylpropyl ester	223 225
Acetic acid, nickel (2+) salt (aqueous)	<u>45-47, 54, 77</u>
Acetic acid, pentyl ester	226
Acetic acid, sodium salt (aqueous)	<u>45-47, 54</u> , 77
Acetic acid, zinc (2+) salt (aqueous)	45-47, 54 , 77
Acetone, see 2-propanone	308
D-Alanine (aqueous) Aluminium oxide, hydrated	45-48, 60
Ammonia	476, 477 - 483
AMSCO 123-5	330
Amyl acetate, see acetic acid, pentyl ester	
Aniline, see benzenamine	
Animal and vegetable oils, see under oil Argon (multicomponent)	482
Argon (murtreomponent)	10-
В	
Barium chloride (aqueous)	<u>45-47, 49,</u> 62, 63
Benzenamine	265, 266
Benzene	162, 163 - 168,
	$\overline{252}, 443, 444$
Benzene (ternary)	$\frac{104}{300}, \frac{111}{302}, \frac{104}{302}$
Benzene, chloro-	240
Benzene, dimethyl-	171
Benzene, hexafluoro-	242
Benzene, methyl-	<u>162</u> , 169, 170, 445 173
Benzene, 1,1'-methylenebis- Benzene, nitro-	264, 265
l,l-Bicyclohexyl	161
Blood, cod	292
Blood, dog	464
Blood, eel	292 284, 285
Blood, human, plasma Blood, human	286, 292
Blood, ox	289, 465
Blood, ox, plasma	289, 295
Blood, rabbit	293
Blood, trout	292 497
Borane, trimethyl- Brain, rabbit	293
1-Bromoheptane, see heptane, 1-bromo-	190
l-Bromo-1,1,2,2,3,3,4,4,5,6,6,6-dodecafluoro-5-	
(trifluoromethvl)-hexane,	
<pre>see hexane, 1-bromo-1,1,2,2,3,3,4,4,5,6,6,6- dodecafluoro-5-(trifluoromethv])-</pre>	
dodecalldoro(criftdoromethy)	
	(cont.)

System Index (cont.) 1-Bromo-1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8heptadecafluorooctane see octane, 1-bromo-1,1,2,2,3,3,4,4,5,5,-6,6,7,7,8,8,8-heptadecafluoro-1,3-Butadiene 418 1-Butanamine, 1,1,2,2,3,3,4,4,4-nonafluoro-N,N-bis(nonafluorobutyl) - + air 532 1-Butanamine, 1,1,2,2,3,3,4,4,4-nonafluoro-267 - 269 N,N-bis(nonafluorobutyl)-409, 410-413, 418 Butane 385, 386, 414, 415 Butane (ternary) iso-Butane, see propane, 2-methyl-Butane, 1,1,2,2,3,3,4,4-octafluoro-1,4bis(1,2,2,2-tetrafluoro-l-(trifluoromethyl)-250 ethoxy)-421 Butane, 2-methyl-309 (R,R)-1,2,3,4-butanetetrol (aqueous) $\frac{175}{197}, \frac{177}{197}, \frac{178}{200},$ 1-Butanol Butter oil, see oil, butter iso-Butyl acetate, see acetic acid, 2-methylpropyl ester С 346 Calcium chloride (aqueous) Carbonic acid, dipotassium salt (aqueous) Carbonic acid, disodium salt (aqueous) 45-47, 55, 81, 82 71 Carbonic acid, monosodium salt (aqueous) 71 488, 489-494 Carbon dioxide 516 Carbon dioxide (multicomponent) + air 76, 466, 495, Carbon dioxide (multicomponent) 498 - 501 253, 254 - 257 Carbon disulfide Carbon tetrachloride, see methane, tetrachloro-Caroxin-D, see butane, 1,1,2,2,3,3,4,4-octafluoro-1,4-bis(1,2,2,2-tetrafluoro-1-(trifluoromethyl)ethoxy)-Caroxin-F, see hexane, 1,1,1,2,2,3,3,4,4,5,5,6,6tridecafluoro-6-(1,2,2,2-tetrafluoro-1-(trifluoromethyl)ethoxy)-302 Cephalin Chloral hydrate, see 1,1'-ethanediol, 2,2,2-trichloro-Chloride, sodium, see sodium chloride Chlorine hexafluoride 474 472, 473 Chlorine pentafluoride Chlorine trifluoride 471 Chlorobenzene, see benzene, chloro-Chlorodifluoromethane, see methane, chlorodifluoro-1-Chloro-1,1,2,2,3,3,4,4,5,6,6,6-dodecafluoro-5-(trifluoromethyl)-hexane, see hexane, 1-chloro-1,1,2,2,3,3,4,4,5,6,6,6dodecafluoro-5-(trifluoromethyl)-Chloroform, see methane, trichloro-1-Chlorohexane, see hexane, 1-chloro-300 Cholest-5-en-38-ol Cobalt acetate, see acetic acid, cobalt (2+) salt Cod blood, see blood, cod Copper acetate, see acetic acid, copper (2+) salt Corn oil, see oil, corn Cotton seed oil, see oil, cottonseed 148, 149-154, Cyclohexane 439, 440 Cyclohexane, decafluorobis(trifluoromethyl)-Cyclohexane (ternary) 246 104, 117, 118, 353, 354 157 Cyclohexane, cis-1,2-dimethyl-Cyclohexane, cis-1,3-dimethy1-160 Cyclohexane, cis-1,4-dimethyl-Cyclohexane, trans-1,2-dimethyl-159 158 (cont.)

System Index (cont.) Cyclohexane, trans-1,3-dimethyl-160 Cyclohexane, trans-1,4-dimethy1-159 155, 441, 442 355, 356 Cyclohexane, methyl-Cyclohexane, methyl- (ternary) Cyclohexane, undecafluoro(trifluoromethyl)-244 207 Cyclohexanol Cyclohexanol (multicomponent) 357 220, 449, 450 357 - 360 Cyclohexanone Cyclohexanone (ternary and multicomponent) Cyclohexene 154 156 Cyclooctane 275 Cyclotetrasiloxane, octamethy1-D + air Decane 517 $\begin{array}{r} \underline{119-121}, \ 131, \ 139, \\ 140, \ 419, \ 435, \ 436 \\ \underline{176-178}, \ 213, \\ 214, \ 324 \end{array}$ Decane 1-Decanol Detergent (aqueous) 352 Dichlorodifluoromethane, see methane, dichlorodifluoro-496 Diborane Diethyl ether, see ethane, 1,1'-oxybis-Dihydropyran, see pyran, dihydro-1,2-Dimethylcyclohexane, see cyclohexane, 1,2-dimethyl-1,3-Dimethylcyclohexane, see cyclohexane, 1,3-dimethyl-1,4-Dimethylcyclohexane, see cyclohexane, 1,4-dimethyl-Dimethylsulfoxide, see methane, sulfinylbis-Dimethyl glutarate, see pentanedioic acid, dimethyl ester 1,1-Dimethylhydrazine, see hydrazine, 1,1-dimethyl-1,2-Dimethylhydrazine, see hydrazine, 1,2-dimethyl-1,5-Dimethyl-2-pyrrolidinone, see 2-pyrrolidinone, 1,5-dimethyl-Dinitrogen tetroxide, see nitrogen oxide 1,4-Dioxane 229 1,3-Dioxolan-2-one, 4-methyl-448 Diphenylmethane, see benzene, 1,1'-methylenebis-Dipropyl ether, see propane, 1,1'-oxybis-DMSO, see methane, sulfinylbis-Dodecane + air 519 $\frac{119}{177}, \frac{119}{178}, \frac{142}{215}, \frac{437}{324}$ Dodecane 1-Dodecanol Dog blood, see blood, dog Dog fat, see fat, dog E Eel blood, see blood, eel Erythritol, see (R,R)-1,2,3,4-butanetetrolErythrocytes, see ox erythrocytes <u>391</u>, 392 - 399 Ethane Ethane (ternary) 376 - 382 1,2-Ethanediol 184 84, 92, 237 1,1'-Ethanediol, 2,2,2-trichloro- (aqueous) Ethane, 1,1,2-trichloro-1,2,2-trifluoro-239 Ethane, 1,1'-oxybis + air 521 Ethane, 1,1'-oxybis 227, 228 105, 109, 110 Ethane, 1,1'-oxybis (ternary) Ethane, 1,2-dichloro-1,1,2,2-tetrafluoro-238 Ethane, 1,2-epoxy-231, 454 $\frac{174}{185}, \frac{177}{190}, \frac{178}{447}, \frac{137}{83}, \frac{18}{88}, -91$ Ethanol Ethanol (aqueous) <u>104, 105, 106 - 114</u> Ethanol (ternary) 387 - 390 Ethene Ethylene glycol, see 1,2-ethanediol (cont.)

553

System Index (cont.)				
Ethylene oxide, see ethane, 1,2-epox Ethyl acetate, see acetic acid, ethy Ethyl palmitate, see hexadecanoic ac	l ester			
F				
Fat, dog Fat, human FC-75 FC-80, see furan, heptafluorotetrahy Ferric oxide, see iron (3+) oxide Freon-114, see ethane, 1,2-dichloro- Freon-12, see methane, dichlorodiflu	1,1,2,2-tetraflu			281 281 530
D-Fructose (aqueous) Fuel Fuel (hydrocarbon) Fuel (hydrocarbon) Fuel, jet Fuel, jet Fuel, RJ-1 Fuel, RJ-1 Furan, heptafluorotetrahydro(nonaflu Furan, tetrahydro-	+ air + air + nitrogen + air + air horobutyl)-			311 540 - 543 544 327, 328 548, 549 507, 508 546, 547 505, 506 247, 248 229
G				
Gas oil, see oil, gas Gelatin (aqueous) Germanium, tetrachloro- α -D-Glucopyranoside, β -D-fructofuran D-Glucose Glycerol triacetate, see 1,2,3-propa		ate		313 252 314 312
Glycine (aqueous)				307
H			207	200 200
Hemaglobin Heptane	، + air		287, 291,	288, 290, 294, 296 517
Heptane		<u>119</u> ,	$\frac{120}{425}$	128 - 131, 426 - 430
Heptane (ternary) Heptane, 1-bromo- Heptane, 1-bromo-	+ air			355, 356 522 243
Heptane, hexadecafluoro- 1-Heptanol	+ air			245 520
l-Heptanol Hexadecafluoroheptane, see heptane,	hexadecafluoro-	<u>177</u> ,		208 - 210
Hexadecane Hexadecanoic acid, ethyl ester			$\frac{119}{147}$,	$\frac{121}{419}, 146, \\ \frac{419}{280}$
Hexafluorobenzene, see benzene, hexa Hexane	fluoro-	<u>119</u> ,	$\frac{120}{419}$	124 - 128, 422 - 424
Hexane, 1-bromo-1,1,2,2,3,3,4,4,5,6, dodecafluoro-5-(trifluoromethyl			<u></u> ,	523
Hexane, 1-chloro- Hexane, 1-chloro-1,1,2,2,3,3,4,4,5,6				241 524
dodecafluoro-5-(trifluoromethyl Hexane, 1,1,1,2,2,3,3,4,4,5,5,6,6-tr (1,2,2,2-tetrafluoro-1-(trifluor	idecafluoro-6-			249
l-Hexanol Human blood, see blood, human Hydrated aluminium oxide, see alumin		<u>177</u> ,	<u>178</u> ,	205, 207
hydrated Hydrated ferric oxide, see ferric ox bydrated	ide,			
hydrated				(cont.)

System Index (cont.) Hydrazine 270, 273 Hydrazine, 1,1-dimethyl-Hydrazine, 1,2-dimethyl-272, 273 274 Hydrazine, methyl-271 Hydrazine, tetrafluoro-487 Hydrogenated cotton seed oil, see oil, hydrogenated cottonseed Hydrogen sulfide 468 - 470Hydrogen sulfide (multicomponent) 495 Ι Iron (3+) oxide, hydrated 45 - 47, 61 J Jet fuel, see fuel, jet ĸ Kerosine + air 541, 542 L 533, 534 Lard + air Lard 276, 277, 280 301 Lecithin Lipoidal suspension 303 45 - 47, Lithium chloride (aqueous) 49, 64 310 L-Arabinose (aqueous) L-1822 (mixture of mostly 10-carbon fluorocarbons) + air 529 L-1822 (mixture of mostly 10-carbon fluorocarbons) 251 Μ Magnesium sulfate, see sulfuric acid, magnesium salt Manganese acetate, see acetic acid, manganese (2+) salt Mercury (2+) acetate, see acetic acid, mercury (2+) salt $\frac{361}{363}$, $\frac{362}{375}$, Methane Methane (ternary) 376 - 386, 482, 498-501 455, 456 234, 460, 461 Methane, chlorodifluoro-Methane, chlorotrifluoro-Methane, dichloridifluoro-235, 457 Methane, nitro-260 $\frac{253}{252}, \frac{258}{458}$ Methane, sulfinylbis-Methane, tetrachloro-Methane, tetrafluoro-234, 459, 460, 461 232, 233 Methane, trichloro- $\frac{174}{179}$, $\frac{177}{183}$, $\frac{178}{446}$ Methanol 83, 86, 87 Methanol (aqueous) 495 Methanol (multicomponent) N-Methylacetamide, see acetamide, N-methyl Methyl acetate, see acetic acid, methyl ester Methylcyclohexane, see cyclohexane, methyl-2-Methyl heptane, see heptane, 2-methyl-Methylhydrazine, see hydrazine, methyl-5-Methyl-N-methyl pyrrolidinone, see 2-pyrrolidinone, 1,5-dimethyl-1-Methylnaphthalene, see naphthalene, 1-methyl-2-Methyl propane, see propane, 2-methyl-(cont.)

```
System Index (cont.)
N-Methylpyrrolidinone, see 2-pyrrolidinone, N-methyl-
Mineral oil, white, see oil, mineral
Ν
                                                                              503
Naphtha
Naphthalene, octadecafluorodecahydro- + air
                                                                              527
Naphthalene, 1-methyl-
Naphthalene, 1,2,3,4-tetrahydro-
                                                                              172
                                                                              280
Nickel (2+) acetate, see acetic acid, nickel (2+) salt
Nitric acid
                                                                               59
                                                                              531
Nitric acid, propyl ester
                                           + air
                                                                              262
Nitric acid, propyl ester
Nitrobenzene, see benzene, nitro-
                                                                              316
Nitrogen oxide (N2O)
Nitrogen oxide (N_2O_4)
                                                                        317, 318
                                                                              486
Nitrogen trifluoride
Nitromethane, see methane, nitro-
                                                                              484
Nitrous oxide
                                                                              485
Nitryl fluoride
                                                             \frac{119}{177}, \frac{120}{177}, \frac{137}{178}, \frac{138}{213}
Nonane
1-Nonanol
0
Octadecafluorodecahydronaphthalene,
      see naphthalene, octadecafluorodecahydro-
Octadecafluorooctane, see octane, octadecafluoro-
                                                                              280
9-Octadecenoic acid
Octamethylcyclotetrasiloxane,
     see cyclotetrasiloxane, octamethyl-
                                           + air
                                                                              517
Octane
                                                             119, 120, 131 - 134,
Octane
                                                                  419, 431, 432
Octane, 1-bromo-1,1,2,2,3,3,4,4,5,5,6,6,7,7,-
                                                                              525
     8,8,8-heptadecafluoro-
                                           + air
Octane, octadecafluoro-
                                           + air
                                                                              526
1-Octanol
                                           + air
                                                                              520
                                                             176 - 178, 209 - 212
1-Octanol
                                                                              538
Oil, asphaltic mineral
Oil, butter
                                           + air
                                           + air
                                                                              534
Oil, butter
                                                                              277
                                           + air
                                                                        535, 536
Oil, cod-liver
                                                                        533, 536
                                           + air
Oil, corn
                                                                              276
Oil, corn
Oil, cottonseed
                                                                  533, 534, 536
                                           + air
                                                                        276, 277
Oil, cottonseed
Oil, gas
Oil, herring
Oil, hydrocarbon
                                                                              504
                                                                              536
                                           + air
                                                                              544
                                           + air
Oil, hydrocarbon
                                                                              328
Oil, hydrogenated, cottonseed
                                           + air
                                                                              533
Oil, hydrogenated, cottonseed
                                                                              276
Oil, linseed
Oil, lubricating
                                           + air
                                                                              536
                                                                        539, 545
                                           + air
                                                                  536, 537 - 539
Oil, mineral
                                           + air
                                                                  319 - 321, 331
Oil, mineral
Oil, olive
Oil, olive
                                           + air
                                                                        535, 536
                                                                  279, 280 - 283
Oil, paraffin
                                           + air
                                                                              538
Oil, paraffin
                                                                        322 - 324
Oil, soybean
                                                                              278
Oil, transformer type
                                           + air
                                                                              538
Oxygen (multicomponent)
                                                              76, 353, 354, 466
Oxygen fluoride
                                                                              467
Ox blood, see blood, ox
Ox erythrocytes
                                                                  290, 291, 295
                                                                         (cont.)
```

```
System Index (cont.)
  р
  Paraffin wax
                                                                                  325
                                                                            119, 145
  Pentadecane
  Pentanedioic acid, dimethyl ester
                                                                                  451
                                                                      123, <u>419</u>, 420
  Pentane
                                                                      517, 518
121, 131, 135,
  Pentane, 2,2,4-trimethyl-
Pentane, 2,2,4-trimethyl-
                                             + air
                                                                      136, 433, 434
  Pentane, 2,2,4-trimethyl- (ternary)
                                                                            104, 113,
                                                                            <u>115</u> - 118
176 - 178,
  1-Pentanol
                                                                            202 - 205
  3,6,9,12,15-Pentaoxaoctadecane,1,1,1,2,4,4,5,-
        7,7,8,10,10,11,13,13,14,16,16,17,17,18,-
        18,18-tricosafluoro-5,8,11,14-tetrakis-
                                                                                  528
        (trifluoromethyl) -
                                              + air
  2,5,8,11,14-Pentaoxapentadecane
                                                                                  453
  Pentyl acetate, see acetic acid, pentyl ether
  Perchloryl fluoride, see chlorine hexafluoride
  Perfluorodimethylcyclohexane,
        see cyclohexane, decafluorobis(trifluoromethyl)-
        cyclohexane
  Perfluoro-1,4-diisopropoxy butane
        see butane, 1,1,2,2,3,3,4,4-octafluoro-1,4-
        bis(1,2,2,2-tetrafluoro-1-(trifluoromethyl)-
        ethoxy)-
  Perfluorodecalin
        see naphthalene, octadecafluorodecahydro-
  Perfluoroheptane, see heptane, hexadecafluoro-
  Perfluoromethylcyclohexane,
        see cyclohexane, undecafluoro(trifluoromethyl)-
  Perfluorooctane,
        see octane, octadecafluoro-
  Perfluoro-1-isopropoxyhexane,
        see hexane, 1,1,1,2,2,3,3,4,4,5,5,6,6-
tridecafluoro-6-(1,2,2,2-tetrafluoro-1-
        (trifluoromethyl)ethoxy).
  Perfluorotetrahydrofuran,
        see furan, heptafluorotetrahydro(nonafluoro-
        butyl)-
  Perfluorotributylamine,
see 1-butanamine, 1,1,2,2,3,3,4,4,4-nonafluoro-
        N, N-bis (nonafluorobutyl) -
                                                                                  329
  Petroleum
                                                                                  326
  Petrowax A
                                                                                  263
  Piperidine
                                                                            294, 295
  Plasma
  Potassium carbonate,
        see carbonic acid, dipotassium salt
                                                                       45 - 47,
                                                                                   54,
  Potassium chloride (aqueous)
                                                                       <u>55</u>,
                                                                             78,
                                                                                   79
                                                                 45 - \overline{47},
                                                                             <u>55</u>, 80
  Potassium iodide (aqueous)
                                                                      402,
                                                                            403 - 408
  Propane
                                                                            383, 384
  Propane (ternary)
  Propane, 2-methyl-
Propane, 2-methyl- (ternary)
                                                                            416 - 417
                                                                            414, 415
  Propane, 1,1'-oxybis-
                                                                                  230
                                                                       84, 100 - 102
  1,2,3-Propanetriol (aqueous)
  1,2,3-Propanetriol, triacetate
                                                                                  452
                                                                      175, 195, 196
  2-Propanol
                                                                      \begin{array}{c} \overline{84}, & 98, & 99\\ 1\overline{74}, & 175, & 177\\ 1\overline{78}, & 191 - 194 \end{array}
                                                                       84,
  2-Propanol (aqueous)
  1-Propanol
                                                                       84,
                                                                      \overline{84}, 96, 97
104, 115, 116
  1-Propanol (aqueous)
  1-Propanol (ternary)
                                                                      175, 176, 201
  1-Propanol, 2-methyl-
                                                                             94,
  Propanoic acid (aqueous)
                                                                       84,
                                                                                   95
 Propanoic acid, 2-methyl-
Propanoic acid, 2-methyl- (aqueous)
                                                                                  222
                                                                             <u>84</u>, 103
                                                                                 (cont.)
```

```
System Index (cont.)
  2-Propanone
                                                                       <u>216</u>, 217 - 219
                                                                       105, 106, 114
 2-Propanone (ternary)
                                                                             400, 401
 Propene
                                                                                   418
 Propene, 2-methyl-
 Propionic acid, see propanoic acid
 Propylene carbonate, see 1,3-dioxolan-2-one,
        4-methyl-
 1-Propyl nitrate, see nitric acid, propyl ester
 Pyran, 2,3-dihydro-
                                                                                    229
 2H-Pyran, tetrahydro-
                                                                                    229
 Pyridine
                                                                                    263
                                                                                    263
 Pyrrolidine
 2-Pyrrolidinone, 1,5-dimethyl-
2-Pyrrolidinone, 1-methyl-
                                                                                    463
                                                                                    462
 R
 Rabbit blood, see blood, rabbit
 Rabbit brain, see brain, rabbit
                                                                                    298
 Red cell ghost, human
 S
 Saline
                                                                                    293
                                                                                   502
 Santowax R
                                                                              34 - 44
                                                                  31 - 33,
 Seawater
                                                                              37, 38
 Seawater + argon + nitrogen + oxygen
                                                                                    297
 Serum albumin
 Silane, tetrachloro-
                                                                                    252
 Silane, trichloromethyl-
                                                                                   252
 Sodium bicarbonate, see carbonic acid, monosodium salt
                                                                 513, 514

45 - 47, 50 - 52,

67 - 71, 348 - 351

45 - 47, 49, 50
 Sodium carbonate, see carbonic acid, disodium salt
 Sodium chloride (aqueous)
                                              + air
 Sodium chloride (aqueous)
 Sodium hydroxide (aqueous)
 Sodium sulfate, see sulfuric acid, sodium salt
 Sodium sulfite, see sulfurous acid, disodium salt
Steam rendered lard, see lard
 Sucrose, see \alpha-D-glucopyranoside, \beta-D-fructofuranosyl-
 Sulfate, magesium, see sulfuric acid, magnesium salt
 Sulfate, sodium, see sulfuric acid, sodium salt
 Sulfur hexafluoride
                                                                                   259
                                                                            515, 516
 Sulfuric acid
                                              + air
 Sulfuric acid
                                                                        45 <u>- 48</u>, 57,
                                              + nitrogen
                                                                        58, 74,
                                                                                    76
 Sulfuric acid, magnesium salt (aqueous)
Sulfuric acid, sodium salt (aqueous) + air
Sulfuric acid, sodium salt (aqueous)
                                                                                   345
                                                                       345, 515, 516
                                                                  \frac{45 - 47}{73} - \frac{52}{76}, \frac{53}{347}
                                                                                    53,
                                                                                    \frac{52}{75}'
                                                                        45 - 47,
 Sulfurous acid, disodium salt (aqueous)
                                                                        \frac{53}{53}, \frac{72}{75}, \frac{75}{315}, \frac{75}{475}
 Sulfur dioxide
 т
 Tetradecane
                                                                             119, 144
 Tetrahydropyran, see 2H-pyran, tetrahydro-
 Tetrafluorohydrazine, see hydrazine, tetrafluoro-
 Tetralin, see naphthalene, 1,2,3,4-tetrahydro-
 Tetramethylene glycol dimethyl ester,
see 2,5,8,11,15-pentaoxapentadecane
 Toluene, see benzene, methyl-
 Triacetin, see 1,2,3-propanetriol, triacetate 1,1,2-Trichloro-1,2,2-trifluoroethane,
       see ethane, 1,1,2-trichloro-1,2,2-trifluoro-
 Trichloromethane, see methane, trichloro-
```

```
System Index (cont.)
 1,1,1,2,4,4,5,7,7,8,10,10,11,13,13,14,16,16,-
17,17,18,18,18-Tricosafluoro-5,8,11,14-
        tetrakis(trifluoromethyl)-3,6,9,12,15-
        pentaoxaoctadecane,
       see 3,6,9,12,15-pentaoxaoctadecane, 1,1,1,2,-
4,4,5,7,7,8,10,10,11,13,13,14,16,16,17,17,18,-
18,18-tricosafluoro-5,8,11,14-tetrakis-
        (trifluoromethyl) -
 Tridecane
                                                                                      119, 142
 Trimethylborane
                                                                                             497
 2,2,4-Trimethyl pentane, see pentane, 2,2,4-trimethyl-
 Trout blood, see blood, trout
 U
 Undecafluoro(trifluoromethyl)cyclohexane,
        see cyclohexane, undecafluoro-
        (trifluoromethyl) -
 Undecane
                                                                                      119, 141
                                                                                      \frac{178}{178}, 215
304 - 306
                                                                               1<u>77</u>,
 1-Undecanol
 Urea (aqueous)
 Urine, human
                                                                                             299
 W
 Water
                                                   + air
                                                                                      510 - 516
                                                                                       5 - 29,
57 - 82,
                                                                               - 4,
 Water
                                                                           ٦
                                                                             \frac{-56}{84}, 57 - 82,
, 84 - 103, 286,
, 201 - 314,
                                                                          45
                                  ,
                                                                         83,
                                                                               294, 304 - 314,
333, 334 - 352
 Water-d<sub>2</sub>
                                                                                              30
 Wax, see paraffin wax
 х
Xylene, see benzene, dimethyl-
 z
 Zinc (2+) acetate, see acetic acid, zinc (2+) salt
```

REGISTRY NUMBER INDEX

Underlined page r underlined to compiled	numbers refer to evaluation text and those not I tables.
50-99-7 56-23-5 56-40-6 56-81-5 57-13-6	312 236, 252, 258 307 <u>84</u> , 100-102 <u>30</u> 4-306
57-14-7 57-48-7 57-50-1 57-88-5 60-29-7	272, 273 311 314 300 <u>105</u> , 109, 110, 227, 228, 521
60-34-4 60-35-5 62-53-3 64-17-5 64-19-7	271 <u>84</u> , 93 <u>265</u> , 266 <u>83</u> , 88-91, <u>104</u> , <u>105</u> , 106-114, <u>174</u> , <u>177</u> , <u>178</u> , <u>185-190</u> , 447 <u>45-47</u> , <u>54</u> , 77, 221, 357-360
67-56-1 67-63-0 67-64-1 67-66-3 67-68-5	83, 86, 87, 174, 177, 178, 179-183, 446, 495 83, 98, 99, 175, 195, 196 105, 106, 114, 216, 217-219 232, 233 253, 258
71-23-8 71-32-8 71-36-3 71-41-0 71-43-2	104, 115, 116, 174, 175, 177, 178, 191-194 84, 96, 97 175, 177, 178, 197-200 176-178, 202-205 104, 111, 112, 162, 163-168, 252, 300-302, 443, 444
71-48-7 74-82-8 74-84-0 74-85-1 74-98-6	$\frac{45-47}{361}, \frac{54}{362}, \frac{77}{363-386}, \frac{482}{498-501}, \frac{362}{376-382}, \frac{391}{392-399}, \frac{392-399}{387-390}, \frac{402}{383}, \frac{402}{384}, \frac{402}{403-408}$
75-28-5 75-45-6	253, 254-257 231, 454 414-418 455, 456 260
75-72-9	235, 457 234, 460, 461 234, 459-461 252 239
79-09-4	238 421 175, <u>176</u> , 201 <u>84</u> , 94, 95 261
92-51-3	223 84, 103, 222 172 161 264, 265
102-76-1 106-97-8	173 452 385, 386, <u>409</u> , 410-415, 418 418 184

(cont.)

```
Registry Number Index
             108-32-7
                              448
                              155, 355, 356, 441, 442
            108-87-2
             108-88-3
                              162, 169, 170, 445
                              240
            108-90-7
            108-93-0
                              207, 357, 358
            108-94-1
                              220, 357-360, 449, 450
                              123, 419, 420
            109-66-0
                              229
             109-99-9
             110-19-0
                              225
            110-34-3
                              119, 120, 124-128
                              <u>419, 422-424</u>
<u>104</u>, 117, 118, <u>148</u>, 149-154, 353, 354, 439, 440
            110-54-3
             110-82-7
                              154
             110-83-8
             110-86-1
                              263
                              263
             110-89-1
             111-27-3
                              <u>177, 178, 205, 206</u>
                              230
             111-43-3
                              119, 120, 131-134, 419, 431, 432, 517
177, 178, 208-210, 520
119, 120, 137, 138
             111-65-9
             111-70-6
             111-84-2
             111-87-5
                              176-178, 209-212, 520

        176-178, 213, 214, 324

        176-178, 213, 214, 324

        119, 142, 437, 519

        177, 178, 215

             112-08-8
             112-30-1
             112-40-3
             112-42-5
            112-53-8
                              177, 178, 215, 324
             112-80-1
                              280
            115-07-1
                              400, 401
             119-64-2
                              280
            123-75-1
                              263
            123-91-1
                              229
                              <u>199-121</u>, 139, 140, <u>419</u>, 435, 436, 517
            124-18-5
                              76, 466, 488, 489-495, 498-502
45-47, 54, 77
105, 107, 108, 224
            124-38-9
            127-09-3
             141-78-6
            142-68-7
                              229
                             \frac{45-47}{119}, \frac{54}{120}, 77
\frac{119}{177}, \frac{120}{128}, 128-131, 355, 356, \frac{425}{425}, 426-430, 517
\frac{177}{453}, \frac{178}{178}, 213
            142-71-2
             142-82-5
             143-08-8
                              453
            143-24-8
                              <u>45-47, 53, 71</u>
            144-55-8
                              156
            292-64-8
                              270, 273
            302-01-2
                             <u>84, 92, 237</u>
527
             302-17-0
            306-94-5
            307-34-6
                              526
            311-89-7
                              267-269, 532
             335-02-2
                              244
             335-36-4
                              247
            335-57-9
                              245
            338-69-2
                              308
             373-02-4
                              <u>45-47, 54</u>, 77
            392-56-3
                              242
             423-55-2
                              525
            495-19-8
                              45-47, 53, 71
                                                                                              (cont.)
```

Registry Number Index 540-73-8 274 104, 113, 115-118, 121, 135, 136, 433, 434, 517, 518 540-84-1 241 544-10-5 544-76-3 <u>119, 121, 146, 147, 419, 438</u> 275 556-67-2 $\frac{45-47}{45-47}$, $\frac{54}{55}$, 77 $\frac{55}{81}$, 82 557-34-6 584-08-7 593-90-8 497 159 624-29-3 627-13-4 262, 531 628-63-7 226 628-97-7 280 629-04-9 243, 522 $\frac{119}{119}$, 143 $\frac{119}{14}$, 144 629-50-5 629-59-4 <u>119</u>, 145 629-62-9 160 638-04-0 638-38-0 <u>45-47, 54,</u> 77 872-50-4 462 1119-40-0 451 1120-21-4 <u>119</u>, 141 <u>45-47, 49, 50, 65, 66</u> 1310-73-2 1330-20-7 171 45-48, 60 1333-84-2 1600-27-7 45-48, 54, 77 2207-01-4 157 2207-03-6 160 2207-04-7 159 2551-62-4 259 5075-92-3 463 5328-37-0 310 6876-23-9 158 7440-37-1 37, 38, 482 315, 475 7446-09-5 7447-40-7 <u>45-47, 54, 55, 78, 79</u> $\frac{45-47}{45-48}, \frac{49}{345}$ 7447-41-8 64 7487-88-9 7493-90-5 309 50-52, 67-71,348-351, 513, 514 45-47, 7647-14-5 476, 477-483 7664-41-7 <u>45-48, 53, 57, 58, 74, 76, 515, 516</u> <u>45-48, 55, 80</u> 7664-93-9 7681-11-0 7697-37-2 59 $\begin{array}{c} 59\\ 1-4, 5-30, \ 31-33, \ 34-44, \ 45-56, \ 57-82, \ 83-85, \\ 86-103, \ 104, \ 105, \ 106-118, \ 119-122, \ 123-147, \ 148, \\ 149-161, \ 162, \ 163-173, \ 174-178, \ 179-215, \ 216, \\ 217-252, \ 253, \ 254-278, \ 279, \ 280-331, \ 333, \ 334-360, \\ 361, \ 362, \ 363-390, \ 391, \ 392-401, \ 402, \ 403-408, \ 409, \\ 410-418, \ 419, \ 420-424, \ 425, \ 426-475, \ 476, \ 477-487, \\ 488, \ 489-508 \\ \hline 1-4, \ 5-29, \ 45-46, \ 57-82, \ 83-85, \ 86-103, \ 237, \ 281, \ 286, \\ \hline 293, \ 294, \ 297, \ 303-314, \ \underline{333}, \ 334-352, \ 510-516 \end{array}$ 7727-37-9 7732-18-5 <u>45-47, 52, 53, 73-76, 347, 515, 516</u> 37, 38, 76, 353, 354, 466 468-470, 495 7757-82-6 7782-44-7 7783-06-4 7783-41-7 467 7783-54-2 486 (cont.)

Registry Number	Index
7789-20-0 7790-91-2 10022-50-1 10024-97-2 10026-04-7	471 485 316, 484
10036-47-2 10038-98-9 10043-53-4 10361-37-2 10544-72-6	252 45-49, 346
10579-83-6 12259-21-1 13637-63-3 19287-45-7 23228-90-2	<u>45-48, 61</u> 472, 473 496
25512-65-6 37340-18-4 37486-69-4 40464-54-8 41719-16-8	249 528 248
50279-29-3 56077-96-4 63243-37-8	474

AUTHOR INDEX

Adeney, W. E. 11 Adlivankina, M. A. 234 Akers, W. W. 411, 427 262, 531 Amster, A. B. Arai, Y. 456, 493, 498, 499 293 Ar, A. Atwell, L. L. 411 Avdeeva, O. I. 70 Azarnoosh, A. 435, 436 Baldwin, R. R. 136, 319, 327, 510, 518, 537, 541 see Megyery-Balog, K. Balog-Megyery, K. Baranovich, Z. N. 424, 432 Barsuk, S. D. 413 19, 28, 134, 140, 152, 155-160, 167, 170, Battino, R. 201, 212, 214, 242, 275, 282, 300-302 Becker, H. G. 11 Benson, B. B. 21, 22, 37, 38 Ben'yaminovic, O. A. 413 Berengarten, M. G. 127, 153, 168 Besserer, G. J. Bikov, M. M. 420, 421, 468, 469 78, 79 Billett, F. 17, 64, 69, 80 181, 188, 192, 198, 204, 206, 208, 211 Bircher, L. J. Blagoi, Yu. P. 400 363, 364, 392 Bloomer, O. T. 9, 58 Bohr, C. Boomer, E. H. 426 181, 188, 192, 198, 204, 206, 208, 211 Boyer, F. L. Bozhovakaya, T. K. 70 Bradstreet, E. D. 24, 352 505, 506, 546, 547 Brande, H. Brasted, R. C. 77 62, 63, 67, 68, 94, 95, 304, 305 355, 356, 429, 442 167, 300-302 Braun, L. Brunner, G. Byrne, J. E. 387, 394, 406, 467, 471, 473, 474, 481, 485-487, 496, 497 Cannon, W. A. Capell, R. G. 325, 326 Chaikovskii, V. F. 460, 461 270-274, 317, 318 Chang, E. T. 369, 378, 379, 393 372, 373, 395, 396 Chang, S. D. Chappelear, P. S. 368, 403 57, 227, 521 Cheung, H. Christoff, A. 286 Christoforides, C. 365-367 Cines, M. R. Clark, F. M. 538 Clark, L. C. 523-530, 532 Clever, H. L. Conant, J. B. Corinaldi, G. 19 287, 288 322 Cosgrove, B. A. 29, 30 376, 377 Cosway, H. F. 289 Creighton, H. J. M. 490 Dana, L. I. 134, 140, 167, 201, 212, 214, 282, 300-302 136, 319, 327, 510, 518, 537, 541 Danforth, W. F. Daniel, S. G. Davidson, D. 280 475 Dean, M. R. Delaney, D. E. 261 542, 543 15, 71, 290, 291, 295 443, 479, 480 Derry, L. D. Dillon, R. T. Dodge, B. F. Dornte, R. W. 315 23, 39, 40 Douglas, E. (cont.) Author Index (cont.) 100, 103, 222 Drucker, K. Drushlyak, O. G. Dymond, J. H. Dymova, R. P. 59 150, 151, 258 357, 358, 449, 450 Eakin, B. E. 392 Eckert, C. A. 459 Edwards, A. W. T. 20, 284, 285, 299 Edwards, H. 505, 506, 546, 547 Efremova, G. D. 444 Eggleton, P. 280 341, 512-514 Eichelberger, W. C. Eicke, H. F. 428, 441 Ellington, R. T. 392 445 El'natanov, A. I. Emmel, V. M. 36 387, 394, 406, 467, 471, 473, 474, 481, English, W. D. 485-487, 496, 497 24, 352 Enns, T. Evans, E. B. Evans, F. D. 542, 543 201, 242, 282 Ewing, G. J. 296 Faeth, G. M. Farhi, L. E. 437, 507, 508, 519, 548, 549 20, 284, 285, 293, 299 Faulkner, B. A. 542, 543 Ferguson, C. V. 315 Ferrell, J. K. 495 Ficke, H. F. Field, L. R. 434 155, 170 Figuiere, P. 430 505, 506, 546, 547 Findl, E. 289 Findlay, A. 280 Foggie, P. 7, 8, 34, 35 388, 397, 401, 408 Fox, C. J. J. Fredenslund, A. Friedman, H. L. 260 12, 410, 447, 458, 503, 504 Frolich, P. K. 107-112 Fujio, J. Furmer, I. E. 127, 153, 168 Gaddy, V. L. Gall, J. F. 335, 336, 478 259 Gami, D. C. 392 Garanin, V. F. 472 380-382, 398, 399 Gardner, G. C. 389, 390 Gasem, K. A. M. Geller, E. B. 157-160 539 Gemant, A. Ginsberg, K. A. 124, 129, 132, 137, 149, 165, 184, 191, 203, Gjaldbaek, J. C. 207, 244-246, 255 329 Gniewosz, S. 270-274, 317, 318 Gokcen, N. A. Goodman, J. B. 13, 334 Gorbachev, V. M. 252 Goryunova, N. P. 455, 457 431, 433 388, 397, 401, 408 Graham, E. B. Grauso, L. Grensburg, A. G. Grezin, A. K. 460, 461 Grollman, A. 303 Gross, D. H. 19 Grove, N. H. 502 Guerry, D. Jr. 128, 154, 220, 229, 230, 241, 263 Gupta, M. K. 380-382, 398, 399 Haller, H. S. 277, 534 Hammel, A. Von 102, 237

(cont.)

Author Index (cont.) 16, 464, 465 Hawkins, J. A. Hedley-Whyte, J. 286 398, Hegarty, M. J. 399 Heins, C. 14, 335 Heise, F. 483 454 Hess, L. G. Hiemenz, W. 324 Hildebrand, J. H. 124, 149, 151, 165, 239, 244-246, 255, 256, 267 239 Hiraoka, H. Hirayama, C. 77 370, 371, 374, 375, 389, 390 Hiza, M. J. 12, 365-367, 410, 447, 458, 503, 504 Hogan, J. J. 430 Hom, J. F. 20, 284, 285, 299 164, 218, 223, 228, 236, 240 Homma, T. Horiuti, J. 6, 93, 306-312 Hüfner, G. Ijams, C. C. Ikels, K. G. 131, 209, 243, 517, 520, 522 281 Iltis, R. 523-530, 532 Ionescu, L. V. 296 542, 543 Jelfs, E. C. G. Johnson, C. A. 426 88, 163, 169, 171, 179, 185, 202, 217, 221, 224-226, 232, 254, 264, 266 Just, G. 416, 417, 420, 421, 470 Kalra, H. 491, 493 448, 452, 453, 462, 463 107-112, 115-118, 125, 182, 189, 193, Kaminishi, G. Kaplan, L. K. Katayama, T. 196, 199 376, 377 342, 345-348 74, 76, 515, 516 Katz, D. L. Kelemen, S. Kenton, F. H. 489 Khazonova, N. E. Khodeeva, S. M. Khuchua, K. S. 353, 354, 357-360, 439, 449, 450 414, 415 370, 374, 375, 389, 390, 398, 399, 494, 500, 501 Kidnay, A. J. Kilgore, C. H. 427 Klots, C. E. 21, 22 256, 267 372, 373, 395, 396 74, 76, 515, 516 427 Kobatake, Y. Kobayashi, R. Kobe, K. A. Kohn, D. M. 233 Korosy, F. Krase, N. W. 13, 334, 337 89, 106, 113, 114, 135, 180, 187, 195, Kretschmer, C. B. 197, 219 Krichevskii, I. R. 444, 446, 489 Krishnan, T. 416, 470 Kubie, L. S. 321 404, 405 Kurata, F. 278 Kusano, K. 430 Laugier, S. Lebedeva, E. S. 446 Leites, I. L. 234 489 Lesnevskaya, L. S. Levina, M. I. 65, 66 262, 531 Levy, J. B. 479, 480 Lindroos, A. E. 328, 544 Logvinyuk, V. P. 369, 378, 379, 382, 383, 393, 407 Lu, B. C. Y. 323, 324 Luther, H.

(cont.)

Author Index (cont.)	
Makarenkow, V. V. Makranczy, J.	328, 544 123, 126, 127, 130, 133, 138, 139, 141-146, 153, 168, 183, 190, 194, 200, 205, 210, 213, 215
Malyshev, V. V. Manowitz, B. Margaria, R. Maslennikova, V. Ya. Masuoka, H.	213, 215 328, 544 235, 316, 330 15, 71, 290, 291, 295 455, 457 492
Matange, J. N.	495
Matous, J.	482
Matyash, Yu. I.	460, 461
Maude, A. H.	320
McHale, J. L.	275
McKee, O. L. Jr. McKetta, J. J. Megyery-Balog, K. Metschl, J.	340, 511 166, 385, 386, 412, 422, 423, 435, 436 123, 126, 130, 133, 138, 139, 141-146, 183, 190, 194, 200, 205, 210, 213, 215 186, 265
Miller, H. C.	259
Miller, R. C.	370, 374, 375
Miller, P.	443
Minnich, B. H.	339
Miranda, R. D.	416, 417
Mishnina, T. A.	70
Modell, J. H.	248-250
Moles, E.	100, 103, 222
Mollerup, J.	388, 397, 401, 408
Morrison, T. J.	17, 64, 69, 80
Muirbrook, N. K.	466
Muller, C.	10, 92, 101, 314
Murray, C. N.	25, 41-44
Nagy, B.	342, 345-348
Namiot, A. Yu.	438
Nasini, A. G.	322
Niemann, H.	184, 191, 203, 207
Nikitina, I. E.	413
Nitta, T.	107-112, 115-118, 125, 182, 189, 193, 196,
Nohka, J. Novak, J. P. Nowakowaska, J.	199 456 482 89, 106, 113, 114, 135, 180, 187, 195, 197, 219
Ohta, Y.	293
Olson, J. D.	231
Orobinskii, N. A.	400
O'Sullivan, T. D.	343, 344, 349-351
Panchenkov, G. M. Parent, J. D. Parker, P. D. M. Parrish, W. R. Patyi, L.	328, 544 363, 364, 392 37, 38 371, 374, 375 123, 126, 127, 130, 133, 138, 139, 141-146, 153, 168
Peer, A. A. Peter, S. Piercey, G. A. Podzolko, L. G. Poon, D. P. L. Poster, P. C.	12, 410, 447, 458, 503, 504 355, 356, 428, 429, 434, 441, 442 426 472 383, 384, 407
Poston, R. S.	422, 423
Poston, T. M.	270-272, 274
Potter, O. E.	440
Powell, R. J.	257, 269
Power, G. G.	26, 283, 298
Prausnitz, J. M.	147, 161, 172, 173, 459, 466
Pray, H. A.	339
Pruzansky, J.	235, 316

(cont.)

I

Author Index (cont.) Rakestraw, N. W. 36 430 Renon, H. Richon, D. 430 325, 326 25, 41-44 Ridenour, W. P. Riley, J. P. Roach, J. T. 365-367 385, 386, 412 Roberts, L. R. 416, 417, 420, 421, 468-470 Robinson, D. B. Robinson, J. A. 411 Robson, J. H. 387, 394, 406, 467, 471, 473, 474, 481, 485-487, 496, 497 Rodman, C. J. Roland, C. H. 320 365-367 Rottger, H. 323 Rousseau, R. W. 495 437, 507, 508, 519, 548, 549 123, 126, 130, 133, 138, 139, 141-146, 183, 190, 194, 200, 205, 210, 213, 215 Rupprecht, S. D. Rusz, L. Ryabstev, N. I. 414, 415 Saddington, A. W. 337 127, 153, 168 Sadilenko, A. S. Safranova, T. P. 331 456, 493, 498, 499 Saito, S. Sandalova, L. 489 456, 498, 499 Sarashina, E. 247, 251, 268 Sargent, J. W. Saylor, J. H. 19 Schaffer, P. S. Schindler, D. L. 277, 534 404, 405 Schmidt-Nielsen, S. 536 24, 352 Scholander, P. F. Schroder, W. 81, 82 339 Schweichert, C. E. Schweitzer, P. H. 540, 545 287, 288 247, 251, 268 448, 451-453, 462, 463 Scott, N. D. Seffl, R. J. Shakhova, S. F. Shapka, A. V. 59 Shenderei, L. I. 445 16, 464, 465 60, 61, 297, 313 Shilling, C. W. Shkol'nikova, R. I. Sibbitt, W. L. 18 Skripka, V. G. 413, 438 Smirnova, A. M. Smith, N. O. 424, 432 342-351 Sobr, J. 482 Somait, F. A. 494, 500, 501 Spinks, T. J. 27 Sridhar, T. 440 Steen, J. B. 292 26, 283, 298 Stegall, H. Steinbach, H. G. 418 235, 316, 330 Steinberg, M. Steinbrecher, M. 418 127, 153, 168 Stepanova, Z. G. Stoddard, J. L. 294 372, 373, 395, 396 Stryjek, R. 65, 66 Stsibarovskaya, N. P. Suciu, S. N. 18, 338 472 Sukhoverkhov, V. F. Sultanov, R. G. Swift, G. W. 438 404, 405 Szebehely, V. G. 540, 545 430 Szwarc, H. 115-118 Tatsuishi, A. 12, 410, 447, 458, 503, 504 Tauch, E. J. 248-250 Tham, M. K. (cont.) Author Index (cont.) Thomsen, E. S. 129, 132, 137 Tilton, V. V. 454 86, 87, 90, 91, 96-99 Tokunaga, J. Tomoto, N. 278 491 Toriumi, T. Tremearne, T. H. 477 147, 161, 172 Tremper, K. K. Tret'yakov, G. V. Tsiklis, D. S. 252 445, 455, 457 15, 71, 290, 291, 295 Van Slyke, D. D. Verdelli, L. S. Vernon, H. M. 259 535 276, 533 Vibrans, F. C. 329 Walfisz, A. Walker, R. D. Jr. 248-250 29, 30 Walkley, J. Walls, W. S. Wang, D. I. J. 475 368, 403 431, 433 Weale, K. E. 325, 326 355, 356, 429, 442 523-530, 532 Weatherford, W. D. Wenzel, H. Wesseler, E. P. Whiteley, F. J. 502 14, 89, 106, 113, 114, 135, 180, 187, 195, 197, 219, 335, 336, 477, 478 28, 134, 140, 156, 212, 214, 275 Wiebe, R. Wilcock, R. J. Wild, J. D. 440 134, 140, 152, 155-160, 170, 201, 212, Wilhelm, E. 214, 275 Williams, V. D. Wilson, T. R. S. 238 25, 41-44 Winkler, L. W. 5 Wood, R. H. 261 72, 73, 75 Yasunishi, A. Yen, L. C. 166 Yorizane, M. 492 Yoshimura, S. 492 Yudina, L. V. 59 460, 461 Zakharov, N. D. 484 Zeininger, H. 490 Zenner, G. H. 59 Zhuravleva, A. N. Zhuze, T. P. Zoss, L. M. 331 18 Zubchenko, Yu. P. 448, 451-453, 462, 463