INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY

ANALYTICAL CHEMISTRY DIVISION COMMISSION ON SOLUBILITY DATA

SOLUBILITY DATA SERIES

Volume 32

HYDROGEN SULFIDE, DEUTERIUM SULFIDE AND HYDROGEN SELENIDE

SOLUBILITY DATA SERIES

Editor-in-Chief

A. S. KERTES The Hebrew University Jerusalem, Israel

EDITORIAL BOARD

A. F. M. Barton (Australia)
R. Battino (USA)
R. W. Cargill (UK)
H. L. Clever (USA)
Rosa Crovetto (Argentina)
W. Gerrard (UK)
L. H. Gevantman (USA)

W. Hayduk (Canada) J. W. Lorimer (Canada) A. E. Mather (Canada) M. Salomon (USA) D. G. Shaw (USA) T. Tominaga (Japan) R. P. T. Tomkins (USA)

i

Managing Editor P. D. GUJRAL IUPAC Secretariat, Oxford, UK

INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY IUPAC Secretariat: Bank Court Chambers, 2-3 Pound Way, Cowley Centre, Oxford OX4 3YF, UK

NOTICE TO READERS

Dear Reader

If your library is not already a standing-order customer or subscriber to the Solubility Data Series, may we recommend that you place a standing order or subscription order to receive immediately upon publication all new volumes published in this valuable series. Should you find that these volumes no longer serve your needs, your order can be cancelled at any time without notice.

Robert Maxwell Publisher at Pergamon Press

A complete list of volumes published in the Solubility Data Series will be found on p. 352.

SOLUBILITY DATA SERIES

Editor-in-Chief A.S. KERTES

Volume 32

HYDROGEN SULFIDE, DEUTERIUM SULFIDE AND HYDROGEN SELENIDE

Volume Editors

PETER G. T. FOGG

Polytechnic of North London Holloway, London, UK COLIN L. YOUNG

University of Melbourne Parkville, Victoria, Australia

Contributors

H. LAWRENCE CLEVER

Emory University Atlanta, Georgia, USA ELIZABETH L. BOOZER

Emory University Atlanta, Georgia, USA

WALTER HAYDUK

University of Ottawa Ottawa, Ontario, Canada

PERGAMON PRESS

OXFORD · NEW YORK · BEIJING · FRANKFURT SÃO PAULO · SYDNEY · TOKYO · TORONTO

U.K.	Pergamon Press plc, Headington Hill Hall, Oxford OX3 0BW, England
U.S.A.	Pergamon Press, Inc., Maxwell House, Fairview Park, Elmsford, New York 10523, U.S.A.
PEOPLE'S REPUBLIC OF CHINA	Pergamon Press, Room 4037, Qianmen Hotel, Beijing, People's Republic of China
FEDERAL REPUBLIC OF GERMANY	Pergamon Press GmbH, Hammerweg 6, D-6242 Kronberg, Federal Republic of Germany
BRAZIL	Pergamon Editora Ltda, Rua Eça de Queiros, 346, CEP 04011, Paraiso, São Paulo, Brazil
AUSTRALIA	Pergamon Press Australia Pty Ltd., P.O. Box 544, Potts Point, N.S.W. 2011, Australia
JAPAN	Pergamon Press, 5th Floor, Matsuoka Central Building, 1-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160, Japan
CANADA	Pergamon Press Canada Ltd., Suite No. 271, 253 College Street, Toronto, Ontario, Canada M5T 1R5
	Convight @ 1999 International Union of Pure and Appl

Copyright © 1988 International Union of Pure and Applied Chemistry

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means: electronic, electrostatic, magnetic tape, mechanical, photocopying, recording or otherwise, without permission in writing from the copyright holders.

First edition 1988

The Library of Congress has catalogued this serial title as follows:

Solubility data series. – Vol. 1 – Oxford; New York; Pergamon, c 1979v.; 28 cm. Separately cataloged and classified in LC before no. 18. ISSN 0191-5622 = Solubility data series. 1. Solubility – Tables – Collected works. QD543.S6629 541.3' 42' 05-dc19 85-641351 AACR 2 MARC-S

British Library Cataloguing in Publication Data

Hydrogen sulfide, deuterium sulfide and hydrogen selenide. 1. Hydrogen compounds. Solubility I. Fogg, P. G. T. II. Young, Colin L. III. Clever, H. Laurence IV. Boozer, Elizabeth L. V. Haydak, Walter IV. Series 546.2642

ISBN 0-08-032481-9

CONTENTS

For	reword		vii
Pre	eface		x
The	e Soluk	bility of Gases in Liquids	xi
1	Hydro	ogen Sulfide in Aqueous Solvents	1
	1.1	Water	1
	1.2	Solutions of weak or non-electrolytes	20
	1.3	Solutions of strong electrolytes	25
	1.4	Sea-water	51
	1.5	Solutions of ammonia	54
	1.6	Solutions of alkanolamines	79
2	Hydro	ogen Sulfide in Non-Aqueous Solvents	166
	2.1	Critical evaluation of data	166
	2.2	Hydrocarbons	188
	2.3	Alcohols	238
	2.4	Ethers and polyglycols	249
	2.5	Other compounds of carbon, hydrogen and oxygen	266
	2.6	Compounds containing silicon	277
	2.7	Compounds containing halogen	279
	2.8	Compounds containing nitrogen	290
	2.9	Compounds containing sulfur	317
	2.10	Compounds containing phosphorus	322
3	Deute	erium Sulfide in Deuterium Oxide	327
4	Hydro	ogen Selenide in Aqueous and Non-Aqueous Solvents	330
Sys	tem Ir	ndex	340
Reg	istry	Number Index	345
Aut	hor In	ldex	348
Tit	les in	the Solubility Data Series	352

FOREWORD

If the knowledge is undigested or simply wrong, more is not better

How to communicate and disseminate numerical data effectively in chemical science and technology has been a problem of serious and growing concern to IUPAC, the International Union of Pure and Applied Chemistry, for the last two decades. The steadily expanding volume of numerical information, the formulation of new interdisciplinary areas in which chemistry is a partner, and the links between these and existing traditional subdisciplines in chemistry, along with an increasing number of users, have been considered as urgent aspects of the information problem in general, and of the numerical data problem in particular.

Among the several numerical data projects initiated and operated by various IUPAC commissions, the Solubility Data Project is probably one of the most ambitious ones. It is concerned with preparing a comprehensive critical compilation of data on solubilities in all physical systems, of gases, liquids and solids. Both the basic and applied branches of almost all scientific disciplines require a knowledge of solubilities as a function of solvent, temperature and pressure. Solubility data are basic to the fundamental understanding of processes relevant to agronomy, biology, chemistry, geology and oceanography, medicine and pharmacology, and metallurgy and materials science. Knowledge of solubility is very frequently of great importance to such diverse practical applications as drug dosage and drug solubility in biological fluids, anesthesiology, corrosion by dissolution of metals, properties of glasses, ceramics, concretes and coatings, phase relations in the formation of minerals and alloys, the deposits of minerals and radioactive fission products from ocean waters, the composition of ground waters, and the requirements of oxygen and other gases in life support systems.

The widespread relevance of solubility data to many branches and disciplines of science, medicine, technology and engineering, and the difficulty of recovering solubility data from the literature, lead to the proliferation of published data in an ever increasing number of scientific and technical primary sources. The sheer volume of data has overcome the capacity of the classical secondary and tertiary services to respond effectively.

While the proportion of secondary services of the review article type is generally increasing due to the rapid growth of all forms of primary literature, the review articles become more limited in scope, more specialized. The disturbing phenomenon is that in some disciplines, certainly in chemistry, authors are reluctant to treat even those limited-in-scope reviews exhaustively. There is a trend to preselect the literature, sometimes under the pretext of reducing it to manageable size. The crucial problem with such preselection - as far as numerical data are concerned - is that there is no indication as to whether the material was excluded by design or by a less than thorough literature search. We are equally concerned that most current secondary sources, critical in character as they may be, give scant attention to numerical data.

On the other hand, tertiary sources - handbooks, reference books and other tabulated and graphical compilations - as they exist today are comprehensive but, as a rule, uncritical. They usually attempt to cover whole disciplines, and thus obviously are superficial in treatment. Since they command a wide market, we believe that their service to the advancement of science is at least questionable. Additionally, the change which is taking place in the generation of new and diversified numerical data, and the rate at which this is done, is not reflected in an increased third-level service. The emergence of new tertiary literature sources does not parallel the shift that has occurred in the primary literature.

68-1-17-83

With the status of current secondary and tertiary services being as briefly stated above, the innovative approach of the *Solubility Data Project* is that its compilation and critical evaluation work involve consolidation and reprocessing services when both activities are based on intellectual and scholarly reworking of information from primary sources. It comprises compact compilation, rationalization and simplification, and the fitting of isolated numerical data into a critically evaluated general framework.

The Solubility Data Project has developed a mechanism which involves a number of innovations in exploiting the literature fully, and which contains new elements of a more imaginative approach for transfer of reliable information from primary to secondary/tertiary sources. The fundamental trend of the Solubility Data Project is toward integration of secondary and tertiary services with the objective of producing in-depth critical analysis and evaluation which are characteristic to secondary services, in a scope as broad as conventional tertiary services.

Fundamental to the philosophy of the project is the recognition that the basic element of strength is the active participation of career scientists in it. Consolidating primary data, producing a truly critically-evaluated set of numerical data, and synthesizing data in a meaningful relationship are demands considered worthy of the efforts of top scientists. Career scientists, who themselves contribute to science by their involvement in active scientific research, are the backbone of the project. The scholarly work is commissioned to recognized authorities, involving a process of careful selection in the best tradition of IUPAC. This selection in turn is the key to the quality of the output. These top experts are expected to view their specific topics dispassionately, paying equal attention to their own contributions and to those of their peers. They digest literature data into a coherent story by weeding out what is wrong from what is believed to be right. To fulfill this task, the evaluator must cover all relevant open literature. No reference is excluded by design and every effort is made to detect every bit of relevant primary source. Poor quality or wrong data are mentioned and explicitly disqualified as such. In fact, it is only when the reliable data are presented alongside the unreliable data that proper justice can be done. The user is bound to have incomparably more confidence in a succinct evaluative commentary and a comprehensive review with a complete bibliography to both good and poor data.

It is the standard practice that the treatment of any given solute-solvent system consists of two essential parts: I. Critical Evaluation and Recommended Values, and II. Compiled Data Sheets.

The Critical Evaluation part gives the following information:

- (i) a verbal text of evaluation which discusses the numerical solubility information appearing in the primary sources located in the literature. The evaluation text concerns primarily the quality of data after consideration of the purity of the materials and their characterization, the experimental method employed and the uncertainties in control of physical parameters, the reproducibility of the data, the agreement of the worker's results on accepted test systems with standard values, and finally, the fitting of data, with suitable statistical tests, to mathematical functions;
- (ii) a set of recommended numerical data. Whenever possible, the set of recommended data includes weighted average and standard deviations, and a set of smoothing equations derived from the experimental data endorsed by the evaluator;
- (iii) a graphical plot of recommended data.

The Compilation part consists of data sheets of the best experimental data in the primary literature. Generally speaking, such independent data sheets are given only to the best and endorsed data covering the known range of experimental parameters. Data sheets based on primary sources where the data are of a lower precision are given only when no better data are available. Experimental data with a precision poorer than considered acceptable are reproduced in the form of data sheets when they are the only known data for a particular system. Such data are considered to be still suitable for some applications, and their presence in the compilation should alert researchers to areas that need more work. The typical data sheet carries the following information:

- (i) components definition of the system their names, formulas and Chemical Abstracts registry numbers;
- (ii) reference to the primary source where the numerical information is reported. In cases when the primary source is a less common periodical or a report document, published though of limited availability, abstract references are also given;
- (iii) experimental variables;
- (iv) identification of the compiler;
- (v) experimental values as they appear in the primary source. Whenever available, the data may be given both in tabular and graphical form. If auxiliary information is available, the experimental data are converted also to SI units by the compiler.

Under the general heading of Auxiliary Information, the essential experimental details are summarized:

- (vi) experimental method used for the generation of data;
- (vii) type of apparatus and procedure employed;
- (viii) source and purity of materials;
- (ix) estimated error;
 - (x) references relevant to the generation of experimental data as cited in the primary source.

This new approach to numerical data presentation, formulated at the initiation of the project and perfected as experience has accumulated, has been strongly influenced by the diversity of background of those whom we are supposed to serve. We thus deemed it right to preface the evaluation/compilation sheets in each volume with a detailed discussion of the principles of the accurate determination of relevant solubility data and related thermodynamic information.

Finally, the role of education is more than corollary to the efforts we are seeking. The scientific standards advocated here are necessary to strengthen science and technology, and should be regarded as a major effort in the training and formation of the next generation of scientists and engineers. Specifically, we believe that there is going to be an impact of our project on scientific-communication practices. The quality of consolidation adopted by this program offers down-to-earth guidelines, concrete examples which are bound to make primary publication services more responsive than ever before to the needs of users. The self-regulatory message to scientists of the early 1970s to refrain from unnecessary publication has not achieved much. A good fraction of the literature is still cluttered with poor-quality articles. The Weinberg report (in 'Reader in Science Information', ed. J. Sherrod and A. Hodina, Microcard Editions Books, Indian Head, Inc., 1973, p. 292) states that 'admonition to authors to restrain themselves from premature, unnecessary publication can have little effect unless the climate of the entire technical and scholarly community encourages restraint...' We think that projects of this kind translate the climate into operational terms by exerting pressure on authors to avoid submitting low-grade material. The type of our output, we hope, will encourage attention to quality as authors will increasingly realize that their work will not be suited for permanent retrievability unless it meets the standards adopted in this project. It should help to dispel confusion in the minds of many authors of what represents a permanently useful bit of information of an archival value, and what does not.

If we succeed in that aim, even partially, we have then done our share in protecting the scientific community from unwanted and irrelevant, wrong numerical information.

A. S. Kertes

PREFACE

This volume of The Solubility Data Series is concerned with the solubility of hydrogen sulfide and of hydrogen selenide in aqueous and non-aqueous solvents. Data on the solubility of deuterium sulfide in deuterium oxide are also included. The editors believe that all relevant data published before January 1987 have been included but will be grateful for details of significant omissions.

Solubilities of hydrogen sulfide in a wide range of aqueous and non-aqueous solvents have been reported in the chemical literature. Much of this work is of a high standard. Reliance may be placed on data if there is consistency between measurements by different workers. In the case of some systems, however, there are wide divergences of data. As far as possible the evaluator has indicated which he considers to be reliable data where there are discrepancies but some systems merit re-examination using modern techniques. It is hoped that the publication of this, and similar volume will stimulate further experimental work on systems for which data is in doubt or is lacking.

In aqueous solutions of hydrogen sulfide equilibria involving hydrosulfide and sulfide ions play an important role in determining the solubility of the gas. If other weak acids and bases are also present there will be other equilibria established. Literature references to the theoretical treatment of some such complex systems are included but there has been no attempt to analyse the merits of different theoretical models for prediction of solubility which have been published. Similar equilibria exist in aqueous solutions of hydrogen selenide but these have received little study.

The editors recommend that all published reports of experimental measurements of the solubility of gases should include a complete record of primary experimental observations of temperature, pressure, composition of the phases etc. If such full publication is not possible then authors should endeavour to deposit such a record in an accessible data store.

The editors are grateful for support and encouragement from fellow members of the I.U.P.A.C. Commission on Solubility Data. In particular we wish to acknowledge help and advice given by Prof. A.L. Mather and we are grateful for the provision of data awaiting publication by Prof. W. Hayduk and by Prof. S. Lynn. In addition we would like to express our appreciation for the opportunity to use a daisy-wheel printer owned by Pergamon Press and to Lesley Flanagan for help in preparing the manuscript.

Peter Fogg

Colin Young

Melbourne

London

August 1987

THE SOLUBILITY OF GASES IN LIQUIDS

R. Battino, H. L. Clever and C. L. Young

INTRODUCTION

The Solubility Data Project aims to make a comprehensive search of the literature for data on the solubility of gases, liquids and solids in liquids. Data of suitable accuracy are compiled into data sheets set out in a uniform format. The data for each system are evaluated and where data of sufficient accuracy are available values recommended and in some cases a smoothing equation suggested to represent the variation of solubility with pressure and/or temperature. A text giving an evaluation and recommended values and the compiled data sheets are published on consecutive pages.

DEFINITION OF GAS SOLUBILITY

The distinction between vapor-liquid equilibria and the solubility of gases in liquids is arbitrary. It is generally accepted that the equilibrium set up at 300K between a typical gas such as argon and a liquid such as water is gas liquid solubility whereas the equilibrium set up between hexane and cyclohexane at 350K is an example of vapor-liquid equilibrium. However, the distinction between gas-liquid solubility and vapor-liquid equilibrium is often not so clear. The equilibria set up between methane and propane above the critical temperature of methane and below the critical temperature of propane may be classed as vapor-liquid equilibrium or as gas-liquid solubility depending on the particular range of pressure considered and the particular worker concerned.

The difficulty partly stems from our inability to rigorously distinguish between a gas, a vapor, and a liquid, which has been discussed in numerous textbooks. We have taken a fairly liberal view in these volumes and have included systems which may be regarded, by some workers, as vapor-liquid equilibria.

UNITS AND QUANTITIES

The solubility of gases in liquids is of interest to a wide range of scientific and technological disciplines and not solely to chemistry. Therefore a variety of ways for reporting gas solubility have been used in the primary literature and inevitably sometimes, because of insufficient available information, it has been necessary to use several quantities in the compiled tables. Where possible, the gas solubility has been quoted as a mole fraction of the gaseous component in the liquid phase. The units of pressure used are bar, pascal, millimeters of mercury and atmosphere. Temperatures are reported in Kelvin.

EVALUATION AND COMPILATION

The solubility of comparatively few systems is known with sufficient accuracy to enable a set of recommended values to be presented. This is true both of the measurement near atmospheric pressure and at high pressures. Although a considerable number of systems have been studied by at least two workers, the range of pressures and/or temperatures is often sufficiently different to make meaningful comparison impossible.

Occasionally, it is not clear why two groups of workers obtained very different sets of results at the same temperature and pressure, although both sets of results were obtained by reliable methods and are internally consistent. In such cases, sometimes an incorrect assessment has been given. There are several examples where two or more sets of data have been classified as tentative although the sets are mutually inconsistent.

Many high pressure solubility data have been published in a smoothed form. Such data are particularly difficult to evaluate, and unless specifically discussed by the authors, the estimated error on such values can only be regarded as an "informed guess". Many of the high pressure solubility data have been obtained in a more general study of high pressure vapor-liquid equilibrium. In such cases a note is included to indicate that additional vapor-liquid equilibrium data are given in the source. Since the evaluation is for the compiled data, it is possible that the solubility data are given a classification which is better than that which would be given for the complete vapor-liquid data (or vice versa). For example, it is difficult to determine coexisting liquid and vapor compositions near the critical point of a mixture using some widely used experimental techniques which yield accurate high pressure solubility data. For example, conventional methods of analysis may give results with an expected error which would be regarded as sufficiently small for vapor-liquid equilibrium data but an order of magnitude too large for acceptable high pressure gas-liquid solubility.

It is occasionally possible to evaluate data on mixtures of a given substance with a member of a homologous series by considering all the available data for the given substance with other members of the homologous series. In this study the use of such a technique has been very limited.

The estimated error is often omitted in the original article and sometimes the errors quoted do not cover all the variables. In order to increase the usefulness of the compiled tables estimated errors have been included even when absent from the original article. If the error on *any* variable has been inserted by the compiler this has been noted.

PURITY OF MATERIALS

The purity of materials has been quoted in the compiled tables where given in the original publication. The solubility is usually more sensitive to impurities in the gaseous component than to liquid impurities in the liquid component. However, the most important impurities are traces of a gas dissolved in the liquid. Inadequate degassing of the absorbing liquid is probably the most often overlooked serious source of error in gas solubility measurements.

APPARATUS AND PROCEDURES

In the compiled tables brief mention is made of the apparatus and procedure. There are several reviews on experimental methods of determining gas solubilities and these are given in References 1-7.

METHODS OF EXPRESSING GAS SOLUBILITIES

Because gas solubilities are important for many different scientific and engineering problems, they have been expressed in a great many ways:

The Mole Fraction, x(q)

The mole fraction solubility for a binary system is given by:

$$x(g) = \frac{n(g)}{n(g) + n(1)}$$
$$= \frac{W(g) / M(g)}{[W(g) / M(g)] + [W(1) / M(1)]}$$

here n is the number of moles of a substance (an *amount* of substance), W is the mass of a substance, and M is the molecular mass. To be unambiguous, the partial pressure of the gas (or the total pressure) and the temperature of measurement must be specified.

The Weight Per Cent Solubility, wt%

For a binary system this is given by

wt = 100 W(g) / [W(g) + W(l)]

where W is the weight of substance. As in the case of mole fraction, the pressure (partial or total) and the temperature must be specified. The weight per cent solubility is related to the mole fraction solubility by

 $x(g) = \frac{[wt\%/M(g)]}{[wt\%/M(g)] + [(100 - wt\%)/M(1)]}$

The Weight Solubility, C_w

The weight solubility is the number of moles of dissolved gas per gram of solvent when the partial pressure of gas is 1 atmosphere. The weight solubility is related to the mole fraction solubility at one atmosphere partial pressure by

$$x(g)$$
 (partial pressure 1 atm) = $\frac{C_{W^{M}(1)}}{1 + C_{W}^{M}(1)}$

where M(1) is the molecular weight of the solvent.

The Moles Per Unit Volume Solubility, n

Often for multicomponent systems the density of the liquid mixture is not known and the solubility is quoted as moles of gas per unit volume of liquid mixture. This is related to the mole fraction solubility by

$$x = \frac{n v^{0}(1)}{1 + n v^{0}(1)}$$

where $v^{O}(1)$ is the molar volume of the liquid component.

The Bunsen Coefficient, a

The Bunsen coefficient is defined as the volume of gas reduced to 273.15K and 1 atmosphere pressure which is absorbed by unit volume of solvent (at the temperature of measurement) under a partial pressure of 1 atmosphere. If ideal gas behavior and Henry's law is assumed to be obeyed,

 $\alpha = \frac{V(g)}{V(1)} \frac{273.15}{T}$

where V(g) is the volume of gas absorbed and V(1) is the original (starting) volume of absorbing solvent. The mole fraction solubility is related to the Bunsen coefficient by

 $x(g, 1 \text{ atm}) = \frac{\alpha}{\alpha + \frac{273.15}{T} \frac{v^{o}(g)}{v^{o}(1)}}$

where $v^{O}(g)$ and $v^{O}(1)$ are the molar volumes of gas and solvent at a pressure of one atmosphere. If the gas is ideal,

$$x(g) = \frac{\alpha}{\alpha + \frac{273.15R}{v^{\circ}(1)}}$$

Real gases do not follow the ideal gas law and it is important to establish the real gas law used for calculating α in the original publication and to make the necessary adjustments when calculating the mole fraction solubility.

The Kuenen Coefficient, S

This is the volume of gas, reduced to 273.15K and 1 atmosphere pressure, dissolved at a partial pressure of gas of 1 atmosphere by 1 gram of solvent. The Ostwald Coefficient, L

The Ostwald coefficient, L, is defined at the ratio of the volume of gas absorbed to the volume of the absorbing liquid, all measured at the same temperature:

$$L = \frac{V(q)}{V(1)}$$

If the gas is ideal and Henry's Law is applicable, the Ostwald coefficient is independent of the partial pressure of the gas. It is necessary, in practice, to state the temperature and total pressure for which the Ostwald coefficient is measured. The mole fraction solubility, x, is related to the Ostwald coefficient by

-1

$$x(g) = \frac{RT}{P(g) L v^{O}(1)} + 1$$

where P is the partial pressure of gas. The mole fraction solubility will be at a partial pressure of P(g).

The Absorption Coefficient, B

There are several "absorption coefficients", the most commonly used one being defined as the volume of gas, reduced to 273.15K and 1 atmosphere, absorbed per unit volume of liquid when the total pressure is 1 atmosphere. β is related to the Bunsen coefficient by

 $\beta = \alpha \left(1 - P(1) \right)$

where P(1) is the partial pressure of the liquid in atmosphere.

The Henry's Law Contant

A generally used formulation of Henry's Law may be expressed as

 $P(g) = K_{H} x(g)$

where $K_{\rm H}$ is the Henry's Law constant and x the mole fraction solubility. Other formulations are

 $P(g) = K_2C(1)$

or

 $C(g) = K_{C}C(1)$

where K_2 and K_c are constants, C the concentration, and (1) and (g) refer to the liquid and gas phases. Unfortunately, K_H , K_2 and K_c are all sometimes referred to as Henry's Law constants. Henry's Law is a limiting law but can sometimes be used for converting solubility data from the experimental pressure to a partial gas pressure of 1 atmosphere, provided the mole fraction of the gas in the liquid is small, and that the difference in pressures is small. Great caution must be exercised in using Henry's Law.

The Mole Ratio, N

The mole ratio, N, is defined by

N = n(g)/n(1)

Table 1 contains a presentation of the most commonly used inter-conversions not already discussed.

For gas solubilities greater than about 0.01 mole fraction at a partial pressure of 1 atmosphere there are several additional factors which must be taken into account to unambiguously report gas solubilities. Solution densities or the partial molar volume of gases must be known. Corrections should be made for the possible non-ideality of the gas or the non-applicability of Henry's Law.

TABLE 1. Interconversion of parameters used for reporting solubility.

 $L = \alpha(T/273.15)$ $C_{w} = \alpha/v_{o}\rho$ $K_{H} = \frac{17.033 \times 10^{6}\rho(\text{soln})}{\alpha M(1)} + 760$ $L = C_{w} v_{t,gas} \rho$

where v_o is the molal volume of the gas in cm³ mol⁻¹ at 0°C, ρ the density of the solvent at the temperature of the measurement, ρ_{soln} the density of the solution at the temperature of the measurement, and $v_{t,gas}$ the molal volume of the gas (cm³ mol⁻¹) at the temperature of the measurement.

REFERENCES

- 1. Battino, R.; Clever, H. L. Chem. Rev. 1966, 66, 395.
- Clever, H. L.; Battino, R. in Solutions and Solubilities, Ed. M. R. J. Dack, J. Wiley & Sons, New York, <u>1975</u>, Chapter 7.
- Hildebrand, J. H.; Prausnitz, J. M.; Scott, R. L. Regular and Related Solutions, Van Nostrand Reinhold, New York, <u>1970</u>, Chapter 8.
- 4. Markham, A. E.; Kobe, K. A. Chem. Rev. 1941, 63, 449.

5. Wilhelm, E.; Battino, R. Chem. Rev. 1973, 73, 1.

- 6. Wilhelm, E.; Battino, R.; Wilcock, R. J. Chem. Rev. <u>1977</u>, 77, 219.
- Kertes, A. S.; Levy, O.; Markovits, G. Y. in *Experimental Thermo*chemistry Vol. II, Ed. B. Vodar and B. LeNaindre, Butterworth, London, <u>1974</u>, Chapter 15.

Revised: December 1984 (CLY)

				-1					k ⁻¹		
	1		k n-SI (SI		nit) it)	=		$k^{\frac{1}{-1}}$	K- SI Uni (non-S	t) = I Uni	t)
LENGTH								SI	Unit,	m	
A (angstrom cm (centimeter) in (inch) ft (foot)		3	1 254	× ×	10^{-1} 10^{-2} 10^{-4} 10^{-4}	⁰ (*) (*) (*) (*)					(* (*
AREA								SI	Unit,	m²	
cm ² in ² ft ²	9		516	×	10 ⁻⁴ 10 ⁻⁸ 10 ⁻⁸	(*) (*) (*)			1 × 003 × 391 ×		(*
VOLUME								SI	Unit,	m ³	
cm ³ in ³ 1 ft ³ 1 (litre) UKgal (UK gallon) USgal (US gallon)	2	831 45	064 685 1 461	× × × ×	$10^{6} \\ 10^{-1} \\ 10^{-8} \\ 10^{-3} \\ 10^{-7} \\ 10^{-7} \\ 10^{-7}$			531 21	374 × 467 ×	10^{-5} 10^{3} 10^{-2}	(* (*
MASS								SI	Unit,	kg	
g (gram) t (tonne) lb (pound) 4	15	359	1	×	10^{-3} 10^{3} 10^{-8}	(*) (*) (*)	2	204	1 × 1 × 623 ×	10^{3} 10^{-3} 10^{-6}	(* (*
DENSITY								SI U	nit, k	g m ^{− 3}	
g cm ⁻³ g l ⁻¹ lb in ⁻³ lb ft ⁻³ lb UKgal ⁻¹ lb USgal ⁻¹	1	601 99	1 991 847 776	× × ×	10^{3} 10^{-2} 10^{-5} 10^{-3} 10^{-4}	(*) (*)	6	242 100	1 × 1 728 × 795 × 224 × 406 ×	10 ⁻⁸ 10 ⁻⁷	(*
PRESSURE			s	τ	Jnit,	Pa (pas	ca	1, k	g m ⁻¹ :	5 ⁻²)	
dyn cm ⁻² at (kgf cm ⁻²) atm (atmosphere) bar lbf in ⁻² (p.s.i.) lbf ft ⁻² inHg (inch of mercury) mmHg (millimeter of mercury, torr)	6 3	101 894 47 386	665 325 1 757 880 388	× ××××	$10^{-1} \\ 10^{-1} \\ 10^{-3} \\ 10^{-3} \\ 10^{-3} \\ 10^{-4} \\ 10^{-4}$	(*) (*) (*)	9 1 2	869 450 20 952	716 × 233 ×	10^{-12} 10^{-5} 10^{-10} 10^{-6} 10^{-10}	(*
ENERGY			SI	τ	Jnit,	J (joul	e,	kg 1	m ² s ⁻²)	
hp h (horse power hour)	1 2	4 101 355 684	868 184 36 325 818 519	× × × × ×	10^{-7} 10^{-4} 10^{-3} 10^{-5} 10^{-6} 10^{-3}	(*) (*)	2 2 9 7 3	390 777 869 375 725	1 × 459 × 057 × 778 × 233 × 622 × 062 × 172 ×	10^{-7} 10^{-13} 10^{-9} 10^{-7} 10^{-13}	

An asterisk (*) denotes an exact relationship.

COMPONENTS:	EVALUATOR:
 Hydrogen sulfide; H₂S; [7783-06-4] Water; H₂O; [7732-18-5] 	Peter G.T. Fogg, Department of Applied Chemistry and Life Sciences, Polytechnic of North London, Holloway, London N7 8DB, U.K.
	February 1987

CRITICAL EVALUATION:

The solubility of hydrogen sulfide in water has been investigated by numerous workers since the nineteenth century. Some of this early work (1-3) is in good agreement with more recent work.

Hydrogen sulfide exists, in aqueous solution, in equilibrium with its ions. Solubilities which have been compiled correspond to bulk solubilities. For this purpose the number of moles of hydrogen sulfide in solution has been taken to be the sum of the number of moles of the uncharged H_2S plus those of HS- and those of S--.

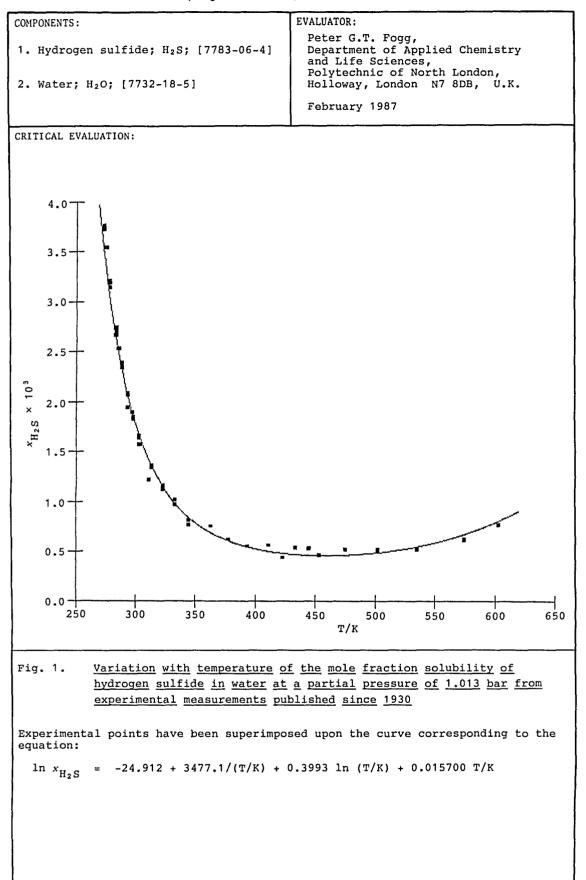
Measurements have been made at pressures from 0.02 to 207 bar and temperatures from 273.2 to 603.2 K. The most extensive series of measurements over a pressure range were carried out by Lee & Mather (4) and by Selleck *et al.* (5). Above 344 K the mole fraction solubilities found by Lee & Mather tend to be higher than those found by Selleck *et al.* but there is better agreement at lower temperatures. However measurements indicate that, for many purposes, the mole fraction solubility can be considered to be close to a linear function of pressure to mole fraction solubilities of about 0.02. i.e. Henry's law is a useful approximation. The higher the concentration of hydrogen sulfide the greater the deviation from linear behaviour. The measurements of solubilities at partial pressures of hydrogen sulfide less then 1.013 bar made by Clarke & Glew (6) are consistent with the earlier measurements by Wright & Maass (7). When values for 298.2 K are extrapolated down to about 0.1 bar there is good agreement with solubilities measured by McLauchlan (1).

Many values of mole fraction solubilities for a partial pressure of hydrogen sulfide of 1.013 bar (1 atm) at temperatures in the range 273.2 K to 453.2 K have been published or may be obtained by extrapolation from published solubilities (1-13). Measurements published by Kozintseva (8) are the only set of measurements made in the range 453.2 K to 603.2 K. Available values indicate that mole fraction solubilities for a partial pressure of 1.013 bar decrease with increase in temperature to about 450 K but at higher temperatures values increase. Although there is no reason to doubt the reliability of the measurements reported by Kozintseva these high temperature values must be considered to be tentative until they are confirmed by other workers.

Mole fraction solubilities for a partial pressure of hydrogen sulfide of 1.013 bar, based upon measurements made since 1930, may be represented by the equation:

 $\ln x_{\rm H_2S} = -24.912 + 3477.1/(T/K) + 0.3993 \ln (T/K) + 0.015700 T/K$

The standard deviation for x_{H_2S} is given by:


$$\delta x_{H_{0}S} = \pm 0.000065$$

This equation is valid for temperatures from 283.2 K to 603.2 K. The variation of $x_{\rm H_2S}$ with T/K corresponding to this equation and the values of $x_{\rm H_2S}$ from experimental measurements made since 1930 are plotted in fig 1.

Values in the range 273.2 to 283.2 are better fitted by the equation:

$$\ln x_{\text{H}_2\text{S}} = -14.761 + 2507.2/(\text{T/K})$$
$$\delta x_{\text{H}_2\text{S}} = \pm 0.000030$$

The average value of $x_{\rm H_2S}$ for a partial pressure of 1.013 bar at 298.15 K is 0.001830 ± 0.000007. This is based upon five sets of measurements (6,9, 11-13).

	· -	·				
COMPON	ENTS:	EVALUATOR:				
 Hydrogen sulfide; H₂S; [7783-06-4] Water; H₂O; [7732-18-5] 		Peter G.T. Fogg, Department of Applied Chemistry and Life Sciences, Polytechnic of North London, Holloway, London N7 8DB, U.K.				
		February 1987				
CRITIC	AL EVALUATION:					
Refer	ences					
1.	McLauchlan, W.H. Zeit. physik. Che	em. <u>1903</u> , 44, 600-633.				
2.	Winkler, L.W. Zeit. physik. Chemie	e, (Leipzig) <u>1906</u> , 55, 344-354.				
3.	Pollitzer, F. Zeit. anorg. Chem. 1	909, 64, 121-148.				
4.	Lee, J.I.; Mather, A.E. Ber. Bunsenges. phys. Chem. <u>1977</u> , 81, 1020-3.					
5.	Selleck, F.T.; Carmichael, L.T; Sa Ind. Eng. Chem. <u>1952</u> , 44, 2219-222	uge, B.H. 26.				
6.	Clarke, E.C.W.; Glew, D.N. Can. J.	Chem. <u>1971</u> , 49, 691-698.				
7.	Wright, R.H.; Maass, D. Can. J. Re	esearch <u>1932</u> , 6, 94-101.				
8.	Kozintseva, T.N.; Geokhimiya <u>1964</u> ,	8, 758-765.				
9.	Kapustinsky, A.F.; Anvaer, B.I. Compt. Rend. Acad. Sci. URSS <u>1941</u> ,	30, 625-628.				
10.	Byeseda, J.J. Proc. Laurance Reid	Gas. Cond. Conf. <u>1985</u> .				
11.	Gamsjäger, H.; Rainer, W.; Schindl <i>Monatsh. Chem. <u>1967</u>, 98,</i> 1782–1802					
12.	Douabul, A.A.; Riley, J.P. Deep-Se	a Res. <u>1979</u> , 26A, 259-268.				
13.	Kiss, A. v.; Lajtai, I.; Thury, G. Zeit. anorg. allgem. Chem. <u>1937</u> , 2					

COMPONENTS:		ORIGINAL MEASUREMENTS:			
1. Hydrogen sulfide;	H ₂ S;	McLauchlan, W.H.			
[7783-06-4]		Z. physik. Chem. <u>1903</u> , 44, 600-633.			
 Water; H₂O; [7732 	2-18-5]				
VARIABLES:		PREPARED BY:			
Pressure		P.G.T. Fogg			
EXPERIMENTAL VALUES:					
P _{H₂S} /mmHg	P _{H2S} /bar *	Conc. of H ₂ S in solution / mol dm ⁻³			
74.7	0.0996	0.0100			
88.7	0.1183	0.01194			
99.8	0.1331	0.0135			
101.4	0.1352	0.01400			
105.5	0.1407	0.0144			
	AUXILIARY	INFORMATION			
METHOD /APPARATUS / PROCEDURE	2:	INFORMATION SOURCE AND PURITY OF MATERIALS:			
Solutions of hydroger	: n sulfide were	SOURCE AND PURITY OF MATERIALS:			
Solutions of hydroger prepared by dilution	: n sulfide were of a stock				
Solutions of hydroger prepared by dilution solution. The concer	: n sulfide were of a stock ntration of H2S	SOURCE AND PURITY OF MATERIALS;			
Solutions of hydroger prepared by dilution solution. The concer in solution was deter	: n sulfide were of a stock ntration of H ₂ S rmined by	SOURCE AND PURITY OF MATERIALS;			
Solutions of hydroger prepared by dilution solution. The concer in solution was deter iodimetry. Hydrogen	: of a stock ntration of H ₂ S rmined by , generated by	SOURCE AND PURITY OF MATERIALS;			
Solutions of hydroger prepared by dilution solution. The concer in solution was deter iodimetry. Hydrogen electrolysis of water	sulfide were of a stock ntration of H ₂ S rmined by , generated by c, was passed	SOURCE AND PURITY OF MATERIALS;			
Solutions of hydroger prepared by dilution solution. The concer in solution was deter iodimetry. Hydrogen electrolysis of water through a solution un	the sulfide were of a stock ntration of H ₂ S rmined by , generated by f, was passed nder test. The	SOURCE AND PURITY OF MATERIALS;			
Solutions of hydroger prepared by dilution solution. The concer in solution was deter iodimetry. Hydrogen electrolysis of water	s: of a stock ntration of H ₂ S rmined by , generated by r, was passed nder test. The gas stream was	SOURCE AND PURITY OF MATERIALS;			
Solutions of hydroger prepared by dilution solution. The concer in solution was deter iodimetry. Hydrogen electrolysis of water through a solution un H ₂ S in the emergent of	s: of a stock ntration of H ₂ S rmined by , generated by r, was passed nder test. The gas stream was alfate solution	SOURCE AND PURITY OF MATERIALS;			
Solutions of hydrogen prepared by dilution solution. The concer in solution was deten iodimetry. Hydrogen electrolysis of waten through a solution un H_2S in the emergent of absorbed in copper su	the sulfide were of a stock ntration of H ₂ S rmined by , generated by r, was passed nder test. The gas stream was alfate solution he change in	SOURCE AND PURITY OF MATERIALS:			
Solutions of hydrogen prepared by dilution solution. The concer in solution was deter iodimetry. Hydrogen electrolysis of water through a solution un H_2S in the emergent of absorbed in copper su and estimated from the	the sulfide were of a stock intration of H ₂ S rmined by , generated by r, was passed inder test. The gas stream was alfate solution he change in ity of this	SOURCE AND PURITY OF MATERIALS; 1. prepared from FeS. ESTIMATED ERROR:			
Solutions of hydrogen prepared by dilution solution. The concer in solution was deter iodimetry. Hydrogen electrolysis of water through a solution un H_2S in the emergent of absorbed in copper su and estimated from the electrical conductive solution. The partial H_2S was calculated for	the sulfide were of a stock intration of H ₂ S rmined by , generated by r, was passed inder test. The gas stream was ilfate solution he change in ity of this al pressure of rom the volume	SOURCE AND PURITY OF MATERIALS:			
Solutions of hydrogen prepared by dilution solution. The concer in solution was deter iodimetry. Hydrogen electrolysis of water through a solution un H_2S in the emergent of absorbed in copper su and estimated from the electrical conductive solution. The partia H_2S was calculated for of hydrogen and the t	the sulfide were of a stock intration of H ₂ S rmined by , generated by r, was passed inder test. The gas stream was alfate solution ine change in ity of this al pressure of rom the volume cotal pressure	SOURCE AND PURITY OF MATERIALS: 1. prepared from FeS. ESTIMATED ERROR:			
Solutions of hydrogen prepared by dilution solution. The concer in solution was deter iodimetry. Hydrogen electrolysis of water through a solution un H_2S in the emergent of absorbed in copper su and estimated from the electrical conductive solution. The partial H_2S was calculated for	the sulfide were of a stock intration of H ₂ S rmined by , generated by r, was passed inder test. The gas stream was alfate solution ine change in ity of this al pressure of rom the volume cotal pressure	SOURCE AND PURITY OF MATERIALS: 1. prepared from FeS. ESTIMATED ERROR:			
Solutions of hydrogen prepared by dilution solution. The concer in solution was deter iodimetry. Hydrogen electrolysis of water through a solution un H_2S in the emergent of absorbed in copper su and estimated from the electrical conductive solution. The partia H_2S was calculated for of hydrogen and the t	the sulfide were of a stock intration of H ₂ S rmined by , generated by r, was passed inder test. The gas stream was alfate solution ine change in ity of this al pressure of rom the volume cotal pressure	SOURCE AND PURITY OF MATERIALS: 1. prepared from FeS. ESTIMATED ERROR:			

COMPONENTS:		ORIGINAL MEASUREMENTS:			
1. Hydrogen sulf	ide: H.S.	Winkler, L.W.			
[7783-06-4]	100, 120,				
2. Water; H ₂ O; [7732-18-5]	Zeit. phys. Chem. (Leipzig) <u>1906</u> , 55, 344-354.			
VARIABLES:		PREPARED BY:			
Temperature		P.G.T. Fogg			
EXPERIMENTAL VALUES:		1			
т/к	Bunsen absorpt: coeff. α	ion Mole fraction solubility, ^x H2S, (1.013 bar)			
273.2	4.621	0.003747			
283.2	3.362	0.002729			
293.2	2.554	0.002078			
303.2	2.014	0.001643			
313.2	1.642	0.001345			
323.2	1.376	0.001132			
	1.176	0.000972			
333.2 * calculat	ed by the compiler.				
*	ed by the compiler.				
*		' INFORMATION			
*	AUXILIARY	INFORMATION SOURCE AND PURITY OF MATERIALS:			
* calculat	AUXILIARY EDURE:				
* calculat METHOD/APPARATUS/PROC	AUXILIARY EDURE:	SOURCE AND PURITY OF MATERIALS:			
* calculat METHOD/APPARATUS/PROC	AUXILIARY EDURE:	SOURCE AND PURITY OF MATERIALS;			
* calculat METHOD/APPARATUS/PROC	AUXILIARY EDURE:	SOURCE AND PURITY OF MATERIALS:			
* calculat METHOD/APPARATUS/PROC	AUXILIARY EDURE:	SOURCE AND PURITY OF MATERIALS;			
* calculat METHOD/APPARATUS/PROC	AUXILIARY EDURE:	SOURCE AND PURITY OF MATERIALS: No information ESTIMATED ERROR:			

COMPONENTS	a *			ORIGINAL MEASUREMENTS:			
<pre>1. Hydrogen sulfide; H₂S [7783-06-4]</pre>				Wright, R.H.; Maass, O.			
		[7732-18-5]		Can. J. Research, <u>1932</u> , 6, 94-101.			
VARIABLES:				PREPARED BY:	······································		
Tempera	ature, con	centration		P.G.T. Fogg			
EXPERIMENT T/K	TAL VALUES: Total pressure /mmHg	^P H₂S∕mmHg	H ₂ S in va /mol dm ⁻	apor H ₂ S in liquid ³ /mol dm ^{-\$}	Mole fraction in liquid ^x H ₂ S		
278.15	274.5	268.0	0.015		0.00114		
	560 838	553 831	0.032	4 0.1910	0.00234 0.00343		
	1176	1169	0.068	5 0.2682	0.00481		
283.15	303.8 615	294.7 606	0.016		0.00107 0.00219		
	914 1279	905 1270	0.051	8 0.1801	0.00324 0.00450		
	1567	1558	0.090	0 0.3060	0.00548		
_	2112	2103	0.122		0.00733		
288.15	333.3 670	320.6 657	0.017		0.00101 0.00206		
	991 1382	978 1369	0.055		0.00304 0.00421		
	1692 2284	1679 2271	0.095	3 0.2877	0.00516 0.00692		
* calcu negligil	lated by c ble change	ompiler on in the vol	the assum ume of the	ption that dissoluti e liquid phase.	on of H_2S caused		
-			AUXILIARY	INFORMATION			
A measur run into attached manomete removed melting amount of cell by sealed. cell and control	the a ce d to a gla er. Disso by repeat in vacuo. of H_2S was liquid ai The temp d manomete led to 0.1	ty of water 11 of known ss diaphrag lved air wa ed freezing A measure condensed r and the c erature of r were then °C. P _H ,s w	volume m s and d in the ell the ras	SOURCE AND PURITY OF M 1. From a cylinde fractional dis described in m 2. Laboratory dis degassed.	er; purified by stillation as cef. (1).		
PH20 is	the vapor	1 - P _{H2} O w pressure o	f pure		······································		
$P_{H_{2}O}$ is the vapor pressure of pure water. The weight of $H_{2}S$ in the gas phase was calculated from $P_{H_{2}S}$ and the volume of the gas phase. The difference between this weight				ESTIMATED ERROR: $\delta T = \pm 0.1 \text{ K} \text{ (authors)}$			
		ght of H2S f H2S in so		REFERENCES :			
		_		1. Wright, R.H.; M	Maass, O.; h, <u>1931</u> , 5, 436.		

COMPONE	NTS:			ORIGINAL ME	ASUREMENT	S:		
	<pre>1. Hydrogen sulfide; H₂S; [7783-06-4]</pre>				Wright, R.H.; Maass, O.			
		[7732-18-5]		Can. J. R.	esearch,]	1932, 6, 94-101.		
						<u></u> , , , ,, ,, ,,		
EXPERIM	ENTAL VALU	ES:	I.					
T/K	Total pressure	^P H₂S ^{/mmHg}	H ₂ S in V	apor H ₂ S in m ⁻³ /mo:	n liquid	Mole fraction *		
	/mmHg				i am	in liquid ^x H ₂ S		
						п ₂ 5		
293.15	362.8 724	345.4 707	0.0190			0.00095		
l	1067	1050	0.0390 0.0581			0.00193 0.00287		
	1483	1466	0.0816	0.21	188	0.00393		
	1817 2454	1800 2437	0.1005 0.1371			0.00484 0.00653		
298.15	392.6	369.1	0.0199			0.00090		
1	778 1144	754 1120	0.0409			0.00182		
	1581	1557	0.0610 0.0851			0.00270 0.00369		
	1935	1911	0.1049	0.25	544	0.00458		
303.15	2622 422.8	2598 391.3	0.1437 0.0208			0.00617 0.00085		
	830	798	0.0425			0.00173		
	1219 1672	1187	0.0636	0.14	413	0.00255		
	2052	1640 2020	0.0882 0.1091	0.19		0.00348 0.00432		
	2785	2753	0.1498	0.32		0.00584		
313.15	486.5 934	431.6 879	0.0222 0.0454			0.00077		
	1370	1315	0.0454	0.08		0.00156 0.00229		
	1853	1798	0.0937	0.17	722	0.00312		
	2278 3095	2223 3040	0.1162 0.1603	0.21		0.00389 0.00529		
323.15	562.4	470.4	0.0235	0.03		0.00071		
	1040 1522	948 1430	0.0474 0.0719	0.07		0.00144		
	2033	1941	0.0719	0.11 0.15		0.00207 0.00284		
	2505	2413	0.1223	0.19	937	0.00352		
333.15	3402 652.2	3310 503.3	0.1690 0.0243	0.26		0.00480 0.00066		
	1162	1013	0.0492	0.07		0.00134		
	1681 2213	1532 2064	0.0747			0.00191		
	2731	2582	0.1010 0.1269	0.14 0.17		0.00263 0.00325		
	3707	3558	0.1762	0.24	24	0.00442		
* calcul negligi	ated by co ble change	ompiler on th in the volu	e assumpti me of the	on that dis liquid phas	ssolution	of H ₂ S caused		
Values	of $x_{\rm H_2S}$ fr	om interpola	ted values	of x_{H_2S}/P_H	2S ^{supplie}	d by authors:		
1	T/K	P _{H2} s ⁼¹ atm.	^Р н,	s ⁼² atm.	^Р н,s ⁼	3 atm.		
	8.15	0.00321	0	.00626	•	00921		
	3.15 8.15	0.00275 0.00239		.00543		00807		
29	3.15	0.00239		.00473	_	00707 00620		
	8.15	0.00185	0	.00368	0.	00549		
	3.15 3.15	0.00166 0.00136		.00330 .00271		00492		
32	3.15	0.00116		.00228		00404 00340		
33	3.15	0.00102		.00199		00296		
760 mmH	g = 1 atm	= 1.01325 ba	r					

COMPONENTS:		ORIGINAL MEASUREMENTS:				
 Hydrogen sulfide; H₂: [7783-06-4] 	5	Kapustinsky, A.F.; Anvaer, B.I.				
2. Water; H ₂ O; [7732-18-	-5]	Compt.Rend.Acad.Sci.URSS 1941, 30, 625-8.				
VARIABLES:	······································	PREPARED BY:				
		P.G.T. Fogg				
EXPERIMENTAL VALUES:						
т/к Р _{Н2S} /mmHg	Concn. of H ₂ in liquid / mol dm ⁻³	S Mole fraction in liquid [*] ^x H ₂ S				
298.2 760	0.1013	0.001826				
* calculated by the comp	iler					
780	mmHg = 1.013	25 Dat				
	AUXILIARY	INFORMATION				
METHOD /APPARATUS / PROCEDURE :	· · · · · · · · · · · · · · · · · · ·	SOURCE AND PURITY OF MATERIALS:				
Hydrogen sulfide, satura	ted with	1. from chemically pure hydrochloric				
water vapor, was bubbled		acid and NaHS; CO ₂ removed by				
a 300 cm ³ thermostatted		Ba(OH) ₂ .				
vessel for 3 - 4 hours.						
of solution were then wi						
for analysis by iodimetr Allowance was made for t						
pressure of water.	vapor	ESTIMATED ERROR:				
-		$\delta T/K = \pm 0.1$ (authors)				
		REFERENCES :				
[

COMPONENTS:	ORIGINAL MEASUREMENTS:			
<pre>1. Hydrogen sulfide; H₂S; [7783-06-4]</pre>	Selleck, F.T.; Carmichael, L.T.; Sage, B.H.			
2. Water; H ₂ O; [7732-18-5]	Ind. Eng. Chem. <u>1952</u> , 44, 2219-2226			
VARIABLES:	PREPARED BY:			
Temperature, pressure	P.G.T. Fogg			
EXPERIMENTAL VALUES:				
/(Lb/Sq.Inch pre	tal Mole fraction of H ₂ S ssure Gas phase Liquid phase bar*			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
600 4 700 4 759.4 ⁺ 5	4.47 0.9856 0.0258 1.37 0.9865 0.0310 8.26 0.9868 0.0364 2.36 0.9869 0.0395 queous liquid, H_2S -rich liquid, & gas.			
AUXILIARY	INFORMATION			
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:			
The measurements were obtained as part of a study of the complete phase behaviour of the H_2S/H_2O system. The apparatus consisted of a spherical pressure vessel from which samples of gas or liquid phases could be withdrawn for analysis. The vessel was fitted with a metal diaphragm which responded to pressure differentials. The pressure within the system was measured by a pressure balance calibrated against the vapor	 prepared by hydrolysis of Al₂S₃; dried and fractionated. distilled; deaerated at low pressure. ESTIMATED ERROR: δP = ± 0.1% or 0.07 bar, whichever the greater. δT = ± 0.02 K; δx_{H2}S/x_{H2}S = ± 0.0015 (authors) REFERENCES: 			
pressure of CO_2 at the ice point (1).				

NTS:			ORIGI	NAL MEAASUREMENTS:		
rogen sul 83-06-4]	fide; H ₂ S;		Selleck, F.T.; Carmichael, L.T.; Sage, B.H.			
er; H ₂ O;	[7732-18-5]		Ind.	Eng. Chem. <u>1952</u> , 4	4, 2219-2226.	
т/к	Total pressure /(Lb/Sq.Inch Absolute)	pres	sure		on of H₂S iquid phase	
377.59	200 400 600 800 1000 1250 1500 1750 2000 2250 2500 2750 3000	27 41 55 68 103 120 137 155 172 189	2.58 .37 5.16 5.95 5.18 5.4 7.9 5.1 7.9 5.1 2.4	0.9046 0.9477 0.9597 0.9647 0.9664 0.9665 0.9651 0.9630 0.9602 0.9568 0.9531 0.9491 0.9451	0.0077 0.0156 0.0230 0.0301 0.0371 0.0463 0.0577 0.06905 0.0823 0.0973 0.1145 0.1346 0.1586	
410.93	200 400 600 800 1250 1500 1750 2000 2250 2500 2750	13 27 41 55 68 103 120 137 155 172 189	3.79 5.58 .37 5.16 5.95 5.18 5.4 7.9 5.1 7.9 5.1 2.4	0.7375 0.8589 0.8984 0.9155 0.9248 0.9307 0.9330 0.9327 0.9303 0.9263 0.9213 0.9159	0.0057 0.0127 0.0191 0.0250 0.0308 0.0382 0.0463 0.0550 0.0647§ 0.0750 0.0860 0.0860 0.0978 0.1106	
444.26	2000 400 600 800 1000 1250 1500 1750 2000 2250 2500 2750 3000	13 27 41 55 68 103 120 137 155 172 189	2.79 7.58 .37 5.16 5.95 5.18 5.4 7.9 5.1 7.9 5.1 7.9 5.1 2.4	0.3981 0.6828 0.7772 0.8224 0.8466 0.8646 0.8742 0.8788 0.8797 0.8779 0.8779 0.8740 0.8681 0.8606	0.0029 0.0094 0.0155 0.0214 0.0273 0.0351 0.0435 0.0520 0.0610 [§] 0.0705 0.0805 0.0910 0.1024	
ated by t	the compiler;					
					queous	
	rogen sul 83-06-4] er; H ₂ O; T/K 377.59 410.93 444.26	rogen sulfide; H ₂ S; 83-06-4] er; H ₂ O; [7732-18-5] T/K Total pressure /(Lb/Sq.Inch Absolute) 377.59 200 400 600 800 1000 1250 1500 2750 3000 410.93 200 410.93 200 410.93 200 410.93 200 410.93 200 1500 1750 2000 250 2500	rogen sulfide; H ₂ S; 83-06-4] er; H ₂ O; [7732-18-5] T/K Total pressure Tot /(Lb/Sq.Inch press Absolute) /b 377.59 200 13 400 27 600 41 800 55 1000 68 1250 86 1500 103 1750 120 2000 137 2250 155 2500 172 27750 189 3000 206 410.93 200 13 400 27 600 41 800 55 1000 68 1250 86 1500 103 1750 120 2000 137 2250 155 2500 172 2750 189 3000 206 444.26 200 137 2250 155 2500 172 2750 185 3000 206 444.26 200 137 2250 55 2500 172 2750 185 3000 206 444.26 200 137 2250 55 2500 172 2750 185 3000 206 444.26 200 137 2250 155 2500 172 2750 185 3000 206 444.26 200 137 2250 155 2500 172 2750 185 3000 206 444.26 200 137 2250 155 2500 172 2750 185 3000 206 444.26 200 137 250 155 2500 172 2750 185 3000 206 444.26 200 137 2750 185 3000 206 1000 103 1000 103 1000 103 1000 103 1000 103 1000 100 1000 1	rogen sulfide; H_2S ; $83-06-4]$ er; H_2O ; $[7732-18-5]$ T/K Total pressure $formal dashed{fightars}$ T/K Total pressure $formal dashed{fightars}$ 77.59 200 13.79 400 27.58 600 41.37 800 55.16 1000 68.95 1250 86.18 1500 13.4 1750 120.7 2000 137.9 2250 155.1 2500 172.4 2750 189.6 3000 206.8 410.93 200 13.79 400 27.58 600 41.37 800 55.16 1000 68.95 1250 1250 1250 1251 2500 172.4 2750 189.6 3000 206.8 410.93 200 172.4 2750 189.6 3000 206.8 410.93 200 172.4 2750 189.6 1000 68.95 1250 86.18 1500 103.4 1750 120.7 2000 137.9 2250 155.1 2500 172.4 2750 189.6 3000 206.8 444.26 200 13.79 400 27.58 600 41.37 800 55.16 1000 68.95 1250 86.18 1500 103.4 1750 120.7 2000 137.9 2250 155.1 2500 172.4 2750 189.6 3000 206.8 444.26 200 13.79 400 27.58 600 41.37 800 55.16 1000 68.95 1250 125.1 2500 172.4 2750 189.6 3000 206.8 444.26 200 13.79 2250 155.1 2500 103.4 1750 120.7 2000 137.9 2250 155.1 2500 172.4 2750 189.6 3000 206.8 444.26 200 137.9 2250 155.1 2500 172.4 2750 189.6 3000 206.8 55.16 1000 68.95 1250 103.4 1750 120.7 2000 137.9 2250 155.1 2500 172.4 2750 189.6 3000 206.8 55.16 1000 68.95 1250 189.6 3000 206.8 55.16 1000 132.4 1750 120.7 2000 137.9 2250 155.1 2500 155.1 155.1 2500 155.1 2500 155.1 2500	$\begin{array}{c} \mbox{rogen sulfide; H_2;}\\ 83-06-4] & \mbox{Selleck, F.T.; CarmicharSage, B.H.}\\ \mbox{arge, B.H.}\\ \hline \mbox{Ind. Eng. Chem. 1952, 4}\\ \hline \mbox{Ind. Eng. Chem. 1952, 6}\\ \hline Ind. 100, 68, 95, 0, 9664, 1, 50, 0, 103, 4 & 0, 9330, 1, 1750, 1, 20, 7, 0, 9332, 1, 1750, 1, 20, 7, 0, 9324, 1, 150, 1, 20, 7, 0, 103, 4 & 0, 9213, 2500, 1, 72, 4 & 0, 9213, 2500, 1, 72, 4 & 0, 9213, 2500, 1, 72, 4 & 0, 6740, 1, 2750, 1, 89, 6 & 0, 8646, 1, 500, 1, 13, 4 & 0, 8740, 2750, 1, 89, 6 & 0, 8646, 1, 500, 1, 12, 4 & 0, 8740, 2750, 1, 89, 6 & 0, 8646, 1, 500, 1, 12, 4 & 0, 8740, 2750, 1, 89, 6 & 0, 8646, 1, 500, 1, 12, 4 & 0, 8740, 2750, 1, 89, 6 & 0, 8646, 1, 500, 1, 72, 4 & 0, 8740$	

COMPONENTS:	ORIGINAL MEASUREMENTS:		
1. Hydrogen sulfide; H ₂ S;	Kozintseva, T.N.		
[7783-06-4] 2. Water; H ₂ O; [7732-18-5]	Geokhimiya <u>1964</u> , 8, 758-765.		
VARIABLES:	PREPARED BY:		
Temperature, concentration	P.G.T. Fogg		
EXPERIMENTAL VALUES:	L		
	position of liquid phase Henry's constant		
H ₂ S ratio H ₂ S H	nc.of Mole Mole /atm 2S ratio fraction [*] 1 dm ⁻³ H ₂ S/H ₂ O × _{H₂S}		
475.2 0.00618 0.0663 1.17 0.1 502.2 0.00507 0.0325 1.02 0.1 502.2 0.00419 0.0269 0.84 0.1 502.2 0.00725 0.0465 1.46 0.1 535.2 0.00507 0.0283 1.69 0.1 535.2 0.00507 0.0181 1.08 0.1 535.2 0.00577 0.0242 1.45 0.1 535.2 0.00677 0.0242 1.45 0.1 535.2 0.00675 0.0241 1.44 0.1 535.2 0.00740 0.0138 1.70 0.5 535.2 0.00531 0.0099 1.22 0.1 603.2 0.00860 0.0098 2.07 0.1	0440 0.00078 0.00078 1850 0339 0.00061 0.00061 1920 0296 0.000532 0.000532 1920 0234 0.000422 0.000422 2000 0423 0.000762 0.000761 1910 0494 0.00087 0.000866 1910 0319 0.000575 0.000575 1890 0368 0.000778 0.000777 1860 0428 0.000770 0.000769 1880 0585 0.00105 1620 0428 0.000767 0.000766 1590 0884 0.00159 1300 0.756 0.00136 1320		
AUXILIARY	INFORMATION		
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:		
A special bomb, from which samples of either gas phase or liquid phase could be withdrawn, was used. The bomb was flushed with oxygen-free nitrogen, water (50 cm ³) added and the apparatus saturated with H_2S (pressure not stated). The bomb and contents were then heated in a 'stirrer-furnace' to the required temperature for 25 to 50 hrs. A sample of the liquid phase was then analysed iodimetrically. A sample of the hot gas phase was passed through traps to collect the condensed water and through iodine solution. The H_2S in the hot gas phase was determined iodimetrically and the water content found from the weight of condensate.	No information ESTIMATED ERROR: δT/K = ± 2 (author) REFERENCES:		

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>1. Hydrogen sulfide; H₂S; [7783-06-4]</pre>	Clarke, E.C.W.; Glew, D.N.
2. Water; H ₂ O; [7732-18-5]	Can. J. Chem. <u>1971</u> ,49,691-698
VARIABLES:	PREPARED BY:
Temperature, pressure	C.L. Young
Temperature, pressure	
EXPERIMENTAL VALUES: Total Pressure H2S in	MOLE FRACTIONS gas H_2S in liquid HS in liquid
T/K $P/atm P/kPa $ y_{H_2S}	$\begin{array}{c} 10^{3}x\\ 10^{3}x_{H_{2}S} \end{array}$
273.151 0.53985 54.700 0.9896 273.151 0.64663 65.520 0.9904	
273.150 0.81496 82.576 0.9924	0 3.0497 1.40
278.106 0.49205 49.857 0.9822 278.108 0.57457 58.218 0.9847	
278.105 0.69533 69.533 0.9873	8 2.1988 1.32
278.105 0.89032 90.212 0.9900	
283.169 0.46154 46.766 0.9733 283.168 0.54041 54.757 0.9771	
283.169 0.65667 66.537 0.9811	5 1.7697 1.31
283.169 0.84654 85.776 0.9852 288.158 0.57265 58.024 0.9701	
288.158 0.57265 58.024 0.9701 288.158 0.70044 70.972 0.9754	6 1.6255 1.37
288.156 0.91275 92.484 0.9810	
293.160 0.49456 50.111 0.9526 293.161 0.58325 59.098 0.9597	
293.161 0.71673 72.622 0.9671	2 1.4456 1.41
293.159 0.94115 95.362 0.9747 298.168 0.55244 55.976 0.9425	
298.166 0.66766 67.651 0.9522	7 1.1729 1.38
298.165 0.85319 86.449 0.9624 298.168 0.58192 58.963 0.9453	
298.168 0.58192 58.963 0.9453 298.167 0.71834 72.786 0.9555	7 1.2663 1.43
298.167 0.95039 96.298 0.9662	
298.180 0.55377 56.111 0.9425 298.179 0.68442 69.349 0.9533	
	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Static equilibrium cell described in source. Vapor pressures over	1. Prepared by the action of distilled water on aluminium
saturated aqueous solutions were	sulfide (pure grade K and K
measured with a fused quartz precision Bourdon gauge. Great	Lab).
care was taken to make the necessary	2. Distilled.
correction for water in the vapor phase.	
	ESTIMATED ERROR:
	$\delta T/K = 0.0015; \ \delta P/P = \pm 0.0002;$
	$\delta x_{\rm H_2S} / x_{\rm H_2S} = \pm 0.002$
	REFERENCES:

ļ

.

1

r

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>1. Hydrogen sulfide; H₂S; [7783-06-4]</pre>	Clarke, E.C.W.; Glew, D.N.
2. Water; H ₂ O; [7732-18-5]	Can. J. Chem. <u>1971</u> ,49, 691-698
	Mole fractions in gas H_2S in liquid HS^- in liquid H_2S $10^{3}x_{H_2}S$ $10^{6}x_{HS^-}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
log ₁₀ K _{H₂S} = 55.06 - 3760 (T/K) -	20 log(T/K)

COMPONENTS:	ORIGINAL MEASUREMENTS:		
 Hydrogen sulfide; H₂S; [7783-06-4] Water; H₂O; [7732-18-5] 	Lee, J.I.; Mather, A.E. Ber. Bunsenges. phys. Chem. <u>1977</u> , 81, 1020-1023. (Numerical data deposited in the National Depository of Unpublished Data, Ottawa, Canada)*		
VARIABLES:	PREPARED BY:		
Temperature, pressure	P.G.T. Fogg		
EXPERIMENTAL VALUES:	L		
T/K Total Mole fraction pressure of H ₂ S /kPa in liquid	T/K Total Mole fraction pressure of H ₂ S /kPa in liquid		
283.2 154.8 0.00405 182.4 0.00500 200.3 0.00556 265.8 0.00692 271.8 0.00716 283.0 0.00697 292.4 0.00762 292.8 0.00747 361.7 0.00894 293.2 173.4 0.00328 323.7 0.00649 452.6 0.00916 569.8 0.01137 684.7 0.01340 783.3 0.01500 824.7 0.01577 835.0 0.01605 955.9 0.01817 976.6 0.01821 1045.6 0.01986 * National Depository of Unpublished National Research Council, Ottawa,	293.2 1073.1 0.02058 1086.9 0.02068 1183.5 0.02212 1273.1 0.02409 1355.8 0.02519 303.2 214.5 0.00326 352.4 0.00556 507.5 0.00792 614.4 0.00936 724.6 0.01124 934.8 0.01433 1024.6 0.01590 1196.8 0.01790 1273.4 0.01923 1278.9 0.01945 1466.4 0.02203 1569.8 0.02337 1590.5 0.02355 1623.4 0.02430 1645.7 0.02426 Data, National Science Library, Ontario, K1A OS2, Canada		
AUXILIARY	INFORMATION		
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:		
A recirculating equilibrium cell was used. It consisted of a high pressure liquid level gauge and	 Matheson C.P. grade. Laboratory distilled. 		
vapor reservoir. The gas phase was circulated by a magnetic pump. Samples of the liquid phase could be withdrawn. The total quantity of H_2S in a sample was found from the volume of gas evolved when the pressure over the sample dropped to atmospheric and the residual gas in solution, as measured by gas-liquid chromatography.	ESTIMATED ERROR: $\delta T/K = \pm 0.5$ below 403 K; $\delta T/K = \pm 0.7$ above 403 K (authors) REFERENCES:		

_		nydrogen Sunde	In Aqueous con	Vonto	15
COMPONEN	TS:		ORIGINAL	MEASUREMENT	5:
 Hydrogen sulfide; H₂S; [7783-06-4] Water; H₂O; [7732-18-5] 		Lee, J.I.; Mather, A.E. Ber. Bunsenges. phys. Chem. <u>1977</u> , 81, 1020-1023. (Numerical data deposited in the National Depository of Unpublishe Data, Ottawa, Canada)*		. Chem. sited in the of Unpublished	
EXPERIME	NTAL VALUES	•		·····	
т/к	Total pressure /kPa	Mole fraction of H ₂ S in liquid	т/к	Total pressure /kPa	Mole fraction of H ₂ S in liquid
303.2	1659.5 1758.9 1900.5 1945.3 1955.9 1997.0 2034.3 2059.1 2079.1 2106.7 2169.0 2262.1 2265.5 472.0 730.4 970.8 1070.6 1133.0 1235.8 1469.9 1534.6 1583.1 1609.1 1636.8 1671.4 1671.5 1707.2 1788.3 1892.8 1981.9 1983.1 2052.2	0.02453 0.02582 0.02806 0.02873 0.02933 0.02956 0.02993 0.03054 0.03077 0.03077 0.03195 0.03275 0.03292 0.00620 0.00915 0.01249 0.01249 0.01373 0.01434 0.01565 0.01810 0.01950 0.01950 0.01979 0.01941 0.01975 0.02013 0.02013 0.02061 0.02077 0.02126 0.02126 0.02334 0.02398 0.02408	313.2 323.1	2452.9 2458.9 2479.4 2561.6 718.3 892.9 1005.5 1165.5 1510.9 1683.2 1848.4 1928.1 1940.1 1976.3 2010.1 2048.1 2133.8 2178.0 2265.8 2383.1 2482.5 2518.3 2637.1 2658.1 2711.2 2737.2 2744.5 2755.4 2806.1 2808.4 2816.5	0.02822 0.02926 0.02873 0.02983 0.00783 0.00963 0.01090 0.01231 0.01542 0.01525 0.01750 0.01878 0.01997 0.01997 0.01996 0.01975 0.02022 0.02048 0.02114 0.02210 0.02383 0.02458 0.02458 0.02437 0.02588 0.02594 0.02594 0.02564 0.02663 0.02743 0.02742 0.02722
	2059.9 2061.3 2100.7 2100.8 2128.3 2227.0 2417.4	0.02498 0.02517 0.02526 0.02546 0.02529 0.02612 0.02826	333.2	2893.7 240.6 406.1 575.0 836.9 1195.4 1541.7	0.02822 0.00211 0.00365 0.00530 0.00769 0.01100 0.01425

* National Depository of Unpublished Data, National Science Library, National Research Council, Ottawa, Ontario, K1A OS2, Canada.

,

COMPONENTS:		ORIGINAL MEASUREMENTS:		
<pre>1. Hydrogen sulfide; H₂S; [7783-06-4]</pre>		Lee, J.I.; Mather, A.E.		
[7/83-06-4] 2. Water; H ₂ O; [7732-18-5]		Ber. Bunsenges. phys. Chem. <u>1977</u> , 81, 1020-1023. (Numerical data deposited in the National Depository of Unpublished Data, Ottawa, Canada)*		
EXPERIMENTAL	VALUES:	. I		
	al Mole fraction ssure of H ₂ S Pa in liquid	т/к	Total pressure /kPa	Mole fraction of H ₂ S in liquid
176 191 201 207 210 214 228 232 234 234 244 255 256 256 256 256 256 256 256	0.4 0.01546 2.3 0.01626 4.0 0.01779 5.6 0.01858 7.6 0.01913 95.2 0.01951 8.4 0.02141 8.5 0.02141 8.4 0.02221 6.5 0.02322 4.3 0.02304 0.3 0.02292 7.4 0.02333 9.6 0.02436 22.0 0.02436 22.0 0.02454 3.1 0.02615 8.1 0.02717 8.6 0.02765 4.7 0.02821 0.5 0.02821 0.5 0.02821 0.5 0.02863 0.0 0.02974 5.7 0.03046 6.1 0.02974 5.7 0.03102 1.6 0.03175 2.0 0.03204 4.2 0.03281 4.7 0.03380 7.9 0.03380 2.9 0.03397 <td< td=""><td></td><td></td><td></td></td<>			

	nyurogen Sunde		/61163	
COMPONENTS:		ORIGINAL	MEASUREMENT	S:
 Hydrogen sulfide; H₂S; [7783-06-4] Water; H₂O; [7732-18-5] 		Lee, J.I.; Mather, A.E. Ber. Bunsenges. phys. Chem. <u>1977</u> , 81, 1020-1023. (Numerical data deposited in the National Depository of Unpublished Data, Ottawa, Canada)*		
T/K Total pressure /kPa	Mole fraction of H₂S in liquid	т/к	Total pressure /kPa	Mole fraction of H2S in liquid
363.2 896.5 1217.1 1530.8 1834.2 2120.3 2341.0 2616.6 2733.6 2774.9 2850.8 2988.9 3216.4 3264.4 3436.4 3532.7 3533.3 3698.4 3843.2 4029.3 4222.4 4256.9 4470.6 4574.0 4733.5 4939.4 4954.2 5091.1 5126.5 5229.0 5264.4 5277.3 5526.0 5608.8 5609.2 5622.5 5642.7 5712.6 5828.8 6043.1 6332.7 * National Depositor	0.00577 0.00793 0.01012 0.01217 0.01370 0.01522 0.01729 0.01786 0.01823 0.01855 0.01959 0.02092 0.02142 0.02231 0.02299 0.02300 0.02481 0.02620 0.02749 0.02756 0.02841 0.02620 0.02749 0.02756 0.02841 0.02925 0.03006 0.03129 0.03129 0.03205 0.03223 0.03111 0.03223 0.03111 0.03223 0.0317 0.03438 0.03456 0.03469 0.03500 0.03804 0.03709 0.03804	363.2 393.2 423.2 Data, Natic Ontario, K1	6574.0 496.2 858.2 1154.7 1499.4 1762.1 2072.3 2427.4 2617.0 2941.2 3196.3 3527.2 3610.0 3891.9 3954.7 4023.6 4205.6 4643.4 4849.8 4919.2 4953.2 5518.6 5746.5 5863.3 5987.4 6049.5 6194.7 6208.5 6228.7 6394.6 6394.7 6394.6 6394.7 6394.6 6394.7 6491.1 6573.9 6587.3 6670.4 692.5 933.8 1154.4 1388.8 1154.4 1388.8 1471.4 mal Science A OS2, Canad	0.03943 0.00164 0.00375 0.00547 0.00707 0.00860 0.01050 0.01236 0.01367 0.01536 0.01666 0.01831 0.02043 0.02073 0.02116 0.02199 0.02426 0.02545 0.02571 0.02590 0.02879 0.02879 0.02879 0.02984 0.03050 0.03050 0.03099 0.03168 0.03206 0.03177 0.03223 0.03177 0.03223 0.03315 0.03359 0.03359 0.03388 0.03416 0.00095 0.00216 0.00422 0.00499 Library,

COMPONENT	rs:		ORIGINAL	MEASUREMENT	S:
1. Hydrogen sulfide; H ₂ S;		Lee, J.I.	Lee, J.I.; Mather, A.E.		
[7783-06-4] 2. Water; H ₂ O; [7732-18-5]			Ber. Bunsenges. phys. Chem. <u>1977</u> , 81, 1020-1023. (Numerical data deposited in the National Depository of Unpublished Data, Ottawa, Canada)*		
EXPERIMEN	NTAL VALUES	:	- I		
т/к	Total pressure /kPa	Mole fraction of H2S in liquid	т/к	Total pressure /kPa	Mole fraction of H ₂ S in liquid
423.2	1568.9 1741.0 1768.2 1898.9 2031.8 2078.2 2223.6 2230.5 2376.5 2575.2 2775.2 29851.0 3202.0 3450.2 3739.8 4105.2 4256.9 4403.4 4623.0 4691.9 5133.2	0.00552 0.00635 0.00626 0.00749 0.00787 0.00816 0.00863 0.00877 0.01036 0.01147 0.01268 0.01283 0.01364 0.01498 0.01644 0.01893 0.01978 0.02056 0.02109 0.02324	423.2	5560.2 5863.6 6277.3 6339.3 6401.4 6601.3 1071.3 1422.9 1865.1 2154.7 2354.6 2451.1 2540.8 2629.3 3229.2 3484.3 3911.7 4242.7 4615.0 5076.9 5421.7 5918.1	0.02520 0.02650 0.02822 0.02896 0.02897 0.02993 0.00032 0.00199 0.00397 0.00531 0.00657 0.00657 0.00742 0.00742 0.01333 0.01158 0.01356 0.01497 0.01866 0.02029 0.02257
т/к	5222.8 Total pressure /kPa	0.02324 0.02347 Mole fraction of H ₂ S in vapour	т/к	Total pressure /kPa	Mole fraction of H ₂ S in vapour
363.2 393.2	1921 2011 2389 1486 2500 3161 3174 3230 3401	0.9614 0.9606 0.9709 0.8865 0.9298 0.9415 0.9529 0.9314 0.9526	423.2	1942 2196 2624 2699 3003 3079	0.7409 0.7812 0.8199 0.8373 0.8292 0.8356
		ry of Unpublished Council, Ottawa,			

		_	·		
COMPONENTS:			ORIGINAL MEASUREMENTS:		
1. Hydrogen sulfide; H ₂ S; [7783-06-4]			Byeseda, J.J.; Deetz, J.A.; Manning, W.P.		
2. Water; 1	H ₂ O; [7732-18-5]	Proc.Laurance <u>1985</u> .	Reid Gas Cond.Conf.	
VARIABLES:			PREPARED BY:		
			P.G.T. Fogg		
EXPERIMENTAL VA	ALUES:				
т/к	P _{H₂S} /psia	P _{H2S} /bar*	Ostwald coeff. L	Mole fraction in liquid* ^x H ₂ S	
297.1	14.73	1.016	2.5	0.0019	
* .	calculated by c	ompiler			
			INFORMATION		
METHOD /APPARAT	US/PROCEDURE :		SOURCE AND PURITY C		
	contained in a		No information		
connected to pump and sup fitting into an O-ring f: so that the changed by of the piston. solvent was cylinder by absorption of	ed metal cylind o a pressure ga pply of gas. A ernal piston se itted into the volume of gas controlled move A measured vo injected into a syringe. Th of gas was foun the piston whi o maintain cons	ge, vacuum tight aled with cylinder could be ment of lume of the e d from the ch was	ESTIMATED ERROR: REFERENCES:		

COMPONENTS:

1. Hydrogen sulfide; H₂S; [7783-06-4]

2. Aqueous solutions of weak or non-electrolytes

EVALUATOR: Peter G.T. Fogg, Department of Applied Chemistry and Life Sciences, Polytechnic of North London, Holloway, London N7 8DB, U.K.

July 1987

CRITICAL EVALUATION:

Carbon dioxide; CO₂; [124-38-9] Phenol; C₆H₆O; [108-95-2] 1,2,3-Propanetriol, (*glycerol*); C₃H₈O₃; [56-81-5] Ethanol; C₂H₆O; [64-17-5] Urea; CH₄N₂O; [57-13-6]

The solubility of hydrogen sulfide in water containing carbon dioxide was measured by Golutvin, Malysheva & Skorobogatova (1). It was part of a study of the ratios of concentrations of H_2S/CO_2 in the gas phase to that in the liquid phase, in the presence of aqueous solutions. Water at 293.2 K was saturated with various mixtures of hydrogen sulfide and carbon dioxide. The total pressure of gas $(CO_2 + H_2S + H_2O)$ was equal to barometric pressure. Within the limits of the experimental error the molar concentration of hydrogen sulfide in the saturated solution was proportional to the partial pressure of the hydrogen sulfide. The varying partial pressure of carbon dioxide did not cause any deviation from this linear relationship between solubility and partial pressure of 1.013 bar gives a solubility of 0.098 mol dm⁻³ at 293.2 K. This may be compared with the solubility of 0.112 mol dm⁻³ calculated from the recommended value of the mole fraction solubility for H_2S in pure water (see Critical Evaluation – pure water).

In addition, Golutvin *et al.* (1) measured solubilities of mixtures of carbon dioxide and hydrogen sulfide in aqueous solutions of ammonia and of ammonia and phenol. There is no obvious inconsistency between these measurements of solubility in ammonia solutions and measurements made by other workers (see Critical Evaluation - aqueous solutions of ammonia). No other measurements of solubilities in the presence of phenol are available for comparison.

Kiss, Lajtai & Thury (2) measured solubilities of hydrogen sulfide in pure water and aqueous solutions of ethanol, glycerol and of urea in the temperature range 273.2 K to 298.15 K. The total pressure was barometric but the reported solubilities were corrected to a partial pressure of hydrogen sulfide of 1.013 bar. Solubilities in pure water are within a standard deviation of the recommended solubilities (see Critical Evaluation - pure water) and are therefore consistent with measurements by other workers.

Concentrations of ethanol ranged from 2 mol dm^{-3} to 16 mol dm^{-3} . Concentrations of glycerol and of urea ranged from 2 mol dm^{-3} to 8 mol dm^{-3} . The solubilities in ethanol solutions show a self-consistent variation with temperature and concentration of ethanol. They may be extrapolated to give estimated solubilities in pure ethanol. i.e, ethanol at a concentration of approximately 17.6 mol dm^{-3} . The extrapolated value for 273.2 K is about 6% lower than the solubility calculated from direct measurements of the solubility in pure ethanol made by Gerrard (3). The extrapolated solubility for 285.5 K is about 40% greater and the extrapolated value for 298.15 K about 100% greater than solubilities estimated from Gerrard's data.

Solubility measurements for aqueous solutions of glycerol are self-consistent but, in this case, the concentrations of glycerol do not extend high enough to enable extrapolation to pure glycerol (approx. 13.7 mol dm⁻³). Comparison with other systems is not possible for this system or for the urea-water-hydrogen sulfide system.

References

	Golutvin, Yu. M.; Malysheva, T.V.; Skorobogatova, V.I. Izvest. Sibir. Otdel. Akad. Nauk. SSSR 1958, No.8, 83-87.
	Kiss, A.; Lajtai, I.; Thury, G. Z. anorg. allgem. Chem. 1937, 233, 346-352.
3.	Gerrard, W. J. Appl. Chem. Biotechnol. 1972, 22, 623-650.

	n Aqueous Solvents 21
COMPONENTS :	ORIGINAL MEASUREMENTS:
 Hydrogen sulfide; H₂S; [7783-06-4] Carbon dioxide; CO₂; 	Golutvin, Yu. M.; Malysheva, T.V.; Skorobogatova, V.I.
[124-38-9] 3. Water; H ₂ O; [7732-18-5]	Izvest. Sibir. Otdel. Akad. Nauk. S.S.S.R. <u>1958</u> , No.8, 83-7.
VARIABLES:	PREPARED BY:
Concentration of ammonia	P.G.T. Fogg
EXPERIMENTAL VALUES:	
Liquid phase	Gas phase
Conc. of H ₂ S Conc. of CO ₂ P _{H₂} /mol dm ⁻³ /mol dm ⁻³	$s / P_{CO_2} P_{H_2S} / bar^* P_{CO_2} / bar^*$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.00000.00000.98990.03380.03240.95750.03780.03610.95380.12630.11100.87890.22080.17900.81090.19270.15990.83000.30440.23100.75890.40000.28280.70710.38710.27620.71370.39730.28150.70840.70840.41050.57940.68810.40350.58640.81330.44400.54590.77400.43190.55801.66500.61840.37151.22200.54440.44553.73500.78080.20913.99300.79160.19836.45100.93310.0568the compiler on the assumption thatff H_2 S, CO2 & H_2 O is 1.013 bar.ude all ionic species derived from
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Premixed hydrogen sulfide and carbon dioxide were bubbled	1. from a Kipp's apparatus.
through water in a thermostatted saturator for 4.5 to 5 hrs. The gas and the liquid phases were analysed by chemical methods.	 by action of hydrochloric acid on marble chips.
The solubility of H_2S , in the absence of CO_2 , was measured by the authors but there is clearly a mistake in the figures which were published.	ESTIMATED ERROR: δT/K = ± 0.1 (authors) REFERENCES:

				OPTOTNA	L MEASUREME	100.	
[7783-	1. Hydrogen sulfide; H ₂ S; [7783-06-4]			Kiss	, A. v.; I	Lajtai, I.;	Thury, G.
2. Water; H ₂ O; [7732-18-5]					allgem. Che	<i>m</i> •	
3. Urea;	CH4N2O; [57	7-13-6]		1937	, 233, 346	-352.	
VARIABLES:				PREPARE	D BY:		
Temperatur	re, concentr urea.	ration of		P.G.T. Fogg			
EXPERIMENTAL	VALUES:						
Conc. of urea	Conc. of H	I ₂ S in liqui	d /mo	1 dm ⁻³	Ostwa:	ld coeffici	ent, L
/mol dm ⁻³	273.20 К	285.65 K	298.	15 K	273.20 K	285.65 K	298.15 K
0	0.2079	0.1410	0.10	14	4.662	3.307	2.482
2	0.2095	0.1445	0.10	55	4.698	3.389	2.582
4	0.2110	0.1462	0.10	81	4.732	3.424	2.646
6	0.2129	0.1487	0.11	03	4.774	3.487	2.698
8		0.1497	0.11	17		3.511	2.734
		IXUA	ILIARY	INFORMA	TION		
METHOD /APPAR.	ATUS / PROCEDURE		ILIARY			OF MATERIALS	;
	ATUS/PROCEDURN	3:	ILIARY	SOURCE	AND PURITY	OF MATERIALS Sulfide (ex	
H_2S was bu		I: Igh about	ILIARY	SOURCE	AND PURITY		Merck)
H_2S was bu 100 cm ³ of	ubbled throu	2: ngh about cea in an	ILIARY	SOURCE 1. F an	AND PURITY rom iron s d dilute B	sulfide (ex	Merck) Med with
H ₂ S was bu 100 cm ³ of absorptior	ubbled throu water & un vessel at	2: ngh about cea in an		SOURCE 1. F an H ₂	AND PURITY rom iron s d dilute B	sulfide (ex 42SO4; wash	Merck) Med with
H ₂ S was bu 100 cm ³ of absorptior pressure f	ubbled throu water & un vessel at for 1 to 1.5	ngh about rea in an barometric	ved	SOURCE 1. F an H_2 2. D	AND PURITY rom iron s d dilute F O and solv istilled.	sulfide (ex 42SO4; wash	Merck) Med with Me.
H ₂ S was bu 100 cm ³ of absorption pressure f H ₂ S was es	abbled throu water & un vessel at for 1 to 1.5 stimated iod	E: ngh about cea in an barometric 5 h. Dissol	ved	SOURCE 1. F an H ₂ 2. D 3. p	AND PURITY rom iron s d dilute F O and solv istilled.	sulfide (ex H ₂ SO ₄ ; wash vent mixtur riss. from	Merck) Med with Me.
H ₂ S was bu 100 cm ³ of absorption pressure f H ₂ S was es Allowance	abbled throu water & un vessel at for 1 to 1.5 stimated iod was made fo	E: ngh about cea in an barometric 5 h. Dissol dimetrically	ved • al	SOURCE 1. F an H ₂ 2. D 3. p	AND PURITY rom iron s d dilute H D and solv istilled. .a. or put	sulfide (ex H ₂ SO ₄ ; wash vent mixtur riss. from	Merck) Med with Me.
H ₂ S was bu 100 cm ³ of absorption pressure f H ₂ S was es Allowance pressure c	abbled throu water & un vessel at for 1 to 1.5 stimated iod was made fo of water and	agh about cea in an barometric 5 h. Dissol dimetrically or the parti	ved al f	SOURCE 1. F an H ₂ ' 2. D 3. p Ka	AND PURITY rom iron s d dilute F O and solv istilled. .a. or pur hlbaum-Sch	sulfide (ex H ₂ SO ₄ ; wash vent mixtur riss. from	Merck) Med with Me.
H ₂ S was bu 100 cm ³ of absorption pressure f H ₂ S was es Allowance pressure c liquid in	abbled throu water & un vessel at for 1 to 1.5 stimated iod was made fo of water and	agh about cea in an barometric 5 h. Dissol dimetrically or the parti d the head o cion vessel	ved al f	SOURCE 1. F an H ₂ ' 2. D 3. <i>p</i> Ka ESTIMA	AND PURITY rom iron s d dilute H O and solv istilled. .a. or pur hlbaum-Sch	sulfide (ex 42SO4; wash vent mixtur riss. from hering;	Merck) Med with Merck or
H ₂ S was bu 100 cm ³ of absorption pressure f H ₂ S was es Allowance pressure c liquid in the calcul pressure c	abbled through water & up water & up over the set of the set of the set of the was made for the set of the set of the the absorpt lation of the set of th	igh about rea in an barometric 5 h. Dissol dimetrically or the parti d the head o tion vessel he partial abilities we	ved • al f in re	SOURCE 1. F an H ₂ 2. D 3. p Ka ESTIMA Quot seve	AND PURITY rom iron s d dilute H O and solv istilled. .a. or pur hlbaum-Sch TED ERROR: ed values ral measur	sulfide (ex 42SO4; wash vent mixtur riss. from hering; are averag	Merck) Merck or Merck or
H ₂ S was bu 100 cm ³ of absorption pressure f H ₂ S was es Allowance pressure c liquid in the calcul pressure c corrected	abbled through water & un twessel at for 1 to 1.5 stimated iod was made for of water and the absorpt lation of the of H_2S . Solut to a partia	The pressure	ved • al f in re of	SOURCE 1. F an H ₂ 2. D 3. p Ka ESTIMA Quot seve devi	AND PURITY rom iron s d dilute H O and solv istilled. .a. or pur hlbaum-Sch TED ERROR: ed values ral measur	sulfide (ex 42SO4; wash vent mixtur riss. from hering; are averag	Merck) Merck or Merck or
H ₂ S was bu 100 cm ³ of absorption pressure f H ₂ S was es Allowance pressure c liquid in the calcul pressure c corrected	abbled through water & un twessel at for 1 to 1.5 stimated iod was made for of water and the absorpt lation of the of H_2S . Solut to a partia	igh about rea in an barometric 5 h. Dissol dimetrically or the parti d the head o tion vessel he partial abilities we	ved • al f in re of	SOURCE 1. F an H ₂ 2. D 3. p Ka ESTIMA Quot seve devi	AND PURITY rom iron s d dilute H O and solv istilled. .a. or pur hlbaum-Sch TED ERROR: ed values ral measur ation from hors)	sulfide (ex 42SO4; wash vent mixtur riss. from hering; are averag	Merck) Merck or Merck or
H ₂ S was bu 100 cm ³ of absorption pressure f H ₂ S was es Allowance pressure of liquid in the calcul pressure of corrected	abbled through water & un twessel at for 1 to 1.5 stimated iod was made for of water and the absorpt lation of the of H_2S . Solut to a partia	The pressure	ved • al f in re of	SOURCE 1. F an H ₂ 2. D 3. p Ka ESTIMA Quot seve devi (aut	AND PURITY rom iron s d dilute H O and solv istilled. .a. or pur hlbaum-Sch TED ERROR: ed values ral measur ation from hors)	sulfide (ex 42SO4; wash vent mixtur riss. from hering; are averag	Merck) Merck or Merck or
H_2S was bu 100 cm^3 of absorption pressure f H_2S was es Allowance pressure co liquid in the calcul pressure co corrected	abbled through water & un twessel at for 1 to 1.5 stimated iod was made for of water and the absorpt lation of the of H_2S . Solut to a partia	The pressure	ved • al f in re of	SOURCE 1. F an H ₂ 2. D 3. p Ka ESTIMA Quot seve devi (aut	AND PURITY rom iron s d dilute H O and solv istilled. .a. or pur hlbaum-Sch TED ERROR: ed values ral measur ation from hors)	sulfide (ex 42SO4; wash vent mixtur riss. from hering; are averag	Merck) Merck or Merck or
H ₂ S was bu 100 cm ³ of absorption pressure f H ₂ S was es Allowance pressure c liquid in the calcul pressure c corrected	abbled through water & un twessel at for 1 to 1.5 stimated iod was made for of water and the absorpt lation of the of H_2S . Solut to a partia	The pressure	ved • al f in re of	SOURCE 1. F an H ₂ 2. D 3. p Ka ESTIMA Quot seve devi (aut	AND PURITY rom iron s d dilute H O and solv istilled. .a. or pur hlbaum-Sch TED ERROR: ed values ral measur ation from hors)	sulfide (ex 42SO4; wash vent mixtur riss. from hering; are averag	Merck) Merck or Merck or
H ₂ S was bu 100 cm ³ of absorption pressure f H ₂ S was es Allowance pressure c liquid in the calcul pressure c corrected	abbled through water & un twessel at for 1 to 1.5 stimated iod was made for of water and the absorpt lation of the of H_2S . Solut to a partia	The pressure	ved • al f in re of	SOURCE 1. F an H ₂ 2. D 3. p Ka ESTIMA Quot seve devi (aut	AND PURITY rom iron s d dilute H O and solv istilled. .a. or pur hlbaum-Sch TED ERROR: ed values ral measur ation from hors)	sulfide (ex 42SO4; wash vent mixtur riss. from hering; are averag	Merck) Merck or Merck or

COMPONENTS:	ORIGINAL MEASUREMENTS:		
<pre>1. Hydrogen sulfide; H₂S; [7783-06-4]</pre>	Kiss, A. v.; Lajtai, I.; Thury, G.		
2. Water; H ₂ O; [7732-18-5]	Zeit. anorg. allgem. Chem. 1937, 233, 346-352.		
3. Ethanol; C ₂ H ₆ O; [64-17-5]	<u>1937</u> , 233, 340-352.		
VARIABLES:	PREPARED BY:		
Temperature, concentration of	P.G.T. Fogg		
ethanol.			
EXPERIMENTAL VALUES:			
Conc. of Conc. of H ₂ S in liquid /me ethanol	ol dm ⁻³ Ostwald coefficient, L		
/mol dm ⁻³ 273.20 K 285.65 K 298	.15 K 273.20 K 285.65 K 298.15 K		
0 0.2079 0.1410 0.1	014 4.662 3.307 2.482		
2 0.1881 0.1320 0.0	994 4.218 3.096 2.433		
4 0.1680 0.1276 0.1	034 3.767 2.988 2.531		
5 0.1590 0.1285 0.1	074 3.566 3.013 2.629		
6 0.1632 0.1345 0.1	155 3.660 3.154 2.827		
7 0.1761 0.1513 0.1	324 3.949 3.631 3.240		
8 0.2030 0.1709 0.1	470 4.552 3.989 3.598		
	970 6.351 5.500 4.281		
12 0.3982 0.3182 0.2	621 8.029 7.462 6.415		
14 0.5435 0.4255 0.3	431 12.19 9.978 8.397		
16 0.7115 0.5650 0.4	469 15.95 13.25 10.94		
AUXILIARY	(INFORMATION		
METHOD APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:		
H_2S was bubbled through about	1. From iron sulfide (ex Merck)		
100 cm^3 of water & ethanol in an	and dilute H ₂ SO ₄ ; washed with		
absorption vessel at barometric	H_2O and solvent mixture.		
pressure for 1 to 1.5 h. Dissolved	2. Distilled.		
H_2S was estimated iodimetrically.	3. p.a. or puriss. from Merck or		
Allowances were made for the	Kahlbaum-Schering; distilled		
partial pressure of water, the			
partial pressure of ethanol and the			
head of liquid in the absorption	ESTIMATED ERROR: Quoted values are averages from		
vessel when the partial pressure of H_2S was calculated. Solubilities	several measurements with a maximum deviation from the mean of \pm 0.2%		
were corrected to 1.013 bar by use	(authors) REFERENCES:		
of Henry's law.			

COMPONENTS:				ORIGINA	L MEASUREMEN		
		N. G.					Thursday C
1. Hydrogen sulfide; H ₂ S; [7783-06-4]		Kiss, A. v.; Lajtai, I.; Thury, G.					
2. Water;	H ₂ O; [7732	-18-5]			. anorg. a , 233, 346	11gem. Che	Π.
	Propanetrio; [56-81-5]	l (glycerol);	<u></u>	/ 2007 040	552.	
VARIABLES:		······································		PREPARE	D BY:	<u> </u>	
Temperatur	e, concentr glycero				Ρ.	G.T. Fogg	
EXPERIMENTAL	VALUES:				······································		
Conc. of glycerol	Conc. of H	2S in liqui	d /mo	1 dm ⁻³	Ostwal	.d coeffici	ent, L
/mol dm ⁻³	273.20 K	285.65 K	298.	15 K	273.20 К	285.65 K	298.15 K
0	0.2079	0.1410	0.10	14	4.662	3.307	2.482
2	0.1752	0.1180	0.09	30	3.929	2.768	2.276
4	0.1514	0.1066	0.08	50	3.396	2.500	2.080
6	0.1311	0.0967	0.07	93	2.940	2.267	1.938
8	0.1165	0.0913	0.07	70	2.613	2.140	1.885
		AUXI	LIARY	INFORMA	TION		
METHOD / APPARA	TUS/PROCEDURE	:		SOURCE	AND PURITY	OF MATERIALS	;
100 cm ³ of absorption pressure f H ₂ S was es Allowance pressure o liquid in the calcul pressure o corrected	vessel at for 1 to 1.5 timated iod was made for of water and the absorpt ation of th f H_2S . Solu to a partia	ycerol in a barometric h. Dissol limetrically or the parti the head o ion vessel	ved al f in re of	an H2 2. D 3. p Ka ESTIMA Quote seven devia	d dilute H O and solv istilled. .a. or pur hlbaum-Sch TED ERROR: ed values ral measur ation from hors)	sulfide (ex 12SO4; wash vent mixtur viss. from mering; dis are averag ements wit the mean of	ed with e. Merck or tilled. es from h a maximum

COMPONENTS:	EVALUATOR:
 Hydrogen sulfide; H₂S; [7783-06-4] Strong electrolytes 	Peter G.T. Fogg, Department of Applied Chemistry and Life Sciences, Polytechnic of North London, Holloway, London N7 8DB, U.K.
	July 1987

Several workers have reported the solubilities of hydrogen sulfide in solutions of salts and of acids and, as part of the same work, the solubility of the gas in pure water. If such measurements using pure water are in accord with values given by other workers then measurements of solubilities in the presence of electrolytes which have been carried out as part of the same research are likely to be reliable.

The published solubilities indicate that addition of an acid to water usually increases the solubility of hydrogen sulfide whereas addition of a salt often has the opposite effect. Experimental values for low electrolyte concentrations sometimes approximately obey empirical equations based upon the Sechenov relation (1). i.e.

$$s = s' \exp(-kc)$$

where s is the solubility of the gas in solution, s' the solubility in pure water, c the concentration of the electrolyte and k an empirical constant specific for the electrolyte. Concentrations may be expressed as molarities, molalities or mole fractions. When the equation is expressed in a form such as:

 $\ln (s/mol dm^{-3}) = \ln (s'/mol dm^{-3}) - kc$

the effects of different electrolytes are approximately additive i.e.

 $\ln (s/mol dm^{-3}) = \ln (s'/mol dm^{-3}) - (k_1c_1 + k_2c_2 + \dots)$

where k_1 , k_2 etc. are appropriate constants for electrolyte 1,2, etc. at concentrations c_1 , c_2 , etc. Better agreement with experimental data is obtained, if additional terms depending on concentrations raised to a higher power, are introduced.

Solubilities in hydrochloric acid solutions at 298.15 K and a partial pressure of 1.013 bar have been reported by Kendall & Andrews (2), Kapustinsky & Anvaer (3) and by Gamsjäger & Schindler (4). Solubilities in pure water at the same temperature and pressure, which were reported by each group, are within 1% of the recommended value.

Gamsjäger & Schindler investigated the solubilities in the concentration range of hydrochloric acid of 0 to 3 mol dm⁻³. Values are within about 2% of solubilities reported by Kendall & Andrews who made measurements at acid concentrations to 4.9 mol dm⁻³. Kapustinsky & Anvaer measured solubilities in hydrochloric acid of concentrations from 5 to 11.4 mol dm⁻³. Extrapolation of these measurements to lower concentrations of hydrochloric acid confirms that Gamsjäger's experimental measurements are likely to be reliable. However the empirical equation for the ratio of solubility in acid to that in pure water as a function of acid concentration, reported by Gamsjäger, does not appear to be applicable to the acid concentration range investigated by Kapustinsky.

Measurements reported by Gamsjäger & Schindler (4) for solutions containing sodium chloride are self-consistent. The solubility at 298.15 K for a partial pressure of 1.013 bar in sodium chloride of concentration 3.0 mol dm⁻³ is 0.062 mol dm⁻³ which is greater than the value of 0.0548 reported by Kapustinsky & Anvaer (3). The evaluator considers that data given by Gamsjäger & Schindler are likely to be the more reliable and these should be accepted on a tentative basis.

Kapustinsky and Anvaer (3) also reported the solubility at 298.15K and 1.013 bar in a solution of potassium chloride (1.0 mol dm⁻³) to be 0.0877 mol dm⁻³ which is close to the value of the value of 0.089 estimated from measurements by McLauchlin (5). In view of the uncertainty over the solubility in sodium chloride solution this value for potassium chloride solutions can only be accepted on a tentative basis.

Kozintseva (6) measured solubilities in solutions of sodium chloride, calcium chloride and sodium sulfate at temperatures of 475 K and 535 K. These solubilities appear to be reliable and may be accepted as tentative values.

COMPONENTS:	EVALUATOR:
 Hydrogen sulfide; H₂S; [7783-06-4] Strong electrolytes 	Peter G.T. Fogg, Department of Applied Chemistry and Life Sciences, Polytechnic of North London, Holloway, London N7 8DB, U.K.
	July 1987

Comparison with measurements by other workers at lower temperatures is not possible.

Measurements by Gamsjäger and Schindler (4) of solubilities in solutions containing both hydrochloric acid and sodium chloride are consistent with their measurements on solutions containing either one or other of these two compounds.

Solubilities in solutions of hydrochloric acid and zinc chloride and in solutions of hydrochloric acid and ferrous chloride were investigated by Kapustinsky and Anvaer. Their results show that, over the concentration ranges studied, addition of hydrochloric acid and of zinc chloride increased the solubility of hydrogen sulfide but addition of ferrous chloride decreased solubility. Further work on these systems is required before quantitative relationships can be reliably established.

Dede & Becker (7) measured solubilities, in solutions of calcium chloride, of sodium perchlorate and of sodium sulfate at 293.15 K and a total pressure equal to barometric. The value of the solubility in pure water, measured as part of the same research, is about 7% less than the recommended value based upon more modern measurements. There is a linear variation of log(concentration of H_2S in solution) with concentration of sodium perchlorate over the concentration range studied (0 to 4 mol dm⁻³) showing that a Sechenov equation is applicable over this range. The other two salts deviate from linearity over the range 0 to 2 mol dm⁻³.

Solubilities in sodium perchlorate solutions, perchloric acid solutions and in mixtures of the two have been reported by Gamsjäger, Rainer & Schindler (8) at 298.15 K and a partial pressure of 1.013 bar. The measurements are self consistent. An empirical equation relating solubility of hydrogen sulfide to concentration of sodium perchlorate and of perchloric acid was derived for total concentrations of perchlorates to 3 mol dm⁻³. In the absence of acid the variation of solubility with concentration of sodium perchlorate found by Gamjager at 298.15 K is consistent with the similar behaviour at 293.15 K found by Dede & Becker (7).

Pollitzer (9) measured the solubility of hydrogen sulfide at 298.15 K and a total pressure of 1.013 bar in solutions of hydrogen iodide of concentrations 1.01 to 9.21 mol dm⁻³. His value for the solubility in pure water corresponds to a mole fraction solubility at a partial pressure of 1.013 bar of 1.864×10^{-3} compared with the recommended value of $(1.830 \pm 0.014) \times 10^{-3}$ based upon more modern determinations (see Critical Evaluation - pure water). The solubilities over the hydrogen iodide concentration range follow a Sechenov relation fairly closely and can be fitted to the equation:

 $\log_{10}(\text{concn. H}_2\text{S/mol dm}^{-3}) = -0.9979 + 0.04494 \text{ (concn. HI/mol dm}^{-3}\text{)}$ Standard deviation of $\log_{10}(\text{concn. of H}_2\text{S/mol dm}^{-3}) = \pm 0.0122$

Aleksandrova and Yaroshchuk (10) measured the solubility in pure water, in dilute sulfuric acid and in concentrated sulfuric acid at 323.15 K, each at a different partial pressure of H_2S in the range 0.02 to 0.05 bar. Measurements indicate that, if the pressure were kept constant, solubility would increase with concentration of acid. The value of the solubility in pure water is about double the value expected on the assumption that the variation of mole fraction solubility would vary linearly with pressure to 1.013 bar. The solubilities reported for sulfuric acid are therefore of uncertain reliability.

Litvinenko (11) investigated the reversible equilibria between hydrogen sulfide gas and solutions of potassium carbonate and of sodium carbonate at temperatures from 298.15 K to 333.15 K. Values of the ratio:

$$[HCO_3^{-}]$$
 [HS⁻]
 $[CO_3^{-}]$ P_{H_2S}

depend upon the concentration of alkali metal ions and change with temperature. Measurements made by Dryden (12) for the the equilibrium involving potassium salts indicate that the ratio increases with decrease in concentration of

COMPONENTS :	EVALUATOR:
 Hydrogen sulfide; H₂S; [7783-06-4] Strong electrolytes 	Peter G.T. Fogg, Department of Applied Chemistry and Life Sciences, Polytechnic of North London, Holloway, London N7 8DB, U.K.
	July 1987

potassium ions. Litvinenko made measurements at a concentration of potassium ions of about 2 mol dm⁻³ and obtained values of the ratio about 20% lower than values presented by Dryden. In the opinion of the evaluator, the data presented by Dryden are the more reliable.

Equilibria in the system hydrogen sulfide-carbon dioxide-potassium carbonate-water were also investigated by Dryden (12) and by Litvinenko (11). Both workers presented values of the the ratio:

$$\frac{[\text{KHCO}_3] P_{\text{H}_2\text{S}}}{[\text{KHS}] P_{\text{CO}_2}}$$

Dryden's measurements indicate that the ratio changes with total concentration of potassium ions. Dryden made measurements at 293.2 K and 323.2 K. A value of about 2.5 for a concentration of potassium ions of 2 mol dm⁻³ at 298.2 K may be obtained from these measurements by interpolation. This is close to the average value of 2.6 under these conditions from Litvinenko's measurements. If Dryden's measurements are extrapolated to give the ratio at 333.2 K for this concentration of potassium ions a value of about 1.0 is obtained. The average of the values for 333.2 K obtained by Litvinenko is 1.5 so there is poor agreement in this case.

The corresponding system containing sodium ions instead of potassium ions was investigated by Berl & Rittener (13). They gave values of the ratio

(molar concentration of carbonate + bicarbonate) P_{H_2S} (molar concentration of sulfide + bisulfide) P_{CO_2}

Under the conditions of the experiments the concentrations of carbonate and sulfide ions are small compared with the concentrations of bicarbonate and bisulfide ions and the ratio is equivalent to

$$\frac{[\text{NaHCO}_3] P_{\text{H}_2\text{S}}}{[\text{NaHS}] P_{\text{CO}_2}}$$

Values of this ratio for a concentration of sodium ions of about 0.5 mol dm^{-3} are very close to values reported by Dryden for the similar ratio for the potassium compounds at this concentration. This is shown in the table below :

	T/K	$[M^+]/mol dm^{-3}$	Ratio
Berl & Rittener (13)	291.2	0.544	2.01
	291.2	0.544	1.97
	328.2	0.532	0.90
Dryden (12)	293.2	0.49	1.9
-	323.2	0.50	0.93

On the basis of the evidence which is available, the general relationships for the two systems which have been presented by Dryden and by Berl & Rittener, appear to be reliable.

References

1. Sechenov, Z. physik. Chem. <u>1889</u>, 4, 121.

2. Kendall, J.; Andrews, J.C. J. Amer. Chem. Soc. <u>1921</u>, 43, 1545-1560.

COMPONENTS:		EVALUATOR:			
 Hydrogen sulfide; H₂S; [7783-06-4] Strong electrolytes 		Peter G.T. Fogg, Department of Applied Chemistry and Life Sciences, Polytechnic of North London, Holloway, London N7 8DB, U.K.			
		July 1987			
CRITIC	CAL EVALUATION:				
3.	Kapustinsky, A.F.; Anvaer, B.I.				
	Compt. Rend. Acad. Sci. URSS <u>194</u>	1, 30, 625-628.			
4.	Gamsjäger, H.; Schindler, P. Helv.	. Chim. Acta <u>1969</u> , 52, 1395-1402.			
5.	McLauchlin, W.H. Z. physik. Chem.	. <u>1903</u> , 44, 600-633.			
6.	Kozintseva, T.N. Geokhim. Issled. v Obl. Povyshenny SSSR, Inst. Geokhim. i Analit. Khi	ykh Davlenii i Temperatur., Akad. Nauk im., Sb. Statei <u>1965</u> , 121–134.			
7.	Dede, L.; Becker, Th. Z. anorg. a.	llgem. Chem. <u>1926</u> , 152, 185-196.			
8.	Gamsjäger, H.; Rainer, W.; Schind Monatsh. Chem. <u>1967</u> , 98, 1782–1803				
9.	Pollitzer, F. Z. anorg. Chem. <u>1909</u>	9, 64, 121-148.			
10.					
11.	11. Litvinenko, M.S. Zh. Prikl. Khim. <u>1952</u> , 25, 516-532. J. Applied Chem. (USSR) <u>1952</u> , 25, 579-595.				
12.	2. Dryden, I.G.C. J. Soc. Chem. Ind. <u>1947</u> , 66, 59-64.				
13.	13. Berl, A.; Rittener, A. Z. angew. Chem. <u>1907</u> , 20, 1637-1642.				
		-			

COMPONENTS:	ORIGINAL MEASUREMENTS:
1. Hydrogen sulfide; H ₂ S; [7783-06-4]	Kendall, J.; Andrews, J.C.
2. Water; H ₂ O; [7732-18-5]	J. Amer. Chem. Soc. <u>1921</u> , 43, 1545-1560.
 Hydrogen chloride, HCl; [7647-01-0] 	
VARIABLES:	PREPARED BY:
Concentration of HCl	P.G.T. Fogg
EXPERIMENTAL VALUES:	
Concentration of HCl Absorpti /mol dm ⁻³ coefficie	con_* Concentration of H ₂ S ent /mol dm ⁻³ ($P_{H_2S} = 1.013$ bar)
This has been estimated by the compidissolution of gas. * Volume of gas, measured at 273.15	
AUXILIARY	INFORMATION
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
Hydrogen sulfide, produced from aqueous ammonium sulfide and concentrated hydrochloric acid, was washed with dilute sulfuric acid and with concentrated sodium sulfide solution. It then passed through hydrochloric acid at the same concentration as the solution in which solubility was to be determined. The gas then passed into standardised hydrochloric acid	 from ammonium sulfide solution and concentrated hydrochloric acid.
in a calibrated absorption burette held in a thermostat controlled to ± 0.01 K. Absorption was complete in 2-3 h. Hydrogen sulfide in the solution was estimated by iodimetry. Corrections were made for the barometric pressure, the vapor pressure of the solution and the head of liquid over the solution.	ESTIMATED ERROR: δT/K = ± 0.01 (authors) REFERENCES:

COMPONENTS :	ORIGINAL MEASUREMENTS:		
 Hydrogen sulfide; H₂S; [7783-06-4] Water; H₂O; [7732-18-5] 	Kapustinsky, A.F.; Anvaer, B.I. Compt.Rend.Acad.Sci.URSS		
3. Hydrogen chloride; HCl;	<u>1941</u> , 30, 625-8.		
[7647-01-0] VARIABLES:	PREPARED BY:		
Concentration of HCl	P.G.T. Fogg		
EXPERIMENTAL VALUES:			
in liquid	Conc. of H_2S in liquid		
Wt% /mol dm ⁻³ /mol kg ⁻¹ /m	dm^{-3} /mol kg ⁻¹ /mol kg ⁻¹		
of H ₂ O	of H ₂ O of H ₂ O		
16.8 5.0 5.55 0	.1098 0.1227 0.1200		
	.1124 0.1291 0.1266		
23.7 7.3 8.4 0	.1165 0.1375 0.1351		
28.1 8.8 10.7 0	.1192 0.1462 0.1437		
34.9 11.4 14.7 0	.1169 0.1542 0.1319		
[†] correspond to a total pressure of	760 mmHg (1.013 bar)		
AUXILIARY	INFORMATION		
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:		
Hydrogen sulfide, saturated with vapor from a sample of the solution under test, was bubbled through further solution in a thermostatted absorption vessel for 3 - 4 h. Samples were then withdrawn for analysis by iodimetry. Allowance was made for the vapor pressure of water and hydrogen chloride and for the density of the solutions in the calculation of solubilities.	<pre>1. from chemically pure hydrochoric acid and NaHS; CO₂ removed by Ba(OH)₂. ESTIMATED ERROR:</pre>		

COMPONENTS	
COMPONENTS:	ORIGINAL MEASUREMENTS:
 Hydrogen sulfide; H₂S; 	Pollitzer, F.
[7783-06-4] 2. Hydrogen iodide; HI;	Zeit. anorg. Chem. <u>1909</u> , 64,
[10034-85-2]	121-148.
3. Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
Concentration	P.G.T. Fogg
EXPERIMENTAL VALUES:	
Conc. of HI	Conc. of H ₂ S
/mol dm ⁻³	/mol dm ⁻³
0.00	0.1004
1.01	0.111 0.113
1.51 1.93	0.125
2.45	0.130
2.64	0.138
3.42	0.142
4.38	0.163
5.005	0.165
5.695	0.181
6.935	0.197
9.21	0.267
T/K = 298.2 Total pressur	re = 760 mmHg = 1.01325 bar
AUXILIARY	INFORMATION
METHOD / APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
H_2S was passed into solutions of	1. from CaS and dilute HCl.
HI which were then analysed	
iodimetrically.	
	ESTIMATED ERROR:
	ESTIMATED ERROR:
	REFERENCES:

· •	•
COMPONENTS :	ORIGINAL MEASUREMENTS:
 Hydrogen sulfide; H₂S; [7783-06-4] Water; H₂O; [7732-18-5] Sulfuric acid; H₂SO₄; [7664-93-9] 	Aleksandrova, M.V.; Yaroshchuk, E.G. Zh. Prikl. Khim. (Leningrad) <u>1978</u> , 51, 1273-76. J. Appl. Chem. (USSR) <u>1978</u> , 51, 1221-3.
VARIABLES:	PREPARED BY:
Concentration of acid	P.G.T. Fogg
EXPERIMENTAL VALUES:	
Solvent P _{H2S} /mmHg P _{H2S} /bar [*]	Total pressure ^{**} Mole fraction /mmHg of H_2S in liquid ${}^{x}H_2S$
Water 16.5 0.0220	786.0 0.000055
Sulfuric acid 5.0 0.0067 7.25 mol dm ⁻³	780.5 0.00009
Sulfuric acid 36.6 0.0488 (concentrated)	769.0 0.00129
Temperature = 323.2 K	
* calculated by compiler	
** the compiler considers that an ir give the reported total pressure alt authors.	hert gas must also have been present to chough this was not stated by the
AUXILIAR	Y INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
A flow method described in ref.(1) was used. A gas mixture was passed into the apparatus for 1 - 1.5 h. Samples of liquid and of gas were then analysed.	No information
	ESTIMATED ERROR:
	REFERENCES: 1. Hals, E.; Pick, J.; Fried, V.; Vilim, O. Vapor-Liquid Equilibrium, Pergamon Press, New York

COMPONENTS :		ORIGINAL MEASUREMEN	,	
[7783-06-4]		Douabul, A.A.; Riley, J.P.		
2. Water; H ₂ O; [7732-18-5]		Deep-Sea Res. <u>1979</u> , 26A, 259 - 268.		
3. Sulfuric acid [7664-93-9]	; H ₂ SO ₄ ;			
VARIABLES:		PREPARED BY:		
Temperature		P.G.T. Fo	aa	
EXPERIMENTAL VALUES:			. <u> </u>	
т/к бо	lubility of H_2S at	a H ₂ S fugacity o	f 1 atm (1.01325 bar)	
	Unacidif distilled		Acidified [†] distilled water	
	/mol dm ⁻³	mole fraction [*]	/mol dm ⁻³	
275.25	0.1944	0.003490	0.1944	
278.20	0.1769	0.003177	0.1769	
283.34	0.1518	0.002728	0.1517	
288.19	0.1314	0.002364	0.1314	
293.25	0.1156	0.002082	0.1155	
297.87	0.1022	0.001843	0.1023	
302.97	0.0915	0.001653	0.0913	
	c acid was prepared		of sulfuric acid	
Calculated by o	-		of sulfuric acid	
Calculated by o	c acid was prepared o 5 dm ³ of distille		of sulfuric acid	
Calculated by ([†] Dilute sulfuri) (5 mol dm ⁻³) to	c acid was prepared o 5 dm ³ of distille AUXILIARY	d water.		
Calculated by ([†] Dilute sulfuri) (5 mol dm ⁻³) to	c acid was prepared o 5 dm ³ of distille AUXILIARY DURE:	d water. INFORMATION		
Calculated by o [†] Dilute sulfurio (5 mol dm ⁻³) to METHOD/APPARATUS/PROCED Distilled water o	c acid was prepared o 5 dm ³ of distille AUXILIARY DURE: r dilute acid	d water. INFORMATION	OF MATERIALS;	
Calculated by o [†] Dilute sulfurio (5 mol dm ⁻³) to METHOD/APPARATUS/PROCED	c acid was prepared o 5 dm ³ of distille AUXILIARY DURE: r dilute acid lass vessel.	d water. INFORMATION SOURCE AND PURITY	OF MATERIALS: Products Ltd;	
Calculated by of [†] Dilute sulfurio (5 mol dm ⁻³) to METHOD/APPARATUS/PROCED Distilled water of was placed in a g	c acid was prepared o 5 dm ³ of distille AUXILIARY DURE: r dilute acid lass vessel. test was	d water. INFORMATION SOURCE AND PURITY 1. from Air P	OF MATERIALS: Products Ltd;	
Calculated by [†] Dilute sulfuria (5 mol dm ⁻³) ta METHOD/APPARATUS/PROCED Distilled water of was placed in a g The liquid under	c acid was prepared o 5 dm ³ of distille AUXILIARY DURE: r dilute acid lass vessel. test was stream of	d water. INFORMATION SOURCE AND PURITY 1. from Air P	OF MATERIALS: Products Ltd;	
Calculated by o [†] Dilute sulfurio (5 mol dm ⁻³) to METHOD/APPARATUS/PROCED Distilled water of was placed in a g The liquid under deoxygenated by a nitrogen. Hydrog then bubbled throw	c acid was prepared o 5 dm ³ of distille AUXILIARY DURE: r dilute acid lass vessel. test was stream of en sulfide was ugh the liguid for	d water. INFORMATION SOURCE AND PURITY 1. from Air P	OF MATERIALS: Products Ltd;	
Calculated by of [†] Dilute sulfurio (5 mol dm ⁻³) to METHOD/APPARATUS/PROCED Distilled water of was placed in a g The liquid under deoxygenated by a nitrogen. Hydrog then bubbled throw about 15 h. with of	c acid was prepared o 5 dm ³ of distille AUXILIARY DURE: r dilute acid lass vessel. test was stream of en sulfide was ugh the liquid for continuous	d water. INFORMATION SOURCE AND PURITY 1. from Air P	OF MATERIALS: Products Ltd;	
Calculated by of [†] Dilute sulfurio (5 mol dm ⁻³) to METHOD/APPARATUS/PROCED Distilled water of was placed in a g The liquid under deoxygenated by a nitrogen. Hydrog then bubbled throw about 15 h. with of magnetic stirring	c acid was prepared o 5 dm ³ of distille AUXILIARY DURE: r dilute acid lass vessel. test was stream of en sulfide was ugh the liquid for continuous . Gas flow rate	d water. INFORMATION SOURCE AND PURITY 1. from Air P	OF MATERIALS: Products Ltd;	
Calculated by of [†] Dilute sulfurio (5 mol dm ⁻³) to METHOD/APPARATUS/PROCEN Distilled water of was placed in a g The liquid under deoxygenated by a nitrogen. Hydrog- then bubbled throw about 15 h. with of magnetic stirring was then reduced a	c acid was prepared o 5 dm ³ of distille AUXILIARY DURE: r dilute acid lass vessel. test was stream of en sulfide was ugh the liquid for continuous . Gas flow rate and use made of a	d water. INFORMATION SOURCE AND PURITY 1. from Air P	OF MATERIALS: Products Ltd;	
Calculated by of [†] Dilute sulfurio (5 mol dm ⁻³) to METHOD/APPARATUS/PROCEN Distilled water of was placed in a g The liquid under deoxygenated by a nitrogen. Hydrog then bubbled throw about 15 h. with magnetic stirring was then reduced a shorter inlet tub	c acid was prepared o 5 dm ³ of distille AUXILIARY DURE: r dilute acid lass vessel. test was stream of en sulfide was ugh the liquid for continuous . Gas flow rate and use made of a e so as to ensure	d water. INFORMATION SOURCE AND PURITY 1. from Air P purity > 9 ESTIMATED ERROR: δ(solubility)	OF MATERIALS; Products Ltd; 19.6% = ± 0.2%;	
Calculated by of [†] Dilute sulfurio (5 mol dm ⁻³) to METHOD/APPARATUS/PROCED Distilled water of was placed in a g The liquid under deoxygenated by a nitrogen. Hydrog then bubbled throw about 15 h. with of magnetic stirring was then reduced a shorter inlet tub that the pressure	c acid was prepared o 5 dm ³ of distille AUXILIARY DURE: r dilute acid lass vessel. test was stream of en sulfide was ugh the liquid for continuous . Gas flow rate and use made of a e so as to ensure of the gas was	d water. INFORMATION SOURCE AND PURITY 1. from Air P purity > 9 ESTIMATED ERROR: δ(solubility)	<pre>OF MATERIALS; Products Ltd; 19.6% = ± 0.2%; δT/K = ± 0.02</pre>	
Calculated by of [†] Dilute sulfurio (5 mol dm ⁻³) to METHOD/APPARATUS/PROCED Distilled water of was placed in a g The liquid under deoxygenated by a nitrogen. Hydrog then bubbled throw about 15 h. with of magnetic stirring was then reduced a shorter inlet tub that the pressure within 0.5 mmHg of	C acid was prepared o 5 dm ³ of distille AUXILIARY DURE: r dilute acid lass vessel. test was stream of en sulfide was ugh the liquid for continuous . Gas flow rate and use made of a e so as to ensure of the gas was f barometric	<pre>d water. INFORMATION SOURCE AND PURITY 1. from Air P purity > 9 ESTIMATED ERROR: δ(solubility) δP/Pa = ± 70; (auth)</pre>	<pre>OF MATERIALS; Products Ltd; 19.6% = ± 0.2%; δT/K = ± 0.02</pre>	
Calculated by of [†] Dilute sulfurio (5 mol dm ⁻³) to METHOD/APPARATUS/PROCEN Distilled water of was placed in a g The liquid under deoxygenated by a nitrogen. Hydrog then bubbled throw about 15 h. with of magnetic stirring was then reduced a shorter inlet tub that the pressure within 0.5 mmHg o pressure. After	c acid was prepared o 5 dm ³ of distille AUXILIARY DURE: r dilute acid lass vessel. test was stream of en sulfide was ugh the liquid for continuous . Gas flow rate and use made of a e so as to ensure of the gas was f barometric a further 2 h	<pre>d water. INFORMATION SOURCE AND PURITY 1. from Air P purity > 9 ESTIMATED ERROR: δ(solubility) δP/Pa = ± 70;</pre>	<pre>OF MATERIALS; Products Ltd; 19.6% = ± 0.2%; δT/K = ± 0.02</pre>	
Calculated by of [†] Dilute sulfurio (5 mol dm ⁻³) to METHOD/APPARATUS/PROCEN Distilled water of was placed in a g The liquid under deoxygenated by a nitrogen. Hydrog then bubbled throw about 15 h. with magnetic stirring was then reduced a shorter inlet tub that the pressure within 0.5 mmHg of pressure. After a sample of the l	C acid was prepared o 5 dm ³ of distille AUXILIARY DURE: r dilute acid lass vessel. test was stream of en sulfide was ugh the liquid for continuous . Gas flow rate and use made of a e so as to ensure of the gas was f barometric	<pre>d water. INFORMATION SOURCE AND PURITY 1. from Air P purity > 9 ESTIMATED ERROR: δ(solubility) δP/Pa = ± 70; (auth)</pre>	<pre>OF MATERIALS: Products Ltd; 19.6% = ± 0.2%; δT/K = ± 0.02</pre>	
Calculated by of [†] Dilute sulfurio (5 mol dm ⁻³) to METHOD/APPARATUS/PROCEN Distilled water of was placed in a g The liquid under deoxygenated by a nitrogen. Hydrog then bubbled throw about 15 h. with of magnetic stirring was then reduced a shorter inlet tub that the pressure within 0.5 mmHg o pressure. After	c acid was prepared o 5 dm ³ of distille AUXILIARY DURE: r dilute acid lass vessel. test was stream of en sulfide was ugh the liquid for continuous . Gas flow rate and use made of a e so as to ensure of the gas was f barometric a further 2 h	<pre>d water. INFORMATION SOURCE AND PURITY 1. from Air P purity > 9 ESTIMATED ERROR: δ(solubility) δP/Pa = ± 70; (auth)</pre>	<pre>OF MATERIALS: Products Ltd; 19.6% = ± 0.2%; δT/K = ± 0.02</pre>	
Calculated by of [†] Dilute sulfurio (5 mol dm ⁻³) to METHOD/APPARATUS/PROCEN Distilled water of was placed in a g The liquid under deoxygenated by a nitrogen. Hydrog then bubbled throw about 15 h. with magnetic stirring was then reduced a shorter inlet tub that the pressure within 0.5 mmHg of pressure. After a sample of the l	c acid was prepared o 5 dm ³ of distille AUXILIARY DURE: r dilute acid lass vessel. test was stream of en sulfide was ugh the liquid for continuous . Gas flow rate and use made of a e so as to ensure of the gas was f barometric a further 2 h	<pre>d water. INFORMATION SOURCE AND PURITY 1. from Air P purity > 9 ESTIMATED ERROR: δ(solubility) δP/Pa = ± 70; (auth)</pre>	<pre>OF MATERIALS: Products Ltd; 19.6% = ± 0.2%; δT/K = ± 0.02</pre>	
Calculated by of [†] Dilute sulfurio (5 mol dm ⁻³) to METHOD/APPARATUS/PROCEN Distilled water of was placed in a g The liquid under deoxygenated by a nitrogen. Hydrog then bubbled throw about 15 h. with magnetic stirring was then reduced a shorter inlet tub that the pressure within 0.5 mmHg of pressure. After a sample of the l	c acid was prepared o 5 dm ³ of distille AUXILIARY DURE: r dilute acid lass vessel. test was stream of en sulfide was ugh the liquid for continuous . Gas flow rate and use made of a e so as to ensure of the gas was f barometric a further 2 h	<pre>d water. INFORMATION SOURCE AND PURITY 1. from Air P purity > 9 ESTIMATED ERROR: δ(solubility) δP/Pa = ± 70; (auth)</pre>	<pre>OF MATERIALS: Products Ltd; 19.6% = ± 0.2%; δT/K = ± 0.02</pre>	

COMPONENTS:			ORIGINAL MEASUREMENTS:		
 Hydrogen sulfide; H₂S; 			Kapustinsky, A.F.; Anvaer, B.I.		
<pre>[7783-06-4] 2. Water; H₂O; [7732-18-5] 3. Hydrogen chloride; HCl; [7647-01-0]</pre>			Compt.Rend.Acad.Sci.URSS 1941, 30, 625-8.		
	II) chloride; -94-3]	FeCl ₂ ;			
VARIABLES:			PREPARED BY:		
Concentra	ation		P.G.T. Fogg		
EXPERIMENTAL	VALUES:				
т/к	Total pressure /mmHg	Conc. of HCl /mol kg ⁻¹ of water	Conc. of FeCl ₂ /mol kg ⁻¹ of water	Conc. of H₂S /mol. kg ⁻¹ of water	
	,				
298.15	760	1.6 3.4 7.8 10.6 9	0.9 1.0 1.1 1.2 saturated	0.085 0.089 0.108 0.120 0.101	
	······································			·····	
		AUXILIARY	INFORMATION		
METHOD /APPAP	RATUS/PROCEDURE:		SOURCE AND PURITY OF MA	TERIALS:	
Hydrogen sulfide, saturated with vapor from a sample of the solution under test, was bubbled through further solution in a 300 cm ³ thermostatted absorption vessel for 3 - 4 hours. Samples of this solution were then withdrawn		 from chemically acid and NaHS; (Ba(OH)₂. from FeS and hyd 	CO_2 removed by		
for analy	for analysis by iodimetry.		ESTIMATED ERROR:		
			$\delta T/K = \pm 0.1$ (authors)		
			REFERENCES :		

LOMPONENTS .			OPTCINAL MEASUREMENTS .		
COMPONENTS: 1. Hydrogen sulfide; H ₂ S;			ORIGINAL MEASUREMENTS: Kapustinsky, A.F.; Anvaer, B.I. Compt.Rend.Acad.Sci.URSS 1941, 30, 625-8.		
<pre>[7783-06-4] 2. Water; H₂O; [7732-18-5] 3. Hydrogen chloride; HCl; [7647-01-0] 4. Zinc chloride; ZnCl₂; [7646-85-7]</pre>					
VARIABLES:			PREPARED BY:		
Concentr	ation		P.G.T. Fogg		
EXPERIMENTAL	VALUES:		· <u>·</u> ··································		
т/к	K Total Conc. of HCl		Conc. of ZnCl ₂	Conc. of H ₂ S	
	pressure	/mol kg ⁻¹	/mol kg ⁻¹	$/mol. kg^{-1}$	
	/mmHg	of water	of water	of water	
200 1 5	7.0	2.0	2.1	0.1157	
298.15	760	3.9	4.7	0.1501	
	758	5.0	4.7	0.1345	
	755	7.8	1.0	0.1345	
	746	9.1	1.5	0.1433	
	755 750	10.6 13.5	0.8	0.1495	
		····			
		AUXILIARY	INFORMATION		
METHOD /APPAR	ATUS/PROCEDURE:		SOURCE AND PURITY OF MAT	ERIALS:	
Hydrogen	sulfide, satu	rated with	1. from chemically pure hydrochoric		
vapor fro	om a sample of	the	acid and NaHS; (CO ₂ removed by	
solution	under test, w	as bubbled	$Ba(OH)_2$.		
through f	urther soluti	on in a	4. from pure zinc a	and hydrochloric	
300 cm³ t	chermostatted	absorption	acid.		
vessel for 3 - 4 hours. Samples of					
	tion were the				
this solu					
this solu	sis by iodime		ESTIMATED ERROR:		
this solu			ESTIMATED ERROR: δT/K = ± 0.1 (at	uthors)	
this solu			δ T/K = ± 0.1 (a t	ithors)	
this solu				uthors)	
this solu			δ T/K = ± 0.1 (a t	ithors)	

	•
COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>1. Hydrogen sulfide; H₂S; [7783-06-4]</pre>	Gamsjäger, H.; Schindler, P.
<pre>2. Water; H₂O; [7732-18-5] 3. Hydrogen chloride; HCl; [7647-01-0]</pre>	Helv. Chim. Acta <u>1969</u> , 52, 1395-1402.
4. Sodium chloride; NaCl; [7647-14-5]	
VARIABLES:	PREPARED BY:
Concentrations of HCl and NaCl	P.G.T. Fogg
EXPERIMENTAL VALUES:	
Ionic strength Conc. of HCl Con /mol dm ⁻³ /mol dm ⁻³ /	c. of NaCl [†] Absorption constant [*] mol dm ⁻³ /mol dm ⁻³ atm ⁻¹
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	orm of Henry's law was applicable: S = constant × P _{H2S}
AUXILIARY	INFORMATION
METHOD /APPARATUS / PROCEDURE :	
METHOD/APPAKATUS/PROCEDOKE:	SOURCE AND PURITY OF MATERIALS; 1. From Fa. Gerling, Holz & Co. (99.0 ± 0.5%) or Matheson & Co.
The method was described in ref.(1).	(99.5 ± 0.5%)
$P_{\rm H_2S}$ was taken to be equal to	3. Merck p.a. grade.
barometric pressure minus P _{H2} O.	4. Merck <i>p.a.</i> grade; dried at 150 °C.
Allowance was made for vapor	
pressure lowering resulting from	
the presence of electrolytes.	ESTIMATED ERROR:
	δ (absorption constant) = ± 0.5% (authors)
	REFERENCES :
	<pre>1. Gamsjäger, H.; Rainer, W.; Schindler, P. Mh. Chem. <u>1967</u>, 98, 1793.</pre>

COMPONENTS:	ORIGINAL MEASUREMENTS:
 Hydrogen sulfide; H₂S; [7783-06-4] 	Gamsjäger, H.; Schindler, P.
 Water; H₂O; [7732-18-5] Hydrogen chloride; HCl; 	Helv. Chim. Acta <u>1969</u> , 52, 1395-1402.
[7647-01-0]	1333 1402.
 Sodium chloride; NaCl; [7647-14-5] 	
EXPERIMENTAL VALUES:	
Ionic strength Conc. of HC	l Conc. of NaCl [†] Absorption constant [*]
/mol dm ⁻³ /mol dm ⁻³	
2.000 0.000	2.000 0.0724
2.000 0.000	2.000 0.0727
2.000 0.200 2.000 0.500	1.800 0.0753 1.500 0.0794
2.000 1.000	1.000 0.0867
2.000 1.500	0.500 0.0940
2.000 1.800	0.200 0.0989
2.000 2.000	0.000 0.1014
2.500 0.000	2.500 0.0668
2.500 0.250 2.500 0.600	2.250 0.0705 1.900 0.0749
2.500 0.800	1.250 0.0839
2.500 1.875	0.625 0.0933
2.520 2.270	0.250 0.0983
2.500 2.500	0.000 0.1018
3.000 0.000	3.000 0.0619
3.000 0.000	3.000 0.0621
3.000 0.300 3.000 0.750	2.700 0.0660 2.250 0.0712
3.000 0.750 3.000 1.600	1.400 0.0824
3.000 1.600	1.400 0.0825
3.000 2.250	0.750 0.0919
3.000 2.700	0.300 0.0986
3.000 2.900	0.100 0.1010
3.000 3.000	0.000 0.1031
T/K = 298.15	
*	
Mole of gas absorbed by one	dm^3 of solution per atm pressure of H ₂ S. lowing form of Henry's law was applicable:
molar concentrati	on of H_2S = constant × P_{H_2S}
<pre>+ calculated by compiler; ion</pre>	

Hydrogen Sulfide in Aqueous Solvents

			,	Aqueous obivents		
COMPON	COMPONENTS:			ORIGINAL MEASUREMENTS:		
 Hydrogen sulfide; H₂S; [7783-06-4] Water; H₂O; [7732-18-5] Perchloric acid; HClO₄; [7601-90-3] Sodium perchlorate; NaClO₄; [7601-89-0] 			Gamsjäger, H.; Ra Schindler, P. Monatsh. Chem. <u>19</u>	•	82-1802.	
	_					
VARIAB	LES:			PREPARED BY:		
Concentrations of 3 & 4			P.G.T. Fogg			
EXPERI	MENTAL VALUE	5:				
	Concn. of s	olution /	mol dm ⁻³	Concn. of s	olution /	mol dm ⁻³
	NaClO ₄	HClO4	H ₂ S	NaClO ₄	HClO4	H ₂ S
	0	0.000	0.1021	1.20	0.800	0.0881
	0	0.100	0.1022	0.80	1.200	0.0936
	0	0.200	0.1022	0.40	1.600	0.0994
	0	0.400	0.1028	3.00	0.000	0.0677
	0	0.601	0.1031	2.996	0.004	0.0678
	0	1.000	0.1040	2.99	0.010	0.0678
	0	2.015	0.1055	2.90	0.100	0.0685
	0	2.300	0.1058	2.80	0.200	0.0699
	0	2.714	0.1059	2.70	0.300	0.0710
	0	3.021	0.1059	2.60	0.400	0.0724
	1.00	0.000	0.0895	2.50	0.500	0.0735
	0.90	0.100	0.0902	2.40	0.600	0.0743
	0.80	0.200	0.0915	2.80	1.200	0.0818
	0.50	0.500	0.0959	1.20	1.800	0.0898
	0.20	0.800	0.1004	1.76	2.240	0.0952
	2.00	0.000	0.0777	1.60	2.400	0.0971
	1.80	0.200	0.0798	1.40	2.600	0.1001
		0.400	0.0826	1.20	2.800	
Partial	pressure of	H ₂ S / bar	= 1.013;	Temperature/K	= 298.2	
		A	UXILIARY I	INFORMATION		
METHOD	/APPARATUS/P	ROCEDURE		SOURCE AND PURITY	OF MATERI	ALS
Hydrogen sulfide was passed into the perchlorate solution until the concentration of H ₂ S, as estimated			 from Fa. Gerling & Holz, Hanau; 98.5 - 99.5 % pure. & 3. prepared as in ref.(1) 			
by iod:	imetry, was nce was made	constant.		ESTIMATED ERROR δT/K = ± 0.1 ; accurate to ± 1%		
vapor j	pressure of	water over	the	REFERENCES	· · ·	
solutio	on in the ca	lculation	of the	-		
	lity for a par.	artial pre	ssure of	 Gamsjager, H.; Rainer, W. Monatsh. Chem. 		
n ₂ 5 of 1.015 bar.						

COMPONENTS :		ODTOTIAL ME		
		ORIGINAL MEASUREMENTS:		
<pre>1. Hydrogen sulfide; H₂S; [7783-06-4]</pre>			an, W.H.	, 44, 600-633.
2. Water; H ₂ O; [7732-18-5]		2. physi	<i>k</i> . one <i>m</i> . <u>1905</u>	, 44, 000-000.
3. Salts				
VARIABLES:		PREPARED BY	:	
Concentration of salt		P.G.T.	Fogg	
EXPERIMENTAL VALUES:		<u>.</u>		
Salt	Conc. of P salt /mol dm ⁻³	H ₂ S ^{/mmHg}	P _{H2S} /bar [*]	Conc. of H_2S in solution / mol dm ⁻³
Sodium sulfate; Na ₂ SO ₄ ; [7757-82-6] Potassium sulfate; K ₂ SO ₄ ; [7778-80-5] Ammonium sulfate; (NH ₄) ₂ SO ₄ ; [7783-20-2] Sodium chloride; NaCl; [7647-14-5] Potassium chloride; KCl; [7447-40-7] Ammonium chloride; NH ₄ Cl; [12125-02-9] Sodium nitrate; NaNO ₃ ; [7631-99-4] Potassium nitrate; KNO ₃ ; [7757-79-1] Ammonium nitrate; NH ₄ NO ₃ ; [6484-52-2]	0.25 0.5 0.25 0.5 0.25 1 0.5 1 1	124 156.5 126.7 110.8 149 111.5 161 186.5 156.2 148 100 133.7 94	0.165 0.209 0.169 0.148 0.199 0.149 0.215 0.249 0.208 0.197 0.133 0.178 0.125	0.0143 0.0187 0.0136 0.01388 0.0167 0.0139 0.0188 0.0236 0.0183 0.0193 0.0122 0.0164 0.0126
T/K = 298.2		ated by con		
METHOD / APPARATUS / PROCEDURE :		SOURCE AND	PURITY OF MATERI	ALS:
Solutions of hydrogen sulfide were prepared by dilution of a stock solution. The concentration of H_2S in solution was determined by iodimetry. Hydrogen, generated by electrolysis of water, was passed through a solution under test. The H_2S in the emergent gas stream was absorbed in copper sulfate solution and estimated from the change in electrical conductivity of this solution. The partial pressure of			red from FeS. ERROR:	
H_2S was calculated from of hydrogen and the tota of the emergent gas stre	l pressure			

40	Hydrogen Sulfide	in Aqueous Solvents	
COMPONENTS:		ORIGINAL MEASUREMENTS:	
 Hydrogen sulfide; H₂S [7783-06-4] Nature H O2 [7722 18 5] 		Dede, L; Becker, Th.	
		Z. anorg. allgem. C 152, 185-196.	hem. <u>1926</u> ,
2. Water; H ₂ O; [7732	-10-5]	152, 185-198.	
3. Salts			
VARIABLES:		PREPARED BY:	
Concentration of sa	lt.	P.G.T. Fogg	
EXPERIMENTAL VALUES:		I	<u> </u>
Salt	Concn. of salt / normality	Concn. of salt [*] / mol dm ⁻³	Concn. of H₂S /g per 100 g of solution
Calcium chloride;	0	0	0.392
CaCl ₂ ; [10043-52-4]	1	0.5	0.350
	2	1	0.313
	4	2	0.270
Sodium perchlorate;	1	1	0.340
NaClO ₄ ; [7601-89-0]	2	2	0.293
	4	4	0.220
Sodium sulfate;	1	0.5	0.348
Na ₂ SO ₄ ; [7757-82-6]	2	1	0.306
	4	2	0.257
Temperat	ure = 293.2 K	Pressure = barometr	ic (unspecified)
* the compiler has a half a mole in eac		equivalent of $CaCl_2$ a	nd of Na2SO4 is
, <u>1990</u> ,,,,,,	AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDU	RE :	SOURCE AND PURITY OF MA	ATERIALS:
Hydrogen sulfide fro apparatus was washed	l with water and	No information.	
passed through the s test for about 15 mi			
gas for a longer per	-		
increase the amount			
temperature was cont			
thermostat.			
		ESTIMATED ERROR:	
		REFERENCES :	
		_J	

	inyuroyen o	aniue II	1 Aqueous Solvents	•	41
COMPONENTS:			ORIGINAL MEASUREN	MENTS:	
1. Hydrogen sulfide;	H ₂ S;		Kapustinsky,	A.F.; Anvaer, B.I.	
[7783-06-4] 2. Water; H ₂ O; [7732	-18-5]		Compt.Rend.Ad		
3. Alkali chlorides			<u>1941</u> , 30, 62	5-8.	
VARIABLES:			PREPARED BY:		
			P.G.T.	Fogg	
EXPERIMENTAL VALUES:			<u></u>		
Halide	т/к	P _{H2}		concn. of H ₂ S	
solution		/mmHe	narrae .	in liquid /mol dm ⁻³	
·				· · · · · · · · · · · · · · · · · · ·	
Sodium chloride;	298.2	760	3.0	0.0548	
NaCl; [7647-14-5]					
Potassium chloride; KCl; [7447-40-7]	298.2	760	1.0	0.0877	
	AUX	ILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDURE:	<u> </u>		SOURCE AND PURIT	Y OF MATERIALS:	
Hydrogen sulfide, saturated with water vapor, was bubbled through a 300 cm ³ thermostatted absorption vessel for 3 - 4 hours. Samples of solution were then withdrawn for analysis by iodimetry.		1	ically pure hydrochlori NaHS; CO ₂ removed by	ic	
Allowance was made for pressure of water.	the vapor				
Pressure or waller.			ESTIMATED ERROR:		
			$\delta T/K = \pm$	0.1 (authors)	
			REFERENCES :		
			all handed :		

	·		
COMPONENTS:	ORIGINAL MEASUREMENTS:		
<pre>1. Hydrogen sulfide; H₂S; [7783-06-4] 2. Water; H₂O; [7732-18-5]</pre>	Kozintseva, T. N. Geokhim. Issled. v Obl. Povyshennykh		
 Sodium Chloride; NaCl; [7647-14-5] 	Davlenii i Temperatur., Akad. Nauk SSSR, Inst. Geokhim. i Analit. Khim., Sb. Statei <u>1965</u> , 121–134		
VARIABLES:	PREPARED BY:		
Temperature, concentration of salt	P.G.T. Fogg		
EXPERIMENTAL VALUES:			
T/K Conc. of NaCl P _{H2S} /atm P _{H2} /mol. dm ⁻³	S ^{/bar[†] Distribution Henry's ratio, A[*] constant /atm}		
475.2 1.11 1.1 1 475.2 1.17 1.3 1 535.2 0.56 0.67 0	in the gas phase. As not stated clearly. Kozintseva by Ellis & Golding for CO_2 -salt-H ₂ O ad that Henry's constants given by sogous way to those given by		
number of moles of	H_2S H_2S in the liquid phase $S + H_2O$ in the liquid phase		
AUXILIARY	INFORMATION		
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:		
A special bomb, from which samples of either gas phase or liquid phase could be withdrawn, was used. The bomb was flushed with oxygen-free nitrogen, solution of salt (50 cm^3) added and the apparatus saturated with H ₂ S (pressure not stated). The bomb and contents were heated and agitated for 25 - 50 hrs. A sample of the liquid phase was analysed iodimetrically to determine the H ₂ S content and evaporated to dryness to determine NaCl. A sample of the hot gas phase was passed through traps to collect the condensed water and through iodine solution. The H ₂ S in the gas phase was determined iodimetrically and the water content found from the weight of condensate.	No information ESTIMATED ERROR: δT/K = ± 2 REFERENCES: 1. Ellis, A.J.; Golding, R.M. <i>Amer. J. Sci.</i> <u>1963</u> , 261, 47.		

COMPONENTS :	ORIGINAL MEASUREMENTS:		
 Hydrogen sulfide; H₂S; [7783-06-4] Water; H₂O; [7732-18-5] 	Kozintseva, T. N. Geokhim. Issled. v Obl. Povyshennykh		
<pre>3. Sodium Sulfate; Na₂SO₄; [7757-82-6]</pre>	Davlenii i Temperatur., Akad. Nauk SSSR, Inst. Geokhim. i Analit. Khim., Sb. Statei <u>1965</u> , 121–134		
VARIABLES:	PREPARED BY:		
Temperature, concentration of salt	P.G.T. Fogg		
EXPERIMENTAL VALUES:			
T/K Conc. of Na ₂ SO ₄ P _{H₂S} /atm /mol. dm ⁻³	P _{H2} S/bar [†] Distribution Henry's ratio, A constant /atm		
475.2 0.52 1.13	1.010.008620500.720.008620500.870.007523551.140.00762330		
⁺ calculated by the compiler.			
* A = mole ratio H_2S to H_2O in liqui	d phase / corresponding mole ratio in the gas phase.		
compared values with those published by Ellis & Golding for CO_2 -salt-H ₂ O systems (1). The compiler has assumed that Henry's constants given by Kozintseva were calculated in an analogous way to those given by Ellis & Golding. i.e. Henry's constant = P_{H_2S} / x number of moles of H ₂ S in the liquid phase x = number of moles of H ₂ S + H ₂ O in the liquid phase			
AUXILIAR	Y INFORMATION		
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:		
A special bomb, from which samples of either gas phase or liquid phase could be withdrawn, was used. The bomb was flushed with oxygen-free nitrogen, solution of salt ($50cm^3$) added and the apparatus saturated with H ₂ S (pressure not stated). The bomb and contents were heated and agitated for 25 - 50 hrs. A sample of the liquid phase was analysed iodimetrically to	No information		
determine the H ₂ S content. The sulfate content was determined as	ESTIMATED ERROR:		
barium sulfate. A sample of the gas phase was passed through traps to collect the condensed water and	δ T/K = ± 2		
through iodine solution. The H ₂ S in the gas phase was determined iodimetrically and the water content found from the weight of condensate.	REFERENCES: 1. Ellis, A.J.; Golding, R.M. <i>Amer. J. Sci.</i> <u>1963</u> , 261, 47.		

,

· •	n Aqueous Solvents
COMPONENTS:	ORIGINAL MEASUREMENTS:
1. Hydrogen sulfide; H ₂ S;	Kozintseva, T. N.
[7783-06-4] 2. Water; H ₂ O; [7732-18-5]	Geokhim. Issled. v Obl. Povyshennykh
<pre>3. Calcium Chloride; CaCl₂; [10043-52-4]</pre>	Davlenii i Temperatur., Akad. Nauk SSSR, Inst. Geokhim. i Analit. Khim., Sb. Statei <u>1965</u> , 121–134
VARIABLES:	PREPARED BY:
Temperature, concentration of salt	P.G.T. Fogg
EXPERIMENTAL VALUES:	
T/K Conc. of CaCl ₂ P _{H2S} /atm P _{H2} /mol. dm ⁻³	S ^{/bar[†] Distribution Henry's ratio, A[*] constant /atm}
475.2 0.57 1.06 1	.08 0.0083 2130 .07 0.0070 2530 .00 0.0071 2496
⁺ calculated by the compiler.	
* $A = mole ratio H_2S$ to H_2O in liquid	phase / corresponding mole ratio in the gas phase.
	$= P_{H_2S} / x$ H ₂ S in the liquid phase S + H ₂ O in the liquid phase
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS;
A special bomb, from which samples of either gas phase or liquid phase could be withdrawn, was used. The bomb was flushed with oxygen-free nitrogen, solution of salt (50 cm^3) added and the apparatus saturated with H ₂ S (pressure not stated). The bomb and contents were heated and agitated for 25 - 50 hrs. A sample of the liquid phase was analysed iodimetrically to determine the H ₂ S content and titrated with oxalate to determine CaCl ₂ . A sample of the hot gas phase was passed through traps to collect the condensed water and through iodine solution. The H ₂ S in the gas phase was determined iodimetrically and the water content found from the weight of condensate.	No information ESTIMATED ERROR: δT/K = ± 2 REFERENCES: 1. Ellis, A.J.; Golding, R.M. <i>Amer. J. Sci.</i> <u>1963</u> , 261, 47.

		1		
COMPONENTS:		ORIGINAL M	IEASUREME	INTS:
Hydrogen sulfide; H ₂ [7783-06-4]		Litvinenko, M.S.;		
 Water; H₂O; [7732-18 Sodium carbonate; Na [497-19-8] 	Zh. Prikl. Khim. <u>1952</u> , 25, 516-532. J. Appl. Chem. (USSR) <u>1952</u> , 25, 579-595.			
VARIABLES:		PREPARED B	Y:	
Temperature, pressure		P.G.	T. Fogg	
EXPERIMENTAL VALUES:		<u></u>		
Conc. of Na ₂ CO ₃ * T/K	Conc. of	Conc. of	^P H₂S	Equilib.
before addition	NaHS in	H ₂ S in	/mmHg	constant K
of $H_2S/mol dm^{-3}$	liquid	gas		$/mol dm^{-3} mmHg^{-1}$
	/mol dm ⁻³	/g m ⁻³		
0.491 293.2 0.491 0.491 0.491 0.491 0.491 0.491 0.492 333.2	0.223 0.261 0.294 0.319 0.340	3.5 7.9 13.0 18.5 24.0 28.6 4.6	1.7 3.8 6.3 9.0 11.6 13.9 1.8	0.0470 0.0487 0.0510 0.0552
0.496	0.185	8.5	3.6	0.0306
0.496 0.496	0.242 0.281	19.5 28.0	8.0 11.8	
The author evaluated the Na ₂ CO ₃ (aq) + H ₂ S(i.e	gas) < NaH	-	NaHS(aq)	
	$K = \frac{1}{N_{P}}$	₂ CO ₃] P _{H₂S}		
		2003 1 H ₂ S		
Values of K for individu of the table.	al pressures o	of H₂S are g	iven in	the final column
	AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDU	RE	SOURCE AND	PURITY	OF MATERIALS:
'Coke oven gas', freed f and acidic constituents, with H ₂ S, monitored by a The mixed gases were sat water vapor and then bub	was mixed flowmeter. urated with	No inform	ation	
sodium carbonate solutio had first been charged w Samples of liquid were w every 30 min until two o Consecutive samples had	n which ith H₂S. ithdrawn r three identical	ESTIMATED	ERROR :	
sulfide content. The te	mnora+			

COMPONENTS:	ORIGINAL MEASUREMENTS:
	Dryden, I.G.C
1. Hydrogen sulfide; H ₂ S; [7783-06-4]	
<pre>2. Water; H₂O; [7732-18-5] 3. Potassium carbonate; K₂CO₃; [584-08-7]</pre>	J.Soc. Chem. Ind. <u>1947</u> , 66. 59-64.
VARIABLES :	PREPARED BY:
Temperature	P.G.T. Fogg
EXPERIMENTAL VALUES	
T/K K ₂ / mol dm ⁻³ mmH	lg ⁻¹
273.7 0.147 ± 0.004	
283.1 0.120 ± 0.001	
293.9 0.098 ± 0.0015	
302.7 0.086 ± 0.0015	
312.7 0.073 ± 0.002	
322.8 0.0635 ± 0.0015	
332.8 0.057 ± 0.003	
Concentration of potassium ions = 2 mc	$hl dm^{-3}$
[KHCO3] [KHS]	
$K_2 =$	
[K ₂ CO ₃] P _{H₂S}	
	K_2 , extrapolated to zero concentration,
at 298.2 K was 0.15 mol $dm^{-3} mmHg^{-1}$.	
AUXILIARY	INFORMATION
METHOD / APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
Nitrogen, purified by passage	1. by warming a suspension of
through soda-lime, was bubbled	MgHS in water.
through solutions of potassium	
carbonate and bicarbonate previously	
saturated with H_2S and contained in a	
series of three Drechsel bottles in a	
thermostat. The proportion of H_2S in	
thermostat. The proportion of H_2S in the emergent gas stream, and hence	
thermostat. The proportion of H_2S in the emergent gas stream, and hence the partial pressure of H_2S , was	n
thermostat. The proportion of H_2S in the emergent gas stream, and hence	ESTIMATED ERROR:
thermostat. The proportion of H_2S in the emergent gas stream, and hence the partial pressure of H_2S , was determined by iodimetry. The concentration of KHS in solutions	ESTIMATED ERROR: Average standard error is ± 2%
thermostat. The proportion of H_2S in the emergent gas stream, and hence the partial pressure of H_2S , was determined by iodimetry. The concentration of KHS in solutions under test was also found by	ESTIMATED ERROR: Average standard error is ± 2%
thermostat. The proportion of H_2S in the emergent gas stream, and hence the partial pressure of H_2S , was determined by iodimetry. The concentration of KHS in solutions	ESTIMATED ERROR: Average standard error is ± 2% (author).
thermostat. The proportion of H_2S in the emergent gas stream, and hence the partial pressure of H_2S , was determined by iodimetry. The concentration of KHS in solutions under test was also found by	ESTIMATED ERROR: Average standard error is ± 2% (author).
thermostat. The proportion of H_2S in the emergent gas stream, and hence the partial pressure of H_2S , was determined by iodimetry. The concentration of KHS in solutions under test was also found by	ESTIMATED ERROR: Average standard error is ± 2% (author).
thermostat. The proportion of H_2S in the emergent gas stream, and hence the partial pressure of H_2S , was determined by iodimetry. The concentration of KHS in solutions under test was also found by	ESTIMATED ERROR: Average standard error is ± 2% (author).

COMPONENTS:			ORIGINAL M	EASUREM	ENTS:
1. Hydrogen sul:	fide; H₂S;		Litvinenko	, M.S.;	
[7783-06-4] 2. Water; H ₂ O;					1952, 25, 516-532.
3. Potassium carbonate; K ₂ CO ₃ ; [584-08-7]		J. Appl. Chem. (USSR) <u>1952</u> , 25, 579-595.			
VARIABLES:			PREPARED B	Y:	
Temperature, pres	ssure		P.G.	T. Fogg	
EXPERIMENTAL VAL	JES:		I		
Conc. of K ₂ CO ₃ *	т/к	Conc. of	Conc. of	^P H₂S	Equilib.
before addition		KHS in	H ₂ S in	/mmHg	constant K
of H ₂ S/mol dm ⁻³		liquid	gas [†]	/ maining	$/mol dm^{-3} mmHg^{-1}$
		/mol dm ⁻³	/g m ⁻³		
1.032	298.2	0.356	4.9	2.4	0.0780
1.032		0.466	11.6 21.5	5.2	0.0710
1.046		0.587 0.685	21.5 36.0	10.1 17.2	0.0734 0.0756
1.046		0.670	37.0	17.4	0.0690
1.082	313.2	0.330 0.457	6.3 14.3	2.8 6.5	0.0517 0.0514
1.040		0.553	22.8	10.4	0.0609
1.113		0.606 0.622	27.7 35.5	12.8 16.0	
1.032		0.618	36.0	16.3	0.0566
1.110	333.2	0.352 0.470	9.3 20.42	3.7 8.2	0.0447 0.0418
1.085		0.468	21.20	8.3	0.0427
1.113		0.564	32.71	12.9	0.0456
stated in the potassium in the t stated in the These statements author and appear	solution. translated are incon	paper to be sistent with	e the concen h calculatio	tration	
The author evaluation				brium:	
$K_2CO_3(aq)$	+ H2S(qas) 🛁 KHCO	3(aq) + KH	S(aq)	
	i.e		CO3] [KHS]	1	
	K	=			
			P_{H_2S}	-	
Values of K for :	individual	pressures o	of H ₂ S are g	iven abo	ove.
		AUXILIARY	INFORMATION		
METHOD/APPARATUS			SOURCE AND	PURITY	OF MATERIALS:
'Coke oven gas', and acidic const	freed fro	m oxygen as mixed	No inform	ation	
With H ₂ S, monito:	red by a f	lowmeter.			
The mixed gases water vapor and	were satur	ated with			
potassium carbona	ate soluti	on which	ESTIMATED	ERROR:	
had first been cl Samples of liquid	narged wit	h H ₂ S. hdrawn			
every 30 min unt	il two or	three			
consecutive samp sulfide content.	les had id	entical			
the absorption v	essel was		REFERENCES	:	
Whether the init	controlle	d.			
was above or bel	ow the equ	ilibrium			
value did not af: of the results.	fect the c	onsistency			
			L		

COMPONENTS:				ORIGI	NAL MEASUREMENTS	:	
	gen sulfide;	H ₂ S;		Berl, A.; Rittener, A.			
	3-06-4] n dioxide; C	CO2: [124-3]	8-91	Z	. angew. Chem	. 1907, 20,	1637-42.
3. Water	; H ₂ O; [7732	2-18-5]	-			<u> </u>	
4. Sodiu	m carbonate, or su	, bicarbona lfide	ce				
VARIABLES:	·····			PREPA	RED BY:		
					P.G.T. Fog	g	
EXPERIMENTAL	. VALUES:	······			- <u></u>		
т/к	Salt	[salt]*	[Na	+ 1 +	Equilib. [§]	Equilib.	k
		/g dm ⁻³	/mol d	∃m ^{−3}	[CO ₂]/[H ₂ S]	P_{CO}/P_{H}	1
		-	<u> </u>			<u> </u>	
287.2	NaHCO₃	34.3	0.4	08	4.82	2.23	2.16
291.2	[144-55-8] NaHCO ₃	45.74	0.5	44	3.99	1.98	2.01
291.2	Na ₂ CO ₃	29.8		62	0.712	0.362	1.97
291.2	[497-19-8] Na ₂ S	35.5	0.9	10	1.61	0.864	1.86
	[1313-82-2]]					
291.2 328.2	Na2S Na2CO3	29.1 28.2		46 32	1.76 0.774	0.889 0.856	1.98
333.2	Na ₂ S	28.5		30	1.354	1.493	0.90
363.2	Na ₂ S	29.5	0.7	56	1.01	1.790	0.56
		[CO ₂]	P _{H2} S				
	k	= [H ₂ S]					
*			-				1
			befor	e add	ition of CO_2	and H ₂ S	1
Calcula	ted by the c	compiler					1
					entrations of		
bicarbona	te ions in s	solution at	equil	ibriu	m. [H ₂ S] is	the corresp	onding
sum of co	ncentrations	s of sulfid	e and 1	hydro	sulfide ions.		
		AUX	XILIARY	INFOR	MATION		
METHOD/APPAR	RATUS / PROCEDURI	 E :	<u></u>	SOURC	E AND PURITY OF	MATERIALS	
						internet,	
The solut	ion under te	est was sha	ken				
under eit	her pure CO;	or pure H	2 S	ļ			
at barome	tric pressur	re. When					
equilibri	um had been	reached th	e				
gas phase	was analyse	ed for H ₂ S 1	by				
iodimetry	. The compo	osition of	the				
	ase was four						
	xcess hydrod						
l	sing the mix			ESTIN	ATED ERROR:		
and H ₂ S e							
_							
				REFE	RENCES:	<u></u>	
[
				l			
				L			

COMPONENTS:	ORIGINAL MEASUREMENTS:
 Hydrogen sulfide; H₂S; [7783-06-4] Carbon dioxide; CO₂; [124-38-9] Water; H₂O; [7732-18-5] Potassium carbonate; K₂CO₃; [584-08-7] 	Dryden, I.G.C. J.Soc. Chem. Ind. <u>1947</u> , 66, 59-64.
VARIABLES:	PREPARED BY:
Temperature	P.G.T. Fogg
EXPERIMENTAL VALUES:	I
T/K Concentration of K ⁺ / mol dm ⁻³	К з
293.2 0.49 293.2 0.98 293.2 1.92 323.2 0.50 323.2 1.93	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
$K_3 = \frac{[KHCO_3] P_{H_2S}}{[KHS] P_{CO_2}}$	
The authors also determined the follow constant K_1 given by :	wing values of the equilibrium
[KHCO:	2 3]
$K_1 =$	
$[K_2CO_3]$ The total concentration of potassium i	
T/K K_1 / mol dm ⁻	
283.2 0.44 293.2 0.282 303.2 0.182 313.2 0.132 323.2 0.093	± 0.002
AUXILIARY 3	
METHOD/APPARAUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
A Winchester quart bottle, fitted with a rubber stopper and stopcock, was three times evacuated and filled with CO ₂ . It was then immersed in a warm water bath,	1. from a Kipp's apparatus.
excess pressure released and cooled to room temperature. Solutions were prepared by saturating solutions of $KHCO_3 + K_2CO_3$ with H_2S and introduced into the bottle without access of air. For measurements at	ESTIMATED ERROR: Average value of $\delta K_3 = \pm 4\%$ (author) REFERENCES:
293.2 K the bottle was left overnight, shaken for 3 h and immersed in a thermostat for 1 h with frequent shaking. For measurements at 323.2 K, the vessel was rotated in a thermostat. Solutions were then analysed and compositions of the gas phase found by material balance.	

í

COMPONENT	S:		ORIGINAL MEASU	REMENTS:			
1. Hydi	rogen sulfide;	HaS:	Litvinenko	Litvinenko, M.S.;			
[7] 2. Carl 3. Wate 4. Pota	783-06-4] bon dioxide; CC er; H ₂ O; [7732- assium carbonat 84-08-7]	D ₂ ; [124-38-9] -18-5]	Zh. Prikl.	Zh. Prikl. Khim. <u>1952</u> , 25, 516-5 (J. Appl. Chem. (USSR) <u>1952</u> , 25,			
VARIABLES	3:		PREPARED BY:				
Tempe	rature, pressu	re	P.G.T. Fogg				
EXPERIMEN	NTAL VALUES:		······································				
т/к	Conc. of H_2S	Conc. of CO;	2 Conc.of KHS	Conc.of KHCO3	Equilib.		
	in gas phase	in gas phase	e in solution	in solution	const. K		
	/mol m ⁻³	/mol m ⁻³	/mol dm ⁻³	/mol dm ⁻³			
298.2	0.990	0.615	0.558	0.863	2.48		
	1.310	0.669	0.610	0.865	2.78		
	1.370	0.669	0.612	0.764	2,56		
	0.680	0.464	0.473	0.784	2.46		
333.2	0.870	0.803	0.500	0.572	1.24		
	1.240	0.853	0.542	0.662	1.76		
	1.094	0.781	0.567	0.638	1.58		
	l dm ⁻³ . uilibrium cons [:]		ned as: K =	dsorption of gas [KHCO ₃] P _{H2S} [KHS] P _{CO2}			
	-			[KHCO ₃] P _{H2S}			
	-	tant was defin		[KHCO ₃] P _{H2S}			
The eq	-	tant was defin AUXIL	ned as: K =	[KHCO ₃] P _{H2S}			
The eq METHOD/AL	uilibrium cons	tant was defin AUXIL E:	ned as: K = IARY INFORMATION SOURCE AND PUR	[KHCO ₃] P _{H2S} [KHS] P _{CO2}			
The equ METHOD/AU	uilibrium cons	tant was defin AUXIL E: ed from oxygen	ned as: K =	[KHCO ₃] P_{H_2S} [KHS] P_{CO_2}			
The eq METHOD/AU 'Coke of and ac	uilibrium cons PPARATUS/PROCEDUR oven gas', free	tant was defin AUXIL E: ed from oxygen nts, was mixed	ned as: K =	[KHCO ₃] P_{H_2S} [KHS] P_{CO_2}			
The equivalent terms of the terms of terms o	uilibrium cons PPARATUS/PROCEDUR oven gas', free idic constitue	tant was defin AUXIL E: ed from oxygen nts, was mixed tored by a	ned as: K =	[KHCO ₃] P_{H_2S} [KHS] P_{CO_2}			
The equ METHOD/AU 'Coke of and ac with H flowme	uilibrium cons PPARATUS/PROCEDUR oven gas', fre idic constitues 2S & CO2, moni	AUXIL E: ed from oxygen nts, was mixed tored by a gases were	ned as: K =	[KHCO ₃] P_{H_2S} [KHS] P_{CO_2}			
The eq METHOD/AU 'Coke of and ac with H flowme satura	PPARATUS/PROCEDUR oven gas', free idic constitues 2S & CO2, moni- ter. The mixed	AUXIL E: ed from oxygen nts, was mixed tored by a gases were vapor and the	ned as: K =	[KHCO ₃] P_{H_2S} [KHS] P_{CO_2}			
METHOD/AL 'Coke of and ac with H flowme satura bubble solutio	PPARATUS/PROCEDUR oven gas', free idic constitues 2S & CO ₂ , moni- ter. The mixed ted with water d through pota- on. Samples o	AUXIL AUXIL E: ed from oxygen nts, was mixed tored by a gases were vapor and the ssium carbonat f liquid were	ned as: K =	[KHCO ₃] P_{H_2S} [KHS] P_{CO_2}			
The equivalent terms of the magnetic terms of	PPARATUS/PROCEDUR oven gas', free idic constitues 2S & CO ₂ , moni- ter. The mixed ted with water d through pota- on. Samples of awn every 30 m	AUXIL AUXIL E: ed from oxygen nts, was mixed tored by a gases were vapor and the ssium carbonat f liquid were in until two o	Aned as: K =	[KHCO ₃] P _{H2S} [KHS] P _{CO2}			
METHOD/A 'Coke of and ac with H flowme satura bubble solution withdr.	PPARATUS/PROCEDUR oven gas', fre- idic constituer 2S & CO ₂ , moni- ter. The mixed ted with water d through pota- on. Samples of awn every 30 m consecutive sam	AUXIL AUXIL E: ed from oxygen nts, was mixed tored by a gases were vapor and the ssium carbonal f liquid were in until two o mples had	ned as: K =	[KHCO ₃] P _{H2S} [KHS] P _{CO2}			
METHOD/AI 'Coke of and ac with H flowme satura bubble solution withdra three identi	PPARATUS/PROCEDUR oven gas', free idic constituen 2S & CO ₂ , moni- ter. The mixed ted with water d through pota- on. Samples of awn every 30 m consecutive sam	AUXIL AUXIL E: ed from oxygen nts, was mixed tored by a gases were vapor and the ssium carbonat f liquid were in until two o mples had ntent. The	ned as: K = IARY INFORMATION SOURCE AND PUR No informate En te Dr ESTIMATED ERRO	[KHCO ₃] P _{H2S} [KHS] P _{CO2}			
METHOD/AU 'Coke of and ac with H flowme satura bubble solution withdra three idention	PPARATUS/PROCEDUR oven gas', free idic constitues 2S & CO ₂ , moni- ter. The mixed ted with water d through pota- on. Samples of awn every 30 m consecutive sam cal sulfide con ature of the a	AUXIL E: ed from oxygen nts, was mixed tored by a gases were vapor and the ssium carbonat f liquid were in until two of mples had ntent. The dsorption vess	ned as: K = IARY INFORMATION SOURCE AND PUR No informate En te Dr ESTIMATED ERRO	[KHCO ₃] P _{H2S} [KHS] P _{CO2}			
METHOD/A 'Coke of and ac with H flowme satura bubble solution withdr three idention temper was the	PPARATUS/PROCEDUR oven gas', free idic constitues 2S & CO ₂ , moni- ter. The mixed ted with water d through pota- on. Samples of awn every 30 m consecutive sam cal sulfide con- ature of the ac-	AUXIL E: ed from oxygen nts, was mixed tored by a gases were vapor and the ssium carbonat f liquid were in until two of mples had ntent. The dsorption vess controlled.	ned as: K = IARY INFORMATION SOURCE AND PUR No informate En te Dr ESTIMATED ERRO	[KHCO ₃] P _{H2S} [KHS] P _{CO2}			
The equivalent of the equivale	PPARATUS/PROCEDUR oven gas', free idic constituen 2S & CO ₂ , moni- ter. The mixed ted with water d through pota- on. Samples of awn every 30 m consecutive sam cal sulfide con- ature of the ad- ermostatically r the initial	AUXIL AUXIL E: ed from oxygen nts, was mixed tored by a gases were vapor and the ssium carbonat f liquid were in until two of mples had ntent. The dsorption vess controlled. sulfide was	Aned as: K = IARY INFORMATION SOURCE AND PUR No informate En te Dr ESTIMATED ERROR	[KHCO ₃] P _{H2S} [KHS] P _{CO2}			
METHOD/AI 'Coke of and ac with H flowme satura bubble solution withdra three idention temper was the Whethe above of	PPARATUS/PROCEDUR oven gas', free idic constituen 2S & CO ₂ , moni- ter. The mixed ted with water d through pota- on. Samples of awn every 30 m consecutive sam cal sulfide con ature of the ac- ermostatically r the initial a or below the en	AUXIL E: ed from oxygen nts, was mixed tored by a gases were vapor and the ssium carbonal f liquid were in until two of mples had ntent. The dsorption vess controlled. sulfide was quilibrium vai	Aned as: K = IARY INFORMATION SOURCE AND PUR No informate En te Dr ESTIMATED ERROR	[KHCO ₃] P _{H2S} [KHS] P _{CO2}			
The eq METHOD/A 'Coke of and ac with H flowme satura bubble solution withdr three idention temper was the Whethe above of did no	PPARATUS/PROCEDUR oven gas', free idic constitues 2S & CO ₂ , moni- ter. The mixed ted with water d through pota on. Samples of awn every 30 m consecutive sam cal sulfide con ature of the ac ermostatically r the initial so or below the ex-	AUXIL E: ed from oxygen nts, was mixed tored by a gases were vapor and the ssium carbonal f liquid were in until two of mples had ntent. The dsorption vess controlled. sulfide was quilibrium vai	Aned as: K = IARY INFORMATION SOURCE AND PUR No informate In No informate Extinated error Exti	[KHCO ₃] P _{H2S} [KHS] P _{CO2}			
METHOD/AI 'Coke of and ac with H flowme satura bubble solution withdra three identii temper was tho Whethe above	PPARATUS/PROCEDUR oven gas', free idic constitues 2S & CO ₂ , moni- ter. The mixed ted with water d through pota on. Samples of awn every 30 m consecutive sam cal sulfide con ature of the ac ermostatically r the initial so or below the ex-	AUXIL E: ed from oxygen nts, was mixed tored by a gases were vapor and the ssium carbonal f liquid were in until two of mples had ntent. The dsorption vess controlled. sulfide was quilibrium vai	Aned as: K = IARY INFORMATION SOURCE AND PUR No informate In No informate Extinated error Exti	[KHCO ₃] P _{H2S} [KHS] P _{CO2}			

COMPONENTS:	EVALUATOR:
 Hydrogen sulfide; H₂S; [7783-06-4] Seawater 	Peter G.T. Fogg, Department of Applied Chemistry and Life Sciences, Polytechnic of North London, Holloway, London N7 8DB, U.K.
	February 1987

This system has been investigated at barometric pressure by Douabul and Riley (1) but no other set of measurements are available for direct comparison.

The seawater was made slightly acidic by adding sulfuric acid to give a concentration of 0.004 mol dm⁻³. Ancillary measurements of the solubility of hydrogen sulfide in pure water and in sulfuric acid of this concentration demonstrated that the effect of addition of acid was almost imperceptible. The solubilities in pure water are in close agreement with measurements by other modern workers.

The authors have shown that their measurements are consistent with an equation for the solubility of gases in seawater developed by Weiss (2). They have also shown that extrapolation of solubilities of hydrogen sulfide in perchlorate solutions, as measured by Gamsjäger *et al.* (3), to an ionic strength of 0.7 gives a value which differs by about 3% from the solubility in sea-water of the same ionic strength. They suggested that this difference could be accounted for by differences in degrees in hydration of ions in the two media.

References

- 1. Douabul, A.A.; Riley, J.P. Deep-Sea Res. <u>1979</u>, 26A, 259-268.
- 2. Weiss, R.F. Deep-Sea Res. 1970, 17, 721-735.
- Gamsjäger, H.; Rainer, W.; Schindler, P. Monatsh. Chem. <u>1967</u>, 98, 1793-1802.

COMPONENTS:	ORIGINAL MEASUREMENTS:
 Hydrogen sulfide; H₂S; 	Douabul, A.A.; Riley, J.P.
[7783-06-4] 2. Sea-water	Deep-Sea Res. <u>1979</u> , 26A, 259 – 268.
3. Sulfuric acid; H ₂ SO ₄ ; [7664-93-9]	
VARIABLES:	PREPARED BY:
Temperature	P.G.T. Fogg
EXPERIMENTAL VALUES:	
T/K Salinity Solubility at /g kg ⁻¹ H ₂ S fugacity of 1 atm /mol dm ⁻³	T/K Salinity Solubility at /g kg ⁻¹ H ₂ S fugacity of 1 atm /mol dm ⁻³
275.25 9.972 0.1910	283.34 9.972 0.1496
20.014 0.1878 24.958 0.1862	20.014 0.1476 24.958 0.1466
29.993 0.1846 34.994 0.1831	29.993 0.1456 34.994 0.1447
40.028 0.1816 278.20 9.972 0.1741	40.028 0.1437 288.19 9.972 0.1299
20.014 0.1714 24.958 0.1701	20.014 0.1284 24.958 0.1276
29.993 0.1688	29.993 0.1269
34.994 0.1675 40.028 0.1662	34.994 0.1262 40.028 0.1255
AUXILIARY	INFORMATION
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
Acidified seawater was placed in a	1. from Air Products Ltd;
glass vessel. The liquid under test	purity > 99.6%
was deoxygenated by a stream of	2. surface water from Irish Sea,
nitrogen. Hydrogen sulfide was	salinity approx. 33°/";
then bubbled through the liquid for	filtered; diluted or evaporated.
about 15 h. with continuous magnetic stirring. Gas flow rate	
was then reduced and use made of a	
shorter inlet tube so as to ensure	ESTIMATED ERROR:
that the pressure of the gas was	$\delta(\text{solubility}) = \pm 0.2\%;$
within 0.5 mmHg of barometric	$\frac{\delta P}{Pa} = \pm 70; \ \delta T/K = \pm 0.02$ (authors)
pressure. After a further 2 h a	REFERENCES :
sample of the liquid was analysed by iodimetry.	
SI LOUIMEELY.	

COMPONENTS:	ORIGINAL MEASUREMENTS:
1. Hydrogen sulfide; H ₂ S;	Douabul, A.A.; Riley, J.P.
[7783-06-4] 2. Sea-water	Deep-Sea Res. <u>1979</u> , 26A, 259 – 268.
3. Sulfuric acid; H ₂ SO ₄ ; [7664-93-9]	
EXPERIMENTAL VALUES:	
T/K Salinity Solubility at /g kg ⁻¹ H ₂ S fugacity of 1 atm /mol dm ⁻³	T/K Salinity Solubility at /g kg ⁻¹ H ₂ S fugacity of 1 atm /mol dm ⁻³
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
The authors found that solubilities the following equation developed by $\ln C = A_1 + A_2(100/T) + A_3 \ln(T/100)$ where C is the solubility in units o units of K; $A_1 = -41.0563$; $A_2 = 66.4$ $B_2 = 0.379753$; $B_3 = -0.602340$ and S°	+ $S^{\circ}_{\circ \circ}[B_1 + B_2(T/100) + B_3(T/100)^2]$ f mol dm ⁻³ ; T is the temperature in 005; A ₃ = 15.1060; B ₁ = -0.60583

COMPONENTS:	EVALUATOR:
1. Hydrogen sulfide; H ₂ S; [7783-06-4]	Peter G.T. Fogg, Department of Applied Chemistry
2. Ammonia; NH ₃ ; [7664-4-17]	and Life Sciences, Polytechnic of North London,
3. Water; H ₂ O; [7732-18-5]	Holloway, London N7 8DB, U.K.
	February 1987

The original measurements on this system were published by van Krevelen, Hoftijzer, and Huntjens (1). Other work has since been published (2-7) and data cover temperatures from 293.15 K to 373.15 K and a wide range of concentrations of ammonia and of hydrogen sulfide. Direct comparison of different sets of data is only possible to a limited extent because of differing ranges of conditions studied by different authors but the general pattern of behaviour is the same. The concentration of hydrogen sulfide in solution increases with partial pressure of the gas and with concentration of ammonia in solution and decreases as the temperature is raised.

One apparent discrepancy between two sets of data has been found by the evaluator:

Authors	т/к	Wt.% in H₂S	liquid NH₃	Wt.% ir H ₂ S	NH3
Oratovskii <i>et al</i> . (2)	353.2	3.0	5.45	33.9	33.6
Ginzburg et al. (3)	353.8	3.20	5.04	26.02	36.02

Models for the behaviour of the system have been published by van Krevelen et al. (1), by Edwards et al. (8) and by Beutier & Renon (7). These can only be partially correlated with experimental data.

Van Krevelen *et al.* (1) investigated the systems $H_2S-NH_3-NH_4Cl-H_2O$ and $H_2S-NH_3-(NH_4)_2SO_4$ and showed that data are consistent with those for the $H_2S-NH_3-H_2O$ system.

The system $H_2S-NH_3-CO_2-H_2O$ was investigated by Badger and Silver (9), by Dryden (10), by van Krevelen *et al.*(1) and by Wilson, Gillespie and Owens (11). Data span a range of concentrations of components and temperatures from 298.2 K to 533.2 K. There appear to be no serious discrepancies between the sets of data but detailed comparison is not possible because of the differences in conditions investigated by the different groups. Van Krevelen *et al.* have shown that experimental data can be partially correlated with a simple model for the system. Correlation models have also been published by Wilson *et al.*

Golutvin et al. have studied the system H₂S-NH₃-CO₂-H₂O-phenol (4).

References

- van Krevelen, D.W.; Hoftijzer, P.J.; Huntjens, F.J. Recl. Trav. Chim. Pays-Bas <u>1949</u>, 68, 191-216.
- Oratovskii, V.I.; Gamol'skii, A.M.; Klimenko, N.N. *Zhur. Prik. Khim.* <u>1964</u>, 37, 2392-8.; *J. Appl. Chem. USSR* <u>1964</u>, 37, 2363-7.
- Ginzburg, D.M.; Pikulina, N.S.; Litvin, V.P. Zhur. Prikl. Khim. <u>1965</u>, 38, 2117-3.; J. Appl. Chem. USSR <u>1965</u>, 38, 2071-3.
- Golutvin, Yu.M.; Malysheva, T.V.; Skorobogatova, V.I. Izvest. Sibir. Otdel. Akad. Nauk. S.S.S.R. <u>1958</u>, No.8, 83-87.
- Leyko, J.
 Bull. Acad. Polon. Sci. Ser. sci. chim. <u>1959</u>, 7, 675-679.

COMPONENTS:		EVALUATOR:					
1. Hydrogen sulfide; H_2S ; [7783-06-4]		Peter G.T. Fogg, Department of Applied Chemistry and Life Sciences, Polytechnic of North London, Holloway, London N7 8DB, U.K.					
2. Ammonia; NH ₃ ; [7664-4-17]							
3. Water; H ₂ O; [7732-18-5]							
		February 1987					
CRITICAL EVALUATION:							
 Leyko, J.; Piatkiewicz, J. Bull. Acad. Polon. Sci. Ser. sci. chim. <u>1964</u>, 12, 445-446. 							
7.	. Beutier, D.; Renon, H. Ind. Eng. Chem. Proc. Des. Dev. <u>1978</u> , 17, 220-230.						
8.	Edwards, T.J.; Newman, J.; Prausnitz, J.M. Amer. Inst. Chem. Eng. J. <u>1975</u> , 21(2), 248.						
9.	Badger, E.H.M.; Silver, L. J. Soc. Chem. Ind. <u>1938</u> , 57, 110–112.						
10.	Dryden, I.G.C. J. Soc. Chem. Ind. <u>1947</u> , 66, 59-64.						
11.	 Wilson, G.M.; Gillespie, P.C.; Owens, J.L. Proc. 64th Ann. Conv. Gas Processors Association, <u>1955</u>, 282-288. 						
ł							

COMPONENTS:	······································	ORIGINAL MEASUREMENTS:					
[7783-06-4 2. Ammonia; N	[7783-06-4] Ammonia; NH ₃ ; [7664-41-7]			van Krevelen, D.W.; Hoftijzer, P.J. Huntjens, F.J. <i>Recl. Trav. Chim. Pays-Bas</i> <u>1949</u> , 68, 191-216.			
VARIABLES:	1	PREPARED BY:					
Temperature, c liquic	P.G.T. Fogg						
EXPERIMENTAL VALU	ES:						
Conc. of H ₂ S	Conc. of NH ₃	Par	tial pre	essures of H_2	S / mmHg		
in liquid*	in liquid						
/mol dm ⁻³	/mol dm ⁻³	293	.2 K	313.2 K	333.2 K		
0.007	0.280	0.	3	1.3			
0.060	0.280				2.6		
0.110	0.280	0.	8	3.7	11.8		
0.120	0.585	0.		1.5	4.9		
0.140	0.295				15.6		
0.145	0.575	Ο.	6		8.7		
0.185	0.300	4.		13.3	39.6		
0.220	1.060	0.	9	2.6	9.4		
0.220	0.580	1.		6.9	20.5		
0.285	0.585	3.		12.7	35.5		
0.290	1.150	1.	1	4.6	14.5		
0.355	1.720	1.	1	4.0	12.9		
0.375	0.595	8.		26.9			
* total H_2S & NH ₃ including that equivalent to ionic species.							
METHOD / APPARATUS /			INFORMATIO	D PURITY OF MAT			
H_2S , NH_3 and a with exclusion vapor in equi- solution under by solutions of in acetic acid analysed. The together with to calculate NH_3 & H_2S . An	P-V-T data were u partial pressures	ing r of ed sed of	No information				
volume of N ₂ at a measured total pressure through a series of vessels containing solution. H ₂ S in the effluent gas was determined iodimetrically. The two methods gave similar results.			REFERENCE				

COMPONENTS:	,	ORIG	INAL MEASUREMEN	NTS:
[7783-06-4 2. Ammonia; N	H ₃ ; [7664-41-7] ; [7732-18-5]	Hunt Rec1	Krevelen, D.W.; jens, F.J. . <i>Trav. Chim. H</i> , 68, 191-216.	; Hoftijzer, P.J. Pays-Bas
Conc. of H ₂ S	Conc. of NH3	Partial p	pressures of H	2S / mmHg
in liquid*	in liquid [*]			
/mol dm ⁻³	/mol dm ⁻³	293.2 K	313.2 K	333.2 K
0.398	0.795	4.4		
0.420	1.637	1.7		
0.435	1.730	1.6	6.4	19.4
0.440	2.270	1.4	5.0	16.0
0.455	1.175	3.4	12.5	38.6
0.550	2.870	1.6	5.9	18.5
0.580	1.190	6.7	23.6	66.9
0.585	2.310	2.3	8.1	26.0
0.590	3.460	1.3	4.7	17.6
0.690	1.780	4.9	18.0	54.7
0.730	2.920	2.8	10.0	31.8
0.860	1.780	9.4	32.6	98.6
0.875	2.260	6.0	22.3	68.0
1.110	2.860	6.7	31.4	94.2
1.150	2.400	12.2	43.2	135.9
1.165	1.790	18.4		182.3
1.440	2.930	15.8	54.4	151.9
1.540	2.350	27.1		
1.890	2.920	38.5	125.4	310.5

 * total H_{2}S & NH_{3} including that equivalent to ionic species.

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>1. Hydrogen sulfide; H₂S; [7783-06-4]</pre>	Golutvin, Yu. M.; Malysheva, T.V.; Skorobogatova, V.I.
2. Ammonia; NH ₃ ; [7664-41-7]	Izvest. Sibir. Otdel. Akad. Nauk. S.S.S.R. 1958, No.8, 83-7
3. Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
Concentration of ammonia	P.G.T. Fogg
EXPERIMENTAL VALUES:	
T/K Concentration of NH3 /mol dm ⁻³	Concentration of H ₂ S /mol dm ⁻³
293.2 0.70 0.88 1.19 1.82 2.24 3.80 4.98 5.26 6.16 Total pressure = barometric Concentrations of NH ₃ and of H ₂ S incl these compounds.	
	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Hydrogen sulfide from a Kipp's apparatus was bubbled through aqueous solutions of ammonia of various concentrations for six hours. The total ammonia in the resulting solution was analysed by titration with hydrochloric acid and the total hydrogen sulfide by iodimetry.	1. from a Kipp's apparatus.
	ESTIMATED ERROR:
	$\delta T/K = \pm 0.1$
	REFERENCES :

COMPONENTS:			0PT	GINAL MEASURE	MENTS .	
					riisii 10 î	
1. Hydrogen sulfide [7783-06-4]			Le	eyko, J.		
2. Ammonia; NH ₃ ; [7	664-41-7]					.sci.chim.,
3. Water; H ₂ O; [773]	2-18-5]			<u>959</u> , 7, 675	- 0/9.	
VARIABLES:			PRE	EPARED BY:	·····	
Temperature, concent				P.G.T.	Fogg	
H_2S and NH_3 in the l	iquid phase.					
EXPERIMENTAL VALUES:			L	<u></u>		
Conc. of H ₂ S Co	nc. of NHA	· ተ/ ተ	ĸ	Partia	l pressures	
in liquid i		- , 1	•		P _{NH3} /mmHg	
	/mol dm ⁻³			H ₂ S'	NH ₃	H ₂ O,
1.01	2.12	293	.2	7.5	10.8	15.0
	·	414		31.1	27.5 45.7	42.0 69.0
2.06	4.33	293	.2	60.0 22.6	21.0	14.0
		323	.2	73.5 130.6	58.3 89.2	41.0 69.5
3.54	7.43	293 303	.2	38.1 74.5	44.2 79.0	13.0 20.0
		313	.2	136.9	119.5	37.2
5.20 1	0.92	323	.2	235.0 62.2	190.0 80.0	55.1 10.0
	V • J L	303	.2	124.3 238.4	129.3	18.0
		313 318			215.0 255.4	30.0 42.0
	0					• •
*	0 mmHg = 1					
<pre>calculated by comp molar conc.of NH₃</pre>					ent that	
motat conc.or Mn3	, morar conc.	Jr 11	20	- 201		
	<u></u>					
	AUXI	LIARY	INF	FORMATION		
METHOD / APPARATUS / PROCEDU	RE:		so	URCE AND PURI	TY OF MATERIA	LS;
Nitrogen was bubbled	l through			No informat	ion	
the thermostatted sa	-					
solution under test.	-	:				
of NH_3 , H_2S and H_2O	in the gas					
stream was determine	ed by analysis	5.				
			1			
				TIMATED ERROR	•	
			123	TINTED ERKOR	•	
			RE	FERENCES:		
			1			

COMPONEN	rs:					ORIC	SINAL M	EASUREMENT	S:		
[7 2. Am	783-0 monia	6-4] ; NH ₃	fide; H ₂ S ; [7664-4	1-7]		K] ZI	Limenk	kii, V.I o, N.N. <i>ik.Khim</i> .	<u>1964</u> ,	37, 239	2-2396.
3. Wa	ter;	H ₂ O;	[7732-18-	·5]			.App1.	Chem. US	SR <u>1964</u>	, 3/, 2	363-7.
VARIABLE	S:					PREI	PARED B				
H₂S an	d NH₃	in t	centratic he liquic				P.G	.T. Fogg			
EXPERIME	NTAL V.	ALUES:									
т/к	Wt%	in	Mole fra	action	₩t%	in	gas	Mole fr	action	Part	ial
	liqu	id**	in liqu	id*				in ga	s*	press	./bar*
	H₂S	NH 3	H ₂ S	NH 3	H ₂ S		NH 3	H ₂ S	NH 3	H ₂ S	NH 3
343.2	2.0	4.0	0.011	0.043	24.	1	33.1	0.141	0.387	0.088	0.241
	3.0	5.5	0.016	0.059	31.	9	36.0	0.194	0.437	0.152	0.341
	4.0	6.3	0.021	0.068	40.	4	34.2	0.258	0.436	0.239	0.404
	5.0	7.1	0.027	0.077	48.	1	31.2	0.321	0.417	0.342	0.444
	6.0	7.5	0.032	0.081	55.	4	27.6	0.388		0.476	0.475
	7.0	8.0	0.038	0.087	61.		24.2	0.444		0.593	0.470
	8.0	8.3	0.044	0.091	66.		21.2	0.499		0.743	0.476
	9.0	8.5	0.049	0.093	70.		18.1	0.554		0.908	0.464
	10.0	8.7	0.055	0.096	75.	4	15.1	0.610	0.244	1.113	0.445
water phase	was t and t	aken he va	mole frac as the pr por press H ₃ includ	oduct of sure of p	mol mol	e f: wate	ractio er.	n of wat	er in t	he liqu	
				AUXII	IARY	INFC	RMATIO	N			
METHOD /A	PPARAT	US/PRO	CEDURE :			sou	RCE AND	PURITY O	F MATERIA	LS:	
A solu	tion	of am	monium su	lfide			1 & 2	analyti			nium
1			was evag		t			sulfide	used.		
a rate	of 0	.8-1.	0 g min^{-1}	from a							
thermo	statt	ed st	eel vesse	el of							
volume	100	cm ³ .	At vario	ous times							
the ev	apora	tion	was disco	ontinued,							
the ve	ssel	and c	ontents w	veighed							
	-		ysed for								
	-		ns of the	-		ESI	IMATED	ERROR:			
-			lated fro			'	δт∕к	= ± 0.0	5 (aut	hors)	
		-	of compos as descr								
in ref			as desci	IDed In		REF 1.	-	m-Agaev, Fiz. Khi			
						1					

COMPONENTS:			ORIGINAL MEASU	REMENTS :	
[7783-06-4] 2. Ammonia; NH	llfide; H₂S; I₃; [7664-41-7] [7732-18-5]				, J. r.sci.chim.,
VARIABLES:	<u> </u>		PREPARED BY:		
Temperature			P.G.T.	. Fogg	
EXPERIMENTAL VALUES	:				
Conc. of H ₂ S	Conc. of NH_2	т/:	K Part:	ial pressure	s
in liquid /mol dm ⁻³	in liquid /mol dm ⁻³		P _{H2S} /atm	P _{NH3} /atm	P _{H2O} /atm
1.91	6.15	353.	2 0.35	0.95	0.35
		363.	2 0.51	1.31	0.53
		373.	2 0.75	1.66	0.79
		383.	2 1.17	2.05	1.18
	AUX	XILIARY	INFORMATION		
METHOD / APPARATUS / PI	ROCEDURE:		SOURCE AND PUR	ITY OF MATERIA	ALS:
a thermostatted connected to a of the gas phas a valve into ar	te and analysed by	es ough	No informa	ation	
			ESTIMATED ERRO		
					thors)
			DEFERENCIA		
			REFERENCES :		

COMPON	ENTS:		<u></u>		1	ORIGINA	L MEASUR	EMENTS:		
[7 2. Am	783-0 monia ter;	06-4] ; NH ₃ ; H ₂ O; [ide; H ₂ [7664-4 7732-18- JES:	41-7]		Klimenk Zhur.Pr	kii, V.I O, N.N. ik.Khim. Chem. US	1964,	37, 239	2-2398.
т/к	Wt%	in	Mole fra	ation	Wt% i	n a.c	Mole fr	action	Part	ial
1/1		id**	in liqu		WLO I	li yas	in ga			./bar*
	H ₂ S	NH ₃	H ₂ S	NH ₃	H ₂ S	NH 3	H ₂ S	NH 3	H ₂ S	NH ₃
353.2	2.0	4.2	0.011	0.045	25.4	31.4	0.149	0.370	0.139	0.344
	3.0	5.45	0.016	0.058	33.9	33.6	0.208	0.413	0.241	0.479
	4.0	6.45	0.021	0.069	41.8	32.8	0.269	0.422	0.375	0.588
	5.0	7.1	0.027	0.077	49.5	29.7	0.334	0.401	0.545	0.642
	6.0	7.6	0.032	0.082	56.4	26.1	0.398	0.368	0.713	0.659
	7.0	7.95	0.038	0.087	62.8	22.5	0.463	0.332	0.936	0.671
	8.0	8.15	0.044	0.089	68.4	19.0	0.525	0.292	1.178	0.655
	9.0	8.35	0.049	0.092	73.9	15.5	0.591	0.248	1.502	0.630
	10.0	8.45	0.055	0.093	78.8	12.0	0.656	0.200	1.823	0.556
363.2	1.0	3.0	0.005	0.032	12.2	22.4	0.068	0.248	0.067	0.245
	2.0	4.45	0.011	0.047	25.1	32.2	0.147	0.378	0.205	0.527
	3.0	5.75	0.016	0.061	32.3	35.8	0.197	0.436	0.347	0.768
	4.0	6.8	0.021	0.073	38.4	35.8	0.242	0.451	0.501	0.933
	5.0	7.6	0.027	0.082	44.7	34.0	0.292	0.445	0.693	1.057
	6.0	8.15	0.032	0.088	50.3	31.4	0.340	0.425	0.895	1.119
	7.0	8.6	0.038	0.094	55.4	28.5	0.388	0.399	1.108	1.140
	8.0	9.4	0.044	0.103	60.4	25.3	0.437	0.367	1.335	1.121
	9.0	9.35	0.049	0.103	65.4	22.1	0.491	0.332	1.649	1.115
	10.0	9.5	0.055	0.105	70.3	18.7	0.547	0.291	1.988	1.058

* estimated by the compiler. Partial pressures were assumed to be proportional to mole fractions in the gas phase. The partial pressure of water was taken as the product of mole fraction of water in the liquid phase and the vapor pressure of pure water.

** total H_2S & NH_3 including that equivalent to ionic species.

0000									<u></u>		
COMPONENT	ſS:					ORI	GINAL MEA	ASUREMENT	S:		
[[7	783-06	-4]	ide; H₂S [7664-4			L	itvin,	V.P.	Pikulin		
3. Wa	ter; H	20; [7	7732-18-	5]		J	.App1.C	k.Knim. hem. US:	<u>1965</u> , 3 SR <u>1965</u> ,	38, 20	-9. 71-3.
VARIABLE	S:					PRE	PARED BY	:			
Temper	ature,	conce	entratio liqui				P.G.T.	Fogg			
EXPERIME	NTAL VAI	LUES:									
т/к	Wt% liqu	in id**	Mole fr in liq		Wt	% i	n gas	Mole f: in ga	raction as*		ial ./bar*
	H ₂ S	NH ₃	H ₂ S	NH ₃	H ₂	s	NH 3	H ₂ S	NH3	H ₂ S	NH 3
335.7	9.24	8.80	0.0508	0.0968	61.	84	23.51	0.4529	0.3445	0.459	0.349
337.7	8.90	10.03	0.0488	0.1101	51.	46	32.35	0.3507	0.4411	0.355	0.447
340.2	7.28	7.00	0.0397	0.0764	64.	67	18.31	0.4847	0.2746	0.491	0.278
341.5	7.10	7.22	0.0387	0.0787	63.	98	19.67	0.4768	0.2933	0.483	0.297
342.4	7.00	9.01	0.0381	0.0980	40.	15	40.06	0.2547	0.5084	0.258	0.515
342.6	7.04	8.90	0.0383	0.0969	41.	10	39.10	0.2623	0.4992	0.266	0.506
345.8	5.21	4.99	0.0282	0.0540	61.	33	16.11	0.4505	0.2368	0.456	0.240
347.6	5.00	7.16	0.0270	0.0772	27.	10	43.80	0.1597	0.5165	0.162	0.523
347.7	5.00	5.11	0.0270	0.0552	65.	10	11.70	0.4921	0.1769	0.499	0.179
347.8	5.01	7.20	0.0270	0.0777	27.	40	43.90	0.1617	0.5185	0.164	0.525
* esti prop	.mated ortion	by the al to	e compil mole fr	actions	tial in t	pr he	essures gas pha	se.	ssumed t		
				AUXI	LIARY	INF	ORMATION				
METHOD /A	PPARATU	S/PROCE	DURE :			SOL	JRCE AND	PURITY OF	MATERIAL	S :	
Dontin	1		of NH	H ₂ S and	1		No inf	ormatio	n		
	-			and H_2S			NO III	Ormacio.	11		
			a static		>						
		-	(1). T								
			lutions								
			ration a								
1		-	mol dm ⁻	2							
			dimetry.								
	,1 H2S	DA 100	атшесту.			ES	FIMATED E	ERROR:	·····		
						PF	FERENCES	•			
									м		
1						'		ourg, D. Ja Khi	M. m. <u>1965</u> ,	38 / 10	
							2197.		. <u>1905</u> ,	50 (10	/ •
							2131.				
											,
L						1					

.

COMPONENTS: ORIGINAL MEASUREMENTS: Ginzburg, D.M.; Pikulina, N.S.; Hydrogen sulfide; H₂S; 1. Litvin, V.P. [7783-06-4] 2. Ammonia; NH₃; [7664-41-7] Zhur.Prik.Khim. 1965, 38, 2117-9. J.App1.Chem. USSR 1965, 38, 2071-3. з. Water; H₂O; [7732-18-5] EXPERIMENTAL VALUES: T/K Wt% in Mole fraction Wt% in gas Mole fraction Partial liquid** press./bar* in liquid* in gas* H₂S NHa H₂S NH₃ H₂S NH₃ H₂S NH₃ NH3 H₂S 348.5 4.54 6.98 0.0244 0.0751 30.70 37.94 0.1852 0.4578 0.188 0.464 348.7 4.67 6.86 0.0251 0.0739 32.17 38.30 0.1955 0.4657 0.198 0.472 4.39 6.78 0.0236 0.0729 29.70 41.10 0.1778 0.4923 0.180 0.499 349.2 350.3 3.08 7.04 0.0165 0.0753 4.09 58.34 0.0213 0.6088 0.022 0.617 3.08 3.03 0.0165 0.0325 52.10 12.90 0.3619 0.1793 0.367 0.182 353.2 353.8 3.20 5.04 0.0171 0.0540 26.02 36.02 0.1533 0.4246 0.155 0.430 0.193 354.1 3.00 3.10 0.0161 0.0332 49.81 13.91 0.3409 0.1905 0.345 354.4 3.06 5.00 0.0164 0.0535 21.60 36.24 0.1244 0.4175 0.126 0.423 0.106 354.7 2.80 5.04 0.0150 0.0539 18.50 36.30 0.1048 0.4116 0.417 1.00 49.90 0.0005 0.5138 0.521 355.6 5.19 0.0053 0.0550 0.10 0.001 359.3 2.08 3.12 0.0111 0.0333 25.80 23.50 0.1531 0.2790 0.155 0.283 360.4 1.25 3.06 0.0066 0.0325 8.63 32.02 0.0467 0.3468 0.047 0.351 2.94 0.0096 1.80 0.0313 17.10 26.50 0.0968 0.3003 0.098 0.304 360.7 362.4 1.13 1.12 0.0060 0.0119 33.56 7.57 0.2100 0.0948 0.213 0.096 363.6 0.94 1.19 0.0050 0.0126 27.53 11.88 0.1662 0.1435 0.168 0.145 363.6 1.00 1.15 0.0053 0.0122 30.20 9.80 0.1852 0.1203 0.188 0.122 363.8 0.91 1.15 0.0048 0.0122 26.71 11.66 0.1606 0.1402 0.163 0.142 Total pressure = 1 atm = 1.01325 bar * estimated by the compiler. Partial pressures were assumed to be proportional to mole fractions in the gas phase. ** total H_2S & NH_3 including that equivalent to ionic species.

·	· · ·			
COMPONENTS:		ORIGINAL MEASURE		
[7783-06-4	ulfide; H ₂ S;] H ₃ ; [7664-41-7]	Sponsored by University, Beutier, D.;	API (Brigham Young 1975) ; quoted by: Benon, H.	
3. Water; H_2O		Ind.Eng.Chem	.Proc.Des.Dev.	
		<u>1978</u> , 17, 22	20-230.	
VARIABLES:		PREPARED BY:	* <u></u>	<u>-</u>
Concentrations		P.G.T. Fo	odd	
EXPERIMENTAL VALUE	S:			
T/K = 353.1	5			
Conc. of NH3	Conc. of H ₂ S	Partial pr	ressures	
in liquid	in liquid	P _{NH3} /mmHg	P _{H2S} /mmHg	
/mol dm ⁻³	/mol dm ⁻³			
0.960	0.971	12.0	2389	
1.063	1.452	4.36	8556	
2.332	1.151	136.0	319	
5.112	1.143	574	94.8	
5.538	5.305	72.6	12140	
9.245	7.935	208	9506	
10.201	5.983 5.561	597 2285	1916 241	
		tm = 1.01325 ba	-	
	AUX11	LIARY INFORMATION		
METHOD / APPARATUS / F			TY OF MATERIALS;	
No information		No informa	ation	
ł				
		ESTIMATED ERROR	:	
		REFERENCES :		
		ALL LICENCES ;		
L				

COMPONENTS:		ORIGINAL MEA	SUREMENTS:
1. Hydrogen su [7783-06-4]		van Kreve Huntjens	elen, D.W.; Hoftijzer, P.J. , F.J.
3. Water; H_2O ;	₃; [7664-41-7] [7732-18-5] loride NH₄Cl;]		av. Chim. Pays-Bas , 191-216.
VARIABLES:	<u> </u>	PREPARED BY:	<u></u>
Concentrations liquid p	of components in hase.	P.G.	.T. Fogg
EXPERIMENTAL VALUES	:	I	
T/K = 293.15			
Concn. of H ₂ S	Concn. of NH3	Concn. of	Partial pressure
in liquid [*]	in liquid [*]	NH4C1	of H_2S /mmHg
/mol dm ⁻³	/mol dm ⁻³	/mol dm ⁻³	
0.202	0.753	0.374	6.2
0.201	1.102	0.748	9.0
0.200	1.495	1.122	12.9
0.200	1.852	1.496	14.4
0.198	2.215	1.870	17.3
0.195	2.600	2.244	21.4
0.198	2.946	2.618	24.6
0.201	3.315	2.992	27.6
0.194	3.670	3.366	33.7
		RY INFORMATION	
METHOD /APPARATUS / PR	OCEDURE:	SOURCE AND F	PURITY OF MATERIALS:
passing H ₂ S, N water with excl Samples of vapo with the soluti	ses were prepared by H ₃ and steam through usion of air. r in equilibrium on under test, to had been added, were	No info	ormation
absorbed by sol acetate in acet then analysed. together with P	utions of cadmium ic acid which were		
volume of N ₂ at pressure throug	ssing a measured a measured total	ESTIMATED E	RROR:
in the effluent	gas was determined The two methods	REFERENCES :	

COMPONENTS:		ORIGINAL MEAS	SUREMENTS :
1. Hydrogen sulf	ido. H.C.		len, D.W.; Hoftijzer, P.J.
[7783-06-4]		Huntjens,	
 Ammonia; NH₃; Water; H₂O; [[7664-41-7] 7732-18-5]	Recl. Tra	v. Chim. Pays-Bas
4. Ammonium sulf	ate (NH4)2SO4;	<u>1949</u> , 68,	191-216.
[7783-20-2]			
VARIABLES:		PREPARED BY:	***************************************
Concentrations of soluti		Ρ.	G.T. Fogg
EXPERIMENTAL VALUES:			
T/K = 293.15			
Concn. of H ₂ S	-1-	Concn. of	Partial pressure
in liquid [*]	in liquid [*]	$(NH_4)_2SO_4$	of H_2S /mmHg
/mol dm ⁻³	/mol dm ⁻³	/mol dm ⁻³	
0.202	0.705	0.1515	5.2
0.200	1.314	0.4545	7.3
0.201	1.651	0.606	9.2
0.201	1.968	0.7575	9.6
0.198	2.286	0.909	10.6
0.195	2.615	1.0605	11.8
0.194	2.851	1.212	12.9
0.194	3.213	1.3635	13.8
	AUXILIA	ARY INFORMATION	
METHOD /APPARATUS / PROC	EDURE:	SOURCE AND P	URITY OF MATERIALS:
	. .		
	es were prepared by and steam through		ormation
water with exclusion	sion of air.		
Samples of vapor with the solution			
	d been added, were	e	
acetate in acetic	c acid which were		
then analysed. 5	These analyses /-T data were used		
to calculate part	ial pressures of		
NH ₃ & H ₂ S. Anoth consisted of pass		ESTIMATED EN	RROR:
	a measured total		
pressure through vessels containing			
pressure through vessels containing in the effluent of	as was determined	REFERENCES :	
pressure through vessels containing	as was determined The two methods	REFERENCES:	
pressure through vessels containing in the effluent of iodimetrically.	as was determined The two methods	REFERENCES :	
pressure through vessels containing in the effluent of iodimetrically.	as was determined The two methods	REFERENCES :	
pressure through vessels containing in the effluent of iodimetrically.	as was determined The two methods	REFERENCES :	

COMPONENTS:			ORIGINAL MEASU	REMENTS :		
1. Hydrogen s [7783-06-	4]	7.)	Badger, E.H			10 112
3. Carbon dic	H ₃ ; [7664-41- oxide; CO ₂ ; [1); [7732-18-5]		J. Soc. Che	em, ind. <u>1</u>	<u>930</u> , <i>)</i> ,	110-112.
VARIABLES:			PREPARED BY:			
Concentration	in liquid.		P.G.T.	, Fogg		
EXPERIMENTAL VAL	UES:					
H ₂ S conc.	NH ₃ conc.		. ^Р н ₂ S	P _{NH3}	^P co₂	
in liquid [*]	in liquid *	in liquid	* /mmHg	/mmHg	/mmHg	
/mol dm ⁻³	/mol dm ⁻³	/mol dm ⁻³				
0.189 0.1935	1.189 1.1935	0.41 0.49	3.21 5.12	4.11 2.92	1.45 3.50	
0.390	1.390	0.495	12.56	2.42	3.70	
0.045		0.50 0.6375	0.00 26.97	2.72 1.54	3.65 13.10	
0.380 0.097		0.66	5.29	1.35	12.15	
0.192	1.192	0.67	11.14 15.25	1.31 1.30 0.89	13.10 19.00	
0.1955 0.192		0.6875 0.70	15.25	0.89	20.45	
0.1925	1.1925	0.745	27.38	0.90	29.20	
0.0915		0.77 0.79	12.20	0.71	35.15 42.45	
0.0945	1.0945	0.80	12.00	0 55	45.10	
0.088	1.088 1.0945	0.815 0.8175	13.06 16.91			
· ·	2 760 mm NH ₃ and CO ₂ i	-			c species.	
		AUXILIARY	INFORMATION			
METHOD /APPARATUS	/PROCEDURE:		SOURCE AND PUR	ITY OF MATE	RIALS:	
1	nitrogen was p		No info	ormation		
-	ries of thermo					
	ning a solutio					
	under test. T	-				
-	ent stream wer chemical meth					
escimated by	Chemical meth	.045.				
					. <u></u>	
			ESTIMATED ERRO	DR:		
			REFERENCES:		<u> </u>	

COMPONENTS:	ORIGINAL MEASUREMENTS:	
	CHEVENIL HERDOLEHENIO.	
<pre>1. Hydrogen sulfide; H₂S; [7783-06-4]</pre>	Dryden, I.G.C.	
 Ammonia; NH₃; [7664-41-7] Carbon dioxide; CO₂; [124-38-9] 	J.Soc. Chem. Ind.	1017 66 50 61
<pre>3. Carbon dioxide; CO₂; [124-38-9] 3. Water; H₂O; [7732-18-5]</pre>	5.56C. Chem. 1nd.	<u>1947</u> , 00. 59-04.
VARIABLES:	PREPARED BY:	<u></u>
Temperature	P.G.T. Fogg	
•		
EXPERIMENTAL VALUES:		
Solutions were prepared by saturating and CO_2 under a total pressure equal		mixtures of H_2S
T/K [NH ₃] / mol dm ⁻³	K3	γ
293.2 0.51	1.40 ± 0.02	2.14
293.2 0.99 293.2 1.95	1.81 ± 0.05 2.50 ± 0.02	2.04 1.88
308.2 1.00	1.35 ± 0.015	1.95
323.2 1.00	1.07 ± 0.015	1.83
$K_{3} = \frac{[CO_{2}] P_{H_{2}S}}{[CO_{2}] P_{H_{2}S}}$		
$K'_{3} = \frac{H_2S}{[H_2S] P_{CO_2}}$		
The concentration term [NH ₃] includes	the concentration of	NH. + and any
other species derived from NH_3 which way [CO ₂] and [H_2S] include all speci	is present in solution	n. In the same
CU ² and n ² S respectively.		HS derived from
CO_2 and H_2S respectively.		HS derived from
$\gamma = \frac{2 [CO_2] + \gamma}{\gamma}$		HS derived from
2 [CO ₂] +	2 [H ₂ S]	HS derived from
$\gamma = \frac{2 [CO_2] + \frac{2}{2}}{2}$	2 [H ₂ S]	HS derived from
$\gamma = \frac{2 [CO_2] + \frac{2}{2}}{2}$	2 [H ₂ S]	HS derived from
$\gamma = \frac{2 [CO_2] + [NH_3]}{[NH_3]}$	2 [H ₂ S]	HS derived from
$\gamma = \frac{2 [CO_2] + [NH_3]}{[NH_3]}$	2 [H ₂ S]	
$\gamma = \frac{2 [CO_2] + [NH_3]}{[NH_3]}$	2 [H ₂ S]	
$\gamma = \frac{2 [CO_2] + [NH_3]}{[NH_3]}$ AUXILIARY METHOD/APPARATUS/PROCEDURE:	2 [H ₂ S]	CRIALS :
$\gamma = \frac{2 [CO_2] + [NH_3]}{AUXILIARY}$ METHOD/APPARATUS/PROCEDURE: Solutions under test were prepared	2 [H ₂ S] INFORMATION SOURCE AND PURITY OF MATE	CRIALS :
$\gamma = \frac{2 [CO_2] + [NH_3]}{[NH_3]}$ AUXILIARY METHOD/APPARATUS/PROCEDURE: Solutions under test were prepared by passing H ₂ S or H ₂ S/CO ₂ into	2 [H ₂ S] INFORMATION SOURCE AND PURITY OF MATE	CRIALS :
$\gamma = \frac{2 [CO_2] + [NH_3]}{[NH_3]}$ AUXILIARY METHOD/APPARATUS/PROCEDURE: Solutions under test were prepared by passing H ₂ S or H ₂ S/CO ₂ into aqueous ammonium carbonate and/or	2 [H ₂ S] INFORMATION SOURCE AND PURITY OF MATE	CRIALS :
$\gamma = \frac{2 [CO_2] + [NH_3]}{[NH_3]}$ AUXILIARY METHOD/APPARATUS/PROCEDURE: Solutions under test were prepared by passing H ₂ S or H ₂ S/CO ₂ into aqueous ammonium carbonate and/or ammonia. Nitrogen was passed	2 [H ₂ S] INFORMATION SOURCE AND PURITY OF MATE	CRIALS :
$\gamma = \frac{2 [CO_2] + [NH_3]}{INH_3}$ AUXILIARY METHOD/APPARATUS/PROCEDURE: Solutions under test were prepared by passing H ₂ S or H ₂ S/CO ₂ into aqueous ammonium carbonate and/or ammonia. Nitrogen was passed through Drechsel bottles in series	2 [H ₂ S] INFORMATION SOURCE AND PURITY OF MATE	CRIALS :
$\gamma = \frac{2 [CO_2] + [NH_3]}{[NH_3]}$ AUXILIARY METHOD/APPARATUS/PROCEDURE: Solutions under test were prepared by passing H ₂ S or H ₂ S/CO ₂ into aqueous ammonium carbonate and/or ammonia. Nitrogen was passed through Drechsel bottles in series containing a solution under test.	2 [H ₂ S] INFORMATION SOURCE AND PURITY OF MATE	CRIALS :
$\gamma = \frac{2 [CO_2] + [NH_3]}{INH_3}$ $AUXILIARY$ METHOD/APPARATUS/PROCEDURE: Solutions under test were prepared by passing H ₂ S or H ₂ S/CO ₂ into aqueous ammonium carbonate and/or ammonia. Nitrogen was passed through Drechsel bottles in series containing a solution under test. The H ₂ S in the emergent nitrogen	2 [H ₂ S] INFORMATION SOURCE AND PURITY OF MATE	CRIALS :
$\gamma = \frac{2 [CO_2] + [NH_3]}{INH_3}$ $AUXILIARY$ METHOD/APPARATUS/PROCEDURE: Solutions under test were prepared by passing H ₂ S or H ₂ S/CO ₂ into aqueous ammonium carbonate and/or ammonia. Nitrogen was passed through Drechsel bottles in series containing a solution under test. The H ₂ S in the emergent nitrogen stream was absorbed in cadmium	2 [H ₂ S] INFORMATION SOURCE AND PURITY OF MATE 1. from a Kipp's ap	CRIALS :
$\gamma = \frac{2 [CO_2] + [NH_3]}{INH_3}$ AUXILIARY METHOD/APPARATUS/PROCEDURE: Solutions under test were prepared by passing H ₂ S or H ₂ S/CO ₂ into aqueous ammonium carbonate and/or ammonia. Nitrogen was passed through Drechsel bottles in series containing a solution under test. The H ₂ S in the emergent nitrogen stream was absorbed in cadmium acetate solution and estimated	2 [H ₂ S] INFORMATION SOURCE AND PURITY OF MATE 1. from a Kipp's ap	CRIALS :
$\gamma = \frac{2 [CO_2] + [NH_3]}{INH_3}$ $AUXILIARY$ METHOD/APPARATUS/PROCEDURE: Solutions under test were prepared by passing H ₂ S or H ₂ S/CO ₂ into aqueous ammonium carbonate and/or ammonia. Nitrogen was passed through Drechsel bottles in series containing a solution under test. The H ₂ S in the emergent nitrogen stream was absorbed in cadmium acetate solution and estimated iodimetrically. The solution in	2 [H ₂ S] INFORMATION SOURCE AND PURITY OF MATE 1. from a Kipp's ap	CRIALS :
$\gamma = \frac{2 [CO_2] + [NH_3]}{INH_3}$ $METHOD/APPARATUS/PROCEDURE:$ Solutions under test were prepared by passing H ₂ S or H ₂ S/CO ₂ into aqueous ammonium carbonate and/or ammonia. Nitrogen was passed through Drechsel bottles in series containing a solution under test. The H ₂ S in the emergent nitrogen stream was absorbed in cadmium acetate solution and estimated iodimetrically. The solution in the last Drechsel bottle was	2 [H ₂ S] INFORMATION SOURCE AND PURITY OF MATE 1. from a Kipp's ap	CRIALS :
$\gamma = \frac{2 [CO_2] + [NH_3]}{INH_3}$ AUXILIARY METHOD/APPARATUS/PROCEDURE: Solutions under test were prepared by passing H ₂ S or H ₂ S/CO ₂ into aqueous ammonium carbonate and/or ammonia. Nitrogen was passed through Drechsel bottles in series containing a solution under test. The H ₂ S in the emergent nitrogen stream was absorbed in cadmium acetate solution and estimated iodimetrically. The solution in the last Drechsel bottle was analysed for CO ₂ by precipitation	2 [H ₂ S] INFORMATION SOURCE AND PURITY OF MATE 1. from a Kipp's app ESTIMATED ERROR:	CRIALS :
$\gamma = \frac{2 [CO_2] + [NH_3]}{I}$ AUXILIARY METHOD/APPARATUS/PROCEDURE: Solutions under test were prepared by passing H ₂ S or H ₂ S/CO ₂ into aqueous ammonium carbonate and/or ammonia. Nitrogen was passed through Drechsel bottles in series containing a solution under test. The H ₂ S in the emergent nitrogen stream was absorbed in cadmium acetate solution and estimated iodimetrically. The solution in the last Drechsel bottle was analysed for CO ₂ by precipitation of CaCO ₃ and for H ₂ S by	2 [H ₂ S] INFORMATION SOURCE AND PURITY OF MATE 1. from a Kipp's app ESTIMATED ERROR:	CRIALS ;
$\gamma = \frac{2 [CO_2] + [NH_3]}{I}$ $METHOD/APPARATUS/PROCEDURE:$ Solutions under test were prepared by passing H ₂ S or H ₂ S/CO ₂ into aqueous ammonium carbonate and/or ammonia. Nitrogen was passed through Drechsel bottles in series containing a solution under test. The H ₂ S in the emergent nitrogen stream was absorbed in cadmium acetate solution and estimated iodimetrically. The solution in the last Drechsel bottle was analysed for CO ₂ by precipitation of CaCO ₃ and for H ₂ S by precipitation of CdS and subsequent	2 [H ₂ S] INFORMATION SOURCE AND PURITY OF MATE 1. from a Kipp's app ESTIMATED ERROR:	CRIALS ;
$\gamma = \frac{2 [CO_2] + [NH_3]}{I}$ $AUXILIARY$ METHOD/APPARATUS/PROCEDURE: Solutions under test were prepared by passing H ₂ S or H ₂ S/CO ₂ into aqueous ammonium carbonate and/or ammonia. Nitrogen was passed through Drechsel bottles in series containing a solution under test. The H ₂ S in the emergent nitrogen stream was absorbed in cadmium acetate solution and estimated iodimetrically. The solution in the last Drechsel bottle was analysed for CO ₂ by precipitation of CaCO ₃ and for H ₂ S by precipitation of CdS and subsequent	2 [H ₂ S] INFORMATION SOURCE AND PURITY OF MATE 1. from a Kipp's app ESTIMATED ERROR:	CRIALS :

.

COMPONENTS:				ORIGINAL MEAS	SUREMENTS	5:
<pre>1. Hydrogen sulfide; H₂S; [7783-06-4] 2. Ammonia; NH₃; [7664-41-7]</pre>				Dryden, I.G.	.c.	
3. Carbon di	oxide; CO ₂ ; O; [7732-18-	[124-38	-9]	J. Soc. Cher	n. Ind. <u>1</u>	947, 66, 59-64.
EXPERIMENTAL	VALUES:			, , , , , , , , , , , , , , , , , , ,		
Solutions un H ₂ S into a m (1.5 mol dm ⁻	ixture of am	e prepa monium	red by p carbonat	assing an app e (1.5 mol dr	propriate n ⁻³) and	e amount of ammonia
NH ₃ concn.	H ₂ S concn.	R	k ₂₀	CO₂ concn.	P _{H2} S ⁺	$P_{H_2S}^{\dagger}$
in liquid*	in liquid*			in liquid*	t /mmHg	/bar
/mol dm ⁻³	/mol dm ⁻³			/mol dm ⁻³		
0.47	0.20	0.37	965	0.050	3.74	0.004989
0.47	0.20	1.33	210	0.180	17.20	0.022927
0.48	0.20	0.75	640	0.105	5.64	0.007523
0.49	0.205	1.10	363	0.157	10.20	0.013596
0.49	0.2075	1.47	148	0.208	25.32	0.033753
0.49	0.195	0.885	475	0.131	7.413	0.009883
0.49	0.21	0.19	985	0.027	3.850	0,005133
0.49	0.195	0.37	1005	0.055	3.504	0.004672
0.51	0.205	0.53	720	0.081	5.141	0.006854
0.955	0.20	1.165	342	0.439	10.560	0.014079
0.98	0.195	1.00	535	0.392	6.582	0.008775
0.98	0.21	1.50	124	0.577	30.581	0.040771
0.98	0.2175	0.765	1045	0.292	3.758	0.005010
0.98	0.20	0.295	2420	0.115	1.492	0.001989
1.00	0.2075	0.85	750	0.337	4.996	0.006661
1.00	0.2075	1.57	132	0.622	28.385	0.037843
1.01	0.05	1.28	310	0.614	2.912	0.003882
1.02	0.06	1.07	655	0.514	1.654	0.002205
1.02	0.185	0.70	1120	0.292	2.983	0.003977
1.02	0.05	0.83	1075	0.403	0.840	0.001120
1.02	0.20	0.55	1480	0.226	2.440	0.003253
1.03	0.05	1.07	650	0.524	1.389	0.001852
1.04	0.2075	1.35	202	0.562	18.549	0.024730
1.04	0.05	0.41	3120	0.203	0.289	0.000385
1.05	0.0525	0.61	1810	0.304	0.524	0.000699
1.05	0.055	0.21	6000	0.104	0.166	0.000221
1.10	0.105	0.58	1830	0.289	1.036	0.001381
1.10	0.105	0.795	1055	0.396	1.797	0.002396
1.10	0.10	1.24	335	0.620	5.390	0.007186
1.11	0.0525	1.50	150	0.793	6.320	0.008426
т/к = 293	.2 Tota	l press	ure =	760 mmHg =	1.01325	bar

COMPONENTS:				ORIGINAL MEAS	SUREMENTS	•
 Hydrogen sulfide; H₂S; [7783-06-4] Ammonia; NH₃; [7664-41-7] Carbon dioxide; CO₂; [124-38-9] Water; H₂O; [7732-18-5] 				Dryden, I.G. J. Soc. Chem		<u>947</u> , 66, 59-64
EXPERIMENTAL						
Solutions und H_2S into a mid (1.5 mol dm ⁻³)	xture of am	e prepa monium	red by p carbonat	assing an app e (1.5 mol dr	propriate n ⁻³) and a	amount of ammonia
NH ₃ concn.	H ₂ S concn.	R	k ₂₀	CO₂ concn.	$P_{H_2S}^{\dagger}$	$P_{H_2S}^{\dagger}$
in liquid*	in liquid*			in liquid*	t /mmHg	/bar
/mol dm ⁻³	/mol dm ⁻³			/mol dm ⁻³		
1.12	0.105	0.205	5400	0.104	0.351	0.000468
1.13	0.115	1.59	124	0.807	16.747	0.022327
1.14	0.105	1.01	575	0.523	3.297	0.004396
1.16	0.205	0.64	1180	0.306	3.137	0.004182
1.18	0.205	0.85	680	0.414	5.444	0.007258
1.18	0.21	1.29	239	0.626	15.866	0.021153
1.18	0.19	1.48	152	0.733	22.571	0.030092
1.20	0.19	1.06	424	0.535	8.092	0.010788
1.20	0.21	0.20	2700	0.099	1.404	0.001872
1.21	0.195	0.40	2180	0.203	1.615	0.002153
1.46	0.2075	0.44	2440	0.276	1.536	0.002048
1.47	0.185	0.63	1560	0.405	2.141	0.002854
1.48	0.215	0.89	720	0.563	5.392	0.007189
1.48	0.2075	0.235	3750	0.150	0.999	0.001332
1.48	0.205	1.005	525	0.641	7.051	0.009400
1.48	0.19	1.54	117	0.993	29.324	0.039095
1.48	0.2075	1.32	208	0.840	18.014	0.024016
1.52	0.17	0.84	970	0.567	3.165	0.004220
т/к = 293.	.2 Tota	al pres	sure =	760 mmHg =	1.01325	bar
R =	conc.	of CO ₂				
	onc. of NH3		of Has			

measured in mol dm⁻³. They include ionic and other species derived from the gases.

 k_{20} = total conc. of H_2S in the liquid phase / conc. in the gas phase * total H_2S , NH_3 and CO_2 including that equivalent to ionic and other species derived from the gases.

⁺ calculated by the compiler.

		nyarogen oa				
COMPON	IENTS:	· · · · · · · · · · · · · · · ·		ORIGINA	L MEASUREMENTS	5:
Ī7	lrogen sulfide 783-06-4] monia; NH ₃ ; [7		van Krevelen, D.W.; Hoftijzer, P.J. Huntjens, F.J.			
		CO ₂ ; [124-38-9	Recl. Trav. Chim. Pays-Bas 1949, 68, 191-216.			
	$er; H_2O; [773]$			<u></u> ,		
VARIA				PREPARE	D BY:	
	ature, concen	tration of			.G.T. Fogg	
compor	ents in liqui	d phase.				
EXPERI	MENTAL VALUES	:				
т/К	H₂S concn. in liquid [*]	NH₃ concn. in liquid [*]		2 concn.	Partial pressure	Partial
	/mol dm ⁻³	/mol dm ⁻³		ol dm ⁻³		of H ₂ S/bar ^{**}
293.2	0.180 0.180	0.79	0	.25	4.5	0.0060 0.0056
	0.210 0.291	2.25 1.24		.40 .75	18.0 49.0	0.0240 0.0653
	0.360	2.16		.95	14.8	0.0197
	0.60	2.15		.40	8.4	0.0112
313.2	0.160 0.180	0.74 0.79		.38 .25	27.8 13.3	0.0371 0.0177
	0.180	1.14		.41	12.3	0.0164
	0.184	1.17	0	. 41	11.7	0.0156
	0.210	2.25		.40	37.6	0.0501
	0.290 0.350	1.13 0.70		.21 .104	12.1 32.3	0.0161 0.0431
	0.360	2.16		94	38.4	0.0512
	0.600	2.15		.40	27.0	0.0360
333.2	0.124 0.140	1.298 1.02		.656 .62	25.8 63.7	0.0344 0.0849
	0.150	0.74		.36	53.5	0.0713
	0.180	0.79	0	.25	32.0	0.0427
	0.180	1.14		. 41	30.0	0.0400
	0.184 0.200	1.17 2.25		.41 .34	29.5 59.5	0.0393 0.0793
	0.234	1.289		645	77.0	0.1026
	0.290	1.130		.21	32.8	0.0437
	0.350 0.360	0.700 2.160		.104 .95	80.4 84.4	0.1072 0.1125
	0.60	2.150		.40	77.5	0.1033
* tota	l H ₂ S, NH ₃ an	d CO ₂ includin	g tha	at equival	lent to ionic	species.
**	culated by th					
		AUXILI	ARY I	INFORMATI	N	
METHOD	/APPARATUS/PR	OCEDURE		SOURCE AND PURITY OF MATERIALS		
Samples of vapor in equilibrium with the solution under test, were analysed by chemical methods. These			No information			
analyses by chemical methods. These analyses together with P-V-T data were used to calculate the partial pressure of H_2S . Another method consisted of passing a measured volume of N_2 at a measured total pressure through a series of		ESTIMATED ERROR:				
vessel in the iodime	s containing effluent gas	solution. H ₂ S was determine e two methods		REFERENCES:		

		,	rogen Sumue n	i i iqueeue een		75	
COMPO	NENTS:		<u></u>	ORIGINAL	MEASUREMENTS:		
[]	7783-06-4	ulfide; H ₂ S;] H ₃ : [7664-41			Wilson, G.M.; Gillespie, P.C.; Owens, J.L.		
3. C	arbon diox 124-38-9]	(ide; CO_2 ; [7732-18-5]	.,		h Ann. Conv. on, <u>1985</u> , 282	Gas Processors -288	
VARIA	BLES:	·		PREPARED	BY:		
Tempe	rature, co	omposition		P.G	.T. Fogg		
EXPER	IMENTAL VA	ALUES:					
T/°F	т/к*	Component	Compos /mol liquid		Partial pressure /psia	Partial pressure /bar*	
200	366.48	NH₃ CO₂ H₂S H₂O total	2.00 0.57 0.51 96.92 100.00	6.09 33.99 17.45 42.47 100.00	1.50 8.38 4.30 10.49 24.67	0.103 0.578 0.296 0.723 1.701	
200	366.48	NH₃ CO₂ H₂S H₂O total	2.06 0.26 0.51 97.17 100.00	13.25 8.80 11.85 66.10 100.00	2.20 1.45 1.96 11.09 16.70	0.152 0.100 0.135 0.765 1.151	
200	366.48	$ NH_3 CO_2 H_2S H_2O total $	17.76 3.84 4.08 74.32 100.00	35.52 17.36 32.65 14.47 100.00	23.44 11.46 21.55 9.55 66.00	1.616 0.790 1.486 0.658 4.551	
300	422.04	NH₃ CO₂ H₂S H₂O total	2.00 0.24 0.49 97.27 100.00	6.81 27.14 13.78 52.27 100.00	8.86 35.31 17.93 68.00 130.10	0.611 2.434 1.236 4.688 8.970	
* esti	mated by d	compiler.					
[†] wate	*estimated by compiler. [†] water content too low to measure but calculated by authors using Raoult's law with correction for pressure enhancement.						
				INFORMATION			
Rocke were were	d static e used for m electrical	TUS/PROCEDUR equilibrium neasurements lly heated a	cells . These	SOURCE AND PURITY OF MATERIALS: No information			
insulated with fibreglass. Pressures were measured with a 3-D Instruments precision pressure gauge. Platinum resistance thermometers were used to			ESTIMATED ERROR:				
thermometers were used to measure and control temperature. The vapor phase was analysed either by gas chromatography or by absorbing and weighing the components with NH ₃ absorbed by HCl, H ₂ S by CdSO ₄ , H ₂ O by Drierite and CO ₂ by Ascarite [®] . Samples of liquid phase were allowed to come to ambient temperature and pressure and the components estimated. Further details in refs. 1 & 2.			Wilson RR-65, Tulsa, 2. Wilson Cunnin RR-52,	J.L.; Cunnin G.G.M. Resea Gas Processo Oklahoma <u>198</u> G.G.M.; Owens Igham, J.R. Re	rch Report prs Association, <u>3</u> . ; J.L.; search Report prs Association,		

[7 2. An 3. Ca	ydrogen su 7783-06-4 nmonia; NH arbon dios	1lfide; H ₂ S;] H ₃ ; [7664-41- kide; CO ₂ ; [1 ; [7732-18-5]	24-38-9]	ORIGINAL MEASUREMENTS: Wilson, G.M.; Gillespie, P.C.; Owens, J.L. Proc. 64th Ann. Conv. Gas Processors Association, <u>1985</u> , 282-288		
EXPER T/°F	T/K*	/ALUES: Component	Compos /mol liquid		Partial pressure /psia	Partial pressure /bar*
300	422.04	$ NH_3 CO_2 H_2S H_2O total $	2.12 0.29 0.53 97.06 100.00	8.33 30.87 14.44 46.36 100.00	11.74 43.52 20.37 65.37 141.00	0.809 3.001 1.404 4.507 9.722
300	422.04	$ NH_3 CO_2 H_2S H_2O total $	17.32 4.19 3.82 74.67 100.00	15.69 43.83 29.12 11.36 ⁺ 100.00	96.02 268.24 178.21 69.53 612.00	6.620 18.494 12.287 4.794 42.196
300	422.04	NH ₃ CO ₂ H ₂ S H ₂ O total	2.16 1.44 1.73 94.72 100.00	0.336 67.80 23.84 8.03 ⁺ 100.00	4.54 915.21 321.84 108.41 1350.00	0.313 63.102 22.190 7.475 93.079
400	477.59	$ NH_3 CO_2 H_2S H_2O total $	2.03 0.26 0.57 97.14 100.00	6.56 28.55 15.50 49.39 100.00	32.47 141.3 76.71 244.5 494.98	2.239 9.742 5.289 16.858 34.128
400	477.59	NH₃ CO₂ H₂S H₂O total	2.14 0.44 0.83 96.59 100.00	5.06 35.86 20.16 38.92 100.00	31.37 222.3 125.0 241.3 619.97	2.163 15.327 8.618 16.637 42.745
400	477.59	NH ₃ CO ₂ H ₂ S H ₂ O total	17.30 3.43 3.56 75.70 100.00	14.70 49.77 17.83+ 17.70 100.00	426.30 1443.33 517.07 513.30 2900.00	29.392 99.514 35.651 35.391 199.948
400	477.59	$ NH_3 CO_2 H_2S H_2O total $	1.80 1.44 1.84 94.74 100.00	1.46 56.03 21.70 20.81 100.00	30.37 1165.42 451.36 432.85 2080.00	2.094 80.353 31.120 29.844 143.411
500	533.15	NH₃ CO₂ H₂S H₂O total	2.12 0.313 0.523 97.05 100.00	5.89 15.04 8.63 70.44 100.00	70.39 179.73 103.13 841.75 1195.00	4.853 12.392 7.111 58.037 82.392
500	533.15	NH₃ CO₂ H₂S H₂O total	2.12 0.575 0.883 96.42 100.00	4.86 22.88 13.24 59.02 100.00	78.00 376.22 212.50 947.28 1605.00	5.378 25.939 14.651 65.313 110.661
500	533.15	NH ₃ CO ₂ H ₂ S H ₂ O total	1.86 2.13 1.97 94.04 100.00	2.31 38.04 15.56 44.09 ⁺ 100.00	66.30 1091.75 446.57 1265.38 2870.00	4.571 75.274 30.790 87.245 197.880
wate:					d by authors u	sing Raoult's

COMPONENTS:	ORIGINAL MEASUREMENTS:			
 Hydrogen sulfide; H₂S; [7783-06-4] Ammonia; NH₃; [7664-41-7]; Carbon dioxide; CO₂; [124-38-9] Water; H₂O; [7732-18-5] Carbon monoxide; CO; [630-08-0] Nitrogen; N₂; [7727-37-9] Methane; CH₄; [74-82-8] Hydrogen; H₂; [1333-74-0] 	ORIGINAL MEASUREMENTS: Wilson, G.M.; Gillespie, P.C.; Owens, J.L. Proc. 64th Ann. Conv. Gas Processors Association, <u>1985</u> , 282-288.			
VARIABLES:	PREPARED BY:			
Temperature, composition of gas and liquid phase.	P.G.T. Fogg			
EXPERIMENTAL VALUES:				
T/°F T/K* Total Compone pressure /psia /kPa*	nt Composition Partial /mole% pressure liquid vapor /psia /kPa*			
100 310.93 33.4 230 NH ₃ CO_2 H ₂ S H ₂ O CO N ₂ CH ₄ H ₂	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
100 310.93 500 3447 NH ₃ CO ₂ H ₂ S H ₂ O CO N ₂ CH ₄ H ₂	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
 a too small to measure. * estimated by compiler. 				
AUXILIARY	INFORMATION			
METHOD/APPARATUS/PROCEDURE: Rocked static equilibrium cells were used for measurements. These were electrically heated and insulated with fibreglass.	SOURCE AND PURITY OF MATERIALS: No information			
Pressures were measured with a 3-D Instruments precision pressure gauge. Platinum resistance thermometers were used to	ESTIMATED ERROR:			
measure and control temperature. The vapor phase was analysed either by gas chromatography or by absorbing and weighing the components with NH ₃ absorbed by HCl, H ₂ S by CdSO ₄ , H ₂ O by Drierite® and CO ₂ by Ascarite®. Samples of	 Owens, J.L.; Cunningham, J.R.; Wilson, G.M. Research Report RR-65, Gas Processors Association, Tulsa, Oklahoma, <u>1983</u> 			
liquid phase were allowed to come to ambient temperature and pressure and the components estimated. Further details in refs. 1 & 2.	2. Wilson, G.M.; Owens, J.L.; Cunningham, J.R. Research Report RR-52, Gas Processors Association, Tulsa, Oklahoma, <u>1982</u> .			

		<u> </u>			-			
COMPONENTS:					ORIGINAL	MEASUREME	NTS:	
[7 2. An 3. Ca 4. Wa 5. Ca 6. Ni 7. Me 8. Hy	<pre>[7783-06-4] 2. Ammonia; NH₃; [7664-41-7]; 3. Carbon dioxide; CO₂; [124-38-9] 4. Water; H₂O; [7732-18-5] 5. Carbon monoxide; CO; [630-08-0] 6. Nitrogen; N₂; [7727-37-9] 7. Methane; CH₄; [74-82-8]</pre>					.M.; Gill L. h Ann. Co on, <u>1985</u> ,	nv. Gas	Processors
EAPER I	MENIAL V	ALUES:						
T/°F	т/К*	Tot pres /psia		-	t Compo /mo liquid	le%		artial cessure /kPa*
100	310.93	1000	6895	$\begin{array}{c} \mathrm{NH}_{3}\\ \mathrm{CO}_{2}\\ \mathrm{H}_{2}\mathrm{S}\\ \mathrm{H}_{2}\mathrm{O}\\ \mathrm{CO}\\ \mathrm{N}_{2}\\ \mathrm{CH}_{4}\\ \mathrm{H}_{2}\end{array}$	2.11 0.27 0.53 97.01 0.021 0.0052 0.013 0.047		103.4	2 0.083 1.03 6.41 1856.8 712.9
200	366.48	500	3447	$\begin{array}{c} \mathrm{NH}_{3}\\ \mathrm{CO}_{2}\\ \mathrm{H}_{2}\mathrm{S}\\ \mathrm{H}_{2}\mathrm{O}\\ \mathrm{CO}\\ \mathrm{N}_{2}\\ \mathrm{CH}_{4}\\ \mathrm{H}_{2}\end{array}$		0.48 0.32 0.47 2.24 24.60 9.53 12.58 49.76	2.40 1.61 2.37 11.21 123.0 47.6 62.9 248.9	16.55 11.10 16.34 77.29 848.1 328.2 433.7 1716.1
200	366.48	500	3447	$\begin{array}{c} \mathrm{NH}_3\\ \mathrm{CO}_2\\ \mathrm{H}_2\mathrm{S}\\ \mathrm{H}_2\mathrm{O}\\ \mathrm{CO}\\ \mathrm{N}_2\\ \mathrm{CH}_4\\ \mathrm{H}_2\end{array}$	2.07 1.62 0.54 95.74 - - -	0.083 28.46 4.74 2.16 13.17 5.01 9.18 37.20	0.41 142.3 23.72 10.79 65.85 25.07 45.90 185.9	454.02 172.85 316.47
200	366.48	1000	6895	$\begin{array}{c} \mathrm{NH}_3\\ \mathrm{CO}_2\\ \mathrm{H}_2\mathrm{S}\\ \mathrm{H}_2\mathrm{O}\\ \mathrm{CO}\\ \mathrm{N}_2\\ \mathrm{CH}_4\\ \mathrm{H}_2\end{array}$	2.02 0.26 0.52 97.13 0.0162 0.0048 0.0103 0.0411	0.28 0.18 0.26 1.12 24.58 9.84 12.68 51.06	2.75 1.75 2.64 11.20 245.8 98.4 126.8 510.6	18.96 12.07 18.20 77.22 1694.7 678.4 874.3 3520.5
300	422.04	500	3447	$\begin{array}{c} \mathrm{NH}_{3}\\ \mathrm{CO}_{2}\\ \mathrm{H}_{2}\mathrm{S}\\ \mathrm{H}_{2}\mathrm{O}\\ \mathrm{CO}\\ \mathrm{N}_{2}\\ \mathrm{CH}_{4}\\ \mathrm{H}_{2}\end{array}$	2.11 0.25 0.50 97.10 0.0020 0.0019 0.0053 0.0284	1.86 9.90 4.19 13.07 8.60 7.89 11.69 42.80	9.32 49.52 20.96 65.35 43.01 39.46 58.45 213.9	64.26 341.43 144.51 450.57 296.54 272.07 403.00 1474.8
* esti	imated by	compil	er.					

COMPON	NENTS:				ORIGINAL	MEASUREM	ENTS:
[7] 2. Ar 3. Ca 4. Wa 5. Ca	[7783-06-4] 2. Ammonia; NH ₃ ; [7664-41-7]; 3. Carbon dioxide; CO_2 ; [124-38-9] 4. Water; H ₂ O; [7732-18-5] 5. Carbon monoxide; CO; [630-08-0]					L. h Ann. C	lespie, P.C.; onv. Gas Processors , 282-288.
7. Me	ethane; C	H4; [74	-82-8]				
	ydrogen;		33-74-0]				
EXPER:	IMENTAL V	ALUES:					
T/°F	т/к*	Tota	al	Componer		sition	Partial
		pres /psia	sure /kPa*		/mo liquid	vapor	pressure /psia /kPa*
300	422.04	500	3447	$\begin{array}{c} \mathrm{NH}_{3}\\ \mathrm{CO}_{2}\\ \mathrm{H}_{2}\mathrm{S}\\ \mathrm{H}_{2}\mathrm{O}\\ \mathrm{CO}\\ \mathrm{N}_{2}\\ \mathrm{CH}_{4}\\ \mathrm{H}_{2}\end{array}$	2.02 0.60 0.52 96.83 0 0.0024 0.0065 0.0227	10.09	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
300	422.04	1000	6895	$\begin{array}{c} \mathrm{NH}_{3}\\ \mathrm{CO}_{2}\\ \mathrm{H}_{2}\mathrm{S}\\ \mathrm{H}_{2}\mathrm{O}\\ \mathrm{CO}\\ \mathrm{N}_{2}\\ \mathrm{CH}_{4}\\ \mathrm{H}_{2}\end{array}$	2.01 0.94 0.48 96.49 0 0.0056 0.0150 0.0560	0.69 29.13 2.72 6.69 0 7.57 12.24 40.96	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
300	422.04	1000	6895	$\begin{array}{c} \mathrm{NH}_{3}\\ \mathrm{CO}_{2}\\ \mathrm{H}_{2}\mathrm{S}\\ \mathrm{H}_{2}\mathrm{O}\\ \mathrm{CO}\\ \mathrm{N}_{2}\\ \mathrm{CH}_{4}\\ \mathrm{H}_{2}\end{array}$	2.09 0.18 0.43 97.20 0.0119 0.0064 0.0163 0.0637	14.19	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
400	477.59	1000	6895	$\begin{array}{c} \mathrm{NH}_{3}\\ \mathrm{CO}_{2}\\ \mathrm{H}_{2}\mathrm{S}\\ \mathrm{H}_{2}\mathrm{O}\\ \mathrm{CO}\\ \mathrm{N}_{2}\\ \mathrm{CH}_{4}\\ \mathrm{H}_{2} \end{array}$	2.13 0.45 0.84 96.51 0 0.0057 0.0111 0.0571	3.27 22.28 12.44 23.99 0 8.13 10.02 19.87	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
400	477.59	1000	6895	$\begin{array}{c} \mathrm{NH}_{3}\\ \mathrm{CO}_{2}\\ \mathrm{H}_{2}\mathrm{S}\\ \mathrm{H}_{2}\mathrm{O}\\ \mathrm{CO}\\ \mathrm{N}_{2}\\ \mathrm{CH}_{4}\\ \mathrm{H}_{2}\end{array}$	2.02 0.77 0.61 96.52 0 0.0062 0.0155 0.0556	3.15 27.15 8.18 23.87 0 4.62 7.27 25.76	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
* est	imated by	compil	er.				

* estimated by compiler.

77

.

COMPONENTS:	ORIGINAL MEASUREMENTS:		
 Hydrogen sulfide; H₂S; [7783-06-4] Carbon dioxide; CO₂; [124-38-9] Ammonia; NH₃; [7664-41-7] Phenol; C₆H₆O; [108-95-2] Water; H₂O; [7732-18-5] 	Golutvin, Yu. M.; Malysheva, T.V.; Skorobogatova, V.I. Izvest. Sibir. Otdel. Akad. Nauk. S.S.S.R. <u>1958</u> , No.8, 83-7.		
VARIABLES:	PREPARED BY:		
Pressure of H_2S & CO_2	P.G.T. Fogg		
EXPERIMENTAL VALUES:			
Concentration of NH_3 before dissolution of phenol before dissolution o	on of $H_2S \& CO_2 = 0.0086 \text{ mol } dm^{-3}$ ation of $H_2S \& CO_2 = 0.0194 \text{ mol } dm^{-3}$		
Liquid phase	Gas phase		
Conc. of H_2S Conc. of CO_2	P_{H_2S} / P_{CO_2}		
/mol dm ⁻³ /mol dm ⁻³			
$\begin{array}{llllllllllllllllllllllllllllllllllll$			
	INFORMATION		
METHOD/APPARATUS/PROCEDURE:			
	SOURCE AND PURITY OF MATERIALS:		
Premixed hydrogen sulfide and carbon dioxide were bubbled through an aqueous solution of ammonia and phenol in a thermostatted saturator for 4.5 to 5 hrs. The gas and liquid phases were analysed	 from a Kipp's apparatus. by action of hydrochloric acid on marble chips. 		
by chemical methods.	ESTIMATED ERROR:		
	$\delta T/K = \pm 0.1$ (authors)		
	REFERENCES:		

COMPONENTS:	EVALUATOR:
1. Hydrogen sulfide; H_2S ; [7783-06-4]	Peter G.T. Fogg, Department of Applied Chemistry
2. Carbon dioxide; CO ₂ ; [124-38-9]	and Life Sciences, Polytechnic of North London,
3. Water; H ₂ O; [7732-18-5]	Holloway, London N7 8DB, U.K.
4. Alkanolamines	February 1987
	4

CRITICAL EVALUATION:

Systems containing hydrogen sulfide, water and alkanolamines have been extensively studied during the recent years because aqueous solutions of alkanolamines are widely used to remove hydrogen sulfide from industrial gas mixtures. Much of this work has been carried out by Mather and his co-workers. Several models of the behaviour of alkanolamine/water systems in the presence of hydrogen sulfide and/or carbon dioxide have been published (1-10). Some sets of measurements (10-14) have been partially correlated with the model developed by Kent and Eisenberg (8). Improved models have been published by Deshmukh and Mather (9), and by Dingman *et al.* (10). Predictions based upon models are still subject to some uncertainty.

Three component systems containing hydrogen sulfide, water and alkanolamines.

In all hydrogen sulfide/alkanolamine/water systems which have been investigated the mole ratio of hydrogen sulfide to alkanolamine increases with partial pressure of hydrogen sulfide and decreases with increase in temperature and concentration of alkanolamine.

2-Aminoethanol (monoethanolamine); C₂H₇NO; [141-43-5]

Data published by eight groups (1, 15-21) have been compiled. The measurements were made over a range of concentrations of MEA (monoethanolamine) from 0.6 to 5 mol dm⁻³, pressures of hydrogen sulfide from 7 x 10⁻⁷ to 42 bar and temperatures from 288 to 413 K. The different sets of measurements tend to complement each other and, where there is overlap, there is little evidence of inconsistency between one set and another. Lawson and Garst (20) have shown that their data for absorption in 15 wt% solution of MEA (2.5 mol dm⁻³) is in good agreement under most conditions with unpublished data communicated to them by J.P. Bocard and with that published by Muhlbauer and Monaghan (17), Leibush and Shneerson (16), and, Jones *et al.* (18). However they have shown that there is disagreement with the measurements by Muhlbauer and Monaghan at 373 K and pressures below 0.12 bar and with measurements by Leibush and Shneerson at 323 K at partial pressures below 0.0014 bar. The evaluator has noted a discrepancy between the two measurements in each of the following pairs of measurements:

Authors	Concentration of MEA / mol dm ⁻³	т/к	^P H₂S /bar	Mole ratio H ₂ S / MEA	
Riegger et al. (15)	5	318.15	0.033	0.453	
Lee et al. (19)	5	313.15	0.042	0.435	
Jones <i>et al</i> . (18)	2.4 (15.3 wt%)	373.15	0.0089	0.066	
Lawson & Garst (20)	2.4 (15.2 wt%)	373.15	0.0075	0.0793	
Lawson & Garst (20)	2.4 (15.2%)	373.15	0.00041	0.0143	
Isaacs <i>et al</i> . (21)	2.5	373.15	0.00031	0.0210	

In the case of the last pair of measurements the difference is too great to be due solely to the slight difference in concentrations of MEA.

2,2'-Iminobisethanol (diethanolamine); C₄H₁₁NO₂; [111-42-2]

Five sets of measurements on this system have been compiled (1, 11, 16, 20, 22). Data reported by Bottoms (23) were in graphical form and have not been compiled. Concentrations of DEA (diethanolamine) range from 0.5 to 5 mol dm⁻³, temperatures from 288 to 422 K and partial pressures of hydrogen sulfide from 1.5×10^{-5} bar to 37 bar. The general pattern of data is very similar to that for the monoethanolamine system. Different sets of measurements tend to complement each other and there is usually good agreement when measurements overlap. Lawson and Garst (20) have compared their measurements of solubilities

COMPONENTS:	EVALUATOR:
1. Hydrogen sulfide; H ₂ S; [7783-06-4]	Peter G.T. Fogg, Department of Applied Chemistry
2. Carbon dioxide; CO ₂ ; [124-38-9]	and Life Sciences, Polytechnic of North London,
3. Water; H_2O ; [7732-18-5]	Holloway, London N7 8DB, U.K.
4. Alkanolamines	February 1987

CRITICAL EVALUATION:

in a 25 wt% solution of DEA and demonstrated that they are consistent with data for 298 K to 333 K given by Atwood *et al.* (1), Lee *et al.* (31) and also hitherto unpublished data in a private communication from J.P. Bocard. Lal *et al.* (11) have shown that their measurements of solubilities in DEA solution of concentration 2.0 mol dm⁻³ at 313 K are compatible with those of Lawson and Garst in a solution of concentration 2.45 mol dm⁻³ at 311 K. The compiler has noted the following discrepancy between other published data:

Authors	Concentration of DEA / mol dm ⁻³	of DEA T/K P _H /		Mole ratio H₂S / MEA	-	
Atwood et al. (1) Lee et al. (22)	4.9 (50 wt%) 5.0	322 323 . 15	0.0476	0.153 0.205		

2-(2-Aminoethoxy)ethanol (diglycolamine); C₄H₁₁NO₂; [929-06-6]

Martin *et al.* (24) have reported measurements of the absorption of hydrogen sulfide by 60 wt% aqueous solutions of diglycolamine at temperatures from 323 to 373 K and partial pressures of 0.04 to 17.3 bar. Dingman *et al.* (10) have reported measurements by 65 wt% solutions at temperatures from 311 to 355 K and partial pressures from 3×10^{-5} to 1.8 bar. The two sets of measurements are consistent with each other in the pressure range over which measurements overlap i.e. 0.04 to 1.8 bar. There is some scatter of measurements at very low pressures close to the minimum pressure.

1,1'-Iminobis-2-propanol (diisopropanolamine); C₆H₁₅NO₂; [110-97-4]

Absorption in aqueous solutions of diisopropanolamine of concentration 2.5 mol dm⁻³ at 313 and 373 K and pressures from 0.02 to 32 bar was measured by Isaacs *et al.* (25). No other measurements on this system are available for comparison but there is no reason to doubt the reliability of this set of measurements. These authors have also measured absorption in solutions containing tetrahydrothiophene, 1,1-dioxide (*sulfolane*) (26) in addition to diisopropanolamine. These measurements also appear to be reliable but again no other sets of measurements are available for comparison.

2,2'-(Methylimino)bisethanol (methyldiethanolamine); C₅H₁₃NO₂; [105-59-9]

Jou *et al.* (12) measured absorption in solutions of methyldiethanolamine at concentrations from 1.0 to 4.3 mol dm^{-3} at 298 to 393 K and 2.1 x 10^{-5} to 19.6 bar. A consistent set of data was obtained and there is no reason to doubt the reliability of these measurements. No other measurements are available for comparison.

2,2',2"-Nitrilotrisethanol (triethanolamine); C₆H₁₅NO₃; [102-71-6]

Atwood et al. (1) measured absorption of hydrogen sulfide by 1 to $3.5 \text{ mol } dm^{-3}$ (15 to 50 wt%) aqueous solutions of TEA (triethanolamine) at temperatures from 300 to 333 K and pressures from 4 x 10⁻⁶ to 0.92 bar. Jou et al. (13) measured absorption by solutions containing from 2 to 5 mol dm^{-3} of TEA at temperatures from 298 to 398 K and partial pressures from 1.2 x 10⁻⁴ to 62.7 bar. In the range of conditions in which the measurements overlap there is a good correlation between the two sets of measurements except for the following discrepancy:

Hydrogen Sulfide in Aqueous Solvents

COMPONENTS :		EVALUATOR:			
 Hydrogen sulfide; H Carbon dioxide; CO2 Water; H2O; [7732-1 Alkanolamines 	; [124-38-9]	and Life So	of Applied ciences, c of North L 8DB, U.K.	-	
CRITICAL EVALUATION:					
Authors	Concentration of T / mol dm ⁻³	EA T/K	H ₂ S	Mole ratio H ₂ S / MEA	
Atwood et al. (1) Jou et al. (13)	2 (30 wt%) 2	310.9 323.2	0.000757 0.000683		
Four component systems alkanolamine.	<u>of hydrogen sulfi</u>	<u>de, carbon di</u>	ioxide, wate	er and	
temperature and the co workers tend to comple absorption under diffe	eases with partial pressure of carbon dioxide and decreases with increase in erature, concentration of alkanolamine and partial pressure of hydrogen				
mole ratio in solution partial pressure of hy and concentration of a dioxide. In the same increases with partial temperature, concentra sulfide.	n of hydrogen sulfi ydrogen sulfide. I alkanolamine and al way the mole ratio L pressure of carbo ation of alkanolami	de to alkano t decreases v so with part: of carbon d: n dioxide and ne and partia	lamine incre with increas ial pressure ioxide to al d decreases al pressure	eases with se in temperatur e of carbon kanolamine with increase i	
mole ratio in solution partial pressure of hy and concentration of a dioxide. In the same increases with partial temperature, concentra sulfide.	n of hydrogen sulfi ydrogen sulfide. I alkanolamine and al way the mole ratio l pressure of carbo ation of alkanolami chanolamine); C ₂ H ₇ N	de to alkano t decreases v so with part: of carbon d: n dioxide and ne and partia	lamine incre with increas ial pressure ioxide to al d decreases al pressure]	eases with se in temperatur e of carbon kanolamine with increase i	
<pre>mole ratio in solution partial pressure of hy and concentration of a dioxide. In the same increases with partial temperature, concentra sulfide. 2-Aminoethanol (monoether)</pre>	n of hydrogen sulfi ydrogen sulfide. I alkanolamine and al way the mole ratio l pressure of carbo ation of alkanolami chanolamine); C ₂ H ₇ N	de to alkano t decreases v so with part: of carbon d: n dioxide and ne and partia 0; [141-43-5 Range of meas	lamine incre with increas ial pressure ioxide to al d decreases al pressure]	eases with se in temperatur of carbon kanolamine with increase i of hydrogen	
<pre>mole ratio in solution partial pressure of hy and concentration of a dioxide. In the same increases with partial temperature, concentra sulfide. 2-Aminoethanol (monoether)</pre>	n of hydrogen sulfi ydrogen sulfide. I alkanolamine and al way the mole ratio l pressure of carbo ation of alkanolami chanolamine); C ₂ H ₇ N Conc. of ME /mol dm ⁻³	de to alkano t decreases w so with part: of carbon d: n dioxide and ne and partia O; [141-43-5 Range of meas A T/K	lamine increase with increase ial pressure ioxide to al d decreases al pressure] surements P _{H2S} /bar	eases with se in temperatur of carbon kanolamine with increase i of hydrogen	
<pre>mole ratio in solutior partial pressure of hy and concentration of a dioxide. In the same increases with partial temperature, concentra sulfide. 2-Aminoethanol (monoet Authors</pre>	n of hydrogen sulfi ydrogen sulfide. I alkanolamine and al way the mole ratio l pressure of carbo ation of alkanolami chanolamine); C ₂ H ₇ N Conc. of ME /mol dm ⁻³	de to alkano t decreases w so with part: of carbon d: n dioxide and ne and partia 0; [141-43-5 Range of meas A T/K 298-373 313-393	lamine incre with increas ial pressure ioxide to al d decreases al pressure] surements $P_{\rm H_2S}/{\rm bar}$ 0.0001	eases with se in temperatur of carbon kanolamine with increase i of hydrogen P _{CO2} /bar 0 - 1.7	
<pre>mole ratio in solution partial pressure of hy and concentration of a dioxide. In the same increases with partial temperature, concentra sulfide. 2-Aminoethanol (monoet Authors Muhlbauer & Monaghan (Jones et al. (18)</pre>	n of hydrogen sulfi ydrogen sulfide. I alkanolamine and al way the mole ratio l pressure of carbo ation of alkanolami chanolamine); C ₂ H ₇ N Conc. of ME /mol dm ⁻³ (17) 2.4 - 2.6 2.5	de to alkano t decreases w so with part: of carbon d: n dioxide and ne and partia 0; [141-43-5 Range of meas A T/K 298-373 313-393 %)	lamine increases with increases ial pressure ioxide to al d decreases al pressure surements $P_{\rm H_2S}/\rm bar$ 0.0001 - 1.3 0.0015 - 2.0	eases with se in temperatur of carbon kanolamine with increase i of hydrogen $P_{\rm CO_2}/{\rm bar}$ 0 - 1.7 0.0019	
<pre>mole ratio in solution partial pressure of hy and concentration of a dioxide. In the same increases with partial temperature, concentra sulfide. 2-Aminoethanol (monoet Authors Muhlbauer & Monaghan (</pre>	n of hydrogen sulfi ydrogen sulfide. I alkanolamine and al way the mole ratio l pressure of carbo ation of alkanolami chanolamine); C ₂ H ₇ N Conc. of ME /mol dm ⁻³ (17) 2.4 - 2.6 2.5 (15.3 wt	de to alkano t decreases with parts of carbon di n dioxide and ne and partia 0; [141-43-5 Range of meas A T/K 298-373 313-393 %) 313-373 298-393	lamine increasion with increasion ial pressure ioxide to al decreases al pressure surements $P_{\rm H_2S}/\rm bar$ 0.0001 - 1.3 0.0015 - 2.0 0 - 34.2	eases with se in temperatur of carbon kanolamine with increase i of hydrogen P _{CO2} /bar 0 - 1.7 0.0019 - 4.7 0 - 55.6	
<pre>mole ratio in solution partial pressure of hy and concentration of a dioxide. In the same increases with partial temperature, concentra sulfide. 2-Aminoethanol (monoet Authors Muhlbauer & Monaghan (Jones et al. (18) Lee et al. (27)</pre>	n of hydrogen sulfi ydrogen sulfide. I alkanolamine and al way the mole ratio l pressure of carbo ation of alkanolami chanolamine); C ₂ H ₇ N Conc. of ME /mol dm ⁻³ (17) 2.4 - 2.6 2.5 (15.3 wt 5.0 2.5 - 5	de to alkano t decreases w so with part: of carbon d: n dioxide and ne and partia 0; [141-43-5 Range of meas A T/K 298-373 313-393 %) 313-373 298-393 %)	lamine increasion with increasion ial pressure ioxide to al decreases al pressure surements $P_{\rm H_2S}/\rm bar$ 0.0001 - 1.3 0.0015 - 2.0 0 - 34.2	eases with se in temperatur of carbon kanolamine with increase i of hydrogen P _{CO2} /bar 0 - 1.7 0.0019 - 4.7 0 - 55.6	
<pre>mole ratio in solution partial pressure of hy and concentration of a dioxide. In the same increases with partial temperature, concentra sulfide. 2-Aminoethanol (monoet Authors Muhlbauer & Monaghan (Jones et al. (18) Lee et al. (27) Lawson & Garst (20)</pre>	n of hydrogen sulfi ydrogen sulfide. I alkanolamine and al way the mole ratio l pressure of carbo ation of alkanolami chanolamine); C ₂ H ₇ N Conc. of ME /mol dm ⁻³ (17) 2.4 - 2.6 2.5 (15.3 wt 5.0 2.5 - 5 (15.2; 30 wt	de to alkano t decreases w so with part: of carbon d: n dioxide and ne and partia 0; [141-43-5 Range of meas A T/K 298-373 313-393 %) 313-373 298-393 %)	lamine increases with increases ial pressure ioxide to al decreases al pressure surements $P_{\rm H_2S}/\rm bar$ 0.0001 - 1.3 0.0015 - 2.0 0 - 34.2 0 - 2.9	eases with se in temperatur a of carbon kanolamine with increase i of hydrogen P_{CO_2}/bar 0 - 1.7 0.0019 - 4.7 0 - 55.6 0 - 2.3 0 - 70 0.00002	

Lee *et al.* (14) have compared their own measurements with those of Muhlbauer and Monaghan and those of Jones *et al.* for a concentration of MEA of 2.5 mol dm⁻³, a temperature of 373.15 K, partial pressures of hydrogen sulfide of 0.005 to 0.18 bar and partial pressures of carbon dioxide of 0.0009 to 0.17 bar. Agreement is within 10% under some conditions but there are wide differences under other conditions. This may be seen in the following examples given by Lee *et al.*: Hydrogen Sulfide in Aqueous Solvents

COMPONENTS: **EVALUATOR:** 1. Hydrogen sulfide; H₂S; [7783-06-4] Peter G.T. Fogg, Department of Applied Chemistry and Life Sciences, 2. Carbon dioxide; CO₂; [124-38-9] Polytechnic of North London, 3. Water; H₂O; [7732-18-5] Holloway, London N7 8DB, U.K. 4. Alkanolamines February 1987 CRITICAL EVALUATION: $P_{\rm H_2S}/\rm bar$ Mole ratio in solution P_{CO2}/bar ref (14), (17), (18) ref(14), (17) H₂S/MEA (18)CO2/MEA 0.007 0.1 0.1 0.044 0.051 0.037 0.0075 0.2 0.3 0.62 0.57 0.19 0.22 0.3 0.1 0.15 0.15 0.14 0.20 0.25 0.23 0.4 0.2 1.02 0.60 1.30 0.80 Lawson and Garst contrasted their measurements for 2.4 mol dm⁻³ (15 wt%) at 373 K with those of Muhlbauer and Monaghan. They noted that Muhlbauer and Monaghan's measurements of the partial pressures of hydrogen sulfide and carbon dioxide tend to be higher than their own values and than those of Jones *et al.* for similar concentrations of gases in solution. They pointed out that this discrepancy was greater at low gas concentrations than at higher concentrations. 2,2'-Iminobis-ethanol (diethanolamine); C₄H₁₁NO₂; [111-42-2] P_{CO2}/bar Authors Conc. of DEA T/K P_{H2S}/bar /mol dm⁻³ 0.002 Lee et al. (29) 2.0 - 3.5 323-373 0.006 -16.5 - 57.6 2.4 (25 wt%) 0.00013 Lawson & Garst (20) 311-394 0 - 22.9 - 4.9 (50 wt%) -22.0 0.0006 0 - 0.065 Lal et al. (11) 2.0 313-373 - 0.048 Lal et al. showed that the solubilities at 313 K, in the absence of carbon dioxide, were consistent with data given by Lawson and Garst. In the presence of carbon dioxide there was poor correlation with predictions from the model published by Kent and Eisenberg (8). 1,1'-Iminobis-2-propanol (diisopropanolamine); C₆H₁₅NO₂; [110-97-4] This system was investigated by Isaacs et al. (30) and tables of smoothed data have been prepared. No other measurements on this system are available for comparison but there is no reason to doubt the reliability of this smoothed data. 2-(2-Aminoethoxy)ethanol (diglycolamine); C₄H₁₁NO₂; [929-06-6] This system was investigated by Dingman et al. (10). No other measurements of the four component system are available for comparison. However the data for the system when one or other of the gases is at zero concentration are consistent with data for the three component systems published by Martin et al. (24). References Atwood, K.; Arnold, M.R.; Kindrick, R.C. Ind. Eng. Chem. <u>1957</u>, 49, 1439-44. 1. 2. Astarita, G.; Gioia, F.; Balzano, C. Chem. Eng. Sci. 1965, 20, 1101-5. 3. Astarita, G.; Savage, D.W. Chem. Eng. Sci. 1982, 37, 677-86. 4. Danckwerts, P.V.; McNeil, K.M. Trans. Inst. Chem. Eng. 1967, 45, Т32-Т49.

Hydrogen Sulfide in Aqueous Solvents

COMPONENTS:	EVALUATOR:					
1. Hydrogen sulfide; H ₂ S; [7783-06-4]	Peter G.T. Fogg, Department of Applied Chemistry					
2. Carbon dioxide; CO ₂ ; [124-38-9]	and Life Sciences, Polytechnic of North London,					
3. Water; H ₂ O; [7732-18-5]	Holloway, London N7 8DB, U.K.					
4. Alkanolamines	February 1987					
CRITICAL EVALUATION:						
5. Klyamer, S.D. <i>Gazov. Prom.</i> <u>1971</u> , 16	(9), 38-42.					
6. Klyamer, S.D.; Kolesnikova, T.L. Zhu	r. Fiz. Khim. <u>1972</u> , 46, 1056.					
 Klyamer, S.D.; Kolesnikova, T.L.; Ro Gazov. Prom., <u>1973</u>, 18 (2), 44-48. 	odin, Yu.A.					
8. Kent, R.L.; Eisenberg, B. Hydrocarbo	n Processing <u>1976</u> , 55 (2), 87-90.					
9. Deshmukh, R.D.; Mather, A.E. Chem. E	ng. Sci. <u>1981</u> , 36, 355-362.					
10. Dingman, J.C.; Jackson, J.L.; Moore, Proc. 62nd Annual Convention of the 256-68.						
11. Lal, D.; Otto, F.D.; Mather, A.E. Ca	nn. J. Chem. Eng. <u>1985</u> , 63, 681-5.					
12. Jou, F-Y.; Mather, A.E.; Otto, F.D. Ind. Eng. Chem. Process Des. Dev. <u>19</u>	<u>82</u> , 21, 539-44.					
13. Jou, F-Y.; Mather, A.E.; Otto, F.D. 122-5.	Can. J. Chem. Eng. <u>1985</u> , 63,					
14. Lee, J.I.; Otto, F.D.; Mather, A.E.	Can. J. Chem. Eng. <u>1976</u> , 54, 214-9.					
15. Riegger, E.; Tartar, H.V.; Lingafelt J. Amer. Chem. Soc. <u>1944</u> , 66, 2024-7	cer, E.C.					
16. Leibush, A.G.; Shneerson, A.L. J. A	pplied Chem. USSR <u>1950</u> , 23, 149-57.					
17. Muhlbauer, H.G.; Monaghan, P.R. 0i1	& Gas J. <u>1957</u> , 55 (17), 139-45.					
18. Jones, J.H.; Froning, H.R.; Claytor, J. Chem. Eng. Data <u>1959</u> , 4, 85-92.	E.E. Jr.					
19. Lee, J.I.; Otto, F.D.; Mather, A.E. 803-805.	Can. J. Chem. Eng. <u>1974</u> , 52,					
20. Lawson, J.D.; Garst, A.W. J. Chem. E	ng. Data <u>1976</u> , 21, 20-30.					
21. Isaacs, E.E.; Otto, F.D.; Mather, A. J. Chem. Eng. Data <u>1980</u> , 25, 118-120						
22. Lee, J.I.; Otto, F.D.; Mather, A.E. J. Chem. Eng. Data <u>1973</u> , 18, 71-3,42	Lee, J.I.; Otto, F.D.; Mather, A.E. J. Chem. Eng. Data <u>1973</u> , 18, 71-3,420					
23. Bottoms, R.R. Ind. Eng. Chem. 1931,	s, R.R. Ind. Eng. Chem. <u>1931</u> , 23, 501-4.					
24. Martin, J.L.; Otto, F.D.; Mather, A. J. Chem. Eng. Data <u>1978</u> , 23, 163-4.						
25. Isaacs, E.E.; Otto, F.D.; Mather, A. J. Chem. Eng. Data <u>1977</u> , 22, 71-3.	Е.					
26. Isaacs, E.E.; Otto, F.D.; Mather, A. J. Chem. Eng. Data <u>1977</u> , 22, 317-9.	Ε.					
27. Lee, J.I.; Otto, F.D.; Mather, A.E.	J. Chem. Eng. Data <u>1975</u> , 20, 161-3.					
28. Nasir, P.; Mather, A.E. Can. J. Chem	. Eng. <u>1977</u> , 55, 715-7.					
29. Lee, J.I.; Otto, F.D.; Mather, A.E.	Can. J. Chem. Eng. <u>1974</u> , 52, 125-7.					
30. Isaacs, E.E.; Otto, F.D.; Mather, A. Can. J. Chem. Eng. <u>1977</u> , 55, 210-2.	Ε.					
31. Lee, J.I.; Otto, F.D.; Mather, A.E.	Can. Gas J. 1972, (May-June), 34-39.					

0010000000000		IODICT				
COMPONENTS:			ORIGINAL MEASUREMENTS:			
1. Hydrogen sulf [7783-06-4]	$1de; H_2S;$	Riegger, E.; Tartar, H.V.; Lingafelter, E.C.				
2. 2-Aminoethano	l,(Monoethanol-		ngarerter, E.C.			
amine); C ₂ H ₇ N	0; [141-43-5]	J.	Amer. Chem. Soc	. 1944, 66,		
3. Water; H ₂ O; [24-7.			
VARIABLES:		PREPA	RED BY:			
Temperature, pre	ssure, composition		C.1	L. Young		
EXPERIMENTAL VALUES:						
p ⁺ /mmHg	Molality of		α*			
	amine		Temperature			
<u></u>		298.15K	318.15K	333.15K		
700	0.6	1.148	1.124	1.083		
,00	1.0	1.086	1.051	1.040		
	1.5	1.050	1.011	0.998		
	2.0	1.033	0.988	0.968		
	3.0 4.0	1.011 0.998	0.958 0.940	0.934 0.909		
	5.0	0.991	0.927	0.891		
600	0.6	1.126	1.097	1.056		
	1.0 1.5	1.072	1.033 0.996	1.011 0.970		
	2.0	1.041	0.998	0.944		
	3.0	1.004	0.948	0.910		
	4.0	0.991	0.928	0.884		
	5.0	0.984	0.914	0.865		
500	0.6	1.101	1.070	1.027		
500	1.0	1.058	1.012	0.984		
	1.5	1.032	0.980	0.945		
	2.0	1.016	0.960	0.916		
	3.0 4.0	0.996	0.934 0.913	0.880 0.858		
	5.0	0.974	0.899	0.837		
	······································			······································		
	AUXILIA	RY INFOR	MATION			
METHOD/APPARATUS/PROC	EDURE :	SOUR	CE AND PURITY OF MA	TERIALS:		
Samples of liquid	caturated with	1.	Commercial sam			
hydrogen sulfide.			Carbide and Car			
added to standard	iodine soln., and		Corp. sample d:	istilled,		
excess back titra	ted with sodium		b.p. 170.1°C.			
thiosulfate.		3.	No details give	en.		
		ESTI	MATED ERROR:	** i		
			$\delta T/K = \pm 0.1;$			
			δα = 0.8%.			
			(estimated by o	compiler).		
		DEPE	RENCES :			
		NOTE:	NERCEO ;			
1		1				

COMPONENTS		ORIGIN	NAL MEASUREMENT	S
 Hydrogen sulfide; H₂S; [7783-06-4] 2-Aminoethanol, (Monoethanolamine); C₂H₇NO: [141-43-5] Water; H₂O; [7732-18-5] 		Linga	ger, E.; Tartar afelter, E.C. ner. Chem. Soc. -7.	
EXPERIMENTAL VAL	JUES:		α*	, , , , , , , , , , , , , , , , , , ,
$p^+/mmHg$	Molality of		Temperature	
		298.15K	318 . 15K	333 . 15K
400	0.6	1.080	1.045	0.995
	1.0	1.042	0.993	0.952
	1.5	1.020	0.961	0.912
	2.0	1.006	0.943	0.885
	3.0	0.985	0.918	0.848
	4.0	0.971	0.897	0.821
	5.0	0.963	0.880	0.801
300	0.6	1.053	1.011	0.960
	1.0	1.022	0.967	0.916
	1.5	1.002	0.939	0.876
	2.0	0.990	0.921	0.847
	3.0	0.970	0.891	0.810
	4.0	0.955	0.869	0.778
	5.0	0.945	0.850	0.753
200	0.6	1.027	0.971	0.908
	1.0	0.998	0.929	0.863
	1.5	0.979	0.900	0.822
	2.0	0.966	0.880	0.793
	3.0	0.946	0.846	0.751
	4.0	0.931	0.819	0.714
	5.0	0.918	0.800	0.683
100	0.6	0.986	0.908	0.811
	1.0	0.956	0.864	0.757
	1.5	0.934	0.826	0.708
	2.0	0.919	0.795	0.674
	3.0	0.893	0.748	0.624
	4.0	0.870	0.714	0.581
	5.0	0.852	0.684	0.547
50	0.6	0.934	0.826	0.694
	1.0	0.902	0.782	0.634
	1.5	0.876	0.742	0.576
	2.0	0.856	0.706	0.532
	3.0	0.819	0.648	0.474
	4.0	0.784	0.601	0.425
	5.0	0.758	0.564	0.386
25	0.6	0.866	0.731	0.551
	1.0	0.833	0.686	0.490
	1.5	0.802	0.631	0.433
	2.0	0.777	0.601	0.388
	3.0	0.730	0.533	0.331
	4.0	0.687	0.487	0.291
	5.0	0.643	0.453	0.285

+ partial pressure of hydrogen sulfide

* Mole of hydrogen sulfide per mole of amine.

COMPONENTS:	· · · · ·		ORIGINAL MEASUREMEN	TS:	
			Leibush, A.G.; Shneerson, A.L.		
 Hydrogen sulfide; H₂S; [7783-06-4] Water; H₂O; [7732-18-5] 2-Aminoethanol, (monoethanolamine); C₂H₇NO; [141-43-5] 				im. <u>1950</u> , 23, 145-152.	
VARIABLES:			PREPARED BY:		
Temperature,	pressure,	composition	P.G.T. Fogg		
EXPERIMENTAL VAI	UES:		L		
Conc.of MEA /mol dm ⁻³	т/к	P _{H2S} /mmHg	P _{H2S} /bar [*]	Mole ratio H ₂ S/MEA	
0.93	288.2	0.050 1.53 1.85 8.6	0.000067 0.00204 0.00247 0.0115	0.068 0.243 0.454 0.714	
	298.2	0.100 0.87 3.14 17.2	0.00133 0.00116 0.00419 0.0229	0.068 0.243 0.454 0.714	
	323.2	0.378 3.38 13.4 65.6	0.000504 0.00451 0.0179 0.0875	0.068 0.243 0.454 0.714	
2.5	288.2	0.098 0.264 1.06 4.25 11.0 16.4 57.5	0.000131 0.000352 0.00141 0.00567 0.0147 0.0219 0.0767	0.061 0.119 0.250 0.450 0.614 0.688 0.846	
*calculated	by compiler	. MEA is 2	-aminoethanol (m	onoethanolamine)	
		AUXILIARY	INFORMATION		
METHOD /APPARATU	S/PROCEDURE:		SOURCE AND PURITY	OF MATERIALS:	
N ₂ or a mixt	ure of N ₂ 8	H ₂ S was	1. From H ₂ SO ₄		
passed succe			detected.		
absorbers co	ntaining H ₂	S dissolved	3. Contained 3	% of impurities	
in an aqueou	s solution	of MEA. The	1	.6 to 1.5 volumes of	
H_2S in the e	merging gas	s was passed	CO₂ per uni	t volume of solution.	
into cadmium	or zinc ac	etate			
solution and	the precip	oitated			
sulfides est	imated by i	odimetry.			
Hydrogen sulfide in the MEA			ESTIMATED ERROR:		
solutions was also determined by iodimetry. CO_2 in the MEA solutions was estimated by reaction				be 5 to 15% too high content. (authors)	
with 30% H ₂ S			REFERENCES:		
CO ₂ evolved		-			

COMPONENTS:		ORIGINAL MEASU	IREMENTS:	
 Hydrogen sulfide; H₂S; [7783-06-4] Water; H₂O; [7732-18-5] 2-Aminoethanol, (monoethanolamine); C₂H₇NO; [141-43-5] 		Leibush, A.G.; Shneerson, A.L. Zhur. Prik. Khim. <u>1950</u> , 23, 145-152. J. Applied Chem. USSR <u>1950</u> , 23, 149-157.		
EXPERIMENTAL VALUES:	<u></u>	• I		
Conc.of MEA T/K /mol dm ⁻³	₽ _{H₂S} /mmHg	P _{H2S} /bar [*]	Mole ratio H ₂ S/MEA	
2.5 298.2 323.	$\begin{array}{c} 0.160\\ 0.452\\ 0.45\\ 1.14\\ 1.71\\ 2.53\\ 4.0\\ 7.15\\ 20.4\\ 31.4\\ 104\\ 124\\ 0.134\\ 0.64\\ 1.84\\ 7.25\\ 30.6\\ 121\\ 348 \end{array}$	0.000213 0.000603 0.00152 0.00228 0.00337 0.0053 0.00953 0.0272 0.0419 0.139 0.165 0.000179 0.165 0.000179 0.00085 0.00245 0.00967 0.0408 0.161 0.464	0.061 0.110 0.192 0.250 0.303 0.373 0.450 0.614 0.688 0.854 0.022 0.061 0.119 0.250 0.450 0.450 0.854 0.022 0.061 0.119 0.250 0.450 0.854 0.888 0.8846	
* calculated by compil		0.101	0.010	
MEA is 2-aminoethanol		ne)		

			yarogon oanao n			
COMPONENTS: 1. Hydrogen sulfide; H ₂ S;				ORIGINAL MEASURE	MENTS:	
	ogen sulf 3-06-4]	lae; H ₂	5;	Atwood, K.; Arnold, M. R.;		
2. 2-Am	inoethanc	l (Monoe	thanolamine);			
C ₂ H ₇	NO; [141	-43-5]		Ind. Eng. Che		1439-44.
3. Wate	r; H ₂ O;	[7732-1	8-5]		·· ·	
VARIABLES:				PREPARED BY:		
Tomport	+1170 070		omposition		C. L. Youn	~
tempera	cure, pre	ssure, c	Smposicion		C. 1. 10ui	9
EXPERIMEN	TAL VALUES:	Wt-8		1 <u></u>	Conc. H ₂ S	
т/к	t/°F		P/mmHg	P/kPa	/mol ℓ^{-1}	Mole ratio [†]
			-			
299.8	80	5	0.000626 0.0518	8.35 × 10 ⁻⁵ 0.00691	0.00275 0.0483	0.00336 0.0591
			73.0	9.7	0.758	0.945
310.9	100		0.0414	0.00552	0.0307	0.0376
			0.123 283	0.0164 37.7	0.0542 0.806	0.0664 1.00
333.1	140		0.00804	0.00107	0.00476	0.00582
			106	14.1	0.578	0.714
310.9	100	15	0.0137	0.00183	0.0245	0.00995
			2.24 275	0.299 36.7	0.464 2.116	0.190 0.895
322.0	120		0.0439	0.00585	0.0384	0.0156
			60.8	8.11	1.458	0.609
322.0	120	20	3370	449.3	-	0.999
344.3	160		5850 5720	779.9 762.6	-	1.102 1.055
299.8	80	30		0.0000700	0.00600	0.00121
				0.000620		0.00557
			1.50	0.200	0.757	0.155
			57.5 289	7.67 38.5	3.26 4.16	0.699 0.908
322.0	120		0.0266	0.00355	0.0376	0.00758
			5.92	0.789	0.653	0.133
			264	35.2	3.41	0.733
	† M	oles of 1	hydrogen sulf	ide per mole o	f amine.	
		·····	AUXILIARY	INFORMATION		
METHOD/AP	PARATUS/PRO	CEDURE:		SOURCE AND PURIT	TY OF MATERIALS	:
Gag gat	uration m	othod way	s used in	1. Stated pu	mitu 00 7 mg	lo por
			f hydrogen	cent.	irrey 55.7 me	ic per
	sed throu	-		2. Analytica	l grade.	
-		-	solution of	-	-	
		-	oncentration.	3. No detail	.S •	
			H ₂ S greater			
			saturation			
	-					
	was used.	_		ESTIMATED ERROR		
determi	ned by io	dimetry.	Details		-	±3¢.
in sour	ce.			$\delta T/K = \pm 0.12$ $\delta (Mole ratio$	-	
					compiler).	
				REFERENCES:		

COMPONENTS	:			ORIGINAL M	EASUREMENTS:		
	gen sulfide; H	2S;		Jones, J. H.; Froning, H. R.;			
1 -	8-06-4]		1	Claytor, E. E. Jr.			
	noethanol (mono 10 ; [141-43-5]	etnano.	Lamine);	_	. Engng. Da		
	; H ₂ O; [7732-	18-5]		1959, 4	, 85~92.		
	-						
VARIABLES:				PREPARED B	Y:		
	Temperature, p	ressur	e		с. 1	. Young	
						_	
EXPERIMENT							
т/к	D -	of MEA t-%	α [†]	т/к	P ^{\$} /10 ⁵ Pa	Conc of MEA /Wt-%	^Α α [†]
313.15	0.0013 15	.3	0.125	353.15	0.0089	15.3	0.119
	0.0040		0.208		0.0428		0.251
	0.0121 0.0575		0.362 0.643		0.118 0.304		0.403
	0.0796		0.729		0.687		0.711
	0.141 0.191		0.814 0.842	373.15	0.0028 0.0089		0.041 0.066
	0,251		0.884		0.0640		0.199
	0.348 0.545		0.920 0.948		0.307 0.959		0.396 0.612
	0.800		0.965	393.15	0.0068		0.036
333.15	0.0095 0.0149		0.202 0.251		0.0295 0.173		0.088 0.206
	0.0484		0.419		0.684		0.394
	0.167 0.577		0.636 0.849	413.15	0.0065 0.0460		0.025 0.077
1	0.581		0.842		0.395		0.197
	1.13		0.952				
	^{p[§]} partial pr α [†] mole ratio monoethano	in li	quid, mo:			ide/ moles	of
			AUXILIARY	INFORMATIO	N		
METHOD/APP	PARATUS / PROCEDURE :	<u></u>		SOURCE ANI	D PURITY OF M	ATERIALS:	
Bocking	static equilibr	ium ce	11	1			. Mass
-	vith liquid and			1. Purity 99.9 mole per cent. Mass spectrometry showed trace amounts of methyl mercaptan, carbon			
1	Pressure measu					aptan, carbon carbon diox:	
Bourdon						le per cent	
	sulfide in gas			3. Dist	-	•	
1	mass spectrome						
-	ation of hydrog	_	fide in				
	letermined by ad						
J -	fied iodine sol			ESTIMATED			
titratin	titrating with standard thiosulfate					3.15 K, ±0. = ±1%; δα	
solution	solution. Details in source.				ted by comp		
				REFERENCE	ç.		
1				I MERENCE	J.		
				ļ			
]			
L				1			

COMPONENTS:	ORIGINAL MEASUREMENTS:
1. Hydrogen sulfide; H ₂ S;	Lee, J.I.; Otto, F.D.; Mather, A.E.
[7783-06-4]	
2. 2-Aminoethanol, (Monoethanol- amine); C ₂ H ₇ NO: [141-43-5]	Can. J. Chem. Engng. <u>1974</u> , 52, 803-5.
3. Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
Temperature, pressure, composition	C.L. Young
EXPERIMENTAL VALUES:	
T/K Conc of MEA P _{H2} /mol dm ⁻³	s ^{/kPa} α
20 13 13 12 12 10 10 9 9 9 9 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1	52.5 1.505 49.1 1.49 23.1 1.23 04.5 1.28 57.6 1.27 13.5 1.26 46.6 1.19 20.4 1.22 68.7 1.21 59.7 1.19 39.9 1.04 28.2 1.01 54.4 0.93 18.4 0.78 16.0 0.81 15.7 0.781 47.1 1.44 78.5 1.31 40.8 1.18 96.0 1.145
13	79.6 1.04 30.8 0.965
AUXILIARY	INFORMATION
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
Recirculating vapor flow apparatus with Jerguson liquid level gauge cell with magnetic pump. Nitrogen added to vapor to increase pressure	 Matheson C.P. grade purity 99.91 mole per cent. Fisher Scientific sample, purity
to at least 200 kPa. Vapor analysed by gas chromatography. Partial pressure of hydrogen sulfide estimated from knowledge of pressure and vapor pressure of monoethanol- amine. Liquid samples passed into	99.95 mole per cent.3. Distilled Nitrogen used as carrier, purity 99.997 mole per cent.
sulfuric acid and displaced hydrogen sulfide collected in buret.	ESTIMATED ERROR: $\delta T/K = \pm 0.5; \ \delta p/kPa = \pm 1\%$ $\delta \alpha = \pm 3-5\%$ REFERENCES:

<pre>OMPONENTS: . Hydrogen sulfide; H₂S; [7783-06-4] . 2-Aminoethanol, (Monoethanolamine); C₂H₇NO: [141-43-5] . Water; H₂O; [7732-18-5]</pre>			Lee, Mathe	AL MEASUREMENTS: J.I.; Otto, F.D.; r, A.E. J. Chem. Engng. <u>1974</u> , 52,
EXPERIMENTAL VAL T/K	UES: Conc of MEA / mol dm ⁻³	[₽] H₂	s ^{/kPa}	α
373.15	2.5	5 4 2 1 1 1 1	26.0 46.1 10.2 83.4 94.3 48.2 27.5 22.7 03.4 84.8	0.957 0.936 0.884 0.805 0.751 0.694 0.602 0.62 0.56 0.53
313.15	5.0	9 7 4 1 1 1	20.1 15.6 23.9 97.8 02.6 46.2 44.8 28.2 15.1 30.7 4.21 2.55 1.63	1.322 1.025 0.974 0.900 0.840 0.865 0.895 0.855 0.767 0.677 0.435 0.376 0.278
373.15	5.0	19 6 4 2 2	76.4 83.6 79.1 30.9 82.7 21.3 94.4 51.9 42.1 7.24	1.032 0.895 0.785 0.700 0.615 0.580 0.515 0.344 0.288 0.123
α = Mole ra	tio in liquid phas	se, H ₂ S	/Monoethan	olamine.

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>1. Hydrogen sulfide; H₂S; [7783-06-4]</pre>	Lawson, J.D.;Garst, A.W.
2. Water; H ₂ O; [7732-18-5]	J. Chem. Engng. Data, <u>1976</u> , 21,
3. 2-Aminoethanol, (Monoethanol- amine); C ₂ H ₇ NO; [141-43-5]	20-30.
$amme/, C_{2}m/NO, [141-43-5]$	
VARIABLES:	PREPARED BY:
Temperature, pressure	C.L. Young
EXPERIMENTAL VALUES:	
mol	uid comp. Mole fraction of H_2S/mol hydrogen sulfide
/wt% ami	
	1125
313.15 0.000016 15.2 0.	0140 0.000702
	0147 0.000737
	0329 0.00165 0396 0.00198
	0590 0.00295
	0591 0.00296
1	0789 0.00394 0795 0.00397
	373 0.0184
	380 0.0187
	026 0.0490 049 0.0500
	099 0.0523
	116 0.0530
24.78 1.	633 0.0757
	0052 0.000261
1	0141 0.000707 0339 0.00170
	0406 0.00203
	0593 0.00297
	0805 0.00402 384 0.0189
	392 0.0193
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Rocking equilibrium cell fitted	1. Purity 99.5 mole per cent.
with liquid and vapor sampling	2. Distilled.
valves. Pressure measured with	3. Commercial sample purity better
Bourdon gauge. Cell charged with amine then hydrogen sulfide and	than 99 mole per cent as determined by acid titration.
methane added as an inert gas to	-
"achieve the desired total pressure". Vapor phases analysed by mass	
spectrometry. Liquid samples	
analysed by electrometric titration,	
details in source. Additional analytical methods were used	
for some samples.	ESTIMATED ERROR:
	$\delta T/K = \pm 0.15$ at 300K increasing to
	± 0.6 at 413K; $\delta P/bar = \pm 0.5$ %;
	$\delta x_{\rm H_2S} = \pm 3 \&.$
	REFERENCES:
	<u> </u>

COMPONEN	rs:		ORIGINAI	l measurements:
[778] 2. Water 3. 2-Am	[7783-06-4] Water; H ₂ O; [7732-18-5]			J.D.; Garst, A.W. . <i>Engng. Data</i> , <u>1976</u> , 21,
EXPERIMEN	NTAL VALUES	:		······································
т/к	P/bar	Conc of MEA /wt%	Liquid comp mol H ₂ S/mol amine	
333.15	3.450 5.995 32.64	15.2	0.997 1.114 1.526	0.0476 0.0529 0.0711
353.15	0.000037 0.00013 0.00099 0.00155 0.113 0.120 4.663 8.660 32.37		0.0055 0.0143 0.0349 0.0418 0.382 0.385 0.993 1.028 1.468	0.000276 0.000717 0.00175 0.00209 0.0188 0.0190 0.0475 0.0490 0.0686
373.13	0.000063 0.00041 0.0063 0.0075 0.0184 0.306 0.306 9.299 10.10 38.50		0.0058 0.0143 0.0633 0.121 0.376 0.384 0.952 1.015 1.358	0.00029 0.00072 0.00317 0.00396 0.00603 0.0185 0.0189 0.0456 0.0485 0.0638
393.15	0.023 0.024 0.043 0.639 0.673 0.986 1.239 38.24		0.0653 0.0812 0.122 0.383 0.386 0.923 0.939 1.36	0.00327 0.00406 0.00608 0.0189 0.0190 0.0443 0.0450 0.0639
413.15	0.045 0.053		0.0610 0.0749	0.00305 0.00374
299.81	0.00076 0.0052 0.0092 0.017	30	0.081 0.231 0.311 0.406	0.00900 0.0252 0.0337 0.0435
310.93	0.00001 0.00083 0.0075 0.107		0.0083 0.048 0.199 0.616	0.000930 0.00535 0.0218 0.0646
366.48	0.00036 0.0013 0.142 1.667		0.0089 0.0509 0.207 0.570	0.000997 0.00568 0.0227 0.0601

ŧ

COMPONENTS:	ORIGINAL MEASUREMENTS:
 Hydrogen sulfide; H₂S; [7783-06-4] Water; H₂O; [7732-18-5] 2-Aminoethanol (Monoethanolamine): C₂H₇NO; [141-43-5] 	Isaacs, E. E.; Otto, F. D.; Mather, A. E. <i>J. Chem. Eng. Data</i> <u>1980</u> , 25, 118-120.
VARIABLES: Pressure	PREPARED BY: C. L. Young
EXPERIMENTAL VALUES:	
Partial press T/K hydrogen su /kPa	ure of Mole ratio H2S/C2H7NO lfide in liquid
373.2 0.0090 0.0310 0.140 0.354 1.67 1.50	0.016 0.0210 0.0300 0.0430 0.090 0.092
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Nitrogen passed through three 250 ml vessels in series which contained amine solution with a certain amount of dissolved carbon dioxide and hydrogen sulfide. Emerging gas from last vessel analysed by GC.	
Liquid sample taken from last vessel. Hydrogen sulfide content determined by iodine-thiosulfate titration.	ESTIMATED ERROR: $\delta T/K=\pm 0.5; \delta x=\pm 6\%$ (estimated by compiler) REFERENCES:

		Hydrogen Sulfide ir	r Aqueous Solvents	9
COMPONENTS:			ORIGINAL MEASUREMEN	TS:
 Hydrogen sulfide; H₂S; [7783-06-4] Water; H₂O; [7732-18-5] Ethanol, 2,2'-iminobis-, (diethanolamine); C₄H₁₁NO₂; [111-42-2] 		Leibush, A.G.; Shneerson, A.L. Zhur. Prik. Khim. <u>1950</u> , 23, 145-152 J. Applied Chem. USSR <u>1950</u> , 23, 149-157.		
VARIABLES: Temperature, pressure, composition of liquid phase			PREPARED BY: P.G.T. Fogg	
EXPERIMENTAL VALUE	S:			
Conc.of DEA /mol dm ⁻³	т/К	P _{H2S} /mmHg	P _{H2S} /bar [*]	Mole ratio H ₂ S/DEA
0.97	288.2	0.076	0.000101	0.040
		1.27	0.00169	0.194
		5.73	0.00764	0.420
		24.0	0.0320	0.670
		43.0	0.0573	0.734
		94.5	0.1260	0.838
	298.2	0.147	0.000196	0.040
		0.50	0.00067	0.091
		1.97	0.00263	0.194
		7.92	0.01056	0.420
		38.0	0.0507	0.670
		70.8	0.0944	0.734
		145	0.193	0.838
*calculated by	compiler	•. DEA =	diethanolamine	
		AUXILIARY	INFORMATION	
METHOD/APPARATUS/H	PROCEDURE:		SOURCE AND PURITY (DF MATERIALS:
N_2 or a mixtur passed success absorbers cont in an aqueous H_2S in the eme into cadmium c	ively thr aining H ₂ solution rging gas	ough two S dissolved of DEA. The was passed	detected 3. Contained 0 CO ₂ per uni solution; 1	& Na ₂ S: no SO ₂ .2 to 0.6 volumes of t volume of ess than 1% by otal impurities.
into cadmium or zinc acetate solution and the precipitated sulfides estimated by iodimetry. Hydrogen sulfide in the DEA solutions was also determined by iodimetry.		P _H likely	0.1 (authors) to be 5 to 15% too ecause of CO ₂ uthors)	

<pre>COMPONENTS: 1. Hydrogen sulfide; H₂S; [7783-06-4] 2. Water; H₂O; [7732-18-5] 3. Ethanol, 2,2'-iminobis-, (diethanolamine); C₄H₁₁NO₂; [111-42-2]</pre>			ORIGINAL MEASUREMENTS: Leibush, A.G.; Shneerson, A.L. Zhur. Prik. Khim. <u>1950</u> , 23, 145-152. J. Applied Chem. USSR <u>1950</u> , 23, 149-157.		
Conc.of DEA /mol dm ⁻³	т/к	P _{H₂S} /mmHg	P _{H2S} /bar [*]	Mole ratio H ₂ S/DEA	
0.97	323.2	0.34	0.00045	0.040	
		1.59	0.00212	0.091	
		6.17	0.00823	0.194	
		32.7	0.0436	0.420	
		143	0.191	0.670	
		197	0.263	0.734	
		312	0.416	0.838	
2.0	288.2	0.319	0.000425	0.073	
		3.0	0.0040	0.221	
		6.9	0.0092	0.342	
		14.6	0.0195	0.465	
		40.5	0.0540	0.624	
		99	0.132	0.780	
	298.2	0.167	0.000223	0.035	
	290.2	0.71	0.00095	0.073	
		3.3	0.0044	0.175	
		5.1	0.0068	0.221	
		12.1	0.0161	0.342	
		12.5	0.0167	0.353	
		13.5	0.0180	0.368	
		23.7	0.0316	0.465	
		68.5	0.0913	0.624	
		219	0.292	0.780	
	323.2	0.048	0.000064	0.006	
		0.276	0.000368	0.022	
		0.565	0.000753	0.035	
		11.3	0.0151	0.175	
		15.1	0.0201	0.221	
		40.8	0.0544	0.342	
		86.5	0.1153	0.465	
*calculated	by compile	r. DEA =	diethanolamine		

I

COMPONENTS:				ORIGINAL MEASUREMENTS:		
<pre>l. Hydrogen sulfide; H₂S; [7783-06-4]</pre>				Atwood, K.; Arnold, M. R.;		
<pre>2. 2,2^LIminobisethanol (Diethanol- amine); C₄H₁₁NO₂; [111-42-2]</pre>					9, 1439-44.	
	[7732-18	-5]				
			PREPARED BY:			
ire, pre	essure, co	omposition		C. L. Youn	a	
L VALUES:						
t/°F	Wt-% amine	P/mmHg	P/kPa	Conc. H ₂ S /mol l ⁻¹	Mole ratio †	
100	10	0.346 712	0.0462	0.0520	0.0543 0.997	
140		0.587	0.0783	0.0337	0.352 0.713	
80	25	0.00870 2.89	0.001160 0.385	0.0123 0.316	0.00505 0.130	
120		0.131	0.0175	0.0327	0.862 0.0134	
100	50	682 0.0566	90.9 0.00755	2.002 0.0281	0.852 0.00560	
		63.1 422	8.42 56.3	1.915 3.54	0.394 0.751	
140		0.135	0.0180	0.0281	0.00559 0.153	
		646	86.1	3.11	0.653	
		AUXILIARY	INFORMATION			
RATUS / PRO	OCEDURE :		_	TTY OF MATERIALS	·····	
METHOD/APPARATUS/PROCEDURE: Gas saturation method was used in which a known quantity of hydrogen was passed through a series of saturators containing a solution of known hydrogen sulfide concentration. At partial pressures of H ₂ S greater than 100 mmHg, solution saturation method was used. H ₂ S in soln. determined by iodimetry. Details in source.			 Stated products of the second s	purity 99.7 mc cal grade. ils. DR: 12; $\delta p/kPa =$ io) = ±3% (est	ble per ±2%;	
	COG-4] minobise ; C ₄ H ₁ 2-2] H ₂ O; mre, pre- L VALUES: t/°F 100 140 80 120 100 140 RATUS/PRO ration r cnown que ed throw rs conta drogen s al press mmHg, s as used ed by io	<pre>06-4] inobisethanol (E ; C₄H₁₁NO₂; i2-2] H₂O; [7732-18 ure, pressure, co L VALUES: t/°F amine 100 10 140 80 25 120 100 50 140</pre>	$\begin{array}{c} 06-4] \\ \text{minobisethanol (Diethanol-; C_4H_11NO_2; 2-2] \\ H_2O; [7732-18-5] \\ \\ \text{mre, pressure, composition \\ \hline VALUES: \\ \\ t/^F & \text{amine } P/mmHg \\ \hline 100 & 10 & 0.346 \\ 712 \\ 140 & 0.587 \\ 178 \\ 80 & 25 & 0.00870 \\ 2.89 \\ 320 \\ 120 & 0.131 \\ 682 \\ 100 & 50 & 0.0566 \\ 63.1 \\ 422 \\ 140 & 0.135 \\ 35.7 \\ 646 \\ \hline \\ \hline \\ \hline \\ \hline \\ Moles of hydrogen \\ \hline \\ \\ AUXILIARY \\ \hline \\ RATUS/PROCEDURE: \\ \hline \\ ration method was used in \\ & & & & & & & & \\ & & & & & & & & \\ \hline \\ RATUS/PROCEDURE: \\ \hline \\ ration method was used in \\ & & & & & & & & & \\ \hline \\ RATUS/PROCEDURE: \\ \hline \\ ration method was used in \\ & & & & & & & & \\ \hline \\ RATUS/PROCEDURE: \\ \hline \\ ration method was used in \\ & & & & & & & & \\ \hline \\ ration method was used in \\ & & & & & & & & \\ \hline \\ ration method was used in \\ & & & & & & & & \\ \hline \\ ration method was used in \\ & & & & & & & \\ \hline \\ ration method was used in \\ & & & & & & & \\ \hline \\ ration method was used in \\ & & & & & & & \\ \hline \\ ration method was used in \\ & & & & & & & \\ \hline \\ ration method was used in \\ & & & & & & & \\ \hline \\ ration method was used in \\ & & & & & & & \\ \hline \\ ration method was used in \\ & & & & & & & \\ \hline \\ ration method was used in \\ & & & & & & \\ \hline \\ ration method was used in \\ & & & & & & \\ \hline \\ ration method was used in \\ & & & & & \\ \hline \\ ration method was used in \\ & & & & & & \\ \hline \\ ration method was used in \\ & & & & & & \\ \hline \\ ration method was used in \\ & & & & & \\ \hline \\ ration method was used in \\ & & & & \\ \hline \\ ration method was used in \\ & & & & \\ \hline \\ ration method was used in \\ & & & & \\ \hline \\ ration method was used in \\ & & & & \\ \hline \\ ration method was used in \\ & & & & \\ \hline \\ ration method was used in \\ & & & & \\ \hline \\ ration method was used in \\ & & & & \\ \hline \\ ration method was used in \\ & & & & \\ \hline \\ ration method was used in \\ & & & & \\ \hline \\ ration method was used in \\ & & & & \\ \hline \\ ration method was used in \\ & & & & \\ \hline \\ ration method was used in \\ ration method was us$	ren sulfide; H_2S ; $:06-4]$ Atwood, K. Kindrick, $Ind. Eng.$ inobisethanol (Diethanol- ; C_{H11NO_2} ; $!2-2]Atwood, K.Kindrick,Ind. Eng.H_20; [7732-18-5]PREPARED BY:are, pressure, compositionPREPARED BY:t/°FamineP/mmHg100100.3460.03460.046294.90.5870.0783100100.3461000.5870.07831200.1310.011602.890.38532042.712068290.90.05660.0075563.18.421400.1350.018055.74.7664686.1* Moles of hydrogen sulfide per rest of res containing a solution of drogen sulfide concentration.al pressures of H_2S greater mmHg, solution saturation as used. H_2S in soln.ed by iodimetry. Details e.a.ESTIMATED ERK\delta T/K = \pm 0.\delta (Mole rat$	ren sulfide; H_2S ; $.06-4]$ tinobisethanol (Diethanol- ; C,H_1NO_2 ; $[2-2]$ $H_2O;$ $[7732-18-5]$ Atwood, K.; Arnold, M. Kindrick, R. C. Ind. Eng. Chem. <u>1957</u> , 4 $H_2O;$ $[7732-18-5]$ PREPARED BY:tre, pressure, compositionConc. H_2S $/mol l^{-1}$ $VALUES:$ Wt-% amine P/mmHg P/kPa $t/^{\circ}F$ amine P/mmHg P/kPa 100 100.346 0.0462 0.0520 140 0.5870.0783 0.25 0.008700.001160 2.89 0.3850.316 320 42.7 2.024 120 0.1310.01750.0327 100 500.5660.007550.0281 63.1 8.42 1.9153.54 140 0.1350.01800.0281 422 56.33.541.0100 100 5064686.13.11 47 Moles of hydrogensulfide per mole of amine. $40XILLARY$ INFORMATIONRATUS/PROCEDURE: ration method was used in cnown quantity of hydrogen ad through a series of rs containing a solution of irogen sulfide concentration. al pressures of H ₂ S greater mmHg, solution saturation as used. H ₂ S in soln. ed by iodimetry. Details e.SOURCE AND PURITY OF MATERIALS SOURCE AND PURITY 99.7 mc cent.ESTIMATED ERROR: $\deltaT/K = \pm 0.12; \delta p/kPa = \delta (Mole ratio) = \pm 38 (est\delta (Mole ratio) = \pm 38 (est\delta$	

ł

ł

8 Hydrogen Sulfide in Aqueous Solvents			
COMPONENTS :	ORIGINAL MEASUREMENTS:		
<pre>1. Hydrogen sulfide; H₂S; [7783-06-4]</pre>	Lee, J.I.; Otto, F.D.; Mather, A.E.		
<pre>2. 2,2⁻-Iminobisethanol (Diethanol- amine); C₄H₁₁NO₂; [111-42-2]</pre>	J. Chem. Eng. Data, <u>1973</u> , 18, 71-3, 420.		
3. Water; H ₂ O; [7732-18-5]			
VARIABLES:	PREPARED BY:		
Temperature, pressure, composition	C. L. Young		
EXPERIMENTAL VALUES:			
T/K Conc of 2 /mol dm ⁻³	p/kPa a		
1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:		
Recirculating vapor flow apparatus with Jerguson liquid level gauge cell and magnetic pump. Nitrogen added to vapor to increase pressure to at least 200 kPa. Vapor analysed by gas chromatography. Partial pressure of hydrogen sulfide estimated from knowledge of pressure and vapor pressure of diethanolamine. Liquid samples passed into sulfuric acid and displaced hydrogen sulfide collected in buret.	 Matheson, C.P. grade purity 99.91 mole per cent. Purity 99.8 mole per cent. (Nitrogen used as carrier, purity 99.997 mole per cent.) 		

		· · · · · · · · · · · · · · · · · · ·		
т/к	Conc. cf 2/mol	dm ⁻³ p/kPa	. Q	
323.15	2.0	614.0 903.2 910.1 1001.1 1138.3 1332.7 1373.4 1655.4 1728.5 1892.6	0.978 1.028 1.030 1.023 1.180 1.255 1.227 1.310 1.275 1.347	
348.15	2.0	3.25 7.72 13.4 15.1 37.2 63.0 128.1 228.9 476.4 710.1 974.2 1139.7 1152.1 1365.1 1475.5 1778.8 2000.1	0.159 0.226 0.316 0.354 0.445 0.530 0.639 0.783 0.905 0.938 1.012 1.079 1.080 1.062 1.117 1.200 1.274	
373.15	2.0	11.0 57.6 176.5 429.2 889.4 1434.8 1896.0 1968.4	0.150 0.314 0.506 0.694 0.873 1.053 1.127 1.131	
393.15	2.0	25.2 74.5 342.0 688.8 1042.5 1516.8 1916.7 1925.7	0.162 0.256 0.521 0.680 0.812 0.975 1.062 1.070	
298.15	3.5	0.834 3.89 6.76 16.9 35.8 48.5 100.0 111.0 266.1 389.7 732.9 1037.0 1357.0 1756.1	0.201 0.352 0.449 0.613 0.681 0.711 0.785 0.790 0.875 0.948 1.020 1.103 1.120 1.206	
323.15	3.5	0.738 5.07 21.8 66.8 123.4 219.9 392.3 672.2 935.6 1385.8 1985.7	0.064 0.200 0.387 0.616 0.713 0.776 0.858 0.918 0.975 1.039 1.097	

т/к	Conc of 2./mol	dm ⁻³ p/kPa	α
348.15	3.5	2.36 12.8 59.4 166.8 307.5 589.5 871.5 1441.0 2104.9	0.072 0.198 0.396 0.614 0.723 0.831 0.855 0.945 1.042
373.15	3.5	5.47 33.9 139.3 226.1 357.1 512.3 601.2 921.1 1362.4 2076.0	0.069 0.193 0.391 0.582 0.675 0.688 0.762 0.830 0.927
393.15	3.5	13.3 78.2 253.0 361.3 677.7 750.1 1238.3 2003.6	0.069 0.187 0.365 0.440 0.618 0.625 0.725 0.836

 α = mole ratio in liquid phase H₂S/Diethanolamine

CONTRACTOR	
COMPONENTS:	ORIGINAL MEASUREMENTS:
1. Hydrogen sulfide; H ₂ S;	Lee, J.I.; Otto, F.D.; Mather, A.E.
[7783-06-4] 2. 2,2'-iminobisethanol,	J. Chem. Eng. Data. <u>1973</u> , 18, 71-3,
(Diethanolamine); C ₄ H ₁₁ NO ₂ ;	420.
[111-42-2]	Some data taken from Amer. Chem. Soc.
3. Water; H_2O ; [7732-18-5]	deposited document.
VARIABLES:	PREPARED BY:
	C I Young
Temperature, pressure, compositio	on C.L. Young.
EXPERIMENTAL VALUES:	
T/K Conc.of DEA/mol dm	³ P/kPa α
298.15 0.5	0.119 0.2080
	0.390 0.2965
	1.76 0.4028 15.2 0.6506
	15.2 0.6506 71.7 0.8642
	161.7 1.015
	201.0 1.034
	275.4 1.194
	464.0 1.493 647.8 1.896
	658.4 1.813
	1034.2 2.567
	1272.1 2.893
	1561.6 3.293
323.15 0.5	0.0779 0.0946
	0.883 0.208
	19.2 0.549
	70.2 0.7242 70.3 0.7471
	102.0 0.8296
	244.1 1.015
	315.8 1.048
	414.4 1.196 589.5 1.380
	775.6 1.581
AUXI	LIARY INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Recirculating vapor flow apparat	us 1. Matheson C.P. grade purity
with Jerguson liquid level gauge	
cell and magnetic pump. Nitroge added to vapor to increase press	
to at least 200 kPa. Vapor anal	ysed
by gas chromatography. Partial	3. Distilled nitrogen used as
pressure of hydrogen sulfide	carrier, purity 99.997 mole sure per cent.
estimated from knowledge of pres and vapor pressure of diethanola	
Liquid samples passed into sulfu	
acid and displaced hydrogen sulf	
collected in buret.	
System contained a trace of carb	on ESTIMATED ERROR:
dioxide.	$\delta T/K = \pm 0.5; \ \delta P/kPa = \pm 1\%;$
	$\delta \alpha = \pm 3 - 5 \%$
	REFERENCES:
1	

COMPONENTS:			ORIGINAL MEASUREMENTS		
1.	1. Hydrogen sulfide; H_2S : [7783-06-4]			J.I.; Otto, F.D.; r, A.E.	
2.	2,2'-iminobisethanol (Diethanolamine); C, [111-42-2]			em. Eng. Data. <u>1973</u> , 18,	
з.	Water; H ₂ O; [7732-18	8-5]			
EXP	ERIMENTAL VALUES: T/K Conc	of DEA/mol dm	³ P/kPa	α	
	323.15	0.5	1132.8 1521.0	2.0492 2.431	
	348.15	0.5	0.800 2.46 4.73 33.3 88.2 311.6 353.7 854.2 1081.1 1622.3	0.0960 0.1691 0.2491 0.5094 0.642 0.980 0.9753 1.3702 1.588 1.932	
	373.15	0.5	2.66 9.60 35.6 74.5 191.5 552.3 1125.2 1603.0	0.105 0.202 0.368 0.486 0.6858 1.068 1.455 1.682	
	393.15	0.5	4.96 17.1 36.9 206.3 518.5 978.4 1425.1 1585.8	0.105 0.202 0.2876 0.6252 0.8714 1.256 1.5412 1.662	
	298.15	5.0	0.476 0.820 1.10 2.72 14.6 18.0 19.0 42.7 76.2 262.0 559.2 755.7 868.7 1104.5 1671.9	0.1156 0.1605 0.2028 0.3172 0.5418 0.5894 0.5821 0.7166 0.789 0.879 0.942 0.998 1.085 1.102 1.160	
	323.15	5.0	0.896 4.32 14.9 46.2 131.3 273.9 343.4 930.8 1246.8 1635.4	0.0852 0.205 0.329 0.506 0.6845 0.820 0.8322 0.901 0.992 1.043	

COMPONENTS	ORIGINAL MEASUREMENTS:
<pre>l. Hydrogen sulfide; H₂S; [7783-06-</pre>	
<pre>2. 2,2'-iminobisethanol, (Diethanolamine); C₄H₁₁NO₂; [111-42-2]</pre>	Mather, A.E. J. Chem. Eng. Data. <u>1973</u> , 18, 71-3,420
3. Water; H ₂ O: [7732-18-5]	
EXPERIMENTAL VALUES:	
T/K Conc. of DEA /mol dm 3	<i>P/</i> kPa α
	0.6180.02231.430.05118.960.122617.80.18753.60.338577.20.386144.80.4974274.40.661354.00.6963620.50.79221173.50.91811359.60.9421776.10.9729
373.15 5.0	5.820.048448.90.1869124.10.3167219.20.415384.50.5827819.10.74121542.30.8241
	14.90.048971.80.1408248.20.3284400.20.438495.00.5111761.20.5559971.50.61261338.90.66231661.60.7274
α = Mole ratio in liquid	, H ₂ S/Diethanolamine

COMPONENTS:	ORIGINAL MEASUREMENTS:		
 Hydrogen sulfide; H₂S; 	Lawson, J.D. and Garst, A.W.		
[7783-06-4]			
2. Water; H ₂ O; [7732-18-5]	J. Chem. Engng. Data. <u>1976</u> , 21,		
3. 2,2'-iminobisethanol, Diethanolamine; C ₄ H ₁₁ NO ₂ ;	20-30.		
[111-42-2]			
VARIABLES:	PREPARED BY:		
Temperature, pressure	C.L. Young		
EXPERIMENTAL VALUES:			
	iquid comp. Mole fraction ol H ₂ S /mol of hydrogen		
	mine sulfide in		
-	liquid, x_{H_2S}		
310.93 0.000015 25	0.0038 0.00021		
0.00009	0.0043 0.00023		
0.000012	0.0044 0.00024 0.0112 0.00060		
0.000097 0.000071	0.0157 0.00085		
0.0011	0.0526 0.00283		
0.0017	0.0755 0.00406		
0.0044	0.133 0.177 0.00946		
0.0087 0.0095	0.196 0.0105		
0.0160	0.197 0.0106		
0.0180	0.217 0.0116		
0.0205	0.230 0.230 0.0123		
0.0184 0.0153	0.230 0.0125		
0.0145	0.258 0.0137		
0.0289	0.319 0.0169		
0.0786	0.457 0.0241 0.481 0.0253		
0.0919 0.213	0.652 0.0340		
1.013	0.855 0.0441		
1.070	0.830 0.0429 0.975 0.0500		
2.944	0.975 0.0300		
AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:		
Rocking equilibrium cell fitted with	1. Purity 99.5 mole per cent.		
liquid and vapor sampling valves.	2. Distilled.		
Pressure measured with Bourdon	3. Commercial sample purity better than 99 mole per cent as		
gauge.	determined by acid titration.		
Cell charged with amine then	-		
hydrogen sulfide and methane added as an inert gas to "achieve the			
desired total pressure"			
Vapor phases analysed by mass			
spectrometry. Liquid samples analysed by electrometric titration,	ESTIMATED ERROR:		
details in source. Additional	$\delta T/K = \pm 0.15$ at 310 K increasing		
analytical methods were used for	to ±0.6 at 422 K;		
some samples.	$\delta x_{H_2S} = \pm 10$ % increasing to ± 16 % at		
	low pressures		
	ADFERENCES :		

COMPONENTS:			ORIGINAL ME	
		[7783-06-4]		D. and Garst, A.W.
	[7732-18-5]	J. Chem. E 21, 20-30.	ngng. Data. <u>1976</u> ,
3. 2,2'-iminob Diethanolam [111-42-2]	isethanol, ine; C ₄ H ₁₁ N	02;		
EXPERIMENTAL VA	LUES:			
T/K	P _{H2S} /bar	Conc of DEA Wt. %	Liquid comp. mol H2S/mol amine	Mole fraction of hydrogen sulfide in liquid, x _{H2} S
310.93	2.758 2.678 13.988 20.783 22.781 26.645	25	1.082 1.043 1.107 1.395 1.412 1.582	0.0552 0.0533 0.0564 0.0700 0.0708 0.0787
324.82	0.0165 0.0560 0.264 2.558 17.852		0.180 0.317 0.588 0.958 1.241	0.00962 0.0168 0.0308 0.0492 0.0628
338.71	0.00011 0.00008 0.00013 0.00035 0.00028 0.00160 0.00214 0.0262 0.0274 0.0362 0.0617 0.0610 0.0857 0.0763 0.0763 0.0763 0.0763 0.0763 0.0763 0.0763 0.0466 0.113 0.280 0.261 0.402 0.402 0.477 0.6666 2.545 5.276 3.997 18.651 23.847 26.831 31.441		0.0045 0.0069 0.0092 0.0100 0.0151 0.0301 0.0488 0.124 0.143 0.179 0.205 0.207 0.252 0.255 0.256 0.257 0.264 0.318 0.462 0.515 0.591 0.644 0.942 0.991 1.230 1.25 1.315 1.432	0.00024 0.00037 0.00050 0.00054 0.00081 0.00162 0.00263 0.00665 0.00957 0.0109 0.0111 0.0134 0.0136 0.0137 0.0137 0.0137 0.0141 0.0169 0.0235 0.0243 0.0271 0.0309 0.0336 0.0460 0.0484 0.0508 0.0623 0.0632 0.0663 0.0718
352.59	0.075 0.204 1.047 4.570 19.580	25	0.180 0.314 0.582 0.918 1.212	0.00962 0.0167 0.0304 0.0472 0.0614
366.48	0.00013 0.0015 0.0023 0.0043 0.087 0.124 0.181		0.0039 0.0153 0.0208 0.0319 0.132 0.178 0.201	0.00021 0.00083 0.00112 0.00172 0.00708 0.00952 0.0107

COM	PONENTS:	sulfide: H ₂ S	; [7783-06-4]		EASUREMENTS .D. and Garst, A.W.	
2.						
3.				J. Chem. Engng. Data. <u>1976</u> , 21, 20-30.		
	T/K	P _{H₂S} ∕bar	Conc.of DEA Wt. %	Liquid comp. mol H2S/mol amine.	Mole fraction of hydrogen sulfide in liquid, x _{H2S}	
	366.48	0.217 0.175 0.366 1.412 5.928 6.128 23.847 35.038	25	0.211 0.212 0.315 0.565 0.894 0.896 1.116 1.295	0.0123 0.0113 0.0167 0.0296 0.0460 0.0462 0.0568 0.0653	
	380.37	0.222 0.580 1.932 7.354 25.712		0.169 0.306 0.563 0.856 1.134	0.00904 0.0163 0.0295 0.0442 0.0577	
	394.25	0.0045 0.0041 0.396 0.465 0.493 0.986 3.304 5.023 8.420 8.260 28.110 37.036		0.0143 0.0151 0.169 0.192 0.202 0.295 0.531 0.600 0.768 0.841 1.095 1.241	0.000771 0.000815 0.00904 0.0103 0.0108 0.0157 0.0279 0.0314 0.0398 0.0434 0.0558 0.0628	
	408.15	0.613 4.476 10.112		0.162 0.496 0.766	0.00867 0.0261 0.0397	
	422.04	1.092 4.983 10.698		0.151 0.455 0.587	0.00809 0.0240 0.0307	
	310.93	0.00012 0.0039 0.032 0.253	50	0.0111 0.0522 0.212 0.553	0.00162 0.00757 0.0301 0.0748	
	333.15	0.00009 0.044 0.866	54.5	0.0053 0.124 0.587	0.000774 0.0178 0.0790	
	366.48	0.0045 0.041 0.386 2.758	50	0.011 0.055 0.211 0.566	0.00161 0.00798 0.0299 0.0764	

COMPONENTS: 1. Hydrogen sulfide; H ₂ S; [7783-06-4] 2. Water; H ₂ O; [7732-18-5] 3. Ethanol, 2,2'-iminobis- (diethanolamine); C ₄ H ₁₁ NO ₂ ; [111-42-2] VARIABLES: Temperature, pressure EXPERIMENTAL VALUES:	ORIGINAL MEASUREMENTS: Lal, D.; Otto, F.D.; Mather, A.E. Can.J.Chem.Eng. <u>1985</u> , 63, 681-685. PREPARED BY: P.G.T. Fogg
T/K ^P H ₂ S ^{/kPa} Mole ratio in liquid, H ₂ S/DEA	T/K P _{H2} S [/] kPa Mole ratio in liquid, H ₂ S/DEA
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Apparatus described in ref. (1) was used. Nitrogen was passed through three 500 cm ³ stainless steel vessels in series. These contained amine solution and dissolved H_2S . Temperatures were controlled to \pm 0.5 K by an oil-bath. The gas emerging from the last vessel was analysed by gas chromatography. Samples of liquid from this vessel were analysed for H_2S by iodine-thiosulfate titration.	3. supplied by Dow chemicals. ESTIMATED ERROR: $\delta T/K = \pm 0.5$ (authors) $\delta P/P = \pm 0.15$ at $P_{H_2S} > 0.05$ kPa; larger at lower partial pressures (authors). REFERENCES: 1. Isaacs, E.E.; Otto, F.D.; Mather, A.E. J.Chem.Eng.Data <u>1980</u> , 25, 118.

	alogen Sunde n	i Aqueous O	UNCHIS		
<u>,</u>		ORIGINAL M	EASUREMENTS:		
en sulfide; H ₂ S D6-4]	;	Martin, A.E.	J.L.; Otto,	F.D.; M	ather,
		J. Chem 163-4.	. Engng. Data	z. <u>1978</u> ,	23,
3. Water; H ₂ O; [7732-18-5]					
·····		PREPARED B	Y:		
ature, pressure		:	C.L. You	ung	
VALUES:	لى <u></u>				
		т/к	P [§] /kPa Co	onc of D /Wt%	οGA α [†]
1490 1730 1480 1140 679 414 217 121 121 121 86.1 72.9 63.1 46.2 53.1 28.3 18.9 11.5 8.87	1.068 1.052 1.043 1.001 0.929 0.877 0.778 0.711 0.699 0.657 0.654 0.608 0.577 0.543 0.508 0.452 0.381 0.344	373.15	1890 1660 1460 987 662 620 509 396 273 126 65.3 55.1 48.2 17.5 16.5 13.4 9.29	60.0	0.221 0.909 0.849 0.806 0.712 0.640 0.639 0.571 0.522 0.456 0.316 0.217 0.210 0.182 0.116 0.100 0.095 0.071 0.057
r.	tio in liquid	l, hydroge	en sulfide/di	iglycola	mine
son liquid leve agnetic pump. apor to increas it 350 kPa. Vap omatography. I of hydrogen sult owledge of pres- sure of diethan aples passed int	el gauge Nitrogen se pressure por analyzed Partial fide estimat- ssure and nolamine. to sulfuric	1. No c 2. Jeff 3. No c ESTIMATED $\delta T/K =$ = ±0.02 greater	letails giver Ferson Chemic letails giver ERROR: ±0.5; δ <i>P/</i> bar 2 or ±4% (whi c).	n. cal Co. n. c = ±1.0	
	en sulfide; H_2S D6-4] 1, 2- (2-aminoe colamine); C ₄ H ₁ 5-6] $H_2O;$ [7732-18- ature, pressure VALUES: $P^{\$}/kPa$ Conc o /Wt 1730 60. 1490 1730 60. 1490 1730 40. 1480 1140 679 414 217 121 121 121 86.1 72.9 63.1 46.2 53.1 28.3 18.9 11.5 8.87 5.36 3.91 $P^{\$}$ partial α^{\dagger} mole rate (TUS/PROCEDURE: ting vapor flow tagnetic pump. Tagor to increase to 350 kPa. Var comatography. In of hydrogen sulf towledge of press tsure of diethar ples passed int displaced carbon	en sulfide; H_2S ; D6-4] 1, 2- (2-aminoethoxy)- colamine); $C_{4}H_{11}NO_{2}$; 5-6] H_2O ; [7732-18-5] ature, pressure VALUES: $p^{\$}/kPa$ Conc of DGA a^{\dagger} /Wt $\$$ 1730 60.0 1.091 1490 1.068 1730 1.052 1480 1.043 1140 1.001 679 0.929 414 0.877 217 0.778 121 0.711 121 0.699 86.1 0.657 72.9 0.654 63.1 0.608 46.2 0.577 53.1 0.543 28.3 0.508 18.9 0.452 11.5 0.381 8.87 0.344 5.36 0.291 3.91 0.262 $p^{\$}$ partial pressure of a^{\dagger} mole ratio in liquid AUXILIARY TUS/PROCEDURE: Eing vapor flow apparatus ison liquid level gauge bagnetic pump. Nitrogen apor to increase pressure it 350 kPa. Vapor analyzed omatography. Partial of hydrogen sulfide estimat- iowledge of pressure and sure of diethanolamine. ples passed into sulfuric lisplaced carbon dioxide	an sulfide; H_2S ; Dolamine); $C_{4H_1}NO_2$; Solamine); $C_{4H_2}NO_2$ Solamine); $C_{4H_2}NO_2$ Solam	$26-41$ A.E. $1, 2 - (2-aminoethoxy) - colamine); C_{H_{11}NO_2;}$ $J. Chem. Engng. Data 5-61 I_2O; [7732-18-5] H_2O; [7732-18-5] PREPARED BY: 120; [7732-18-5] PREPARED BY: VALUES: p^{5}/kPa Conc of DGA a^{\dagger} T/K p^{5}/kPa Conc of DGA a^{\dagger} T/K p^{5}/kPa Conc of DGA a^{\dagger} 1730 60.0 1.091 323.15 2.52 1490 1.068 373.15 1890 1480 1.043 1660 1140 1.001 1460 1.061 1440 1.077 662 217 0.711 509 121 0.699 396 66.1 0.657 273 72.9 0.654 1226 65.3 48.2 28.3 13.4 8.87 0.381 13.4 9.29 9.29 9.29 9.29 9.36 14.87 9.29 9.29 9.23 16.5 12.6 63.3 13.4 9.29 9.36 12.6 13.4$	an sulfide; H_2S ; Martin, J.L.; Otto, F.D.; MA.E. $Martin, J.L.; Otto, F.D.; MA.E. Martin, J.L.; Otto, F.D.; MA.S.E. Martin, J.E.; Otto, F.D.; Martin, Martin, J.E. Martin, J.E.; Otto, F.D.; Martin, J.E. Martin, J.E.; Otto, F.D.; Martin, J.E. Martin, J.E.; Otto, F.D.; Martin, J.E$

·			<u> </u>			
COMPONE	NTS:		ORIGINAL MEASUREMENTS:			
 Hydrogen sulfide; H₂S; [7783-06-4] Water; H₂O; [7732-18-5] 2,2'-(Methylimino)bisethanol (methyldiethanolamine); C₅H₁₃NO₂; [105-59-9] 			Jou, F-Y.; Mather, A.E.; Otto, F.D. Ind.Eng.Chem.Process Des.Dev. <u>1982</u> , 21, 539 - 544.			
VARIABLES:			PREPARI	ED BY:	· · · · · · · · · · · · · · · · · · ·	
	VARIABLES: Temperature, pressure, composition.			.T. Fogg		
EXPERTM	ENTAL VALUE	- 				
				4 6 1 3 73		
	ration of me	ethyldiethanolamine	(MDEA)	= 1.0 kmoi m °	(1.0 mol dm ³)	
Т/К	P _{H2S} /kPa	Mole ratio in liquid H ₂ S/MDEA	т/к	P _{H₂S} /kPa	Mole ratio in liquid H ₂ S/MDEA	
298.2	0.00674	0.0293	313.2	1.99	0.297	
	0.0273	0.0539		10.9	0.604	
	0.170	0.137		43.3	0.866	
	1.10	0.315		102.0	0.994	
	8.37	0.658		417.0	1.308	
	38.9	0.911		1290.0	1.917	
	182.0	1.183		1800.0	2.250	
	413.0	1.424		2730.0	2.902	
	830.0	1.850	343.2	0.00210	0.00540	
	1380.0	2.364		0.00336	0.00661	
	1960.0	2.935		0.00810	0.0109	
313.2	0.00230	0.0111		0.0110	0.0130	
	0.00409	0.0144		0.0232	0.0183	
	0.0109	0.0225		0.0391	0.0225	
	0.0910	0.0613		0.0836	0.0300	
	0.513	0.149		0.269	0.0537	
			* - <u>-</u>	- <u>way to an in the weat of the sec</u>		
		AUXILIARY	INFORMAT:	ION		
METHOD/	APPARATUS/PI	ROCEDURE:	SOURCE	AND PURITY OF	MATERIALS:	
Jerguso	n gage with	l consisted of a a 250 cm³ tubular		high purity from	m Linde &	
Gas was pump. thermop	circulated Temperatures iles and com			n Aldrich Chemi ity > 99%	cal Co.;	
	by an air-l	bath. Pressures Heise bourdon	ESTIMA	TED ERROR:		
		ll was charged				
pressur necessa	e. Nitrogen ry, to ensur	to the appropriate n was added, where re that the total	δт/к	= ±0.5 (autho	rs)	
Gases w	ere circula	atmospheric. ted for at least e was analysed by	REFERE	NCES:		
gas chro liquid iodimet with H ₂ pressur	omatography phase was de ry and amine SO ₄ . Solub:	H ₂ S in the etermined by by titration ilities at partial h 100 kPa were				

	NTS:		ORIGINA	L MEASUREMENT	S:
.					-
 Hydrogen sulfide; H₂S; [7783-06-4] Water; H₂O; [7732-18-5] 2,2'-(Methylimino)bisethanol (methyldiethanolamine); C₅H₁₃NO₂; [105-59-9] 			Jou, F-Y.; Mather, A.E.; Otto, F.D. Ind.Eng.Chem.Process Des.Dev.		
			<u>1982</u> , 2	1, 539 - 544.	
EXPERIM	IENTAL VALUE	S:		· · · · · · · · · · · · · · · · · · ·	
Concent	ration of m	ethyldiethanolamine	e (MDEA)	= 1.0 kmol m ⁻	³ (1.0 mol dm ⁻³)
т/к	P _{H2S} /kPa	Mole ratio in liquid H ₂ S/MDEA	т/к	P _{H₂S} /kPa	Mole ratio in liquid H ₂ S/MDEA
343.2	11.0	0.354	373.2	994.0	1.251
	14.3	0.384		2090.0	1.641
	146.0	0.886		2930.0	2.298
	511.0	1.185		4920.0	2.665
	925.0	1.405		5890.0	3.000
	1650.0	1.751	393.2	0.050	0.0098
	2420.0	2.085		0.52	0.0324
	3690.0	2.591		1.70	0.0566
	5030.0	3.229		11.5	0.145
373.2	0.090	0.0179		129.0	0.495
	0.236	0.0283		496.0	0.871
	1.03	0.0561		1290.0	1.233
	4.22	0.118		2710.0	1.750
	35.8	0.358		3730.0	2.078
	113.0	0.593		5230.0	2.627
	414.0	0.936			
Concentr	ration of me	thyldiethanolamine	= 2.0 kmo	1 m ⁻³ (2.0 mo	l dm ⁻³)
313.2	0.00260	0.00725	313.2	1010.0	1.489
	0.00871	0.0127		2260.0	1.906
	0.0308	0.0238	373.2	0.745	0.029
	0.171	0.0576		16.43	0.156
	0.370	0.0871		29.07	0.203
	1.20	0.162		72.53	0.357
	5.76	0.368		146.9	0.474
	8.98	0.443		266.3	0.660
	27.3	0.674		483.3	0.846
	107.0	0.965		1020	1.076
	258.0	1.063		1550	1.256
		thyldiethanolamine	= 4.28 km	ol m ⁻³ (4.28	mol dm ⁻³)
298.2	0.00593	0.000960	298.2	296.0	1.088
	0.0180	0.0171		476.0	1.173
	0.114	0.0446		765.0	1.273
	0.195	0.0611		1060.0	1.373
	0.464	0.0972		1370.0	1.506
	0.603	0.106		1670.0	1.588
	36.9	0.780		1830.0	1.686
	88.8	0.921		1960.0	1.699

COMPON	ENTS.		ORIGINAL MEASUREMENTS:			
CONTON			· · · · · · · · · · · · · · · · · · ·			
	rogen sulfid	e; H ₂ S;	Tou P.V. Mather A.F. Otto P.D.			
	783-06-4] er: H ₂ O: [77	32-18-51	Jou, F-Y.; Mather, A.E.; Otto, F.D.			
<pre>2. Water; H₂O; [7732-18-5] 3. 2,2'-(Methylimino)bisethanol</pre>			, v	Chem.Process	Des.Dev.	
	thyldiethano.		1982, 21, 539 - 544.			
		-				
EXPERI	MENTAL VALUE	S:				
Concen	tration of m	ethyldiethanolamine	(MDEA) =	4.28 kmol m ⁻	$^{3}(4.28 \text{ mol } dm^{-3})$	
т/к	P _{H2S} /kPa	Mole ratio	т/к	P _{H2S} /kPa	Mole ratio	
	-	in liquid H ₂ S/MDEA		-	in liquid H ₂ S/MDEA	
313.2	0.00314	0.00508	343.2	1420.0	1.163	
	0.00502	0.00580		2530.0	1.355	
	0.00714	0.00734		3460.0	1.521	
	0.0102	0.00805		4120.0	1.616	
	0.0387	0.0165		4990.0*	1.727	
	0.271	0.0446	373.2	0.0417	0.00434	
	1.42	0.103		0.133	0.00763	
	8.71	0.268		0.383	0.0142	
	28.5	0.499		1.66	0.0305	
	107.0	0.849		26.1	0.130	
	500.0	1.083		240.0	0.435	
	949.0	1.210		765.0	0.763	
	1540.0	1.369		1690.0	1.004	
	2140.0	1.520		2300.0	1.104	
	2360.0	1.576		3630.0	1.272	
	2800.0*	1.723		4720.0	1.409	
343.3	0.00130	0.00129		5680.0	1.518	
1	0.00274	0.00177	393.2	0.342	0.00950	
1	0.00451	0.00258		25.1	0.0895	
	0.00714	0.00311		252.0	0.303	
	0.00985	0.00367		1130.0	0.677	
	0.353	0.0253		2510.0	0.969	
	16.8	0.188		3400.0	1.084	
	23.7	0.233		4690.0	1.221	
	132.0	0.549		5390.0	1.285	
	528.0	0.953		5840.0	1.328	

* Liquid H_2 S phase present.

	•			ODICINAL MELCURE			
COMPONENTS		fide; H ₂ S	2.	ORIGINAL MEASURE Atwood, K.;			
1778	3-06-41			-		• ,	
		rilotrise		Kindrick, R. C. Ind. Eng. Chem. <u>1957</u> , 49, 1439-44.			
	ethanola -71-6]	mine); C	5H15NO3;				
3. Water; H ₂ O; [7732-18-5]							
VARIABLES	:			PREPARED BY:	<u></u>		
Temperature, pressure, composition					C. L. Young		
EXPERIMEN	TAL VALUES	:		l <u></u>	Conc. H ₂ S		
т/к	t∕°F	Wt-% amine	P/mmHg	P/kPa	/mol ℓ^{-1}	Mole ratio [†]	
1/1		amine		F/ KFQ	/		
299.8	80	15	1.31	0.175	0.0404	0.0395	
322.0	120		241 0.00424	32.1 0.000565	0.539 0.000795	0.531 0.000776	
J22.U	120		4.19	0.559	0.0396	0.0387	
227 T	140	20	115 5.66	15.3 0.755	0.264 0.0446	0.259 0.0324	
333.1	140	20	624	83.2	0.562	0.412	
310.9	100	30	0.568	0.0757	0.0261	0.0124	
333.1	140		55.3 0.0222	7.373 0.00296	0.315 0.00224	0.151 0.00107	
			624	83.2	0.714	0.345	
299.8	80	50	0.655 22.9	0.0873 3.05	0.0381 0.265	0.0106 0.0739	
			242	32.3	1.105	0.313	
			0 00005	0.000393	0 000070	0 000271	
322.0	120		0.00295		0.000976	0.000271	
322.0			57.2 693	7.63 92.4	0.297 1.179	0.0829 0.334	
322.0		Mole of 1	57.2 693 nydrogen sulf	7.63 92.4 ide per mole c	0.297 1.179	0.0829	
	+		57.2 693 nydrogen sulf	7.63 92.4 ide per mole c INFORMATION	0.297 1.179 of amine.	0.0829 0.334	
			57.2 693 nydrogen sulf	7.63 92.4 ide per mole c	0.297 1.179 of amine.	0.0829 0.334	
METHOD/AP Gas sat	+ PARATUS/PR	OCEDURE: method was	57.2 693 hydrogen sulf AUXILIARY s used in	7.63 92.4 ide per mole c INFORMATION SOURCE AND PURI 1. Stated pu	0.297 1.179 of amine.	0.0829 0.334	
METHOD/AP Gas sat which a	PARATUS/PR Suration a known q	OCEDURE: method was uantity of	57.2 693 hydrogen sulf AUXILIARY s used in f hydrogen	7.63 92.4 ide per mole c INFORMATION SOURCE AND PURI	0.297 1.179 of amine. TY OF MATERIALS	0.0829 0.334	
METHOD/AP Gas sat which a was pas	TPARATUS/PR Suration for known q sed thro	OCEDURE: method was uantity of ugh a ser:	57.2 693 hydrogen sulf AUXILIARY s used in f hydrogen ies of	7.63 92.4 ide per mole c INFORMATION SOURCE AND PURI 1. Stated pu	0.297 1.179 of amine. TY OF MATERIALS prity 99.7 mo	0.0829 0.334	
METHOD/AP Gas sat which a was pas saturat	† PARATUS/PR suration a known q sed thro cors cont	OCEDURE: method was uantity of ugh a ser: aining a s	57.2 693 hydrogen sulf AUXILIARY s used in f hydrogen ies of solution of	7.63 92.4 ide per mole c INFORMATION SOURCE AND PURI 1. Stated pu cent. 2. Analytica	0.297 1.179 of amine. TY OF MATERIALS writy 99.7 mo al grade.	0.0829 0.334	
METHOD/AP Gas sat which a was pas saturat known h	+ PARATUS/PR uration f known q sed thro ors cont ydrogen	OCEDURE: method was uantity of ugh a ser: aining a s sulfide co	57.2 693 hydrogen sulf AUXILIARY s used in f hydrogen ies of solution of poncentration.	7.63 92.4 ide per mole c INFORMATION SOURCE AND PURI 1. Stated pu cent. 2. Analytica	0.297 1.179 of amine. TY OF MATERIALS writy 99.7 mo al grade.	0.0829 0.334	
METHOD/AP Gas sat which a was pas saturat known h At part	PARATUS/PR uration f known q sed thro ors cont ydrogen ial pres	OCEDURE: method was uantity of ugh a ser: aining a s sulfide co sures of I	57.2 693 hydrogen sulf AUXILIARY s used in f hydrogen ies of solution of oncentration. I ₂ S greater	7.63 92.4 ide per mole c INFORMATION SOURCE AND PURI 1. Stated pu cent. 2. Analytica	0.297 1.179 of amine. TY OF MATERIALS writy 99.7 mo al grade.	0.0829 0.334	
METHOD/AP Gas sat which a was pas saturat known h At part than 10	+ PARATUS/PR uration a sed thro ors cont. ydrogen tial pres 0 mmHg,	OCEDURE: method was uantity of ugh a ser: aining a s sulfide co sures of H solution s	57.2 693 hydrogen sulf AUXILIARY s used in f hydrogen ies of solution of oncentration. H ₂ S greater saturation	7.63 92.4 ide per mole c INFORMATION SOURCE AND PURI 1. Stated pu cent. 2. Analytica	0.297 1.179 of amine. TY OF MATERIALS writy 99.7 mo al grade.	0.0829 0.334	
METHOD/AP Gas sat which a was pas saturat known h At part than 10 was use	+ PARATUS/PR uration f sed thro ors cont uydrogen tial press 0 mmHg, ed. H2S	OCEDURE: method was uantity of ugh a ser: aining a s sulfide co sures of F solution s in soln.	57.2 693 hydrogen sulf AUXILIARY s used in f hydrogen ies of solution of oncentration. H ₂ S greater saturation determined	7.63 92.4 ide per mole c INFORMATION SOURCE AND PURI 1. Stated pu cent. 2. Analytica 3. No detail	0.297 1.179 of amine. TY OF MATERIALS writy 99.7 mo al grade. Ls.	0.0829 0.334	
METHOD/AP Gas sat which a was pas saturat known h At part than 10 was use	+ PARATUS/PR uration f sed thro ors cont uydrogen tial press 0 mmHg, ed. H2S	OCEDURE: method was uantity of ugh a ser: aining a s sulfide co sures of H solution s	57.2 693 hydrogen sulf AUXILIARY s used in f hydrogen ies of solution of oncentration. H ₂ S greater saturation determined	7.63 92.4 ide per mole c INFORMATION SOURCE AND PURI 1. Stated pu cent. 2. Analytica 3. No detail ESTIMATED ERROR	0.297 1.179 of amine. TY OF MATERIALS writy 99.7 mo al grade. Ls.	0.0829 0.334 : le per	
METHOD/AP Gas sat which a was pas saturat known h At part than 10 was use	+ PARATUS/PR uration f sed thro ors cont uydrogen tial press 0 mmHg, ed. H2S	OCEDURE: method was uantity of ugh a ser: aining a s sulfide co sures of F solution s in soln.	57.2 693 hydrogen sulf AUXILIARY s used in f hydrogen ies of solution of oncentration. H ₂ S greater saturation determined	7.63 92.4 ide per mole c INFORMATION SOURCE AND PURI 1. Stated pu cent. 2. Analytica 3. No detail ESTIMATED ERROR $\delta T/K = \pm 0.12$	0.297 1.179 of amine. TY OF MATERIALS urity 99.7 mo al grade. Ls. $\frac{1}{2}; \delta p/kPa = \frac{1}{2} (est)$	0.0829 0.334 : le per ±2%; imated by	
METHOD/AP Gas sat which a was pas saturat known h At part than 10 was use	+ PARATUS/PR uration f sed thro ors cont uydrogen tial press 0 mmHg, ed. H2S	OCEDURE: method was uantity of ugh a ser: aining a s sulfide co sures of F solution s in soln.	57.2 693 hydrogen sulf AUXILIARY s used in f hydrogen ies of solution of oncentration. H ₂ S greater saturation determined	<pre>7.63 92.4 ide per mole c INFORMATION SOURCE AND PURI 1. Stated pu cent. 2. Analytica 3. No detail ESTIMATED ERROR</pre>	0.297 1.179 of amine. TY OF MATERIALS urity 99.7 mo al grade. Ls. $\frac{1}{2}; \delta p/kPa = \frac{1}{2} (est)$	0.0829 0.334 : le per ±2%;	
METHOD/AP Gas sat which a was pas saturat known h At part than 10 was use	+ PARATUS/PR uration f sed thro ors cont uydrogen tial press 0 mmHg, ed. H2S	OCEDURE: method was uantity of ugh a ser: aining a s sulfide co sures of F solution s in soln.	57.2 693 hydrogen sulf AUXILIARY s used in f hydrogen ies of solution of oncentration. H ₂ S greater saturation determined	7.63 92.4 ide per mole c INFORMATION SOURCE AND PURI 1. Stated pu cent. 2. Analytica 3. No detail ESTIMATED ERROR $\delta T/K = \pm 0.12$	0.297 1.179 of amine. TY OF MATERIALS urity 99.7 mo al grade. Ls. $\frac{1}{2}; \delta p/kPa = \frac{1}{2} (est)$	0.0829 0.334 : le per ±2%; imated by	
METHOD/AP Gas sat which a was pas saturat known h At part than 10 was use	+ PARATUS/PR uration f sed thro ors cont uydrogen tial press 0 mmHg, ed. H2S	OCEDURE: method was uantity of ugh a ser: aining a s sulfide co sures of F solution s in soln.	57.2 693 hydrogen sulf AUXILIARY s used in f hydrogen ies of solution of oncentration. H ₂ S greater saturation determined	<pre>7.63 92.4 ide per mole c INFORMATION SOURCE AND PURI 1. Stated pu cent. 2. Analytica 3. No detail ESTIMATED ERROR</pre>	0.297 1.179 of amine. TY OF MATERIALS urity 99.7 mo al grade. Ls. $\frac{1}{2}; \delta p/kPa = \frac{1}{2} (est)$	0.0829 0.334 : le per ±2%; imated by	
METHOD/AP Gas sat which a was pas saturat known h At part than 10 was use	+ PARATUS/PR uration f sed thro ors cont uydrogen tial press 0 mmHg, ed. H2S	OCEDURE: method was uantity of ugh a ser: aining a s sulfide co sures of F solution s in soln.	57.2 693 hydrogen sulf AUXILIARY s used in f hydrogen ies of solution of oncentration. H ₂ S greater saturation determined	<pre>7.63 92.4 ide per mole c INFORMATION SOURCE AND PURI 1. Stated pu cent. 2. Analytica 3. No detail ESTIMATED ERROR</pre>	0.297 1.179 of amine. TY OF MATERIALS urity 99.7 mo al grade. Ls. $\frac{1}{2}; \delta p/kPa = \frac{1}{2} (est)$	0.0829 0.334 : le per ±2%; imated by	
METHOD/AP Gas sat which a was pas saturat known h At part than 10 was use	+ PARATUS/PR uration f sed thro ors cont uydrogen tial press 0 mmHg, ed. H2S	OCEDURE: method was uantity of ugh a ser: aining a s sulfide co sures of F solution s in soln.	57.2 693 hydrogen sulf AUXILIARY s used in f hydrogen ies of solution of oncentration. H ₂ S greater saturation determined	<pre>7.63 92.4 ide per mole c INFORMATION SOURCE AND PURI 1. Stated pu cent. 2. Analytica 3. No detail ESTIMATED ERROR</pre>	0.297 1.179 of amine. TY OF MATERIALS urity 99.7 mo al grade. Ls. $\frac{1}{2}; \delta p/kPa = \frac{1}{2} (est)$	0.0829 0.334 : le per ±2%; imated by	

,

ł

COMPONENTS	5:		ORIGINA	AL MEASUREMENTS:
 Hydrogen sulfide; H₂S; [7783-06-4] Water; H₂O; [7732-18-5] 2,2',2"-Nitrilotrisethanol (triethanolamine); C₆H₁₅NO₃; [102-71-6] EXPERIMENTAL VALUES: 			Y.; Mather, A.E.; Otto, F.D. Chem.Eng. <u>1985</u> , 63, 122-125.	
EXPERIMENT	TAL VALUES	•		
Conc. of TEA /mol dm ⁻³	т/к	P _{H2} S /kPa	Total pressure /kPa	Mole ratio in liquid H ₂ S/TEA
2.0	348.2	0.0238 0.821 8.54 197 1010 2250 4110 5500	480 442 487 233 1045 2286 4162 5562	0.00402 0.0237 0.0813 0.431 0.960 1.361 1.776 2.076
2.0	373.2	0.0172 0.0585 0.590 1.35 4.88 72.7 708 3120 4940 6160	387 343 528 425 490 410 800 3231 5052 6272	0.00205 0.00328 0.0125 0.0193 0.0401 0.176 0.620 1.334 1.651 1.912
2.0	398.2	0.0466 0.095 0.383 1.45 11.4 165 1730 3550 5190 6270	492 490 501 452 480 391 1955 3775 5417 6505	0.00174 0.00220 0.00464 0.0114 0.036 0.203 0.760 1.153 1.465 1.627
3.5	298.2	0.0124 0.219 16.0 299 729 1500 1984	334 478 287 320 732 1504 1988	0.0070 0.0256 0.242 0.881 1.161 1.493 1.670
3.5	323.2	0.00832 0.33 3.40 35.2 466 1740 2500 3430	349 358 314 499 478 1759 2508 3436	0.00236 0.0163 0.0638 0.224 0.780 1.229 1.404 1.641
3.5	348.2	0.0281 0.372 12.5 57.8 494.0 2000 3270 4290 5530	344 473 409 485 528 2042 3306 4329 5568	0.00241 0.0107 0.0746 0.172 0.509 1.022 1.281 1.506 1.714

ţ

COMPONENTS	S:		ORIGINA	AL MEASUREMENTS:
(triet) [102-7	-06-4] H ₂ O; [77 '-Nitrilot hanolamin 1-6]	32-18-5] trisethanol, e); $C_{6H_{15}NO_{3}}$;		-Y.; Mather, A.E.; Otto, F.D. Chem.Eng. <u>1985</u> , 63, 122-125.
EXPERIMEN	TAL VALUE	S:		
Conc. of TEA /mol dm ⁻³	т/к	P _{H2} S /kPa	Total pressure /kPa	Mole ratio in liquid H ₂ S/TEA
3.5	373.2	0.0418 1.09 19.1 329 1730 3020 4690 5910	442 452 489 412 1811 3122 4797 6024	0.00154 0.00975 0.0485 0.274 0.710 0.992 1.224 1.382
3.5	398.2	0.0183 0.886 10.3 137 1190 3570 5440	453 511 652 344 1402 3786 5648	0.00545 0.00498 0.0224 0.101 0.416 0.844 1.098
5.0	298.2	0.0171 0.201 2.30 66.8 312.0 1090.0 1580.0 1990.0	349 452 509 473 314 1100 1579 1997	0.00514 0.0202 0.0739 0.406 0.798 1.285 1.440 1.600
5.0	323.2	0.0315 0.995 9.97 361.0 1660.0 2760.0 3430.0	344 479 427 369 1686 2769 3444	0.00376 0.0243 0.0842 0.567 1.135 1.432 1.587
5.0	348.2	0.0152 0.158 2.13 73.9 279.0 1340.0 4060.0 5490.0	290 492 321 325 693 1370 4092 5526	0.00099 0.00386 0.0167 0.133 0.296 0.701 1.290 1.566
5.0	373.2	0.0269 0.381 6.07 324.0 1100.0 4050.0 5450.0	403 487 476 393 1170 4126 5519	0.00069 0.00298 0.0160 0.178 0.421 0.922 1.097
5.0	398.2	0.0872 1.84 45.7 296.0 2480.0 5450.0	438 496 513 469 2657 5622	0.00074 0.00456 0.0354 0.128 0.483 0.782

{ ,

ł

1

COMPONENTS:	OPTOTNAT AN ADDRESSING
	ORIGINAL MEASUREMENTS:
1. Hydrogen sulfide; H ₂ S;	Isaacs, E.E.; Otto, F.D. Mather, A.E.
<pre>[7783-06-4] 2. 1,1'-Iminobis-2-Propanol, (Diisopropanolamine); C₆H₁₅NO₂; [110-97-4]</pre>	J. Chem. Engng. Data. <u>1977</u> , 22, 71-3.
3. Water; H_2O ; [7732-18-5]	
VARIABLES:	PREPARED BY:
Temperature, pressure, composition	C.L. Young.
EXPERIMENTAL VALUES: T/K Conc. of 2 /	moldm ⁻³ P/kPa α
313.15 2.5	2152.5 1.414
 373.15 2.5 α = mole ratio in liquid phase H Diisopropanolamine. 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	INFORMATION
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
Recirculating vapor flow apparatus with Jerguson liquid level gauge cell and magnetic pump. Nitrogen added to vapor to increase pressure to at least 600 kPa. Vapor analysed by gas chromatography. Partial pressure of hydrogen sulfide calcul- ated from pressure and composition. Liquid samples passed into sulfuric acid. Hydrogen sulfide collected in buret.	No details given.
	ESTIMATED ERROR: $\delta T/K = \pm 0.5$; $\delta P/kPa = \pm 1$ %; $\delta \alpha = \pm 4$ % or ± 0.02 whichever is greater. REFERENCES:

			171400000000		
COMPONED	NTS:	······································	ORIGINAL MEASUREMENTS:		
 Hydrogen sulfide; H₂S; [7783-86-4] Water; H₂O; [7732-18-5] 1,1'-iminobis-2-propanol, (diisopropanolamine); C₆H₁₅NO₂; [110-97-4] Tetrahydrothiophene, 1,1-dioxide, (sulfolane); C₄H₈O₂S; [126-33-0] 			Isaacs, E.E; Otto, F.D.; Mather, A.E. <i>J. Chem. Eng. Data</i> <u>1977</u> , 22, 317-319.		
VARIABL	ES:		PREPARED	BY:	
Tempera	ture, concent	ration	P.G.T.	Fogg	
EXPERIM	ENTAL VALUES:	<u></u>	1	i	
of sulfo	olane and 20	d of 40 wt% of di wt% of water. The ution as used in t	e authors i	ndicated that	this is a
т/к	P _{H2S} /kPa	Mole ratio in liquid H ₂ S/DIPA	т/к	P _{H₂S} /kPa	Mole ratio in liquid H ₂ S/DIPA
313.2	4.6 5.2 13.8 20.3 25.3 55.9 277.6 502.3 585.3 865.6 1081.9 1410.3 2051.2 2291.3	0.152 0.175 0.297 0.308 0.424 0.582 0.901 1.091 1.173 1.492 1.598 2.022 3.339 4.429	373.2	63.7 76.4 71.7 165.0 262.1 419.5 658.7 1122.6 1748.8 2405.9 3862.3	0.074 0.083 0.119 0.150 0.243 0.352 0.510 0.733 0.929 1.283 1.988
		AUXILIARY	INFORMATION		
METHOD/	APPARATUS/PRO	CEDURE:	SOURCE AN	D PURITY OF M	ATERIALS:
The equi Jerguson tubular the top magnetid were mea control air-bath by a Hei cell was charged solution of hydra Nitrogen to ensui was abou circulat gas phas chromata by treat (2.5 mod data for analysin	ilibrium cell n gage with a gas reservoi . Gas was ci c pump (1). asured by the led to ± 0.5 h. Pressures ise bourdon t s purged with with 50-150 n. An approp ogen sulfide n was added, re that the t ve 350 kPa. G ted for at le se was analys	consisted of a 250 cm ³ r mounted at rculated with a Temperatures rmopiles and °C by an were measured ube gage. The nitrogen and cm ³ of Sulfinol riate quantity was then added. when necessary, otal pressure ases were ast 8 h. The ed by gas he liquid phase with H ₂ SO ₄ rding P-V-T volved and	 minimu minimu ESTIMATED δT/K = δmole ra whichev (author REFERENCE Ruska, Kobaya 	m purity 97% m purity 99% D ERROR: ± 0.5 tio = ± 0.0 er is the lar s)	2 or ± 4% ger.
L			L		······································

(

COMPONENTS:		ORIGINAL MEASUREMENTS:		
1. Hydrogen sulfide; H	I ₂ S;	Leibush, A.G.; Shneerson, A.L.		
<pre>[7783-06-4] 2. Carbon dioxide; CO; 3. Water; H₂O; [7732- 4. 2-Aminoethanol; (monoethanolamine); [141-43-5]</pre>	8-5]	Zhur. Prik. Khim. <u>1950</u> , 23, 145-152. J. Applied Chem. USSR <u>1950</u> , 23, 149-157.		
VARIABLES:		PREPARED BY:		
Temperature, pressure, of liquid phase	composition	P.G.T. Fogg		
EXPERIMENTAL VALUES:				
Concentration of mono	ethanolamine (M	EA) = 2.5 mol dm ⁻³	³ ; T/K = 298.2	
₽ _{H₂S} /mmHg	P _{CO2} /mmHg	Mole ratios in H ₂ S/MEA	liquid phase CO ₂ /MEA	
1.94	0.00	0.265	0.025	
2.78	0.00	0.265	0.092	
4.1	0.00	0.270	0.155	
7.15	0.26	0.268	0.255	
20.2	1.77	0.262	0.311	
70.4	75	0.262	0.385	
0.69	0.00	0.145	0.029	
2.08	0.00	0.145	0.216	
3.62	0.26	0.145	0.300	
19.8	4.57	0.145	0.416	
	AUXILIARY	INFORMATION		
METHOD / APPARATUS / PROCEDURE :		SOURCE AND PURITY OF M	ATERIALS;	
N ₂ or a mixture of N ₂ & H ₂ S was passed successively through two absorbers containing H_2S & CO ₂ dissolved in an aqueous solution of MEA. The H ₂ S in the emerging gas was passed into cadmium or zinc acetate solution and the precipitated sulfides estimated by iodimetry. Hydrogen sulfide in the MEA solutions was also determined by iodimetry. CO ₂ in the gas phase was absorbed in standard baryta solution after removal of H ₂ S by acidified potassium permanganate solution. CO ₂ in the liquid phase was estimated by reaction with 30%		1. From H_2SO_4 & Na detected 4. Contained 0.6 t CO_2 per unit vo solution; less weight of tota: ESTIMATED ERROR: $\delta T/K = \pm 0.1$	to 1.5 volumes of blume of than 1% by l impurities.	
H ₂ SO ₄ , removal of evolupermanganate and absorpervolved CO ₂ in standard solution.	ption of	REFERENCES :		

COMPONENTS:	······································		ORIGINAL MEASUREMENTS:		
	mon gulfido. "	c .	ORIGINAL MEASUREMENIS:		
	gen sulfide; H ₂ -06-4]	57	Muhlbauer, H.G.; Monaghan, P.R.		
2. Carbo	n dioxide; CO ₂ ;	[124-38-9]	041 P Cog I 1957 55/	17) 130.145	
	; H ₂ O; [7732-18 noethanol, (mon		0il & Gas J. <u>1957</u> , 55()	(/), 139-145.	
); C ₂ H ₇ NO; [141				
			<u> </u>		
VARIABLES:			PREPARED BY:		
	re, pressure, c id phase.	omposition	P.G.T. Fogg		
	t				
EXPERIMENTAL	VALUES:				
T/K	Conc. of MEA	P _{H2} S PC	Mole ratio in liqu:	id	
	/mol dm ⁻³		$Hg H_2S/MEA CO_2/MI$	EA	
			······		
298.15	2.52	0.09 0.			
	2.60 2.56	0.48 0. 0.82 0.			
	2.50	0.99 0	0.196 0		
	2.53	1.18 0.			
	2.49	1.26 0 1.27 0.	0.272 0 0.043 0.347		
	2.62 2.55	1.81 0.			
	2.63	1.88 0.	0 0.066 0.348		
	2.53	1.94 0.			
	2.51 2.53	2.23 0 2.49 0.	0.308 0 6 0.226 0.100		
	2.50	3.37 0	0.323 0		
	2.59	3.38 13.			
	2.54 2.53	4.15 0. 4.23 0.			
		AUXILIARY	INFORMATION		
METHOD /APPAR	ATUS / PROCEDURE :		SOURCE AND PURITY OF MATERIAL	¢ .	
1	-	den a de la ca	SOURCE AND PURITY OF MATERIAL	5:	
1	25 °C were obta	-			
-	a mixture of N_2				
-	two thermostatte				
wash-both	cles in series o	containing			
monoethan	nolamine plus di	issolved CO_2			
& H ₂ S. 2	After 4 h liquid	l samples			
were ana	lysed by chemica	al methods			
	samples by chron				
-	100 °C were obt		ESTIMATED ERROR:		
			$\delta T/K = \pm 0.02$ (au	thorel	
	g gas and liquid		$01/K = \pm 0.02$ (au		
	statted steel bo				
1 h befo:	re analysis of t	the two	DEPENSION		
phases.			REFERENCES:		
				·····	

Hydrogen Sulfide in Aqueous Solvents

				······
COMPONEN	TS:			ORIGINAL MEASUREMENTS:
[778 2. Carb 3. Wate 4. 2-Am	ogen sulfide; H 3-06-4] on dioxide; CO r; H_2O ; [7732- inoethanol, (mo e); C_2H_7NO ; [1-	2; [124-3 18-5] onoethano		Muhlbauer, H.G.; Monaghan, P.R. <i>Oil & Gas J.</i> <u>1957</u> , <i>55(17)</i> , 139-145.
EXPERIME	NTAL VALUES:		I	
т/к	Conc. of MEA	^P H₂S	^P co₂	Mole ratio in liquid
·	/mol dm ⁻³	/mmHg	/mmH	
298.15	2.52 2.62 2.60 2.53 2.47 2.53 2.55 2.51 2.52 2.51 2.52 2.51 2.52 2.51 2.52 2.53 2.52 2.53 2.52 2.53 2.52 2.53 2.52 2.52 2.53 2.52 2.52 2.52 2.53 2.52 2.53 2.49 2.49 2.49 2.49 2.47 2.41	4.40 4.80 6.0 7.41 7.67 7.8 8.3 9.28 10.9 11.4 13.9 16.5 17.3 17.4 27.0 28.0 29.2 30.4 31.0 36.0 38.7 47.6 52.28 53.6 59.5 65.2 68.6 92.7 93.8 109.4 111 140 142 163 165.2 172 2306 330 340 342 443 711 720	$\begin{array}{c} 0.15\\ 1.06\\ 0.60\\ 0.31\\ 0.34\\ 1.70\\ 19.5\\ 0.78\\ 0.27\\ 2.6\\ 0.4\\ 0.29\\ 0.46\\ 33.5\\ 2.27\\ 7.50\\ 0.49\\ 247.5\\ 1.13\\ 0.82\\ 47.5\\ 1.13\\ 0.82\\ 47.5\\ 1.13\\ 0.82\\ 47.5\\ 1.13\\ 0.82\\ 47.5\\ 1.13\\ 0.82\\ 1.14\\ 104\\ 19.9\\ 9.31\\ 0.82\\ 11.4\\ 104\\ 19.9\\ 9.31\\ 0.82\\ 11.4\\ 104\\ 19.9\\ 9.31\\ 0.82\\ 19.6\\ 19.9\\ 9.31\\ 0.82\\ 19.6\\ 19.9\\ 9.31\\ 0.82\\ 19.6\\ 19.9\\ 19.6\\ 19.$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Hydrogen S	Sulfide in	Aqueous	Solvents
------------	------------	---------	----------

COMPONEN	rs:			ORIGINAL MEASUREMENTS:
	ogen sulfide; H	1.0.		
[778]	3-06-4]			Muhlbauer, H.G.; Monaghan, P.R.
	on dioxide; CO; r; H ₂ O; [7732-		8-9]	0i1 & Gas J. <u>1957</u> , 55(17), 139-145.
	incethanol, (mc_{2}); $C_{2}H_{7}NO$; [14		1-	
		+		
EXPERIMEN	NTAL VALUES:			
т/к	Conc. of MEA	P _{H2} S	P _{CO2}	Mole ratio in liquid
	/mol dm ⁻³	/mmHg	/mmH	Ig H ₂ S/MEA CO ₂ /MEA
373.15	2.45	9.2	0	0.060 0
	2.44	22.6	9.1	0.075 0.076
	2.44 2.47	24.8 34.4	0 462	0.102 0 0.023 0.424
	2.43	50.7	14.2	0.127 0.072
	2.45	52.5	22.8	
1	2.45 2.44	60.9 75.3	26.1 90.7	0.113 0.156 0.093 0.251
	2.45	76.3	500	0.043 0.413
ł	2.44	85.3	30.3	
	2.44 2.45	87 90	10.3 0	0.188 0.076 0.248 0
	2.44	111	289	0.079 0.344
	2.39 2.43	118 123.8	18.1 0	0.224 0.084 0.294 0
	2.43	123.0	49.2	0.177 0.167
	2.44	136	104.5	0.141 0.244
	2.43 2.42	139 151	37.7 14.5	0.196 0.153 0.262 0.074
	2.44	170	566	0.081 0.385
	2.44	195	0	0.372 0
	2.43 2.44	204 219	690 125	0.090 0.398 0.187 0.230
	2.39	224	24.5	0.299 0.075
	2.40 2.44	228 239	74.9 388	0.236 0.168 0.139 0.325
	2.43	241	451	0.126 0.351
	2.42 2.44	260	924	0.099 0.408
	2.44	263 269	0 428	0.420 0 0.144 0.331
	2.39	316	28.6	0.381 0.073
	2.39 2.42	319 324	84.5 1290	0.286 0.171 0.106 0.422
	2.43	360	179	0.252 0.229
	2.43	373	565	0.169 0.328
	2.43 2.40	397 403	568 42.4	0.177 0.321 0.412 0.081
	2.39	410	109.0	0.326 0.172
	2.42	420 447	0 0	0.491 0 0.511 0
	2.42	447	237	0.511 0 0.275 0.234
	2.42	470	643	0.191 0.324
	2.42 2.42	518 525	0 740	0.546 0 0.198 0.333
	2.40	540	52.6	0.453 0.082
	2.42	545 564	829 155	0.193 0.339
	2.39 2.40	564 632	155 57.1	0.375 0.169 0.489 0.083
	2.42	638	312	0.306 0.239
	2.41 2.41	644 700	0 385	0.578 0 0.308 0.246
	2.37	742	63	0.532 0.073
	2.39	760	169	0.422 0.156
	2.40 2.40	804 833	0 168	0.639 0 0.444 0.146
	2.40	899	0	0.649 0
	2.38 2.39	947 952	77.0 0	0.549 0.076 0.660 0
	2.39	952 964	551	0.342 0.241

ł

COMPONENTS:		ORIGINAL MEASUREMENTS:		
 Carbon dioxide; 		Jones, J. H.; Froning, H. R.;		
2. Hydrogen sulfide [7783-06-4]	; H ₂ S;	Claytor, E. E. Jr.		
3. 2-Aminoethanol (C ₂ H ₇ NO ₂ ; [141-4	Monoethanolamine); 3-5]	J. Chem. Engn	-	
4. Water; H ₂ O; [7	-	<u>1959</u> , 4, 85-9		
VARIABLES:		PREPARED BY:		
Temperatu	re, pressure		C. L. Young	
EXPERIMENTAL VALUES:		L	<u></u> · <u></u> ··	
	- 8 / 5-		+	+
T/K ^P ³ _{H₂S} /10°Pa	^{₽[§]} CO₂/10 ⁵ Pa	Conc. of MEA /wt%	α [†] H₂S	α [†] co₂
313.15 0.0015	0.0019	15.3	0.0164	0.387
0.0028	0.0041		0.0214	0.424
0.0029	0.0025		0.0282	0.400
0.0069 0.0072	0.0179 0.0177		0.0248 0.0272	0.480 0.472
0.0076	0.0033		0.0612	0.392
0.0077	0.0072		0.0436	0.436
0.0101	0.0019		0.101	0.349
0.0116	0.579		0.0056	0.652 0.527
0.0117 0.0203	0.0576 0.0349		0.0199 0.0488	0.488
0.0224	0.0100		0.106	0.412
0.0261	0.607		0.0123	0.658
0.0573	0.0237		0.149	0.424
0.0744 0.1019	0.0040 0.0104		0.361 0.351	0.200 0.293
0.144	0.0247		0.314	0.335
0.156	0.0608	(cont.)	0.235	0.415
[§] <i>P</i> _{H2} S [§] <i>P</i> _{CO2}	partial pressure of partial pressure of the partial pressure o			
	AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCED	URE:	SOURCE AND PURIT	Y OF MATERIALS:	
Rocking static equi	librium cell	1. Bone dry s	ample.	
fitted with liquid	and gas sampling		9 mole per ce	
-	easured with	of methyl	ry showed tra mercaptan, ca	rbon di-
Bourdon gauge. Co			d carbon diox	
carbon dioxide and		-	3 mole per ce	nt.
in gas phase determ	ined by mass	4. Distilled.		
spectrometry. Con	centration of			
hydrogen sulfide in	liquid deter-			
mined by iodimetry	and concentration	ESTIMATED ERROR:		
of carbon dioxide i	n liquid deter-		$t 313.15 \text{ K}, \pm 2/2 \text{ R} = \pm 18.$	
mined by precipitat	-	(estimated by	<pre>%/kPa = ±1%; compiler).</pre>	0u - 136
carbonate or by str			••••••••••••••••••••••••••••••••••••••	
		REFERENCES :		
dioxide and reabsor absorbent. Detail	2			
ausorbent. Decall	5 III SOULCE.			
		·····		

COMPONENTS:	ORIGINAL MEASUREMENTS:
1. Carbon dioxide; CO ₂ ; [124-38-9]	Jones, J. H.; Froning, H. R.;
<pre>2. Hydrogen sulfide; H₂S; [7783-06-4]</pre>	Claytor, E. E. Jr. J. Chem. Engng. Data
3. 2-Aminoethanol (Monoethanolamine); C ₂ H ₇ NO ₂ ; [141-43-5]	
4. Water; H ₂ O; [7732-18-5]	

EXPERIMENTAL VALUES:

,

т/к	P [§] H₂S/10 ⁵ Pa	^{₽[§]_{CO2}/10⁵Pa}	Conc. of MEA /wt%	α [†] _{H₂S}	α [†] co₂
313.15	0.171 0.175 0.449 1.123	0.696 0.709 0.197 0.470	15.3	0.0712 0.0716 0.327 0.425	0.620 0.620 0.414 0.406
333.15	1.879 0.0013 0.0069 0.0079 0.0136 0.0192 0.0292 0.0309 0.0953 0.1069 0.528 1.995	0.771 0.0143 0.0037 0.0011 0.580 0.173 0.0559 0.0189 0.0128 1.004 0.499 4.672		0.495 0.0074 0.0597 0.107 0.0070 0.0200 0.0569 0.0878 0.255 0.0396 0.238 0.235	$\begin{array}{c} 0.398\\ 0.406\\ 0.290\\ 0.166\\ 0.594\\ 0.529\\ 0.452\\ 0.381\\ 0.274\\ 0.606\\ 0.460\\ 0.570\end{array}$
373.15	0.0037 0.0069 0.0093 0.0205 0.0341 0.0500 0.0765 0.199 0.373 0.623	0.072 0.429 0.0173 0.375 0.0791 0.760 0.0403 0.1033 0.853 0.131		0.2053 0.0050 0.0272 0.0140 0.0460 0.0245 0.112 0.178 0.140 0.366	0.293 0.420 0.171 0.412 0.272 0.456 0.180 0.238 0.405 0.175
393.15	0.0088 0.0135 0.0197 0.0204 0.0524 0.0972 0.1033 0.144	0.437 0.010 0.0385 0.0884 0.381 0.188 0.205 0.421		0.0059 0.0405 0.0344 0.0264 0.0361 0.104 0.104 0.0940	0.322 0.0393 0.106 0.178 0.298 0.202 0.200 0.280
	$\alpha^{\dagger}_{H_2S} =$	mole H ₂ S/mole	2-Aminoethanol		
	$\alpha^{\dagger}_{CO_2} =$	mole CO ₂ /mole	2-Aminoethanol		
	MEA = 2-2	Aminoethanol (m	onoethanolamine)		

COMPONEN	COMPONENTS: ORIGINAL MEASUREMENTS:					
1. Carbo	on dioxide;	CO ₂ ; [124	-38-9] J	ones, J. H.;	Froning,	H. R.;
	ogen sulfide; 3-06-4]	H ₂ S;		laytor, E. E.		
3. 2-Ami	inoethanol (M NO ₂ ; [141-43			. Chem. Engng 959, 4, 85-92		
	$H_2O; [141-43]$	-				
EXPERIME	ENTAL VALUES:	<u> </u>	Smoothed da	ta for 15.3 w	tt of MEA	. <u></u>
₽ [§]			Moles H ₂	S per Mole ME	A	
^r H₂S ∕mmHg	R _L * = 0.01	$R_{L} = 0.05$		$R_{\rm L} = 0.50$		R _L = ∞
			T/K =	313.15		
1 3 10 30 100 300 1000	0.0047 0.0055 0.0066 0.0077 0.0092	0.0190 0.0225 0.0263 0.0301 0.0351 0.0399 0.0464	0.0327 0.0395 0.0468 0.0540 0.0619 0.0710 0.0830	0.0863 0.1160 0.1510 0.1820 0.2120 0.2350 0.2700	0.1140 0.1630 0.2220 0.2720 0.3260 0.3720 0.4250	0.128 0.212 0.374 0.579 0.802 0.931 1.00
1000		0.0404		333.15	0.4250	1.00
1 3 10 30 100 300 1000	0.0037 0.0046 0.0059 0.0074 0.0092 -	0.0145 0.0184 0.0234 0.0288 0.0355 0.0431	0.0237 0.0304 0.0396 0.0492 0.0605 0.0730 0.0910	0.0650 0.0845 0.1125 0.1450 0.1840 0.2190 0.2620	0.0775 0.1130 0.1600 0.2120 0.2750 0.3230 0.3840	0.085 0.137 0.240 0.386 0.600 0.790 0.970
			T/K =	373.15		
1 3 10 30 100 300 1000	0.0024 0.0036 0.0056 0.0082 - -	0.0067 0.0101 0.0155 0.0228 0.0343 0.0503	0.0103 0.0155 0.0239 0.0349 0.0524 0.0762	0.0220 0.0340 0.0540 0.0810 0.1250 0.1800 0.2480	0.0247 0.0407 0.0675 0.1040 0.1650 0.2430 0.3340	0.029 0.050 0.091 0.160 0.279 0.439 0.680
_				413.15		
1 3 10 30 100 300 1000	0.0016 0.0030 0.0059 0.0110 - - -	0.0031 0.0059 0.0120 0.0228 0.0424 -	0.0040 0.0078 0.0163 0.0308 0.0558 0.0935	0.0072 0.0146 0.0312 0.0590 0.1075 0.1800 0.3120	0.0088 0.0184 0.0393 0.0750 0.1400 0.2325 0.4050	0.012 0.025 0.056 0.101 0.182 0.312 0.520
	ц 5	es H ₂ S/mol	e CO ₂ sure of hydro	gen sulfide		

Hydrogen Sulfide in Aqueous Solvents

COMPONENTS			-38-01	ORIGINAL ME			
2. Hydroge	 Carbon dioxide; CO₂; [124-38-9] Hydrogen sulfide; H₂S; 			Jones, J. H.; Froning, H. R.; Claytor, E. E. Jr.			
[7783-0	-			J. Chem. H	Ingng. Data	z	
3. $2-\text{Amino}$ C ₂ H ₇ NO ₂		onoethanola -5]	mine);	<u>1959</u> , 4, 8	35-92.		
4. Water;	H ₂ O; [77	32-18-5]					
EXPERIMENT	AL VALUES:	\$	Smoothed	data for 15	.3 wt% of 1	MEA	
			Moles H ₂	S per Mole M	1EA		
H ₂ S /mmHg	$R_{V}^{*} = 0.0$	$1 R_{V} = 0.05$	$R_V = 0$	$10 R_{\rm V} \approx 0.50$	$R_{V} = 1.0$	R _V = 10	$R_V = \infty$
			т/1	K = 313.15			
1	0.0013 0.0022	0.0035 0.0057	0.0050	0.0120 0.0208	0.0178 0.0300	0.0500	0.128
10	0.0039	0.0100	0.0149	0.0380	0.0540	0.1450	0.374
30 100	0.0064 0.0107	0.0166 0.0279	0.0250 0.0415	0.0630 0.1050	0.0910 0.1510	0.2400 0.3900	0.579 0.802
300	0.0167	0.0430	0.0638	0.1550	0.2200	0.5500	0.931
1000	-	0.0625	0.0920 T/	0.2170 /K = 333.15	0.3050	0.7300	1.00
1	0.0019	0.0049	0.0070		0.0239	0.0643	0.085
3 10	0.0029 0.0044	0.0074 0.0115	0.0108		0.0363 0.0565	0.0940 0.1420	0.137 0.240
30	0.0066	0.0175	0.0260	0.0621	0.0850	0.2080	0.386
100 300	0.0102	0.0272 0.0410	0.0405		0.1360 0.2040	0.3140 0.4320	0.600 0.790
1000	-	-	0.0940		0.2900	0.5500	0.970
			T/	/K = 373.15			
1 3	0.0017 0.0030	0.0034 0.0061	0.0046		0.0118 0.0207	0.0224 0.0390	0.029
10	0.0056	0.0114	0.0155		0.0381	0.0720	0.091
30 100	0.0098 0.0176	0.0200 0.0360	0.0270		0.0665 0.1200	0.1260 0.2250	0.160 0.270
300	-	0.0585	0.0483		0.1910	0.2250	0.439
1000	-	-	-	0.2250	0.2880	0.5820	0.680
			,	'K = 413.15			
1 3	0.0013 0.0026	0.0024 0.0050	0.0031		0.0078 0.0160	0.0115 0.0245	0.012 0.025
10	0.0026	0.0107	0.0140		0.0150	0.0245	0.025
30 100	0.0110	0.0210 0.0429	0.0278		0.0705 0.1380	0.0980 0.1800	0.101 0.182
300	-	-	0.1010	0.1850	0.2250	0.3020	0.182
1000	-	-	-	0.3000	0.3630	0.5000	0.520
						<u> </u>	

 ${}^{\$_{P}}_{H_{2}S}$ partial pressure of hydrogen sulfide ${}^{\$_{P}}_{CO_{2}}$ partial pressure of carbon dioxide

R_V* ^PH₂S^{/P}CO₂

ł

		•		
COMPONENTS :		ORIGINAL MEASUREMENTS:		
1. Carbon dioxide; CO ₂ ; [13	24-38-9]	Lee, J.I.; Otto, F.D.; Mather, A.E.		
2. Hydrogen sulfide; H ₂ S;[•	
3. 2-Aminoethanol,	_	J. Chem. Eng. 1	Data, <u>1975</u> , 20,161-163.	
(Monoethanolamine);C ₂ H ₇ N();			
[141-43-5] 4. Water; H_2O ; [7732-18-5]				
4. Mater, M20, [7702 10-5]				
VARIABLES:		PREPARED BY:		
Temperature, pressure, compos:	ltion	C.L.	Young	
			-	
EXPERIMENTAL VALUES: Solubilit	y of H,S-C Monoethano	D ₂ Mixtures in 5.0 lamine	0 mol dm ⁻³	
T/K P _{H2S} /kPa	P _{CO2} /kPa		CO_2/MEA	
······································	·····	*********	· · · · · · · · · · · · · · · · · · ·	
313.15 622.8	3.1	0.962	0.014	
588.4	3.0	0.923	0.014	
757.0	20.5	0.887	0.0459	
883.9	46.2	0.801	0.0868	
961.8 1064.5	92.4 137.9	0.758 0.729	0.134 0.164	
	179.3	0.729	0.194	
1150.7 1254.8	246.1	0.680	0.236	
1423.7	470.2	0.631	0.302	
1611.3	710.1	0.584	0.366	
1634.0	1213.5	0.505	0.430	
1730.6	1729.9	0.438	0.522	
1489.3	3564.6	0.276	0.749	
1372.0	4226.4	0.215	0.799	
384.0	952.2	0.150	0.640	
418.5	1200.4	0.139	0.670	
457.1	1402.4	0.128	0.688	
589.5	1890.5	0.110	0.715	
456.4 180.6	5332.4 189.6	0.052 0.259	0.894 0.431	
379.9	193.7	0.243	0.492	
451.6	337.2	0.220	0.535	
324.0	297.9	0.157	0.602	
157.2	568.1	0.077	0.680	
168.2	857.7	0.068	0.698	
	AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDURE:	·	SOURCE AND PURITY	OF MATERIALS:	
Recirculating vapor flow app	paratus		7 mole per cent.	
with Jerguson liquid level	auge and	-	-	
magnetic pump, nitrogen added		-	mole per cent.	
to increase pressure to at :		3. Purity 99.5	5 mole per cent.	
kPa. Vapor analysed by gas ography. Partial pressure of	chromat-	4. Distilled.		
dioxide and hydrogen sulfide				
ated from pressure and vapor			as carrier, purity	
of monoethanolamine. Liquid	l samples	99.99 mole per	cent.	
passed into sulfuric acid.	Carbon			
dioxide and hydrogen sulfide				
ed in buret and then analyse	ed by gas			
chromatography.		ESTIMATED ERROR:		
		$\delta T/K = \pm 0.5; \delta$	$P/kPa = \pm 1\%;$	
		$\delta \alpha = \pm 3 - 5 \%$		
		REFERENCES :	<u></u>	
L		<u> </u>		

COMPONENTS:		ORIGINAL MEASUR	ORIGINAL MEASUREMENTS:		
 Carbon Dioxide; CO₂; [124-38-9] Hydrogen sulfide; H₂S; [7783-06-4] 			Lee, J.I.; Otto, F.D.; Mather, A.E.		
3. 2-Aminoe	thanol,		Data. <u>1975</u> ,20,161-163		
(Monoetha [141-43-	anolamine);C ₂ H ₇ NO; -5]				
4. Water; H	I ₂ O; [7732-18-5]				
EXPERIMENTAL	VALUES: Solubility of	H ₂ S-CO ₂ Mixtures i	n 5.0 mol dm ⁻³		
		thanolamine	α		
т/к	P _{H2S} /kPa P _{CO2} /k	Pa H ₂ S/MEA	CO ₂ /MEA		
313.15	184.1 1206.	5 0.057	0.740		
515.15	243.4 2582.	B 0.043	0.817		
	290.3 3473. 261.3 4239.		0.857 0.902		
	216.5 5359.		0.941		
	9.9 437. 21.9 638.		0.674		
	21.9 638. 25.2 890.		0.746 0.746		
	153.1 27.	2 0.348	0.294		
	233.7 65. 278.5 97.		0.317 0.332		
	146.2 39.		0.326		
	157.9 43.		0.334		
	104.1 26. 69.6 19.		0.327 0.339		
	75.8 17.	6 0 . 249	0.336		
	65.1 14. 69.6 12.		0.245 0.319		
	167.0 15.		0.283		
	26.0 3.		0.196		
	24.8 0. 46.4 0.		0.053 0.043		
	69.3 0.	74 0.693	0.037		
	144.8 1. 152.4 1.		0.034 0.040		
	280.6 7.		0.088		
	516.4 56.		0.167		
	229.6 6. 433.7 27.		0.101 0.138		
	307.5 9.	2 0.733	0.067		
	313.7 29. 418.5 68.		0.141 0.245		
	617.1 215.		0.322		
	917.0 937.		0.517		
	2104.3 994. 2525.5 1399.		0.398 0.528		
	2054.6 3397.	0.340	0.680		
	2633.8 3176. 1390.7 64.		0.601 0.090		
	2755.8 89.		0.080		
	2922.7 1219.		0.250		
	70.3 1. 255.8 27.		0.111 0.181		
	314.4 56.	9 0.507	0.283		
	383.3 126. 5.8 0.		0.338 0.199		
ļ	4.9 0.	55 0.216	0.256		
	8.4 0.		0.302		
	15.9 2. 26.8 5.		0.325 0.343		
	48.3 15.	5 0.209	0.376		
	58.7 21. 45.1 21.		0.410 0.365		
	45.1 21. 3.3 2.		0.419		
	10.0 11.		0.478		
	1.1 0. 1.4 0.		0.239 0.281		
	2.9 0.	6 0.122	0.322		
	0.0 0. 6.1 1.		0.218 0.388		
	0.T T.	J U.U97	0.00		

<pre>COMPONENTS: 1. Carbon dioxide; CO₂; [124-38-9] 2. Hydrogen sulfide; H₂S; [7783-06-4] 3. 2-Aminoethanol, (Monoethanolamine); C₂H₇NO; [141-43-5]</pre>			ORIGINAL MEASUREMENTS: Lee, J.I.; Otto, F.D.; Mather, A.E. J. Chem. Eng. Data. <u>1975</u> ,20, 161-163.		
EXPERIMENTAL	VALUES: Solub:	ility of H ₂ S-C Monoethano		5.0 mol dm ⁻³ α	
T/K	P _{H2} S/kPa	P _{CO2} /kPa	H ₂ S/MEA	CO2/MEA	
373.15	31.1	89.3	0.048	0.408	
	31.6	123.3	0.039	0.427	
	22.1	103.2	0.030	0.422	
	192.4 251.7	345.4 421.3	0.147 0.152	0.417 0.433	
	238.6	421.3 812.9	0.125	0.474	
	211,0	1392.0	0.086	0.532	
	241,3	2444.2	0.067	0.588	
	241.3	5564.0	0.040	0.686	
	271.0	32.5	0.375	0.194	
	479.9	416.4	0.294	0.371	
	618.4	1605.1	0.183	0.494	
	613.6	3230.2	0.127	0.599	
	553.6	5137.9	0.124	0.611	
	527.4	68.9	0.472	0.173	
	1114.9 1030.8	1246.6 4433.3	0.358 0.158	0.412 0.587	
	1438.2	75.5	0.734	0.079	
	1477.5	332.3	0.623	0.187	
	1565.1	1320.3	0.402	0.333	
	1406.5	5360.6	0.227	0.517	
	2277.3	187.5	0.753	0.091	
	2118.0	1058.3	0.571	0.252	
	2096.0	1954.6	0.483	0.352	
	2020.1	3802.4	0.350	0.460	
	3301.9	62.1	0.884	0.029	
	3501.1 3416.3	639.1 1978.8	0.808 0.544	0.133 0.330	
	55.4	1978.8	0.297	0.028	
	48.7	1.1	0.289	0.035	
	49.0	1.3	0.276	0.044	
	66.3	4.4	0.274	0.118	
	107.6	19.3	0.276	0.218	
	8.0	7.7	0.064	0.242	
	12.1	10.6	0.059	0.287	
	40.3	70.9	0.063	0.398	
	141.7	262.7	0,115	0.439	
	trace 20,3	0.04 5.0	0.006 0.127	0.027 0.180	
				0.100	
	α = 1	Mole ratio in	liquid phase.		

1

ł

ı

١

ł

.

COMPONENTS:	<u> </u>		ODIOTIO		
		4 20 63	ORIGINAL MEAS		3 57
 Hydrogen sulfide; H₂S; [7783-06-4] Water; H₂O; [7732-18-5] 2-Aminoethanol, (Monoethanolamine) 			Lawson, J.D.; Garst, A.W. J. Chem. Engng. Data, <u>1976</u> , 21, 20- 30.		
C ₂ H ₇ NO; [14]	1-43-5]				
VARIABLES:			PREPARED BY:	······	
Temperature	· –			C.L. Young	
EXPERIMENTAL VALUES	S: p ⁺ H ₂ S/bar	P [†] CO₂/ba	r Conc. of MEA /wt%	Liquid o mol/mol H ₂ S	
298.15	0.0068 0.193 0.125 1.592	0.031	15.2	0.155 0.303 0.431 0.533	0.413 0.398 0.321 0.505
313.15	0.000055 0.00015 0.053 1.985			0.0059 0.0135 0.367 0.493	0.174 0.191 0.233 0.394
333.15	0.00023 0.0032 0.00071 1.212	- - 1.985		0.0057 0.0064 0.0130 0.244	0.176 0.386 0.191 0.595
373.15	0.011 0.00081 0.00028 0.00017 0.023 0.033	0.289		0.0054 0.0057 0.0073 0.0131 0.0411 0.0757	0.389 0.167 0.186 0.194 0.233 0.082
393.15	0.037 0.334	0.016 0.340		0.0545 0.133	0.0675 0.166
		AUXILIARY	INFORMATION	<u></u>	<u> </u>
METHOD/APPARATUS/P	ROCEDURE :	. <u></u>	SOURCE AND P	URITY OF MATER	RIALS:
Rocking equili liquid and vap Pressure measu Cell charged wi and methane add "achieve the de Vapor phases at spectrometry. analysed by ele details in sou analytical meth samples.	or sampling v red with Bour ith amine the ded as an ine esired total nalysed by ma Liquid sampl ectrometric t rce. Additio	alves. don gauge. n gases rt gas to pressure". ss es itration, nal	2. Purity 3. Distil 4. Commentant than 9 mined	cial sample 9 mole per o by acid tit:	per cent. purity better cent as deter-
			to ±0.	= ±0.15 at 2	93K increasing &P/bar = ±0.5% 3%.
			REFERENCES:		

,

COMPONENTS:			ORIGI	ORIGINAL MEASUREMENTS:		
 Carbon dioxide; CO₂; [124-38-9] Hydrogen sulfide; H₂S; [7783-06-4] Water; H₂O; [7732-18-5] 2-Aminoethanol, (Monoethanolamine); C₂H₇NO; [141-43-5] 			1] J.		nd Garst, A.W . <i>Data</i> , <u>1976</u> ,	
XPERIMENTA	L VALUES:					
т/к	P ⁺ H ₂ S/bar	p ⁺ CO ₂ /bar	Conc. of MEA /wt%	Liquid mol/mol H ₂ S		
310.93	0.00005 0.086 0.826	- _ 0.233	30	0.0128 0.197 0.277	0.119 0.331 0.405	
338.71	0.00017 0.213 1.732	- - 0.826		0.0128 0.205 0.291	0.113 0.324 0.403	
366.48	0.0043 0.626 2.891	- _ 2.291		0.0130 0.196 0.280	0.116 0.304 0.392	

+ partial pressure

.

Lee, J.I.; Otto, F.D.; Mather,A.E. Can. J. Chem. Eng. <u>1976</u> , 54, 214-219. (Original data deposited in the National Depository of Unpublished Data, Ottawa, Canada)* PREPARED BY: P.G.T. Fogg Mole ratio in the liquid H ₂ S/MEA CO ₂ /MEA 0.347 0.453 0.689 0.339 0.253 1.030 0.392 0.428 0.429 0.731 0.128 1.080 0.018 0.731 0.795 0.315 0.502 0.673 0.150 1.090 0.123 1.117 0.062 0.978 0.140 0.655
Can. J. Chem. Eng. <u>1976</u> , 54, 214-219. (Original data deposited in the National Depository of Unpublished Data, Ottawa, Canada)* PREPARED BY: P.G.T. Fogg Mole ratio in the liquid H ₂ S/MEA CO ₂ /MEA 0.347 0.453 0.689 0.339 0.253 1.030 0.392 0.428 0.429 0.731 0.128 1.080 0.018 0.731 0.128 1.080 0.018 0.731 0.502 0.673 0.150 1.090 0.123 1.117 0.062 0.978
P.G.T. Fogg P.G.T. Fogg $Mole ratio in the liquid H_2S/MEA CO_2/MEA 0.347 0.453 0.689 0.339 0.253 1.030 0.392 0.428 0.429 0.731 0.128 1.080 0.018 0.731 0.795 0.315 0.502 0.673 0.150 1.090 0.123 1.117 0.062 0.978$
$ \begin{array}{c} = 2.5 \ \text{kmol m}^{-3} \ (2.5 \ \text{mol dm}^{-3}) \\ \hline \text{Mole ratio in the liquid} \\ H_2 \ \text{S/MEA} \ & \text{CO}_2 \ \text{/MEA} \\ \hline 0.347 \ & 0.453 \\ 0.689 \ & 0.339 \\ 0.253 \ & 1.030 \\ 0.392 \ & 0.428 \\ 0.429 \ & 0.731 \\ 0.128 \ & 1.080 \\ 0.018 \ & 0.731 \\ 0.795 \ & 0.315 \\ 0.502 \ & 0.673 \\ 0.150 \ & 1.090 \\ 0.123 \ & 1.117 \\ 0.062 \ & 0.978 \\ \end{array} $
Mole ratio in the liquid H_2S/MEA CO_2/MEA 0.3470.4530.6890.3390.2531.0300.3920.4280.4290.7310.1281.0800.0180.7310.7950.3150.5020.6730.1501.0900.1231.1170.0620.978
Mole ratio in the liquid H_2S/MEA CO_2/MEA 0.3470.4530.6890.3390.2531.0300.3920.4280.4290.7310.1281.0800.0180.7310.7950.3150.5020.6730.1501.0900.1231.1170.0620.978
$H_2 S/MEA$ CO_2/MEA 0.3470.4530.6890.3390.2531.0300.3920.4280.4290.7310.1281.0800.0180.7310.7950.3150.5020.6730.1501.0900.1231.1170.0620.978
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
0.498 0.374 0.233 0.507 0.170 0.494 0.061 0.473 0.216 0.440 0.539 0.216 0.615 0.197 0.436 0.053 0.570 0.046 0.687 0.036 0.815 0.004 0.191 0.552 0.181 0.562 0.349 0.420 0.468 0.355 0.380 0.045 0.181 0.021 0.550 0.043 0.552 0.049 0.715 0.039 Data, National Science Library, X1A OS2, Canada.
INFORMATION
SOURCE AND PURITY OF MATERIALS
3. distilled. 4. commercial sample; purity 99.95% ESTIMATED ERROR: $\delta T/K = \pm 0.5$ $\delta (CO_2/MEA)$; $\delta (H_2S/MEA) = \pm 0.02$ or ± 4 %, whichever is the larger (authors) REFERENCES: 1. Lee, J.I.; Otto, F.D.; Mather, A.E. J. Chem. Eng. Data <u>1972</u> , 17, 465. 2. id. ib. 1973, 18, 71.

•

;

COMPONE	NTS:	····	ORIGINAL MEASUREMEN	TS:	
		μς.			
<pre>1. Hydrogen sulfide; H₂S; [7783-06-4]</pre>			Lee, J.I.; Otto, F.D.; Mather,A.E. Can. J. Chem. Eng. 1976, 54, 214-219.		
 Carbon dioxide; CO₂; [124-38-9] Water; H₂O; [7732-18-5] 2-Aminoethanol (monoethanolamine) C₂H₇NO; [141-43-5] 			Can. J. Chem. Eng. (Original data depo National Depository Data, Ottawa, Canad	sited in the of Unpublished	
EXPERIM	ENTAL VALUES:		· ····································		
Concentr	ation of monoe	thanolamine (MEA)	$= 2.5 \text{ kmol m}^{-3}$ (2)	.5 mol dm^{-3})	
т/к	P _{H₂S} /kPa	P _{CO₂} /kPa	Mole ratio in H ₂ S/MEA	the liquid CO ₂ /MEA	
313.2	66.9 56.6	0.215 0.096	0.780 0.780	0.015 0.011	
	25.5 276.1	0.000 145.1	0.711 0.486	0.011 0.349	
	57.5	21.9	0.313	0.372	
	54.6 14.1	7.45 1.13	0.443 0.358	0.255 0.249	
	7.65	0.548	0.317	0.248	
	5.25 4.11	0.679 1.12	0.273 0.161	0.255 0.361	
	57.2	12.7	0.366	0.306	
	0.333 1.06	0.000 0.180	0.147 0.144	0.112 0.258	
	3.47	1.81	0.135	0.384	
	6.45 3.79	6.62 17.0	0.091 0.038	0.464 0.549	
	1.90	8.81	0.025	0.537	
	0.000 0.000	16.1 9.38	0.000 0.000	0.569 0.537	
	0.000	5.14	0.000	0.522	
	0.000 0.000	0.413	0.000	0.381	
	904.6	0.379 7.653	0.000 1.084	0.388 0.026	
	213.0	0.916	0.863	0.012	
	29.03 4.16	0.000 0.000	0.769 0.538	0.011 0.011	
	2.84	0.000	0.432	0.011	
	0.261 0.060	0.000 0.000	0.162 0.077	0.005 0.003	
	16.3	0.413	0.545	0.121	
	10.0 12.3	0.274 0.792	0.494 0.429	0.132 0.193	
	15.24	2.58	0.306	0.312	
	4.41 3.25	0.528 0.979	0.212 0.128	0.323 0.408	
	2.07	1.83	0.090	0.437	
	5.21 3.45	0.623 0.548	0.237 0.226	0.294 0.284	
	0.537	0.210	0.151	0.237	
	0.723 2024	0.137 1.24	0.146 1.366	0.238 0.001	
	2035	1.24	1.351	0.001	
	2565 2551	1.24 0.785	1.493 1.441	0.001 0.001	
1	2413	0.000	1.482	0.000	
	1620 779.1	0.000 0.000	1.320 1.096	0.000 0.000	
1	758.4	0.000	1.119	0.000	
	451.6 444.7	0.000 0.000	0.994 0.994	0.000 0.000	
1	173.7	0.000	0.994	0.000	
	172.4 589.5	0.000	0.930	0.000	
l	568.8	621.9 1193	0.399 0.227	0.569 0.779	
	452.3	5219	0.015	1.162	
	404.0 377.1	191.0 189.6	0.440 0.455	0.409 0.415	
	643.3	912.2	0.314	0.658	
	717.0 7 <u>61.9</u>	4830 4702	0.095	1.095 1.096	

;

	ogen ounide in Aqueous e		
COMPONENTS: 1. Hydrogen sulfide; H ₂ S; [7783-06-4]	1	AL MEASUREMENTS: .I.; Otto, F.D.; N	Aather,A.E.
 Carbon dioxide; CO₂; [12 Water; H₂O; [7732-18-5] 2-Aminoethanol (monoethan C₂H₇NO; [141-43-5] 	nolamine) (Origin	<i>Chem. Eng.</i> <u>1976</u> hal data deposited al Depository of (Ottawa, Canada)*	l in the
EXPERIMENTAL VALUES:		······································	· · · ·
Concentration of monoethano	lamine (MEA) = 2.5	5 kmol m ⁻³ (2.5 r	nol dm ⁻³)
T/K P _{H2S} /kPa P		Nole ratio in the I_2S/MEA	liquid CO ₂ /MEA
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 268.9\\ 520\\ 489\\ 453\\ 10.48\\ 34.47\\ 164.8\\ 846\\ 221\\ 312\\ 228\\ 779\\ 804\\ 868\\ 887\\ 169\\ 120.0\\ 306\\ 539\\ 124\\ 285\\ 0.071\\ 0.048\\ 1.15\\ 64.8\\ 6.01\\ 13.6\\ 53.1\\ 77.91\\ 7.31\\ 2.22\\ 0.079\\ 0.000\\$	0.853 0.621 0.597 0.550 0.716 0.594 1.003 0.453 0.110 0.450 0.061 0.029 0.564 0.119 0.285 0.325 1.037 0.494 0.214 1.227 0.604 0.120 0.120 0.120 0.120 0.086 0.390 0.404 0.748 0.876 0.662 0.741 0.652 0.741 0.652 0.741 0.652 0.741 0.652 0.741 0.652 0.745 0.700 0.610 0.573 0.276 0.299 0.558 0.496 0.427	0.238 0.595 0.612 0.626 0.110 0.214 0.131 0.725 0.660 0.460 0.694 0.838 0.504 0.905 0.833 0.950 0.102 0.721 1.031 0.775 0.761 0.217 0.220 0.369 0.262 0.280 0.144 0.117 0.112 0.046 0.032 0.003 0.002 0
304.1 304.1 1 437.8 2	56.9 319.2 696.4 020 2017 5092	0.387 0.309 0.251 0.226 0.177 0.079	0.243 0.401 0.493 0.568 0.675 0.902

COMPONENTS: 1. Hydrogen sulfide; H ₂ : [7783-06-4]	5;	ORIGINAL MEASUREMEN Lee, J.I.; Otto, F.	
 Carbon dioxide; CO₂; Water; H₂O; [7732-18- 2-Aminoethanol (monor C₂H₇NO; [141-43-5] 	-5]	Can. J. Chem. Eng. (Original data depo National Depository Data, Ottawa, Canad	osited in the of Unpublished
EXPERIMENTAL VALUES:			
Concentration of monoet	hanolamine (MEA	A) = 2.5 kmol m^{-3} (2.5 mol dm^{-3})
T/K P _{H2S} /kPa	P _{CO₂} /kPa	Mole ratio in H ₂ S/MEA	the liquid CO2/MEA
$\begin{array}{c} 373.2 & 185.5 \\ 233.0 \\ 226.1 \\ 366.8 \\ 402.6 \\ 425.4 \\ 52.05 \\ 108.9 \\ 211.7 \\ 244.8 \\ 599.8 \\ 671.5 \\ 556.4 \\ 1129 \\ 1270 \\ 3779 \\ 682.9 \\ 1751 \\ 1160 \\ 12.9 \\ 102.7 \\ 175.1 \\ 248.9 \\ 283.4 \\ 3603 \\ 3157 \\ 3098 \\ 3414 \\ 3027 \\ 130.3 \\ 113.8 \\ 244.8 \\ 299.2 \\ 418.5 \\ 3.03 \\ 136.5 \\ 385.4 \\ 1084 \\ 1004 \\ 376.4 \\ 244.8 \\ 580.5 \\ 544.7 \\ 1842 \\ 2744 \\ 410.2 \\ 403.3 \\ 355.8 \\ 5.63 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 33.4 \\ 295.1 \\ 180.0 \\ 616.4 \\ 354.4 \\ \end{array}$	$126.9 \\ 256.5 \\ 197.2 \\ 224.8 \\ 422.6 \\ 1136 \\ 15.7 \\ 101.4 \\ 912.4 \\ 1893 \\ 1076 \\ 2679 \\ 5109 \\ 339.9 \\ 1150 \\ 54.3 \\ 41.2 \\ 2166 \\ 4385 \\ 243.4 \\ 82.7 \\ 186.8 \\ 224.8 \\ 795.6 \\ 18.55 \\ 157.2 \\ 134.4 \\ 660.5 \\ 1339 \\ 7.10 \\ 20.4 \\ 33.2 \\ 28.8 \\ 167.5 \\ 1877 \\ 2849 \\ 13.9 \\ 38.6 \\ 38.4 \\ 0.496 \\ 0.296 \\ 0.861 \\ 0.785 \\ 0.958 \\ 1.406 \\ 0.296 \\ 0.861 \\ 0.785 \\ 0.958 \\ 1.406 \\ 0.296 \\ 0.861 \\ 0.785 \\ 0.958 \\ 1.406 \\ 0.296 \\ 0.861 \\ 0.785 \\ 0.958 \\ 1.406 \\ 0.296 \\ 0.861 \\ 0.785 \\ 0.958 \\ 1.406 \\ 0.172 \\ 0.137 \\ 0.206 \\ 2963 \\ 467.5 \\ 1993 \\ 1965 \\ 5616 \\ 5523 \\ 5634 \\ 13.8 \\ 0.372 \\ 1.30 \\ 0.220 \\ 0.20 \\$	0.330 0.305 0.331 0.434 0.364 0.323 0.236 0.224 0.162 0.156 0.685 0.589 1.432 0.783 0.345 0.228 0.013 0.176 0.294 0.296 0.220 1.425 1.160 1.117 1.083 0.936 0.560 0.396 0.560 0.396 0.539 0.636 0.505 0.000 0.043 0.764 0.935 0.864 0.688 0.689 0.846 0.836 1.088 1.144 0.734 0.743 0.738 0.030 0.000 0	0.332 0.405 0.389 0.334 0.430 0.537 0.235 0.348 0.567 0.700 0.481 0.653 0.815 0.216 0.380 0.009 0.036 0.591 0.774 0.550 0.411 0.365 0.378 0.510 0.004 0.027 0.097 0.222 0.078 0.159 0.129 0.027 0.777 0.777 0.031 0.029 0.028 0.002 0.004 0.001

			ulogen ou			11.5		100
	ENTS: rogen sulfi 83-06-4]	lde; H ₂ S;			DRIGINAL M Gee, J.I.;			her,A.E.
2. Car 3. Wat 4. 2-A	bon dioxide er; H ₂ O; [7 minoethano] 7NO; [141-4	732-18-5 L (monoet]	ne) (Can. J. Cha Original d National Do Data, Ottay	data dep epositor	osited in y of Unp	
	MENTAL VALU	-						
	tration of		nolomino	(MED)	- 25 km	_1 m ^{−3}	12 5 mol	dm ⁻³)
	bles below,							
ratio	H_2S/MEA in s phase and	the liqu	id phas	e for v	various pa:	rtial pr	essures (
Mole r CO ₂ /ME		0.000	0.100	0.200	0.300	0.400	0.500	0.600
т/к	P _{H₂S} /kPa							
313.2	0.1 0.316 1.00 3.16 10.0 31.6 100 316 1000 3000	0.102 0.202 0.333 0.527 0.730 0.866 0.966 1.056 1.227 1.620	0.072 0.150 0.247 0.373 0.510 0.633 0.752 0.892 1.078 1.325	0.050 0.111 0.281 0.285 0.388 0.578 0.578 0.578 0.891 1.106	0.073 7 0.133 0.202 3 0.283 3 0.360 3 0.453 3 0.590 0.767	0.010 0.043 0.082 0.128 0.250 0.342 0.470 0.662 0.883	0.243 0.371	0.010 0.022 0.047 0.086 0.161 0.290 0.500 0.750
Mole r CO ₂ /ME		0.700	0.800	0.900	1.000	1.100	1.200	
Т/К	P _{H₂S} /kPa							
313.2	10.0 31.6 100 316 1000 3000	0.021 0.041 0.090 0.200 0.410 0.683	0.019 0.054 0.137 0.315 0.600	0.032 0.103 0.243 0.510	0.018 0.072 0.187 0.420	0.008 0.050 0.150 0.322	0.031 0.110 0.250*	
Mole r CO ₂ /ME		0.000	0.100	0.200	0.300	0.400		
T/K	P _{H₂S} /kPa							
373.2	0.1 0.316 1.0 3.16 10.0 31.6 100 316 1000 3000 6000	0.028 0.041 0.065 0.118 0.227 0.400 0.615 0.853 0.990 1.336 1.770	0.017 0.023 0.042 0.080 0.162 0.293 0.455 0.637 0.835 1.110 1.410	0.010 0.011 0.023 0.053 0.117 0.225 0.360 0.520 0.710 0.942 1.132	0.004 0.015 0.037 0.078 0.158 0.274 0.420 0.600 0.822 0.993*	0.003 0.022 0.051 0.100 0.197 0.333 0.502 0.707 0.870*		
Mole r CO ₂ /ME		0.500	0.600	0.700	0.800	0.900		
т/к	P _{H2S} /kPa							
373.2	10.0 31.6 100.0 316 1000 3000 6000	0.027 0.066 0.142 0.252 0.405 0.585 0.740*	0.010 0.037 0.097 0.185 0.307 0.470 0.600*	0.020 0.060 0.133 0.241 0.379 0.487*	0.037 0.095 0.187 0.303 * 0.392*	0.017 0.058 0.133 0.236 0.316*		
* extr	apolated va					0.010		
GYLL	aporated Ve	Lues YIV	ch by ch	e auciic				

1

f

, ,	in Aqueous Solvents
COMPONENTS:	ORIGINAL MEASUREMENTS:
1. Hydrogen sulfide; H ₂ S;	Nasir, P.; Mather, A.E.
[7783-06-4] 2. Carbon dioxide; CO ₂ ; [124-38-9]	Can. J. Chem. Eng. 1977,55,
3. Water; H ₂ O; [7732-18-5]	715-717.
4. 2-Aminoethanol, (Monoethanolamin C,H,NO; [141-43-5]	e)
VARIABLES:	PREPARED BY:
Pressure	C.L. Young
EXPERIMENTAL VALUES: T/K	= 373.15
Conc. of monoethan	plamine = 5.0 mol dm^{-3}
P _{H2S} /kPa P _{CO2} /kPa	$\alpha^{\dagger}_{H_2S}$ $\alpha^{\dagger}_{CO_2}$
0.0131 0.0103 0.0152 0.0200	0.013 0.0405 0.0083 0.0475
0.0455 0.0607	0.010 0.072
0.179 0.00214	
0.324 0.0165 0.372 0.0262	0.025 0.026 0.0463 0.023
0.531 0.490	0.0133 0.096
0.586 0.669	0.013 0.119
0.669 0.0145	0.036 0.012
0.703 0.331 0.814 1.131	0.018 0.078 0.011 0.116
0.814 1.131	0.021 0.082
1.03 0.0648	0.032 0.028
1.10 0.00896	
1.22 0.607	0.027 0.083
1.36 0.386 1.76 0.0244	0.033 0.06 0.053 0.012
2.10 1.21	0.022 0.14
3.03 0.0138	0.06 0.004
3.17 0.896	0.035 0.199
3.24 0.193 3.38 0.848	0.053 0.038 0.046 0.092
3.84 0.793	0.037 0.103
4.14 0.0276 4.20 0.227	0.084 0.004 0.066 0.037
	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Nitrogen passes through three 250 ml vessels in series which contained amine solution with a certain amount	
of dissolved hydrogen sulfide and carbon dioxide. Emerging gas from last vessel analysed by GC. Hydroge sulfide content determined by iodine thiosulfate titration and carbon dioxide by barium carbonate precipit ation.	-
	ESTIMATED ERROR:
	$\delta T/K = \pm 0.5; \ \delta \alpha = \pm 6 \%$ (estimated by compiler).
	REFERENCES:
1	

ì

CONDONENTER -		ODICINAL MEACUE	
COMPONENTS: 1. Hydrogen sulfide; H ₂ :	5. [7783_06_4]	ORIGINAL MEASUR Nasir, P.; M	
 Aydrogen suffice; A2. Carbon dioxide; CO2; Water; H₂O; [7732-18- 2-Aminoethanol, (Mono C₂H₇NO; [141-43-5] 	[124-38-9] -5]		acher, A.E.
EXPERIMENTAL VALUES:			
₽ _{H₂S} /kPa	P _{CO2} /kPa	α [†] _{H2} S	α ⁺ _{CO₂}
4.41 4.41	0.262 0.0690	0.063	0.042 0.0124
4.50	0.103	0.0796	0.02
4.94 5.24	0.0910 0.276	0.081 0.069	0.0164 0.043
6.41	1.10	0.071	0.115
6.81 7.17	0.483 1.17	0.071 0.069	0.051 0.116
7.28	0.476	0.083	0.057
7.65 8.89	0.0413 0.0565	0.119 0.128	0.006 0.006
9.31	2.96	0.064	0.175
[†] α _i ≓ Mole c	of species $i/mole$	e of monoethanola	mine.
	<u> </u>		

. .

I

			· · · · · · · · · · · · · · · · · · ·				
COMPONENTS:			ORIGINAL MEASUREMENTS:				
 Hydrogen sulfide; H₂S; [7783-06-4] Carbon dioxide; CO₂; [124-38-9] Water; H₂O; [7732-18-5] 2-Aminoethanol (MEA), (Mono- ethanolamine); C₂H₇NO; [141-43-5] 			Isaacs, E. E.; Otto, F. D.; Mather, A. E. <i>J. Chem. Eng. Data</i> <u>1980</u> , 25, 118-120.				
VARIABLES:		·····	PREPARED BY:	· · · · · · · · · · · · · · · · · · ·			
	Pressure			C. L. Young	a		
EXPERIMENTAL VALUES:							
т/к	Conc. MEA	P/kP	a	α ⁺			
_,	/kmol m ⁻³	H ₂ S	CO₂	H ₂ S/MEA	CO2/MEA		
373.15	2.5	trace trace 0.0353 0.0590 0.0842 0.0601 0.0242 0.138 0.149 0.120 0.121 0.102 0.140 0.211 0.499 0.237 0.138 0.133 0.131 0.314 0.583 0.432 0.544	$\begin{array}{c} 0.886\\ 0.0337\\ 0.00714\\ 0.0198\\ 0.0297\\ 0.0140\\ 0.0408\\ 0.0490\\ 0.0453\\ 0.0331\\ 0.0242\\ 0.0214\\ 0.0163\\ 0.0511\\ 0.565\\ 0.0834\\ 0.0270\\ 0.0565\\ 0.0834\\ 0.0270\\ 0.0222\\ 0.0067\\ 0.0568\\ 0.244\\ 0.155\\ 0.246\end{array}$	trace 0.0067 0.0181 0.0187 0.0205 0.0213 0.0231 0.0232 0.0238 0.0239 0.0247 0.0247 0.0248 0.0263 0.0265 0.0265 0.0265 0.0269 0.0277 0.0325 0.0325 0.0326 0.0338 0.0340 0.0365 (cor	0.149 0.0600 0.0182 0.0357 0.0310 0.0217 0.0347 0.0312 0.0295 0.0261 0.0197 0.0227 0.0210 0.0297 0.108 0.0467 0.0213 0.0211 0.0100 0.0211 0.0100 0.0310 0.0791 0.0492 0.0718		
		AUXILIARY	INFORMATION				
METHOD APP	ARATUS/PROCEDURE:		SOURCE AND BU	PITY OF MATERIALS.			
Nitrogen vessels amine so of disso hydrogen from las Liquid s Hydrogen by iodin and carb	ARATUS/PROCEDURE: n passed throug in series whic olution with a olved carbon di n sulfide. Em st vessel analy sample taken fr n sulfide conte ne-thiosulfate bon dioxide by te precipitatio	h contained certain amount oxide and erging gas sed by GC. om last vessel. nt determined titration barium	ESTIMATED ERR δτ/K = ±0	RITY OF MATERIALS: No details give OR: .5; $\delta \alpha = \pm 6$ % d by compiler).	en.		

COMPONENTS:	ORIGINAL MEASUREMENTS:
 Hydrogen sulfide; H₂S;	Isaacs, E. E.; Otto, F. D.;
[7783-06-4] Carbon dioxide; CO₂; [124-38-9] Water; H₂O; [7732-18-5] 2-Aminoethanol (MEA), (Mono-	Mather, A. E.
ethanolamine); C ₂ H ₇ NO;	J. Chem. Eng. Data
[141-43-5]	<u>1980</u> , 25, 118-120.

ļ

T/K	Conc. MEA	P/kPa		α^+		
/kmol m ⁻³	H ₂ S	CO ₂	H ₂ S/MEA	CO2/MEA		
373.15	2.5	0.329	0.0714	0.0369	0.0375	
		0.424	0.0906	0.0382	0.0357	
		0.260	0.0780	0.0388	0.0406	
		0.476	0.0962	0.0400	0.0400	
		0.548	0.140	0.0400	0.0492	
		0.620	0.137	0.0409	0.0485	
		0.458	0.0545	0.0418	0.0254	
		0.561	0.126	0.0420	0.0462	
		0.778	0.135	0.0425	0.0457	
		0.391	0.0048	0.0459	0.0085	
		0.823 0.752	0.220 0.211	0.0504 0.0507	0.0593 0.0610	
		0.949	0.242	0.0518	0.0711	
		0.928	0.206	0.0536	0.0606	
		0.851	0.200	0.0537	0.0516	
		1.28	0.438	0.0555	0.0851	
		0.932	0.248	0.0567	0.0545	
		1.18	0.239	0.0570	0.0686	
		0.966	0.116	0.0612	0.0332	
		1.84	0.523	0.0654	0.0941	
		1.24	0.132	0.0735	0.0333	
		2.56	0.838	0.0748	0,115	
		1.21	0.0027	0.0755	0.0062	
		1.63	0.164	0.0846	0.0327	
		2.10	0.195	0.0872	0.0401	
		2.03	0.169	0.0924	0.0363	
		3.92	1.36	0,0954	0.141	
		2.81	0.355	0.122	0.0407	
		3.36	0.0800	0.136	0.0062	

[†] Mole ratio

Ì

ł

COMPORENTS: 1. Hydrogon sulfide; H ₂ S; 1. T783-06-41 2. Carbon dioxide; CO ₂ ; [124-38-9] 3. Water, H ₂ O; [7732-18-5] 4. Ethanol, 2, 2 ² -innibbis-, (disthanolamine); C.H ₁ , NO ₂ ; [111-42-2] VARIABLES: Temperature, pressure, composition of liquid phase EXPERIMENTAL VALUES: Concentration of diethanolamine (DEA) = 2.0 mol dm ⁻³ ; T/K = 298.2 P _{H₂S/mmHg} P _{CO₂/mmHg} Nole ratios in liquid phase H ₂ S/DEA CO ₂ /DEA 1.72 0.00 0.126 0.016 5.13 1.17 0.126 0.016 5.13 1.17 0.126 0.016 5.13 1.17 0.126 0.016 6.1 1.24.0 0.237 0.1486 23.0 2.6 0.149 0.1866 23.0 2.6 0.149 0.1866 23.0 2.6 0.342 92 12.0 0.517 0.189 92 12.0 0.517 0.189 92 12.0 0.517 0.363 1.3 4.5 0.017 0.363 37 14.4 0.206 0.355 61 24.6 0.277 0.363 1.3 4.5 0.017 0.363 37 14.4 0.206 0.355 61 24.6 0.277 0.363 1.3 4.5 0.017 0.363 1.44 0.206 0.355 1.24 0.044 0.3240 760 mmHg = 1 atm = 1.01325 bar AUXILIARY INFORMATION METHOD/APPARATUS/FROCEDURE: N, or a mixture of N ₂ & H ₃ S was passed successively through two aboorbers containing H ₃ S CO ₂ dissolved in an aqueous solution of DEA. The H ₃ S in the emerging gas was passed into cadmium or zinc acetate solution af the precipitated sulfides estimated by picdimetry, Hydrogen sulfide in the DEA solutions was also determined by iddimetry, Hydrogen sulfide in the DEA solutions was also determined by iddimetry, Hydrogen sulfide in the DEA solutions was also determined by iddimetry, Hydrogen sulfide in the DEA solutions was also determined by iddimetry, Hydrogen sulfide in the DEA solutions was also determined by iddimetry, Hydrogen sulfide in the DEA solutions was also determined by iddimetry, Hydrogen sulfide in the DEA solutions was also determined by iddimetry, Hydrogen sulfide in the DEA solution of H ₃ S by acidified precipitate and hasortion of evolved CO ₂ in standard baryta solution.			·	
$\frac{1}{7783-06-41}$ 2. Carbon dioxide; CO ₂ ; [124-38-9] 3. Water; H ₂ O; [7732-18-5] 4. Ethanol, 2, 2'=minobis-, (dathanolamine); C.H ₁₁ NO ₂ ; [111-42-2] VARTABLES: Temperature, pressure, composition of liquid phase EXPERIENTAL VALUES: Concentration of diethanolamine (DEA) = 2.0 mol dm ⁻³ ; T/K = 298.2 P _{H₂S} /mmHg P _{CO2} /mmHg Mole ratios in liquid phase H ₂ S/DEA CO ₂ /DEA 1.72 0.00 0.126 0.016 5.13 1.17 0.126 0.188 18.7 12.4 0.128 0.342 23.6 25.0 0.123 0.406 0.77 - 0.027 0.186 6.0 0.8 0.119 0.186 6.5 5.1 0.4 0.557 0.195 141 16.5 0.357 0.253 1.3 4.5 0.017 0.363 6.1 6.8 0.067 0.363 6.1 24.6 0.277 0.363 1.3 4.5 0.017 0.363 6.1 6.8 0.067 0.363 6.1 6.8 0.067 0.363 6.1 24.6 0.277 0.363 145 56 0.404 0.324 240 80 0.491 0.270 760 mmHg = 1 atm = 1.01325 bar AUXILIARY INFORMATION METHOD/AFPARATUS/PROCEDURE: N ₂ or a mixture of N ₂ & H ₂ S was passed successively through two absorbed in standard baryta solution of DEA. The H ₃ S in the omerging gas weight of total impurities. % Or a mixture of N ₂ & H ₂ S was passed successively through two absorbed in standard baryta solution. % CO ₂ in standard baryta solution. % THOD/AFPARATUS/PROCEDURE: N ₂ or a mixture of N ₂ & H ₂ S was passed successively through two absorbed in standard baryta solution. % CO ₂ in the liquid phase was absorbed in standard baryta solution. % THOD /AFPARATUS/PROCEDURE: N ₂ Or a mixture of N ₂ & H ₂ S was passed successively through two absorbed in standard baryta solution. % CO ₂ in the liquid phase was absorbed in standard baryta solution. % THOD /AFPARATUS/PROCEDURE: % Weight of total impurities. % THOM PERMARY MOLES SUBCED (METHON) % Weight of total impurities. % THOM PERMARY MARY AND (METHON) % Weight of total impurities. % THOM PERMARY MARY MARY AND (METHON) % Weight of total impurities. % THOM PERMARY MARY MARY MARY MARY MARY MARY MARY	COMPONENTS:		ORIGINAL MEASUREMENTS:	
2. Carbon dioxide; CO ₂ ; [124-38-9] 3. Waters, HyG; [772-18-5] 4. Ethanol, 2,2'-iminobis-, (disthanolamine); C.H ₁ ,NO ₂ ; [111-42-2] VARIABLES: Temperature, pressure, composition of liquid phase EXTERIMENTAL VALUES: Concentration of diethanolamine (DEA) = 2.0 mol dm ⁻³ ; T/K = 298.2 P _{H2S} /mmHg P _{CO2} /mmHg Nole ratios in liquid phase H ₂ S/DEA CO ₂ /DEA 1.72 0.00 0.126 0.016 5.13 1.17 0.126 0.032 0.77 - 0.027 0.126 0.77 - 0.027 0.186 23.0 2.6 0.302 0.186 6.0 0.8 0.149 0.186 23.0 2.6 0.302 0.186 6.1 6.8 0.067 0.363 6.1 24.6 0.277 0.363 6.1 24.6 0.277 0.363 6.1 24.6 0.425 0.132 760 mmHg = 1 atm = 1.01325 bar AUXILLARY INFORMATION METHOD/APPARATUS/FROCEDURE: Ng or a mixture of N & H ₂ S was passed successively through two absorbers containing HyS & CO ₂ 760 mmHg = 1 atm = 1.01325 bar AUXILLARY INFORMATION METHOD/APPARATUS/FROCEDURE: Ng or a mixture of N & H ₂ S was passed successively through two absorbers containing HyS & CO ₂ dissolved in an aqueous solution of the H ₂ S or the gas phase was absorber solution at the procipitated sulfides estimated by rodimetry. Rydrogen sulfide in the DEA solutions was also determined by rodistry. Hydrogen sulfide solution of the removal of H ₂ S by actified potassium permanganate solution of H ₂ SO, removal of evolved H ₂ S by permanganate and absorption of roolue for in standard baryta REFERENCES: EXTENDED REFERENCES:		H ₂ S;	Leibush, A.G.; Shr	neerson, A.L.
3. Water; H ₂ O; [7732-18-5] 4. Ethanol, 2, 2'-iminobis-, (dicthanolamine); C ₄ H ₁₃ NO ₂ ; [111-42-2] WARTABLES: Temperature, pressure, composition of liquid phase EXPERIMENTAL VALUES: Concentration of diethanolamine (DEA) = 2.0 mol dm ⁻¹ ; T/K = 298.2 P _{H₂S} /mmHg P _{CO2} /mmHg Nole ratios in liquid phase H ₂ S/DEA 1.72 0.00 0.126 0.016 5.13 1.17 0.126 0.198 16.7 12.4 0.128 0.342 23.6 25.0 0.123 0.406 0.77 - 0.027 0.136 5.0 0.2.6 0.116 5.13 1.17 0.126 0.198 16.7 12.4 0.128 0.342 23.6 25.0 0.123 0.406 0.77 - 0.027 0.136 5.0 0.2.6 0.157 0.195 1.3 4.5 0.017 0.363 6.1 6.8 0.067 0.363 6.1 24.6 0.277 0.363 1.3 4.5 0.017 0.363 6.1 24.6 0.277 0.363 1.4 4.4 0.206 0.355 61 24.6 0.277 0.363 1.5 56 0.404 0.324 240 80 0.491 0.270 760 mmHg = 1 atm = 1.01325 bar AUXILIARY INFORMATION METHOD/AFPARATUS/PROCEDURE: N ₂ or a mixture of N, 8 H ₂ S was passed successively through two absorbed in standard baryta solution of DET THE SULTION SULTION METHOD/AFPARATUS/PROCEDURE: N ₂ or a mixture of N, 8 H ₂ S was passed successively through two absorbed in standard baryta solution of the removal of H ₂ S by acdified potassium permanganate solution. C ₃ in the liquid phase was absorbed in standard baryta solution of the liquid phase was absorbed in standard baryta solution STIMATED ERROR: $\delta T/K = \pm 0.1 (authors)$ REFERENCES:				1050 00 145 150
4. Ethanol, 2, 2'-iminobis-, (distance and the origing gas was passed successively through two absorbers containing $H_S = 1.01325$ bar 4. ETHEOD'APPAARTUS/FROCEDURE: Not an aqueous solution of a standard baryta Market and absorption of the sport	2. Carbon dioxide; CC	18_5]		
(disthanolamine); C ₄ H ₁ NO ₂ ; (111-42-2)VARIABLES: Temperature, pressure, composition of liquid phasePREPARED BY: P.G.T. FoggPREPARED BY: P.G.T. FoggConcentration of diethanolamine (DEA) = 2.0 mol dm ⁻³ ; T/K = 298.2PH25/mmHg PCO2/MmHgMole ratios in liquid phase H2S/DEAConcentration of diethanolamine (DEA) = 2.0 mol dm ⁻³ ; T/K = 298.2PH25/mmHg PCO2/MmHgMole ratios in liquid phase H2S/DEA1.720.000.1260.0165.131.170.1260.0160.1260.0120.1866.10.1280.3422.3.60.1290.1230.4060.1200.1260.1490.1200.1260.1490.1200.1260.1490.1200.1260.1490.1200.1200.1866.1.55.40.4250.1860.1311.34.50.0170.3631.31.4.40.2060.3556.16.16.60.2770.3631.4.40.2060.3556.12.50.20VICUULIARY INFORMATIONAUXILLARY INFORMATIONAUXILLARY INFORMATIONENT				<u>1990</u> ,
VARIABLES: Temperature, pressure, composition of liquid phasePREPARED BY: P.G.T. FoggEXPERIMENTAL VALUES: Concentration of diethanolamine (DEA) = 2.0 mol dm ⁻³ ; T/K = 298.2 $P_{H_2S}/mmHg$ $P_{CO_2}/mmHg$ Mole ratios in liquid phase H_2S/DEA 1.72 0.000.126 1.72 0.00 1.72 0.00 1.72 0.107 2.6 0.128 0.126 0.166 5.13 1.17 0.126 0.186 6.0 0.8 0.123 0.406 6.0 0.8 0.123 0.406 6.0 0.8 0.123 0.406 0.556 0.203 1.3 4.5 0.617 0.363 6.1 6.8 0.667 0.363 37 14.4 0.206 0.355 61 24.6 0.277 0.363 145 56 240 80 80 0.491 0.270 760 mmHg = 1 atm = 1.01325 barAUXILLARY INFORMATIONAUXILLARY INFORM			,	
Temperature, pressure, composition of liquid phase P.G.T. Fogg EXPERIMENTAL VALUES: Concentration of diethanolamine (DEA) = 2.0 mol dm ⁻³ ; T/K = 298.2 $P_{H_2S}/mmHg$ $P_{CO_2}/mmHg$ Mole ratios in liquid phase H ₂ S/DEA CO_2/DEA 1.72 0.00 0.126 0.016 5.13 1.17 0.126 0.198 18.7 12.4 0.128 0.342 23.6 25.0 0.123 0.406 0.77 - 0.027 0.186 23.0 2.6 0.302 0.186 23.0 2.6 0.302 0.186 23.0 2.6 0.302 0.186 23.0 2.6 0.302 0.186 23.0 2.6 0.302 0.186 3.1 4.5 0.017 0.363 61 24.6 0.277 0.363 141 18.5 56 0.404 0.324 240 80 0.491 0.270 AUXILIARY INFORMATION AUXILIARY INFORMATION METRIOD AND PURITY OF MATERIALS: <td>[111-42-2]</td> <td></td> <td></td> <td></td>	[111-42-2]			
Temperature, pressure, composition of liquid phase P.G.T. Fogg EXPERIMENTAL VALUES: Concentration of diethanolamine (DEA) = 2.0 mol dm ⁻³ ; T/K = 298.2 $P_{H_2S}/mmHg$ $P_{CO_2}/mmHg$ Mole ratios in liquid phase H ₂ S/DEA CO_2/DEA 1.72 0.00 0.126 0.016 5.13 1.17 0.126 0.198 18.7 12.4 0.128 0.342 23.6 25.0 0.123 0.406 0.77 - 0.027 0.186 23.0 2.6 0.302 0.186 23.0 2.6 0.302 0.186 23.0 2.6 0.302 0.186 23.0 2.6 0.302 0.186 23.0 2.6 0.302 0.186 3.1 4.5 0.017 0.363 61 24.6 0.277 0.363 141 18.5 56 0.404 0.324 240 80 0.491 0.270 AUXILIARY INFORMATION AUXILIARY INFORMATION METRIOD AND PURITY OF MATERIALS: <td>WADTARI FS.</td> <td></td> <td>DEDADED DV.</td> <td></td>	WADTARI FS.		DEDADED DV.	
of liquid phase EXPERIMENTAL VALUES: Concentration of diethanolamine (DEA) = 2.0 mol dm ⁻³ ; T/K = 298.2 P _{H_2S} /mmHg P _{CO2} /mmHg Mole ratios in liquid phase H _{2S} /mmHg P_{CO2} /mmHg Mole ratios in liquid phase 1.72 0.00 0.126 0.016 5.13 1.17 0.126 0.198 23.6 25.0 0.123 0.406 0.77 - 0.027 0.186 23.0 2.6 0.302 0.186 23.0 2.6 0.302 0.186 23.0 2.6 0.302 0.186 23.0 2.6 0.302 0.186 23.0 2.6 0.302 0.186 6.1 8 0.067 0.363 1.3 4.5 0.017 0.363 3.1 14.4 0.2067 0.363 145 56 0.404 0.324 240 80 0.404 0.324 AUXILIARY INFORMATION METHOD/		composition		
Autom of diethanolamine (DEA) = 2.0 mol dm ⁻³ ; T/K = 298.2 P _{H2S} /mmHg P _{CO2} /mmHg Mole ratios in liquid phase H _{2S} /DEA 1.72 0.00 1.72 0.00 1.72 0.00 1.72 0.00 1.72 0.00 1.72 0.00 1.72 0.026 1.72 0.026 0.126 0.0126 0.126 0.0186 0.123 0.0186 0.186 0.186 0.186 0.186 0.186 0.186 0.186 0.186 0.161 0.162 0.162 AUXILIARY INFORMATION METHOD/APPARATUS/PROCEDURE: N or a mixture of N, & H, S was p		composition	P.G.I. FOGG	
Concentration of diethanolamine (DEA) = 2.0 mol dm ⁻³ ; T/K = 298.2 $P_{H_2S}/mmHg$ $P_{CO_2}/mmHg$ Mole ratios in liquid phase H_2S/DEA CO_2/DEA 1.72 0.00 0.126 0.016 5.13 1.17 0.126 0.046 1.72 0.00 0.126 0.018 18.7 12.4 0.128 0.342 23.6 25.0 0.123 0.406 0.77 - 0.027 0.186 6.0 0.8 0.149 0.186 67.5 5.4 0.425 0.186 92 12.0 0.517 0.195 141 18.5 0.067 0.363 6.1 6.8 0.067 0.363 1.3 4.5 0.0404 0.324 240 80 0.491 0.270 T60 mmHg = 1 atm = 1.01325 bar	fara para			
$P_{H_2S}/mmHg$ $P_{CO_2}/mmHg$ Mole ratios in liquid phase H_2S/DEA CO_2/DEA 1.720.000.1260.0165.131.170.1260.19818.712.40.1280.34223.625.00.1230.4060.77-0.00270.1866.00.80.1490.18667.55.40.4250.1899212.00.5170.19514118.50.5560.2031.34.50.0070.3636.16.80.0670.3636.124.60.2770.363145560.4040.324240800.4910.270T60 mmHg = 1 atm = 1.01325 barAUXILIARY INFORMATIONMURICE AND FURITY OF MATERIALS:Nource of N ₂ & H ₂ S was passed successively through two absorbers containing H ₂ S & CO2 dissolved in an aqueous solution of DEA. The H ₂ S in the emerging gas was passed into cadmium or zinc acetate solutions and also or zinc acetate solution and the precipitated sulfides estimated by iodimetry. O20 in the gas phase was estimated by reaction with 300 H ₂ SO ₂ , removal of H ₂ S by acidified potassium permanganate solution. CO2 in the liquid phase was estimated by reaction with 308 H ₂ SO ₂ , removal of H ₂ S by acidified peranganate and absorption of evolved CO2 in standard barytaSURCE AND FURITY OF MATERIALS: Impurities.SUMMED ERROR: $\delta T/K = \pm 0.1$ (authors)STIMATED ERROR: $\delta T/K = \pm 0.1$ (a	EXPERIMENTAL VALUES:			
$P_{H_2S}/mmHg$ $P_{CO_2}/mmHg$ Mole ratios in liquid phase H_2S/DEA CO_2/DEA 1.720.000.1260.0165.131.170.1260.19818.712.40.1280.34223.625.00.1230.4060.77-0.00270.1866.00.80.1490.18667.55.40.4250.1899212.00.5170.19514118.50.5560.2031.34.50.0070.3636.16.80.0670.3636.124.60.2770.363145560.4040.324240800.4910.270T60 mmHg = 1 atm = 1.01325 barAUXILIARY INFORMATIONMURICE AND FURITY OF MATERIALS:Nource of N ₂ & H ₂ S was passed successively through two absorbers containing H ₂ S & CO2 dissolved in an aqueous solution of DEA. The H ₂ S in the emerging gas was passed into cadmium or zinc acetate solutions and also or zinc acetate solution and the precipitated sulfides estimated by iodimetry. O20 in the gas phase was estimated by reaction with 300 H ₂ SO ₂ , removal of H ₂ S by acidified potassium permanganate solution. CO2 in the liquid phase was estimated by reaction with 308 H ₂ SO ₂ , removal of H ₂ S by acidified peranganate and absorption of evolved CO2 in standard barytaSURCE AND FURITY OF MATERIALS: Impurities.SUMMED ERROR: $\delta T/K = \pm 0.1$ (authors)STIMATED ERROR: $\delta T/K = \pm 0.1$ (a	Concentration of diet	hanolamine (DEA	$) = 2.0 \text{ mol } dm^{-3}$;	T/K = 298.2
Image: Note of the set			,,	-,
Image: Note of the set		D /mmlla	Male motion in	liquid phage
1.72 0.00 0.126 0.016 5.13 1.17 0.126 0.198 18.7 12.4 0.128 0.342 23.6 25.0 0.123 0.406 0.77 - 0.027 0.186 6.0 0.8 0.149 0.186 6.75 5.4 0.425 0.186 67.5 5.4 0.425 0.186 6.1 6.8 0.007 0.363 6.1 6.8 0.007 0.363 6.1 6.8 0.007 0.363 6.1 24.6 0.277 0.363 141 18.5 56 0.404 0.324 240 80 0.491 0.270 T60 mmHg = 1 atm = 1.01325 bar	P _{H2} S ^{/mmHg}	^P CO ₂ / mmHg		
5.131.170.1260.19618.712.40.1280.34223.625.00.1230.4060.77-0.0270.18623.02.60.3020.18623.02.60.3020.18623.02.60.3020.18623.02.60.5170.19514118.50.5560.2031.34.50.0170.3636.16.80.0670.3633714.40.2060.3556124.60.2770.363145560.4040.324240800.4910.270T60 mmHg = 1 atm = 1.01325 barAUXILIARY INFORMATIONMETHOD/APPARATUS/PROCEDURE:Ng or a mixture of N2 & H2S was passed successively through two absorbers containing H2S & CO2dissolved in an aqueous solution of DEA. The H2S in the emerging gas was passed into cadmium or zinc acetate solution and the precipitated sulfides estimated by iodimetry. Hydrogen sulfide in the precipitated sulfides estimated by iodimetry. Hydrogen sulfide in the precipitated sulfides estimated by iodimetry. CO2 in the lags phase was estimated by reaction with 30% H2SO4, removal of Evolved H2S by permanganate and absorption of gevolved CO2 in standard barytaSTIMATED ERROR: STIMATED ERROR: STIMATED ERROR: STIMATED ERROR:% T/K = ± 0.1 (authors)%			11207 2211	0027024
5.131.170.1260.19618.712.40.1280.34223.625.00.1230.4060.77-0.0270.18623.02.60.3020.18623.02.60.3020.18623.02.60.3020.18623.02.60.5170.19514118.50.5560.2031.34.50.0170.3636.16.80.0670.3633714.40.2060.3556124.60.2770.363145560.4040.324240800.4910.270T60 mmHg = 1 atm = 1.01325 barAUXILIARY INFORMATIONMETHOD/APPARATUS/PROCEDURE:Ng or a mixture of N2 & H2S was passed successively through two absorbers containing H2S & CO2dissolved in an aqueous solution of DEA. The H2S in the emerging gas was passed into cadmium or zinc acetate solution and the precipitated sulfides estimated by iodimetry. Hydrogen sulfide in the precipitated sulfides estimated by iodimetry. Hydrogen sulfide in the precipitated sulfides estimated by iodimetry. CO2 in the lags phase was estimated by reaction with 30% H2SO4, removal of Evolved H2S by permanganate and absorption of gevolved CO2 in standard barytaSTIMATED ERROR: STIMATED ERROR: STIMATED ERROR: STIMATED ERROR:% T/K = ± 0.1 (authors)%			0.400	0.015
18.7 12.4 0.128 0.342 23.6 25.0 0.123 0.406 0.77 - 0.027 0.186 6.0 0.8 0.149 0.186 23.0 2.6 0.302 0.186 67.5 5.4 0.425 0.189 92 12.0 0.517 0.195 141 18.5 0.556 0.203 1.3 4.5 0.017 0.363 6.1 6.8 0.067 0.363 37 14.4 0.206 0.355 61 24.6 0.277 0.363 145 56 0.404 0.324 240 80 0.491 0.270 T60 mmHg = 1 atm = 1.01325 bar AUXILLARY INFORMATION METHOD/APPARATUS/PROCEDURE: N2 or a mixture of N2 & H2S was sassorbers containing H2S & CO2 0.491 0.270 Gissolved in a adueous solution of DEA. The H2S in the emerging gas sassorber in standard baryta solution after removal of H2S by acidified potassium permanganate and absorption				
23.625.0 0.123 0.406 0.77 - 0.027 0.186 6.0 2.6 0.302 0.186 23.0 2.6 0.302 0.186 23.0 2.6 0.302 0.186 23.0 2.6 0.302 0.186 23.0 2.6 0.302 0.186 23.0 2.6 0.302 0.186 23.0 2.6 0.302 0.186 92 12.0 0.556 0.203 1.3 4.5 0.067 0.363 6.1 6.8 0.067 0.363 6.1 24.6 0.277 0.363 61 24.6 0.277 0.363 145 56 0.404 0.324 240 80 0.491 0.270 T60 mmHg = 1 atm = 1.01325 barAUXILIARY INFORMATIONMETHOD/APPARATUS/PROCEDURE:N ₂ or a mixture of N ₂ & H ₂ S was passed successively through two absorbers containing H ₂ S & CO ₂ dissolved in an aqueous solution of DEA. The H ₃ S in the emerging gas was passed into cadmium or zinc acetate solution and the precipitated sulfide setimated by racetion with 308 H ₂ SO ₄ , removal of H ₂ S by acidified potassium permanganate solution. GO ₂ in the liquid phase was absorbed in standard baryta solution after removal of evolved H ₂ S by permanganate and absorption of evolved CO ₂ is standard baryta $ESTIMATED ERROR:$ $\delta T/K = \pm 0.1 (authors)REFERENCES:$				
0.77 - 0.027 0.186 6.0 0.8 0.149 0.186 23.0 2.6 0.302 0.186 67.5 5.4 0.425 0.189 92 12.0 0.517 0.195 141 18.5 0.007 0.363 6.1 6.8 0.007 0.363 6.1 6.8 0.007 0.363 37 14.4 0.206 0.355 61 24.6 0.277 0.363 145 56 0.404 0.324 240 80 0.491 0.270 T60 mmHg = 1 atm = 1.01325 bar AUXILLARY INFORMATION METHOD/APPARATUS/PROCEDURE: N2 or a mixture of N2 & H2S was passed successively through two absorbers containing H2S & CO2 dissolved in an aqueous solution of 1. From H2SO, & Na2S: no SO2 detected 92 per unit volume of solutions was also determined by solution; less than 1% by iodimetry. CO2 in the gap base was Solution; less than 1%				
23.02.60.3020.18667.55.40.4250.1899212.00.5170.19514118.50.5560.2031.34.50.0170.3636.16.80.0670.3633714.40.2060.3556124.60.2770.363145560.4040.324240800.4910.270760 mmHg = 1 atm = 1.01325 barAUXILIARY INFORMATIONMETHOD/APPARATUS/PROCEDURE:N2 or a mixture of N2 & H_2S was passed successively through two absorbers containing H_2S & CO2 dissolved in an aqueous solution of DEA. The H_2S in the emerging gas was passed into cadmium or zinc acetate solution and the precipitated sulfides estimated by iodimetry. Hydrogen sulfide in the DEA solutions was also determined by iodimetry. Hydrogen sulfide in the DEA solutions was also determined by iodimetry. Hydrogen sulfide potassium permanganate solution. CO2 in the liquid phase was absorbed in standard baryta solution. CC2 in the liquid phase was absorbed in standard baryta solution. CC2 in the liquid phase was destimated by reaction with 30% H_2SO_, removal of evolved H_2S by permanganate and absorption of evolved CO2 in standard barytaSUITIATED ERROR: $\delta T/K = \pm 0.1$ (authors)REFERENCES:	0.77	-	0.027	0.186
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
9212.0 0.517 0.195 14118.5 0.556 0.203 1.34.5 0.017 0.363 6.1 6.8 0.067 0.363 3714.4 0.206 0.355 6124.6 0.277 0.363 14556 0.404 0.324 24080 0.491 0.270 760 mmHg = 1 atm = 1.01325 barAUXILIARY INFORMATIONMETHOD/APPARATUS/PROCEDURE:N2 or a mixture of N2 & H2S was passed successively through two absorbers containing H2S & CO2SOURCE AND PURITY OF MATERIALS:METHOD/APPARATUS/PROCEDURE:SOURCE AND PURITY OF MATERIALS:N2 or a mixture of N2 & H2S was passed into cadmium or zinc acetate solution and the precipitated sulfides estimated by iodimetry. CO2 in the gas phase was absorbed in standard baryta solution after removal of H2S by peranganate and absorption of evolved CO2 in standard barytaSource ERROR: $\delta T/K = \pm 0.1$ (authors)ESTIMATED ERROR: $\delta T/K = \pm 0.1$ (authors)				
1.34.5 0.017 0.363 6.16.8 0.067 0.363 3714.4 0.206 0.355 6124.6 0.277 0.363 14556 0.404 0.324 24080 0.491 0.270 760 mmHg = 1 atm = 1.01325 barAUXILIARY INFORMATIONMETHOD/APPARATUS/PROCEDURE:N2 or a mixture of N2 & H2S was passed successively through two absorbers containing H2S & CO2 dissolved in an aqueous solution of DEA. The H2S in the emerging gas was passed into cadmium or zinc acetate solution and the precipitated sulfides estimated by iodimetry. Hydrogen sulfide in the DEA solutions was also determined by iodimetry. CO2 in the gas phase was absorbed in standard baryta solution after removal of H2S by acidified potassium permanganate solution. CO2 in the liquid phase was estimated by reaction with 30% H2SO4, removal of evolved H2S by permanganate and absorption of evolved CO2 in standard barytaSUITCA SOURCE AND PURITY OF MATERIALS: SOURCE AND PURITY OF MATERIALS: 1. From H2SO4, & Na2S: no SO2 detected4. Contained 0.2 to 0.6 volumes of CO2 per unit volume of solution; less than 1% by weight of total impurities.ESTIMATED ERROR: $\delta T/K = \pm 0.1$ (authors)				
6.16.8 0.067 0.363 3714.4 0.206 0.355 6124.6 0.277 0.363 14556 0.404 0.324 24080 0.491 0.270 760 mmHg = 1 atm = 1.01325 barAUXILIARY INFORMATIONMETHOD/APPARATUS/PROCEDURE:N2 or a mixture of N2 & H2S was passed successively through two absorbers containing H2S & CO2 dissolved in an aqueous solution of DEA. The H2S in the emerging gas was passed into cadmium or zinc acetate solution and the precipitated sulfides estimated by iodimetry. Hydrogen sulfide in the DEA solutions was alas determined by iodimetry. CO2 in the gas phase was absorbed in standard baryta solution. CO2 in the liquid phase was estimated by reaction with 30% H2SO4, removal of evolved H2S by permanganate and absorption of evolved CO2 in standard barytaSolutions termoval of by reaction with 30% H2SO4, removal of evolved H2S by permanganate and absorption of evolved CO2 in standard barytaREFERENCES:	141			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
6124.60.2770.363145560.4040.324240800.4910.270760 mmHg = 1 atm = 1.01325 barAUXILIARY INFORMATIONMETHOD/APPARATUS/PROCEDURE:N2 or a mixture of N2 & H2S was passed successively through two absorbers containing H2S & CO2 dissolved in an aqueous solution of DEA. The H2S in the emerging gas was passed into cadmium or zinc acetate solution and the precipitated sulfides estimated by iodimetry. Hydrogen sulfide in the DEA solutions was also determined by iodimetry. CO2 in the gas phase was absorbed in standard baryta solution. CO2 in the liquid phase was estimated by reaction with 30% H2SO4, removal of evolved H2S by permanganate and absorption of evolved CO2 in standard barytaSource AND PURITY OF MATERIALS: SOURCE AND PURITY OF MATERIALS: SOURCE AND PURITY OF MATERIALS: 1. From H2SO4 & Na2S: no SO2 detecteddetected400 Colspan="2">AUXILIARY INFORMATIONSource AND PURITY OF MATERIALS: 1. From H2SO4 & Na2S: no SO2 detecteddetected4. Contained 0.2 to 0.6 volumes of CO2 per unit volume of solution; less than 1% by weight of total impurities.ESTIMATED ERROR: $\delta T/K = \pm 0.1 (authors)$ EFERENCES:			· · · · ·	
145560.4040.324240800.4910.270760 mmHg = 1 atm = 1.01325 barAUXILIARY INFORMATIONAUXILIARY INFORMATIONAUXILIARY INFORMATIONMETHOD/APPARATUS/PROCEDURE:N2 or a mixture of N2 & H2S was passed successively through two absorbers containing H2S & CO2dissolved in an aqueous solution of DEA. The H2S in the emerging gas was passed into cadinum or zinc acetate solution and the precipitated sulfides estimated by iodimetry. Hydrogen sulfide in the DEA solutions was also determined by iodimetry. CO2 in the gas phase was absorbed in standard baryta solution. CO2 in the liquid phase was estimated by reaction with 30% H2SO4, removal of evolved H2S by permanganate and absorption of evolved CO2 in standard barytaSolution: PEFERENCES:REFERENCES:				
$AUXILIARY INFORMATION$ $METHOD/APPARATUS/PROCEDURE:$ $N_{2} \text{ or a mixture of } N_{2} \& H_{2}S \text{ was}$ passed successively through two absorbers containing $H_{2}S \& CO_{2}$ dissolved in an aqueous solution of DEA. The H_{2}S in the emerging gas was passed into cadmium or zinc acetate solution and the precipitated sulfides estimated by iodimetry. Hydrogen sulfide in the DEA solutions was also determined by iodimetry. CO_{2} in the gas phase was absorbed in standard baryta solution. CO_{2} in the liquid phase was estimated by reaction with 30% H_{2}SO_{4}, removal of evolved H_{2}S by permanganate and absorption of evolved CO_{2} in standard baryta $REFERENCES:$				
AUXILIARY INFORMATIONMETHOD/APPARATUS/PROCEDURE:SOURCE AND PURITY OF MATERIALS: N_2 or a mixture of N_2 & H_2S was passed successively through two absorbers containing H_2S & CO_2 SOURCE AND PURITY OF MATERIALS:1. From H_2SO_4 & Na_2S : no SO_2 detecteddissolved in an aqueous solution of DEA. The H_2S in the emerging gas was passed into cadmium or zinc acetate solution and the precipitated sulfides estimated by iodimetry. Hydrogen sulfide in the DEA solutions was also determined by iodimetry. CO ₂ in the gas phase was absorbed in standard baryta solution. CO ₂ in the liquid phase was estimated by reaction with 30% H_2SO_4 , removal of evolved H_2S by permanganate and absorption of evolved CO ₂ in standard barytaSOURCE AND PURITY OF MATERIALS: 1. From H_2SO_4 , Ra_2S : no SO_2 detecteddiscourse discourse discourse iodimetry. CO ₂ in the gas phase was absorbed in standard baryta solution. CO ₂ in the liquid phase was estimated by reaction with 30% H_2SO_4 , removal of evolved H_2S by permanganate and absorption of evolved CO ₂ in standard barytaImage: Source and provide the section with 30% REFERENCES:	240	80	0.491	0.270
AUXILIARY INFORMATIONMETHOD/APPARATUS/PROCEDURE:SOURCE AND PURITY OF MATERIALS: N_2 or a mixture of N_2 & H_2S was passed successively through two absorbers containing H_2S & CO_2 SOURCE AND PURITY OF MATERIALS:1. From H_2SO_4 & Na_2S : no SO_2 detecteddissolved in an aqueous solution of DEA. The H_2S in the emerging gas was passed into cadmium or zinc acetate solution and the precipitated sulfides estimated by iodimetry. Hydrogen sulfide in the DEA solutions was also determined by iodimetry. CO ₂ in the gas phase was absorbed in standard baryta solution. CO ₂ in the liquid phase was estimated by reaction with 30% H_2SO_4 , removal of evolved H_2S by permanganate and absorption of evolved CO ₂ in standard barytaSOURCE AND PURITY OF MATERIALS: 1. From H_2SO_4 , & Na_2S : no SO_2 detecteddiscourse absorbed in standard baryta solution after removal of H_2S by actidified potassium permanganate solution. CO ₂ in the liquid phase was estimated by reaction with 30% H_2SO_4 , removal of evolved H_2S by permanganate and absorption of evolved CO ₂ in standard barytaSOURCE AND PURITY OF MATERIALS: 1. From H_2SO_4 , $REFERENCES$: REFERENCES:	760 mmH	lq = 1 atm = 1.0	1325 bar	
METHOD/APPARATUS/PROCEDURE:SOURCE AND PURITY OF MATERIALS: N_2 or a mixture of N_2 & H_2S was passed successively through two absorbers containing H_2S & CO_2 1. From H_2SO_4 & Na_2S : no SO_2 detecteddissolved in an aqueous solution of DEA. The H_2S in the emerging gas was passed into cadmium or zinc acetate solution and the precipitated sulfides estimated by iodimetry. Hydrogen sulfide in the DEA solutions was also determined by iodimetry. CO ₂ in the gas phase was absorbed in standard baryta solution. CO ₂ in the liquid phase was estimated by reaction with 30% H_2SO_4 , removal of evolved H_2S by permanganate and absorption of evolved CO ₂ in standard barytaSOURCE AND PURITY OF MATERIALS: 1. From H_2SO_4 & Na_2S : no SO_2 detected4. Contained 0.2 to 0.6 volumes of CO ₂ per unit volume of solution; less than 1% by weight of total impurities.ESTIMATED ERROR: $\delta T/K = \pm 0.1$ (authors)		,		
METHOD/APPARATUS/PROCEDURE:SOURCE AND PURITY OF MATERIALS: N_2 or a mixture of N_2 & H_2S was passed successively through two absorbers containing H_2S & CO_2 1. From H_2SO_4 & Na_2S : no SO_2 detecteddissolved in an aqueous solution of DEA. The H_2S in the emerging gas was passed into cadmium or zinc acetate solution and the precipitated sulfides estimated by iodimetry. Hydrogen sulfide in the DEA solutions was also determined by iodimetry. CO ₂ in the gas phase was absorbed in standard baryta solution. CO ₂ in the liquid phase was estimated by reaction with 30% H_2SO_4 , removal of evolved H_2S by permanganate and absorption of evolved CO ₂ in standard barytaSOURCE AND PURITY OF MATERIALS: 1. From H_2SO_4 & Na_2S : no SO_2 detected4. Contained 0.2 to 0.6 volumes of CO ₂ per unit volume of solution; less than 1% by weight of total impurities.ESTIMATED ERROR: $\delta T/K = \pm 0.1$ (authors)				
METHOD/APPARATUS/PROCEDURE:SOURCE AND PURITY OF MATERIALS: N_2 or a mixture of N_2 & H_2S was passed successively through two absorbers containing H_2S & CO_2 1. From H_2SO_4 & Na_2S : no SO_2 detecteddissolved in an aqueous solution of DEA. The H_2S in the emerging gas was passed into cadmium or zinc acetate solution and the precipitated sulfides estimated by iodimetry. Hydrogen sulfide in the DEA solutions was also determined by iodimetry. CO ₂ in the gas phase was absorbed in standard baryta solution. CO ₂ in the liquid phase was estimated by reaction with 30% H_2SO_4 , removal of evolved H_2S by permanganate and absorption of evolved CO ₂ in standard barytaSOURCE AND PURITY OF MATERIALS: 1. From H_2SO_4 & Na_2S : no SO_2 detected4. Contained 0.2 to 0.6 volumes of CO ₂ per unit volume of solution; less than 1% by weight of total impurities.ESTIMATED ERROR: $\delta T/K = \pm 0.1$ (authors)				
METHOD/APPARATUS/PROCEDURE:SOURCE AND PURITY OF MATERIALS: N_2 or a mixture of N_2 & H_2S was passed successively through two absorbers containing H_2S & CO_2 1. From H_2SO_4 & Na_2S : no SO_2 detecteddissolved in an aqueous solution of DEA. The H_2S in the emerging gas was passed into cadmium or zinc acetate solution and the precipitated sulfides estimated by iodimetry. Hydrogen sulfide in the DEA solutions was also determined by iodimetry. CO ₂ in the gas phase was absorbed in standard baryta solution. CO ₂ in the liquid phase was estimated by reaction with 30% H_2SO_4 , removal of evolved H_2S by permanganate and absorption of evolved CO ₂ in standard barytaSOURCE AND PURITY OF MATERIALS: 1. From H_2SO_4 & Na_2S : no SO_2 detected4. Contained 0.2 to 0.6 volumes of CO ₂ per unit volume of solution; less than 1% by weight of total impurities.ESTIMATED ERROR: $\delta T/K = \pm 0.1$ (authors)				······································
N ₂ or a mixture of N ₂ & H ₂ S was passed successively through two absorbers containing H ₂ S & CO ₂ dissolved in an aqueous solution of DEA. The H ₂ S in the emerging gas was passed into cadmium or zinc acetate solution and the precipitated sulfides estimated by iodimetry. Hydrogen sulfide in the DEA solutions was also determined by iodimetry. CO ₂ in the gas phase was absorbed in standard baryta solution after removal of H ₂ S by acidified potassium permanganate solution. CO ₂ in the liquid phase was estimated by reaction with 30% H ₂ SO ₄ , removal of evolved H ₂ S by permanganate and absorption of evolved CO ₂ in standard baryta		AUXILIARY	INFORMATION	
N ₂ or a mixture of N ₂ & H ₂ S was passed successively through two absorbers containing H ₂ S & CO ₂ dissolved in an aqueous solution of DEA. The H ₂ S in the emerging gas was passed into cadmium or zinc acetate solution and the precipitated sulfides estimated by iodimetry. Hydrogen sulfide in the DEA solutions was also determined by iodimetry. CO ₂ in the gas phase was absorbed in standard baryta solution after removal of H ₂ S by acidified potassium permanganate solution. CO ₂ in the liquid phase was estimated by reaction with 30% H ₂ SO ₄ , removal of evolved H ₂ S by permanganate and absorption of evolved CO ₂ in standard baryta	METHOD / APPARATUS / PROCEDURE :	······	SOURCE AND PUBLTY OF M	TERIALS
passed successively through two absorbers containing $H_2S \& CO_2$ dissolved in an aqueous solution of DEA. The H_2S in the emerging gas was passed into cadmium or zinc acetate solution and the precipitated sulfides estimated by iodimetry. Hydrogen sulfide in the DEA solutions was also determined by iodimetry. CO ₂ in the gas phase was absorbed in standard baryta solution after removal of H_2S by acidified potassium permanganate solution. CO_2 in the liquid phase was estimated by reaction with 30% H_2SO_4 , removal of evolved H_2S by permanganate and absorption of evolved CO ₂ in standard baryta REFERENCES:	_			
absorbers containing $H_2S \& CO_2$ dissolved in an aqueous solution of DEA. The H_2S in the emerging gas was passed into cadmium or zinc acetate solution and the precipitated sulfides estimated by iodimetry. Hydrogen sulfide in the DEA solutions was also determined by iodimetry. CO ₂ in the gas phase was absorbed in standard baryta solution after removal of H_2S by acidified potassium permanganate solution. CO_2 in the liquid phase was estimated by reaction with 30% H_2SO_4 , removal of evolved H_2S by permanganate and absorption of evolved CO ₂ in standard baryta REFERENCES:				23: 10 502
dissolved in an aqueous solution of DEA. The H ₂ S in the emerging gas was passed into cadmium or zinc acetate solution and the precipitated sulfides estimated by iodimetry. Hydrogen sulfide in the DEA solutions was also determined by iodimetry. CO ₂ in the gas phase was absorbed in standard baryta solution after removal of H ₂ S by acidified potassium permanganate solution. CO ₂ in the liquid phase was estimated by reaction with 30% H ₂ SO ₄ , removal of evolved H ₂ S by permanganate and absorption of evolved CO ₂ in standard baryta REFERENCES:				
was passed into cadmium or zinc acetate solution and the precipitated sulfides estimated by iodimetry. Hydrogen sulfide in the DEA solutions was also determined by iodimetry. CO ₂ in the gas phase was absorbed in standard baryta solution after removal of H ₂ S by acidified potassium permanganate solution. CO ₂ in the liquid phase was estimated by reaction with 30% H ₂ SO ₄ , removal of evolved H ₂ S by permanganate and absorption of evolved CO ₂ in standard baryta REFERENCES:	dissolved in an aqueou	s solution of		
acetate solution and the precipitated sulfides estimated by iodimetry. Hydrogen sulfide in the DEA solutions was also determined by iodimetry. CO_2 in the gas phase was absorbed in standard baryta solution after removal of H_2S by acidified potassium permanganate solution. CO_2 in the liquid phase was estimated by reaction with 30% H_2SO_4 , removal of evolved H_2S by permanganate and absorption of evolved CO_2 in standard baryta REFERENCES: weight of total impurities. ESTIMATED ERROR: $\delta T/K = \pm 0.1$ (authors) REFERENCES:				
precipitated sulfides estimated by iodimetry. Hydrogen sulfide in the DEA solutions was also determined by iodimetry. CO_2 in the gas phase was absorbed in standard baryta solution after removal of H_2S by acidified potassium permanganate solution. CO_2 in the liquid phase was estimated by reaction with 30 % H_2SO_4 , removal of evolved H_2S by permanganate and absorption of evolved CO_2 in standard baryta REFERENCES:				
iodimetry. Hydrogen sulfide in the DEA solutions was also determined by iodimetry. CO_2 in the gas phase was absorbed in standard baryta solution after removal of H_2S by acidified potassium permanganate solution. CO_2 in the liquid phase was estimated by reaction with 30% H_2SO_4 , removal of evolved H_2S by permanganate and absorption of evolved CO_2 in standard baryta REFERENCES:			"ergine or cocar	1
iodimetry. CO_2 in the gas phase was absorbed in standard baryta solution after removal of H_2S by acidified potassium permanganate solution. CO_2 in the liquid phase was estimated by reaction with 30% H_2SO_4 , removal of evolved H_2S by permanganate and absorption of evolved CO_2 in standard baryta REFERENCES:				
absorbed in standard baryta solution after removal of H_2S by acidified potassium permanganate solution. CO_2 in the liquid phase was estimated by reaction with 30 % H_2SO_4 , removal of evolved H_2S by permanganate and absorption of evolved CO_2 in standard barytaESTIMATED ERROR: $\delta T/K = \pm 0.1$ (authors)REFERENCES:				
after removal of H_2S by acidified potassium permanganate solution. CO_2 in the liquid phase was estimated by reaction with 30% H_2SO_4 , removal of evolved H_2S by permanganate and absorption of evolved CO_2 in standard baryta REFERENCES:				
potassium permanganate solution. CO_2 in the liquid phase was estimated by reaction with 30% H_2SO_4 , removal of evolved H_2S by permanganate and absorption of evolved CO_2 in standard baryta $\delta T/K = \pm 0.1$ (authors) REFERENCES:			ESTIMATED ERROR.	
estimated by reaction with 30% H ₂ SO ₄ , removal of evolved H ₂ S by permanganate and absorption of evolved CO ₂ in standard baryta	potassium permanganate	solution.		
H ₂ SO ₄ , removal of evolved H ₂ S by permanganate and absorption of evolved CO ₂ in standard baryta			$\delta T/K = \pm 0.1$	(authors)
permanganate and absorption of evolved CO ₂ in standard baryta				
evolved CO ₂ in standard baryta				
			REFERENCES:	
		-		

|

-

<pre>COMPONENTS: 1. Carbon dioxide; CO₂; [124-38-9] 2. Hydrogen sulfide; H₂S; [7783-06-4] 3. 2,2'-Iminobisethanol, (Diethanolamine); C₄H₁₁NO₂; [111-42-2] 4. Water; H₂O; [7732-18-5]</pre>	ORIGINAL MEASUREMENTS: Lee, J.I.; Otto F.D.; Mather, A.E. Can. J. Chem. Engng. <u>1974</u> , 52, 125-7 (Complete data in the Centre for Unpublished Data, National Science NRC, Ottawa, Ontario, KIA 0S2, Canada)		
VARIABLES: Temperature, pressure, concentration	PREPARED BY: C.L. Young		
EXPERIMENTAL VALUES: Solubility of H_2 S-CO	² Mixtures in 2.0 mol dm ⁻³ DEA α		
	/kPa H ₂ S/DEA CO ₂ /DEA		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	44.51 1.006 0.106 00.62 0.447 0.693 43.22 0.570 0.433 49.76 0.381 0.719 04.02 0.703 0.308 35.17 0.188 0.994 74.40 0.784 0.239 33.57 0.989 0.048 67.54 0.826 0.170 67.56 0.881 0.094 33.56 0.173 0.977 43.39 0.125 1.140 92.75 0.294 0.704 29.16 0.851 0.063 71.01 0.785 0.125 74.64 0.176 0.902 52.37 0.604 0.285 18.13 0.831 0.053 84.72 0.515 0.447 92.38 0.634 0.250 77.16 0.361 0.477 51.20 0.108 0.962 67.98 0.154 0.856 58.44 0.189 0.742 80.45 0.133 0.812		
AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDURE: Recirculating Vapor flow apparatus with Jerguson liquid level gauge cell and magnetic pump. Nitrogen added to vapor to increase pressure to at least 200 kPa. Vapor analysed by gas chromatography. Partial pressure of carbon dioxide and hydrogen sulfide calculated from pressure and vapor pressure of diethanolamine. Liquid samples passed into sulfuric acid. Carbon dioxide and hydrogen sulfide collect- ed in buret and then analysed by gas chromatography.	<pre>SOURCE AND PURITY OF MATERIALS: 1. Liquid Air sample, purity 99.9 mole per cent. 2. Matheson sample, purity 99.5 mole per cent. 3. Purity 99.8 mole per cent. 4. Distilled. Nitrogen used as carrier, purity 99.99 mole per cent. ESTIMATED ERROR:</pre>		

COMPONENTS:			ORIGINAL MEASUREMENTS:
	oxide; CO ₂ ; [124-38-	9]	Lee, J.I.; Otto, F.D.; Mather,
2. Hydrogen :	sulfide; H ₂ S; [7783-		A.E.
3. 2,2'-Imino (Diethano)	<pre>bisethanol, lamine); C₄H₁₁NO₂;</pre>		Can. J. Chem. Engng. <u>1974</u> , 52,
[111-42-2]] D; [7732-18-5]		125-7.
		l	Mixtures in 2.0 mol dm ⁻³ DEA
EXPERIMENTAL	_	of H_2S-CO_2	$\begin{array}{ccc} \text{Mixtures in 2.0 mol dm} & \text{DEA} \\ \alpha & \alpha \end{array}$
T/K	P _{H2} S ^{/kPa}	^P CO₂ ^{/kPa}	H_2S/DEA CO_2/DEA
323.15	129,62	5764.65	0.041 1.221
	93.07	7.21	0.653 0.074
	91.35 88.25	17.92 144.78	0.557 0.146 0.256 0.521
	80.80	71.15	0.385 0.352
	80.66 79.63	422.64 82.94	0.129 0.742 0.332 0.424
	72.39	33.23	0.434 0.277
	65.70	47.02 5.23	0.380 0.345 0.512 0.120
	49.15 47.47	5.23	0.512 0.120 0.525 0.094
	39.71	26.40	0.331 0.328
	38.19 36.81	1.47 152.02	0.564 0.040 0.129 0.628
	36.26	16.82	0.367 0.238
	34.54 24.75	59.36 423.33	0.213 0.475 0.045 0.785
	21.71	14.89	0.236 0.323
	14.40 12.68	704.63 11.30	0.012 0.865 0.197 0.318
	10.79	0.85	0.382 0.078
	10.13 10.06	9.43 0.89	0.199 0.273 0.370 0.067
	7.65	451.46	0.024 0.815
	7.37 6.61	27.09 0.55	0.092 0.490 0.304 0.079
	6.41	109.62	0.029 0.662
	4.51 4.13	1.39 9.37	0.208 0.158 0.092 0.400
	3.85	1.12	0.210 0.155
	3.06	3.47 0.30	0.128 0.296 0.178 0.086
	1.57 0.88	0.21	0.117 0.076
373.15	1654.72	141.34	1.072 0.033
375115	1378.94	1678.85	0.713 0.336
	1027.31 985.94	1130.73 277.85	0.665 0.317 0.820 0.106
	983.87	2772.35	0.504 0.516
	916.99 889.41	482.62 2488.98	0.726 0.176 0.475 0.516
	872.17	4709.08	0.360 0.700
	848.04 686.71	290.95 4863.52	0.749 0.115 0.300 0.800
	618.45	98.59	0.695 0.071
	537.78	4907.64	0.220 0.820 0.525 0.250
	479.87 417.12	444.01 1534.07	0.327 0.545
1	399.89 395.06	916.99 1011.45	0.362 0.443 0.356 0.439
	348.18	3151.56	0.216 0.733
	344.73	37.57	0.634 0.039
	339.21 317.84	162.71 539.85	0.554 0.146 0.405 0.356
	293.71	5129.65	0.126 0.885
	283.37 278.54	760.48 382.65	0.318 0.412 0.406 0.317
	237.17	2009.11	0.094 0.782
	217.87 202.70	375.07 1500.28	0.328 0.328 0.188 0.628
		-	-

)

ł

·			<u></u>	
COMPONENTS:		OR	IGINAL MEASUREMENTS	:
2. Hydrogen s	xide; CO ₂ ; [124- sulfide; H ₂ S; [77		ee, J.I.; Otto F.D. .E.	; Mather,
3. 2,2'-Imino (Diethano)	bisethanol, Lamine); C ₄ H ₁₁ NO ₂	; c	an. J. Chem. Engng.	1974, 52,
[111-42-2]				
	D; [7732-18-5]		25-7.	
EXPERIMENTAL V	VALUES: Solubili	ty of H ₂ S-CO ₂ Mi	xtures in 2.0 mol d α	m ⁻³ DEA α
т/к	P _{H2} S/kPa	^P CO₂ ^{/kPa}	H ₂ S/DEA	CO₂/DEA
373.15	181.33	48.67	0.451	0.088
	179.26	3160.53	0.107	0.788
	177.88	119.96	0.424	0.170
	170.29	35.16	0.429	0.090
	159.95	5112.42	0.060	0.940
	153.75	577.08	0.226	0.461
	135.82	1571.99	0.123	0.643
	128.24 115.14	235.79 5543.33	0.273 0.046	0.321
	113.76	777.72	0.143	0.526
	105.48	2491.05	0.058	0.782
	97.21	502.62	0.143	0.473
	81.08	35.43	0.287	0.098
l	79.97	5453.70	0.029	0.962
	75.84	990.76	0.111	0.585
	63 ₄ 15	65.98	0.233	0.192
	62.05	390.92	0.114	0.462
ł	56.74	39.23	0.215	0.127
	48.53 35.71	186.84 17.99	0.140 0.200	0.364 0.092
	27.57	7.51	0.199	0.050
1	20.68	5650.20	0.003	1.000
	19.30	9.03	0.151	0.067
	18.27	1545.10	0.015	0.682
	14.75	22.40	0.102	0.152
	13.51	529.51	0.022	0.565
	11.44	170.98	0.038	0.419
	10.13	14.96 57.70	0.091	0.117
	9.65 4.66	5.87	0.060 0.049	0.269 0.079
	3.26	1.29	0.044	0.017
	0.56	13.61	0.010	0.148
Solubility	y of H ₂ S-CO ₂ Mixt	ures in 3.5 mol	dm ⁻³ DEA	
323.13	1509.93	1606.46	0.652	0.448
	1450.64	59.01	1.028	0.026
	1071.43	1134.17	0.545	0.465
	1026.62	455.05	0.706	0.264
	952.84	4578.08	0.284	0.824
	625.34 413.68	1114.87 279.92	0.396 0.525	0.550 0.327
	392.30	59.22	0.727	0.110
1	338.52	97.21	0.632	0.199
	307.50	21.02	0.757	0.064
	291.64	153.06	0.511	0.309
	281.30	3069.52	0.095	0.925
	279.23	1141.07	0.157	0.728
	259.93	5228.25	0.060	1.000
	259.24 244.07	175.12 70.32	0.435 0.592	0.357 0.205
	233.73	62.46	0.486	0.205
	225.45	229.59	0.358	0.419
	187.53	521.92	0.102	0.704
	141.34	293.02	0.200	0.563
	129.48	16.54	0.554	0.151

COMPONENTS :		ORIGINAL	MEASUREMENTS :	
	de; CO ₂ ; [124-38-9		I.; Otto, F.D.;	Mather, A.E.
	fide; H ₂ S; [7783-0	6-4]	Chem. Engng. 19	
	ine); $C_4H_{11}NO_2$;	can. e.	chem. Engny. 15	<u>14</u> ,02,125-1
4. Water; H ₂ O;				
EXPERIMENTAL VA	LUES: Solubility o	f H ₂ S-CO ₂ Mixtu		m ⁻³ DEA
T/K	P _{H₂S} /kPa	P _{CO2} /kPa	α H ₂ S/DEA	α CO₂∕DEA
323.15	125.13	14.06	0.56	0.130
	119.96	1434.78	0.070	0.815
	111.14 95.14	35.43 477.11	0.451 0.096	0.238 0.684
	89.28	5.13	0.585	0.074
	84.80	79.28	0.364	0.346
	73.77	1159.68	0.053	0.799
	68.60	258.20	0.107	0.602
	63.43	33.23	0.308	0.302
	60.81	87.01	0.200	0.454
	50.81 45.50	55.70 430.22	0.196 0.057	0.425 0.693
	39.71	12.54	0.317	0.253
	36.33	18.82	0.227	0.338
	33.78	438.50	0.048	0.708
	30.68	46.53	0.163	0.446
	25.99	32.68	0.171	0.392
	21.71	20.33	0.150	0.385
	17.99	3.92	0.310	0.140
	17.09	128.37	0.053	0.595 0.520
	16.96 14.75	74.53 22.47	0.071 0.125	0.400
	12.27	5.90	0.191	0.259
	9.37	1.34	0.283	0.083
	8.54	31.85	0.066	0.455
	7.79	8.61	0.106	0.317
	6.09	6.83	0.127	0.272
	5.97	11.03	0.072	0.368
	5.03	6.37	0.074	0.354
	4.70 4.55	1.51 0.82	0.151 0.159	0.179 0.142
	4.51	60.74	0.021	0.541
	2.39	3.48	0.078	0.270
	0.90	0.60	0.085	0.148
373.15	1622.32 1585.78	1566.47 250.96	0.604 0.801	0.243 0.059
	1416.17	1868.46	0.590	0.293
	1380.31	415.75	0.728	0.083
	1316.88	1533.38	0.566	0.279
	1275.51	361.28	0.716	0.106
	1130.73	4498.79	0.314	0.537
	1064.54	4591.87	0.296	0.596
	1061.78	4525.68	0.356	0.506
	993.52 754.96	287.50 1840.88	0.689 0.350	0.099 0.405
	703.25	4919.36	0.216	0.594
	670.16	48.95	0.703	0.027
	665.33	923.88	0.410	0.318
	501.93	102.04	0.591	0.071
	495.03	5024.16	0.153	0.681
	485.38	683.26	0.410	0.304
	474.35	1235.53	0.322	0.398
	466.77	340.59	0.480	0.181
	458.49 383.69	1875.35 94.11	0.243 0.515	0.487 0.086
	375.07	230.97	0.433	0.173
		200107	01100	0.175

	······································	T		
COMPONENTS:	ORIGINAL	ORIGINAL MEASUREMENTS:		
 Carbon dioxide; CO₂; [124-38-9] Hydrogen sulfide; H₂S; [7783-06-4] 2,2'-Iminobisethanol, (Diethanolamine); C₄H₁₁NO₂; [111-42-2] Water; H₂O; [7732-18-5] 		Lee, J.I.; Otto, F.D.; Mather, A.E. Can. J. Chem. Engng. <u>1974</u> , 52,125-7 (Complete data in the Centre for Unpublished Data, National Science NRC, Ottawa, Ontario, KIA 0S2, Canada)		
EXPERIMENTAL VALUES	: Solubility of H2	S-CO ₂ Mixtur	es in 3.5 mol d	m ⁻³ DEA
T/K	P _{H2S} /kPa	P _{CO2} /kPa	N	α CO2/DEA
373.15 α = Ma	337.84 320.60 307.50 285.44 258.55 255.10 222.00 203.39 199.94 195.12 131.68 117.89 111.55 108.93 96.52 85.90 66.25 61.43 59.29 56.19 52.88 49.64 43.78 37.71 30.61 24.20 15.03 11.85 9.23 6.41 cole ratio in liquid	5388.20 654.99 6.17 82.04 2571.72 2369.01 4607.03 723.94 575.70 891.48 5.53 151.68 1.65 48.67 49.09 81.15 11.58 31.23 1625.77 619.14 919.75 181.33 266.13 32.12 193.74 0.82 53.77 1.44 9.28 3.61	0.067 0.278 0.545 0.445 0.127 0.132 0.082 0.204 0.221 0.386 0.227 0.342 0.278 0.228 0.190 0.239 0.210 0.043 0.072 0.056 0.103 0.078 0.148 0.070 0.142 0.072 0.065 0.066	0.755 0.332 0.005 0.091 0.626 0.639 0.725 0.416 0.374 0.472 0.016 0.238 0.006 0.124 0.129 0.192 0.045 0.118 0.602 0.470 0.550 0.325 0.387 0.136 0.066 0.226 0.007 0.088 0.040

.

phase for various particular CO_2/DEA in the liqu:	<pre>; H₂S; anol; ; C₄H₁₁NO₂; 2-18-5] : othed values of the artial pressures of id phase.</pre>	ORIGINAL MEASUREMENTS: Lee, J.I.; Otto, F.D.; Mather, A.E. Can.J.Chem.Eng., <u>1974</u> , 52, 125 - 127. (Complete data in the Centre for Unpublished Data, National Science Library, National Research Council, Ottawa, Ontario K1A 0S2, Canada) mole ratio H ₂ S/DEA in the liquid H ₂ S in the gas phase and mole ratios
Concentration of dia Mole ratio CO ₂ /DEA	ethanolamine (DEA) 0.000 0.100 0.20	
T/K P _{H2} S P _{H2} S /psia /kPa ^{**}		
0.100 0.689 0 0.316 2.18 0 1.00 6.89 0 3.16 21.8 10.0 68.9 31.6 218 100 689	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Mole ratio CO ₂ /DEA	0.700 0.800	0.900 1.000 1.100 1.200
T/K P _{H2} S P _{H2} S /psia /kPa	**	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	B9 0.00275* 0.0013* B 0.0090 * 0.0044*	
Mole ratio CO ₂ /DEA (0.000 0.100 0.20	0 0.300 0.400 0.500 0.600
T/K P _{H2} S P _{H2} S /psia /kPa ^{**}		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0084* 0.0067* 0.00	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
** * extrapolate calculated by the	ed values given by t e compiler.	he authors.

COMPONENTS:	ORIGINAL MEASUREMENTS:
 Carbon dioxide; CO₂; [124-38-9] Hydrogen sulfide; H₂S; 	Lee, J.I.; Otto, F.D.; Mather, A.E.
<pre>[7783-06-4] 3. 2,2'-Iminobisethanol; (Diethanolamine); C₄H₁₁NO₂;</pre>	Can.J.Chem.Eng., <u>1974</u> , 52, 125 - 127. (Complete data in the Centre for Unpublished Data, National Science
[111-42-2] 4. Water; H ₂ O; [7732-18-5]	Library, National Research Council, Ottawa, Ontario K1A 0S2, Canada)
EXPERIMENTAL VALUES:	
The tables give smoothed values of the phase for various partial pressures of CO_2/DEA in the liquid phase.	
Concentration of diethanolamine (DEA)	= 2.0 mol dm^{-3}
Mole ratio CO ₂ /DEA 0.700 0.800	0.900 1.000 1.100 1.200
T/K P_{H_2S} P_{H_2S} /psia /kPa**	
373.2 0.100 0.0689 0.0007*	
0.316 2.18 0.0021* 0.0011 1.00 6.89 0.0060 0.0034	
3.16 21.8 0.017 0.011 10.0 68.9 0.057 0.039 31.6 218 0.150 0.115	0.028 0.017* 0.0108* 0.0065*
31.6 218 0.150 0.115 100 689 0.322 0.270 316 2180 0.573 0.511	0.086 0.060* 0.044* 0.032* 0.220 0.171* 0.139* 0.109* 0.450* 0.383* 0.323* 0.276*
Concentration of diethanolamine (DEA)	= $3.5 \text{ mol } \text{dm}^{-3}$
Mole ratio CO ₂ /DEA 0.000 0.100 0.2	00 0.300 0.400 0.500 0.600 .
T/K P _{H2} S P _{H2} S /psia /kPa ^{**}	
	040* 0.0021* 135* 0.0078* 0.0044* 0.0024* 0.00102*
	36 0.024 0.013* 0.0073* 0.0037*
1.00 6.89 0.278 0.218 0.1 3.16 21.8 0.422 0.348 0.2	64 0.110 0.073 0.045 0.029
10.0 68.9 0.520 0.510 0.4 31.6 218 0.782 0.673 0.5	20 0.328 0.245 0.170 0.120
100 689 0.920 0.825 0.7 316 2180 1.144 1.007 0.9	
Mole ratio CO ₂ /DEA 0.700 0.800	0.900 1.000 1.100 1.200
$T/K P_{H_2S} P_{H_2S}$	
/psia /kPa ^{**}	
323.2 0.0316 0.218 0.0006* 0.0003 0.100 0.689 0.0019* 0.0010	*
0.316 2.18 0.0056* 0.0030 1.00 6.89 0.0155 0.0086	* 0.0041* 0.0021*
3.16 21.8 0.038 0.023 10.0 68.9 0.080 0.055 31.6 218 0.150 0.110	0.0120 0.0065* 0.0035* 0.0335 0.0195 0.0120* 0.0070* 0.076 0.050 0.0340* 0.0230*
100 689 0.130 0.110 316 2180 0.440 0.360	0.076 0.050 0.0340* 0.0230* 0.155 0.120* 0.090* 0.065* 0.296* 0.244* 0.200* 0.160*
<pre>** * extrapolated values given by the a calculated by the compiler.</pre>	

ORIGINAL MEASUREMENTS: COMPONENTS: 1. Carbon dioxide; CO₂; [124-38-9] Lee, J.I.; Otto, F.D.; Mather, A.E. 2. Hydrogen sulfide; H₂S; [7783-06-4] Can.J.Chem.Eng., <u>1974</u>, 52, 125 - 127. (Complete data in the Centre for 3. 2,2'-Iminobisethanol; Unpublished Data, National Science Library, National Research Council, (Diethanolamine); C₄H₁₁NO₂; [111 - 42 - 2]4. Water; H₂O; [7732-18-5] Ottawa, Ontario K1A 0S2, Canada) EXPERIMENTAL VALUES: The tables give smoothed values of the mole ratio H_2S/DEA in the liquid phase for various partial pressures of H_2S in the gas phase and mole ratios CO_2/DEA in the liquid phase. Concentration of diethanolamine (DEA) = 3.5 mol dm^{-3} Mole ratio 0.000 CO2/DEA 0.100 0.200 0.300 0.400 0.500 0.600 T/K P_{H2S} P_{H_2S} /psia /kPa^{**} 373.2 0.0100 0.0689 0.0019* 0.0011* 0.0007* 0.0062* 0.0039* 0.0024* 0.0014* 0.0007* 0.0003* 0.0316 0.218 0.0110* 0.0070* 0.0040* 0.0022* 0.0010* 0.100 0.689 0.020 0.038 2.18 0.0275* 0.0185 0.0113* 0.0066* 0.0034* 0.0016* 0.316 1.00 6.89 0.078 0.060 0.045 0.032 0.019* 0.010* 0.0052* 21.8 0.070 0.155 0.092 0.049 3.16 0.120 0.034 0.017 10.0 68.9 0.282 0.230 0.185 0.144 0.109 0.081 0.053 218 0.393 31.6 0.475 0.324 0.262 0.212 0.161 0.119 0.518 100 689 0.712 0.605 0.434 0.363 0.297 0.226 316 2180 0.942 0.711 0.547 0.470 0.815 0.630 0.388 Mole ratio CO₂/DEA 0.700 0.800 0.900 1.000 1.100 1.200 т/к P_{H2}S P_{H2}S /kPa^{**} /psia 373.3 1.00 6.89 0.0025* 0.0010* 0.0037* 21.8 0.0093* 3.16 10.0 68.9 0.031 0.013 0.0080* 0.0040* 0.0022* 0.0011* 0.0290* 0.0185* 0.0118* 0.0066* 31.6 218 0.082 0.046 0.082* 0.060* 0.043* 100 689 0.165 0.116 0.030* 2180 0.313* 0.248* 0.195* 0.150* 0.122* 0.096* 316 * extrapolated values given by the authors. ** calculated by the compiler.

	ORIGINAL MEASUREME	NTS:	
S; [7783-06-4] -5]			
<u> </u>	PREPARED BY:		
ssure	c.	L. Young	
	· · · · · · · · · · · · · · · · · · ·	·····	
$P_{CO_2}^+/bar$	Conc.of DEA /wt%	Liquid comp mol/mol amine H ₂ S CO ₂	
- - - - - - - - - - - - - - - - - - -	25	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
AUXILIARY			
ing valves. Bourdon then gases inert gas to cal pressure. by mass samples tic titration, ditional	 Purity 99.99 Purity 99.5 Distilled. Commercial s than 99 mole ed by acid t ESTIMATED ERROR: δT/K = ±0.15 	o mole per cent. mole per cent. sample purity bette o per cent as deter itration.	ng to
	1.72 0.136 0.023 0.541 12.66 0.033 0.493 3.18 0.077 0.613	[124-38-9] S; [7783-06-4] S; [7783-06-4] S; [7783-06-4] S, [7783-06-4] S, [7783-06-4] S, [7783-06-4] J. Chem. Engng 20-30. PREPARED BY: Conc. of DEA /wt% $\frac{p_{CO_2}^+/bar}{/wt%}$ Conc. of DEA /wt% Conc. of DEA /wt% Conc. of DEA /wt% $\frac{p_{CO_2}^+/bar}{/wt%}$ Conc. of DEA /wt% $\frac{p_{CO_2}^+/bar}{/wt%}$ Conc. of DEA /wt% Conc. of DEA /wt% Conc. of DEA /wt% Conc. of DEA /wt% $\frac{p_{CO_2}^+/bar}{/wt%}$ Conc. of DEA /wt% Conc. of DEA /wt% $\frac{p_{CO_2}^+/bar}{/wt%}$ Conc. of DEA /wt%	S; $[7783-06-41]$ H ₁₁ NO ₂ ; H ₁₁ NO ₂ ; PREPARED EY: SESURE C.L. Young PREPARED EY: C.L. Young PREPARED EY: C.L. Young PREPARED EY: Conc.of DEA Mult Mold amine H ₂ S CO ₂ Conc.of DEA Mult Mold amine H ₂ S CO ₂ Conc.of DEA Mult Mult Mult Mult Mult Mult Mult Mult

<pre>COMPONENTS: 1. Carbon dioxide; CO₂; [124-38-9] 2. Hydrogen sulfide; H₂S; [7783-06-4] 3. Water; H₂O; [7732-18-5] 4. 2,2'-Iminobisethanol, (Diethanolamine); C₄H₁₁NO₂; [111-42-2]</pre>		ORIGINAL MEASUREMENTS: Lawson, J.D. and Garst, A.W. J.Chem.Engng. Data. <u>1976</u> , 21, 20-30.			
EXPERIMENT	AL VALUES:				
т/к	P ⁺ _{H2S} /bar	$P_{\rm CO_2}^+/{\rm bar}$	Conc. of DEA /wt%	Liquid mol/mol H2S	
310.93	3.80 2.12 0.813 1.41 0.440 12.18 19.98 8.53	4.20 1.08 0.220 0.200 0.0346 4.010 15.32 1.35	25	0.523 0.585 0.607 0.631 0.635 0.861 0.966 1.020	0.600 0.381 0.281 0.258 0.114 0.264 0.688 0.119
324.82	3.40 11.32 9.99	14.12 5.20 1.93		0.250 0.997 1.050	0.890 0.277 0.161
338.71	0.00065 0.00087 0.0012 0.0012 0.0043 0.0045 0.0051 0.0160 0.0065 0.480 0.193 0.164 0.063 0.043 0.413 0.600 1.57 0.285 3.33 0.143 2.398 1.359 0.586 0.428 3.797 1.6655 2.145 0.973 1.372 8.660 21.98 1.78 1.372 8.660 21.98 1.78 1.359 1.372 1.	- - - - - - - - - - - - - - - - - - -		0.0040 0.0041 0.0097 0.0099 0.0126 0.0291 0.0294 0.0512 0.0594 0.105 0.113 0.114 0.120 0.252 0.257 0.257 0.256 0.257 0.375 0.413 0.443 0.510 0.526 0.526 0.576 0.624 0.636 0.924 0.990 0.976 1.010 0.255	0.065 0.080 0.109 0.062 0.107 0.238 0.074 0.127 0.233 0.115 0.654 0.457 0.495 0.215 0.108 0.596 0.452 0.666 0.285 0.842 0.129 0.567 0.410 0.207 0.116 0.506 0.207 0.116 0.552 0.298 0.114 0.218 0.215 0.215 0.207 0.116 0.522 0.298 0.114 0.215 0.215 0.2129 0.129 0.129 0.567 0.129 0.129 0.567 0.129 0.129 0.567 0.129 0.129 0.567 0.129 0.129 0.567 0.116 0.5252 0.298 0.114 0.215 0.215 0.215 0.2129 0.2129 0.129 0.207 0.116 0.506 0.2522 0.298 0.114 0.218 0.272 0.140 0.770
366.48	14.00 12.66 0.0081 0.0035 0.0095 0.0091 0.053	6.928 2.731 0.229 - - 0.040 0.085		0.920 0.920 0.0113 0.0125 0.0314 0.0327 0.0334 0.0710	0.238 0.139 0.214 0.109 0.054 0.085 0.063 0.122

COMPONENTS:			ORIGINAL MEASUREMENTS:		
1.Carbon d 2.Hydrogen 3.Water; H 4.2,2'-Imin	<pre>ioxide; CO₂; [124-38-9] sulfide; H₂S; [7783-06-4] ₂O; [7732-18-5] nobisethanol, olamine); C₄H₁₁NO₂;</pre>		Lawson, J.D. and Garst, A.W. J. Chem. Engng. Data, <u>1976</u> , 21 20-30.		
EXPERIMENT.	AL VALUES:				
т/к	P ⁺ _{H₂S} ∕bar	P ⁺ _{CO2} /bar	Conc. of DEA /wt%	Liquid mol/mol H2S	
366.48	0.593 0.293 0.135 0.560 0.746 0.608 0.382 0.306 2.931 2.664 21.85 13.86 15.05	5.262 1.172 0.156 3.784 3.664 1.625 0.520 0.203 17.99 1.972 21.98 3.504 7.594	25	0.107 0.114 0.129 0.129 0.156 0.183 0.196 0.196 0.255 0.496 0.881 0.915 0.935	0.543 0.353 0.123 0.533 0.474 0.354 0.245 0.117 0.710 0.207 0.395 0.123 0.230
380.37	2.000 14.25 16.39 0.0085	19.32 4.276 8.393 0.906		0.172 0.870 0.922 0.0056	0.730 0.127 0.210 0.185
394.26	0.0135 0.310 0.228 0.373 0.280 0.246 0.866 0.441 0.786 0.693 0.759 4.54 14.65 16.52 20.12	4.130 4.503 6.328 1.223 1.892 19.58 1.199 3.144 0.999 0.426 4.25 4.66 9.59 22.91		0.0135 0.0391 0.0472 0.0532 0.0627 0.0736 0.124 0.126 0.157 0.176 0.488 0.825 0.840 0.822	0.107 0.349 0.378 0.448 0.197 0.238 0.650 0.282 0.273 0.132 0.070 0.218 0.117 0.210 0.405
310.93	0.00016 0.693	_ 0.600	50	0.0026 0.260	0.111 0.438
338.71	0.0011	-		0.0030	0.114
366.48	0.0035 2.398	0.085 5.595		0.0028 0.233	0.116 0.390
+ part:	ial pressure c	alculated by (compiler using l	bar = 750.6	062 mmHg

			ADTOTIVIT A		
COMPONENTS			ORIGINAL MEASUREMENTS:		
	rogen sulfide 83-06-4]	; H ₂ S;	Lal, D.; Otto, F.D.; Mather, A.E.		
2. Carbon dioxide; CO ₂ ; [124-38-9]			Can.J.Chem.Eng.	<u>1985, 63, 681 - 685.</u>	
	er; H ₂ O; [773 anol, 2,2'-im				
	ethanolamine)			ľ	
	1-42-2]				
VARIABLES	:		PREPARED BY:		
Tempera	ture, pressur	A	P.G.T. Fog	a	
l	cure, brenen	-		-	
			l		
EXPERIMENT	TAL VALUES:				
Concent	ration of die	thanolamine = 2.0	$kmol m^{-3}$ (2.0 m	ol dm ⁻³)	
т/к	P _{H2S} /kPa	P _{CO2} /kPa	Mole ratio in	Mole ratio in	
	1120		liquid, H2S/DEA	liquid, CO ₂ /DEA	
	<u></u>				
313.2	0.060	0.165	0.0182	0.173	
	0.069	0.068	0.0352	0.103	
	0.127 0.329	0.057 0.224	0.053 0.055	0.083 0.178	
	0.431	0.250	0.061	0.182	
	0.187	0.070	0.064	0.093	
	0.188 0.410	0.075 0.070	0.073 0.083	0.101 0.101	
	0.573	0.133	0.090	0.130	
	0.784	0.470	0.090	0.226	
	0.625 0.782	0.252 0.369	0.091 0.092	0.180 0.207	
	0.387	0.033	0.101	0.058	
	0.524 1.057	0.057 0.270	0.105 0.119	0.077 0.165	
		AUXILIARY	INFORMATION		
METHOD/AP	PARATUS/PROCEDUR	E:	SOURCE AND PURITY O	F MATERIALS:	
Apparat	us described	in ref. (1) was			
used.	Nitrogen was	passed through	4. supplied b	y Dow chemicals.	
	00 cm ³ stainl		ļ		
		These contained			
		olved H ₂ S and			
1		ere controlled			
-	-				
	-	-bath. The gas			
emerging from the last vessel was					
analysed by gas chromatography.			ESTIMATED ERROR:		
Samples	s of liquid fr	om this vessel		(authors) 5 at P > 0.05 kPa.	
were an	alysed for H_2	S by	larger at lowe	5 at P_{H_2S} > 0.05 kPa;	
iodine-thiosulfate titration and for			partial pressu	res (authors).	
CO ₂ by precipitation as barium			REFERENCES:		
carbonate and then titration with				.; Otto, F.D.;	
hydroch	loric acid.			.Chem.Eng.Data <u>1980</u> ,	
			25, 118.		
1					
L					

COMPONE	NTS:		ORIGINAL MEASUR	EMENTS:	
			Lal, D.; Otto, F.D.; Mather, A.E.		
	rogen sulfide 83-06-4]	; H ₂ S;	La1, D.; Otto,	F.D.; Mather, A.E.	
2. Car	• Carbon dioxide; CO ₂ ; [124-38-9]		Can.J.Chem.Eng.	<u>1985</u> , 63, 681 - 685.	
4. Eth	anol, 2,2'-im	inobis-			
	ethanolamine) 1-42-2]	; C ₄ H ₁₁ NO ₂ ;			
	ENTAL VALUES:				
Concent	ration of die	thanolamine = 2.0	$kmol m^{-3}$ (2.0 m	ol dm ⁻³)	
T/K	P _{H₂S} /kPa	P _{CO2} /kPa	Mole ratio in	Mole ratio in	
	··· ·	- • •	liquid, H_2S/DEA	liquid, CO ₂ /DEA	
			<u></u>		
313.2	0.633	0.099	0.120	0.095	
	0.700	0.048	0.131	0.062	
	0.881 1.452	0.090 0.292	0.134 0.141	0.093 0.072	
	0.930	0.062	0.153	0.170	
	0.897	0.114	0.154	0.107	
	1.001	0.041	0.155	0.045 0.146	
	1.039 1.390	0.215 0.283	0.172 0.172	0.148	
	1.190	0.254	0.174	0.149	
	1.108	0.116	0.177	0.090	
	1.344 1.243	0.063 0.068	0.185 0.186	0.068 0.067	
	2.231	0.450	0.191	0.175	
	1.405	0.365	0.198	0.153	
	1.004	0.141	0.200	0.087	
	3.392 1.347	0.549 0.120	0.203 0.208	0.182 0.100	
	2.286	0.525	0.209	0.188	
	3.185	0.332	0.247	0.141	
373.2	0.015	0.749	0.0064	0.042	
	0.022	4.077	0.0064	0.099	
	0.078 0.132	3.266 4.571	0.0095 0.0100	0.098 0.123	
	0.197	1.018	0.0142	0.041	
	0.263	1.472	0.0155	0.062	
	0.324 0.467	1.423 1.918	0.0168	0.059	
	0.467	4.015	0.020 0.022	0.064 0.104	
	0.787	5.015	0.025	0.105	
	0.304	0.0057	0.025	0.0048	
	0.762	1.998	0.026	0.060	
	0.680 0.685	4.668 1.294	0.027 0.030	0.128 0.050	
	1.272	6.026	0.032	0.137	
	0.614	4.548	0.033	0.090	
	0.541	4.970 3.409	0.036 0.037	0.100 0.091	
1	1.319 0.614	0.426	0.037	0.024	
	1.460	3.739	0.041	0.087	

COMPONE			ORIGINAL MEASUR		
COMPONENTS:					
1. Hydrogen sulfide; H ₂ S; [7783-06-4]			Lal, D.; Otto,	Lal, D.; Otto, F.D.; Mather, A.E.	
2. Carbon dioxide; CO ₂ ; [124-38-9]			Can.J.Chem.Eng.	<u>1985, 63, 681 - 685.</u>	
3. Wat 4. Eth	er; H ₂ O; [773 anol, 2,2'-in	32-18-5] minobis-			
(di	ethanolamine)	; C ₄ H ₁ 1NO ₂ ;			
[11	1-42-2]				
EXPERIM	ENTAL VALUES:				
Concent	ration of die	ethanolamine = 2.0	0 kmol m^{-3} (2.0 m	ol dm ⁻³)	
т/к	P _{H2S} /kPa	P _{CO2} /kPa	Mole ratio in	Mole ratio in	
		002	liquid, H ₂ S/DEA	liquid, CO ₂ /DEA	
373.2	1.265	1.638	0.043	0.051	
	2.101 1.189	6.469 0.752	0.045 0.045	0.106 0.032	
	1.607	1.838	0.045	0.060	
	1.914	3.140	0.047	0.065	
	1.859	3.568	0.047	0.077	
ļ	2.213 2.295	4.647 5.253	0.047 0.048	0.118 0.115	
	2.489	0.393	0.049	0.019	
	1.567	1.305	0.050	0.050	
	1.740 1.942	1.919 3.526	0.050 0.051	0.051 0.083	
1	2.177	1.699	0.056	0.040	
	1.623	0.701	0.059	0.027	
	3.153	3.547	0.060	0.075	
]	2.292 3.203	4.376 4.519	0.062 0.065	0.100 0.085	
	2.116	0.312	0.067	0.013	
	3.216	4.873	0.069	0.103	
	1.940	0.145	0.069	0.0082	
	3.035 2.273	2.667 1.843	0.072 0.072	0.072 0.053	
	3.221	2.405	0.074	0.064	
	3.598	2.007	0.083	0.055	
	3.000 3.649	2.874 1.568	0.084 0.084	0.070 0.035	
	3.646	2.692	0.086	0.064	
	3.091	0.243	0.088	0.0076	
	3.555	0.105	0.093	0.0048	
	3.492 4.264	0.121 2.048	0.094 0.094	0.0077 0.053	
	3.208	0.738	0.096	0.024	
	4.793	1.731	0.097	0.041	
	4.102	2.093 0.087	0.103 0.103	0.039 0.0042	
1	3.675 5.732	5.234	0.103	0.0042	
	3.868	0.180	0.106	0.0080	
	4.832	1.039	0.117	0.031	
ł	5.067	0.834	0.119	0.018	
	4.726	0.318	0.124	0.0092	
1					

Hydrogen Sulfide in Aqueous Solvents				
COMPONENTS:	ORI	GINAL MEASU	IREMENTS:	
 Hydrogen sulfide; H₂S; [7783-06-4] Carbon dioxide; CO₂; [124-38- Water; H₂O; [7732-18-5] 2-(2-Aminoethoxy)ethanol, (diglycolamine); C₄H₁₁NO₂; [929-06-6] 	-9] Moc Pro Gas	ore, T.F.; E oc. 62nd Ann	Jackson, J Branson, J.A Bual Convent Associatio	ion of the
VARIABLES:	PRE	PARED BY:		
Temperature, composition of liqui and gas phases.	.d	P.G.T. F	ogg	
EXPERIMENTAL VALUES:	l	^**********************************		
Concentration of diglycolamine (D of gas = 65 wt %	GA) in aç	ueous solut	ion before	addition
T/°F T/K* Mole ratio in liquid phase	Partial p of CC		Partial p of H ₂	
	'psia	/kPa*	/psia	/kPa*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		0.000200 0 0 0 0 0.00200 0.00220 0.00580 0 0.00160 0.00160 0.00160 0.00120 0.00120 0.00200 0.00120 0.00120 0.00120 0.00120 0.00120 0.00120 0.00120 0.0014	0.0 0.0000480 0.000133 0.000232 0.00116 0.000812 0.000422 0.000422 0.00296 0.000430 0.0000430 0.0000810 0.00023 0.00052 0.000319 0.0000640 0.000841 0.0 0.000640 0.000435 0.0 0.000133 0.00263 0.00422 0.0191 0.0	0 0.000331 0.000917 0.000400 0.00160 0.00800 0.00560 0.00221 0.00291 0.00220 0.000296 0.000558 0.0498 0.0656 0.00220 0.000441 0.00580 0 0.00300 0 0.00300 0 0.000917 0.0181 0.0291 0.132 0
AUXILI	ARY INFOR	MATION		
METHOD/APPARATUS/PROCEDURE:		SOURCE AN	ID PURITY OF	MATERIALS:
Aqueous solution of DGA (600 cm ³) placed in a stainless steel equil vessel of capacity 1700 cm ³ . The above the was flushed with methan H_2S and/or CO_2 passed into the ve appropriate partial pressures. T pressure was maintained at 1500 m addition of methane. The vessel rocked in a constant temperature 1 - 2 h. The vapor phase was ana by gas chromatography. CO_2 in th phase was determined by acidifica measurement of the evolved gas. T in this phase was determined by t with standard copper(II) nitrate.	ibrium e space he and essel to the total mHg by was bath for hlysed he liquid ttion and the H ₂ S citration	No infor ESTIMATED REFERENCE) ERROR:	

<pre>1. Hydrogen sulfide; H_2S; (7783-06-4) 2. Carbon dloxide; CO;; [124-38-9] 3. Water; H_0C; [7732-18-5] 4. 2-(12-Minoethoxy)tethanol, (g2)/g0/emino); C.H.1MO2; [920-06-0] EXPERIMENTAL VALUES: Concentration of diglycolamine (DGA) in aqueous solution before addition of gas = 65 wt % T/*F T/K* Mole ratio CO_2/DGA H_S/DGA (VRA* /psia /KRA* 100 310.9 0.0935 0.0016 0.000957 0.00660 0.000725 0.00500 0.0902 0.0007 0.000551 0.03660 0.000725 0.00500 0.0002 0.000754 0.00660 0.000725 0.00500 0.0000 0.00030 0.00551 0.03660 0.000725 0.00500 0.01100 0.0030 0.00551 0.03660 0.000725 0.00500 0.01100 0.0030 0.00551 0.0366 0.000725 0.00703 0.01150 0.0221 0.000102 0.00703 0.01150 0.0221 - 0.000830 0.0014 0.0102 0.00703 0.01150 0.0221 - 0.00780 0.00616 0.00072 0.0136 0.1150 0.0221 - 0.00780 0.00616 0.00072 0.0136 0.1150 0.0022 0.00114 0.0120 0.001012 0.00703 0.01250 0.0005 0.00060 0.00420 0.00355 0.0272 0.01250 0.00053 0.000800 0.00514 0.0197 0.0136 0.1350 0.0022 0.00113 0.00778 0.00385 0.0272 0.01350 0.0022 0.00114 0.00780 0.00371 0.0235 0.0272 0.00544 0.0012 0.0126 0.0017 0.0135 0.00370 0.00361 0.00372 0.05540 0.0017 0.0135 0.00370 0.0232 0.000810 0.00516 0.05540 0.0012 0.00174 0.0122 0.00341 0.00554 0.05540 0.0012 0.0033 0.0222 0.00841 0.00556 0.05540 0.0017 0.0135 0.0272 0.00364 0.0212 0.0226 0.1380 0.00180 0.0212 0.00354 0.0274 0.02280 0.0003 0.0037 0.02232 0.00841 0.00580 0.02280 0.00030 0.0037 0.02232 0.00841 0.00580 0.02280 0.00030 0.00174 0.0124 0.185 1.28 0.02280 0.00030 0.00174 0.0124 0.185 1.28 0.02280 0.00030 0.00275 0.0136 0.00441 0.00580 0.02280 0.00030 0.00275 0.0136 0.00441 0.00580 0.02290 0.01180 0.00174 0.0124 0.0275 0.0148 0.00214 0.1850 0.00120 0.126 0.00275 0.0130 0.00276 0.02290 0.01180 0.0174 0.0124 0.0255 0.0176 0.02290 0.0012 0.00516 0.0356 0.0148 0.00221 0.02516 0.0220 0.00030 0.0279 0.0124 0.0253 0.0176 0.0220 0.2300 0.2424 1.67 0.0240 0.2300 0</pre>	COMPONENTS:	ORIGINAL MEASUREMENTS:
[929-06-6] EXPENIMENTAL VALUES: Concentration of diglycolamine (DGA) in aqueous solution before addition of gas = 65 wt % T/°F T/K* Mole ratio in liquid phase C20/DGA H25/DGA 125/DGA 125/DGA 125/DGA 125/DGA 0.000580 Partial pressure of H2S 100 310.9 0.0950 0.0016 0.000957 0.00660 0.000120 0.000827 0.0960 0.0009 0.000580 0.00400 0.000120 0.000827 0.1030 0.00 0.000531 0.0340 0.000170 0.0136 0.1100 0.0024 0.000631 0.00440 0.000271 0.00122 0.1100 0.0024 0.000631 0.00440 0.000210 0.00022 0.1120 0.0021 - - - - - 0.1120 0.0022 0.00113 0.00120 0.00120 0.00271 0.0136 0.11250 0.00 0.00122 0.00130 0.000170 0.0136 0.00271 0.0136 0.11250 0.00 0.00131 0.00275 0.00136 0.00137 0.02391 <td><pre>[7783-06-4] 2. Carbon dioxide; CO₂; [124-38-9] 3. Water; H₂O; [7732-18-5] 4. 2-(2-Aminoethoxy)ethanol,</pre></td> <td>Moore, T.F.; Branson, J.A. Proc. 62nd Annual Convention of the Gas Processors Association, <u>1983</u>,</td>	<pre>[7783-06-4] 2. Carbon dioxide; CO₂; [124-38-9] 3. Water; H₂O; [7732-18-5] 4. 2-(2-Aminoethoxy)ethanol,</pre>	Moore, T.F.; Branson, J.A. Proc. 62nd Annual Convention of the Gas Processors Association, <u>1983</u> ,
Concentration of diglycolamine (DGA) in aqueous solution before addition of gas = 65 wt % Partial pressure of CO2 /psia Partial pressure /kPa* Partial pressure of CO2 /psia Partial pressure of CO2 /psia Partial pressure of CO2 /psia Partial pressure of CO2 /psia Partial pressure /kPa* 100 310.9 0.0935 0.0016 0.000957 0.00660 0.000735 0.000120 0.0922 0.0107 0.000638 0.00400 0.00120 0.00021 0.1030 0.0021 - - 0.00120 0.0022 0.1110 0.0004 0.000638 0.00410 0.0022 0.00120 0.00731 0.1250 0.0022 0.00140 0.0120 - 0.00120 0.00731 0.1250 0.0022 0.00140 0.0120 - 0.00120 0.00731 0.1500 0.0022 0.00113 0.00730 0.0272 0.0133 0.0121 0.00270 0.1170 0.0122 0.00614 0.0197 0.0133 0.0133 0.0272 0.1500 0.0012 0.00120 0.00780 </td <td></td> <td>200-200.</td>		200-200.
of gas = 65 wt % T/*F T/K* Mole ratio C02/DGA H2S/DGA C0200057 0.0035 0.0035 0.0016 0.000957 0.00650 0.00055 0.00055 0.00012 0.00052 0.00055 0.00052 0.00052 0.00053 0.00012 0.00051 0.00051 0.00053 0.00012 0.00051 0.00051 0.00053 0.00040 0.00012 0.00023 0.0005 0.00051 0.00051 0.00051 0.00051 0.0005 0.00041 0.00012 0.00023 0.0005 0.0005 0.00040 0.00012 0.00023 0.0005 0.0005 0.00040 0.00012 0.00023 0.0005 0.0005 0.0005 0.00040 0.00012 0.00023 0.0005 0.0005 0.0005 0.0004 0.00012 0.00023 0.0005 0.0005 0.0004 0.0001 0.0002 0.0005 0.0005 0.0005 0.0004 0.0012 0.0002 0.0005 0.0005 0.0005 0.0004 0.0012 0.0007 0.0012 0.0007 0.001 0.000 0.000 0.000 0.000 0.001 0.001 0.000 0.000 0.001 0.001 0.001 0.000 0.00 0	EXPERIMENTAL VALUES:	
$ \begin{array}{cccccc} & \mbox{in 1 iguid phase} & \mbox{of C_2} & \mbox{of H_2S} \\ \hline or C_2/DGA H_2S/DGA $/psia $/kPa* $/psia $/kPa* $/kP$		in aqueous solution before addition
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
0.0960 0.0009 0.000754 0.00520 0.0040 0.1030 0.0 0.000754 0.00520 0.00638 0.0440 0.1000 0.0030 0.00551 0.380 0.000110 0.000283 0.1110 0.0021 - - 0.00012 0.000734 0.1170 0.00235 0.000890 0.00614 0.0172 0.0073 0.1170 0.0022 0.00174 0.0120 - - 0 0.1250 0.0 0 0.0638 0.440 0.1250 0.00 0 0.0633 0.0272 0.1350 0.0022 0.0113 0.0079 0.0193 0.0133 0.1540 0.0011 0.0112 0.00810 0.000870 0.006060 0.1650 0.012 0.0012 0.00817 0.000850 0.00219 0.1650 0.012 0.0145 0.1010 0.000850 0.0219 0.1650 0.012 0.00137 0.0220 1.43		
0.2750 0.0882 0.0213 0.147 0.217 1.50 0.0930 0.2980 0.696 4.80	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
0.0480 0.3450 0.584 4.03	0.2750 0.0882 0.021 0.0930 0.2980 -	3 0.147 0.217 1.50 - 0.696 4.80
* calculated by the compiler.		- 0.584 4.03

COMPONENTS:	1	ORIGINAL MEASU	REMENTS:				
 Hydrogen sulfide; H₂S; [7783-06-4] Carbon dioxide; CO₂; [124-38-9] Dingman, J.C.; Jackson, J.L.; Moore, T.F.; Branson, J.A. 							
2. Carbon dioxide; Co_2 ; $[124-36-5]$ 3. Water; H_2O ; $[7732-18-5]$ 4. 2-(2-Aminoethoxy)ethanol, (diglycolamine); $C_4H_{11}NO_2$; [929-06-6] Proc. 62nd Annual Convention of the Gas Processors Association, <u>1983</u> , 256-268.							
EXPERIMENTAL VALUES:	EXPERIMENTAL VALUES:						
Concentration of diglyco of gas = 65 wt %	Concentration of diglycolamine (DGA) in aqueous solution before addition of gas = 65 wt %						
T/°F T/K* Mole ratio in liquid ph	hase o	al pressure f CO_2	of H				
CO ₂ /DGA H ₂ S	S/DGA /psia	/kPa*	/psia	/kPa*			
	2240 0.0139		0.503	3.47			
	0.0607 1360 0.0344		0.0 0.557	0 3.84			
0.1660 0.2	2370 -	-	0.754	5.20			
	0109 0.0464		0.0503	0.347			
	0180 0.0749 0340 0.0812		- 0.166	- 1.14			
0.0930 0.3	3370 -	-	0.917	6.32			
	3470 -	-	1.00	6.89			
	4340 0.0 0610 0.125	0 0.862	0.911 0.406	6.28 2.80			
	1910 0.0574		-	-			
	1680 0.0841		0.737	5.08			
	3580 0.0060 0064 0.348	4 0.0416 2.40	1.06 0.0656	7.31 0.452			
0.4580 0	0.286		0.0	0.452			
0.1700 0.2	2910 -	-	1.31	9.93			
	2000 0.0580		1.22	8.41			
	0280 0.596 3900 -	4.11 -	0.445 1.08	3.07 7.45			
	1180 0.412	2.84	1.64	11.3			
0.5020 0	1.83	12.6	0.0	0			
0.5060 0	1.77 0080 2.03	12.2 14.0	0.0 0.232	0 1.60			
	1420 0.758	5.23	2.98	20.5			
0.4850 0.0	0270 3.75	25.9	1.19	8.20			
	0160 2.36	16.3	0.449	3.10			
	2580 0.145 0917 11.4	1.00 78.6	2.51 8.27	17.3 57.0			
	0690 7.95	54.8	4.76	32.8			
0.0890 0.4	4400 -	-	1.80	12.4			
	1780 2.03 1960 4.14	14.0 28.5	6.81 11.4	47.0 78.6			
	3820 -	-	3.09	21.3			
0 0.5	5520 0.0	0	2.24	15.4			
	39200.084132600.828	0.580 5.71	3.31 9.28	22.8 64.0			
	4160 0.0812	0.560	4.80	33.1			
	5030 -	-	3.21	22.1			
0.3480 0.2 0.5900 0	2420 6.73 27.0	46.4 186.2	17.6 0.0	121.3			
	5920 0.0	0	2.75	19.0			
	3570 1.44		14.3	98.6			
	4500 0.131 3680 2.07	0.903 14.3	6.79 18.1	46.8 124.8			
	5080 2.07		19.0	131.0			
0.0880 0.5	5770 -	-	6.42	44.3			
	5830 0.0429	0.296	6.67	46.0			
	6830 0.0 5270 0.841	0 5.80 :	5.51 21.6	38.0 148.9			
0 0.7	7020 0.0	0	5.80	40.0			
	6130 - 5500 1.31	- 9.03	8.76	60.4			
* calculated by the com		2.02	27.1	186.8			

- - -----

ORIGINAL MEASUREMENTS: COMPONENTS: Dingman, J.C.; Jackson, J.L.; Hydrogen sulfide; H₂S; [7783-06-4] Moore, T.F.; Branson, J.A. Carbon dioxide; CO_2 ; [124-38-9] Water; H₂O; [7732-18-5] Proc. 62nd Annual Convention of the Gas Processors Association, 1983, 2-(2-Aminoethoxy)ethanol, (diglycolamine); C₄H₁₁NO₂; 256-268. [929-06-6] EXPERIMENTAL VALUES: Concentration of diglycolamine (DGA) in aqueous solution before addition of qas = 65 wt %

T/°F т/к* Mole ratio Partial pressure Partial pressure of CO₂ of H₂S in liquid phase CO₂/DGA H₂S/DGA /kPa* /psia /kPa* /psia 0.7130 6.32 43.6 100 310.9 n 0.0 0 0.0890 87.6 0.6300 _ 12.7 0.7410 53.5 0.0 0 7.76 0 0.0630 0.6830 0.116 0.800 10.3 71.0 0.7050 0.0377 0.0460 0.260 10.4 71.7 0.0860 0.6690 0.232 1.60 15.8 108.9 0.0490 0.7440 0.738 21.2 146.2 0.107 0 0.8300 0.0 0 20.0 137.9 153.1 0 0.8370 0.0 0 22.2 0 0.8510 0.0 0 22.5 155.1 140 333.2 0.0443 0.0466 0.00230 0.0159 0.0754 0.520 0.0095 0.0106 0.1200 0.0731 0.0117 0.0807 0.1530 0.0091 0.0253 0.174 0.0263 0.181 0.0155 0.1200 0.107 0.0878 0.2030 0.0094 0.0331 0.228 0.0396 0.273 0.00644 0.0444 0.2130 0.956 0.0443 6.59 0.0451 0.2600 0.0077 0.0557 0.384 0.311 8.00 0.0989 0.1950 0.0251 0.173 1.16 0.0944 0.2410 0.0391 0.270 1.80 12.4 0.2500 0.0861 0.0903 0.623 0.621 4.28 0.0419 0.3040 0.00870 0.0600 2.22 15.3 0.1420 0.2110 0.0437 0.301 1.73 11.9 0.1073 0.0468 2.80 19.3 0.2850 0.323 0.2330 0.1940 0.271 1.87 3.17 21.9 0.3980 0.0413 1.33 9.17 1.25 8.62 0.3650 0.0816 8.34 2.37 16.3 1.21 0.0370 0.4170 4.41 30.4 0.1530 0.2970 33.3 4.84 7.79 0.2910 0.2000 48.0 1.13 6.96 0.0228 0.0855 0.4750 0.0124 5.80 40.0 83.4 4.94 0.5020 0.716 0.0069 12.1 0.4900 0.0325 23.0 158.6 4.22 29.1 0.1210 0.4050 0.154 1.06 8.18 56.4 0.0164 0.5200 0.0173 0.119 8.51 58.7 19.4 0.2830 0.2700 3.71 25.6 133.8 0.3680 1.46 0.2040 10.1 19.5 134.4 0.1080 0.5190 0.321 2.21 17.6 121.3 4.32 0.1030 0.5360 0.627 26.8 184.8 160 344.3 0.0830 0.2530 0.0609 0.420 3.13 21.6 0.1780 0.2220 2.46 17.0 22.2 153.1 0.1020 0.201 8.86 0.3640 1.39 61.1 0.4200 0.0620 7.14 49.2 4.62 31.9 180 355.4 0 0.0109 0.0 0 0.0110 0.0758 0 0.0157 0.0 0 0.0464 0.320 0.0203 0 0.00437 0.0301 0.0 0 0.0367 0 0.0197 0.136 0.0 0 0.0623 0.271 0 0 1.87 0.0 0.0616 0.0145 0.0435 0.300 0.0870 0.600 0.0109 0.0435 0.0689 0.300 0.0377 0.260 0.0423 0.0407 0.0250 0.172 0.296 2.04 * calculated by the compiler.

1.

2.

з.

4.

COMPONENTS:	ORIGINAL MEASUREMENTS:						
 Hydrogen sulfide; H₂S; [7783-06-4] Carbon dioxide; CO₂; [124-38-9] Water; H₂O; [7732-18-5] 2-(2-Aminoethoxy)ethanol, 	Dingman, J.C.; Jackson, J.L.; Moore, T.F.; Branson, J.A. Proc. 62nd Annual Convention of the Gas Processors Association, 1983,						
(diglycolamine); C ₄ H ₁₁ NO ₂ ; [929-06-6]							
EXPERIMENTAL VALUES:							
Concentration of diglycolamine (DGA) i of gas = 65 wt %	in aqueous solution before addition						
	ial pressure Partial pressure						
in liquid phase c CO2/DGA H2S/DGA /psia	of CO ₂ of H ₂ S /kPa* /psia /kPa*						
180 355.4 0.0976 0.0147 0.0897 0.1160 0 0.0874							
0.0372 0.0859 0.0331							
0.1180 0.0113 0.0878							
0 0.1450 0.0 0.1640 0 0.147	0 1.57 10.8 1.01 0.0 0						
0.0873 0.0850 0.102							
0.0402 0.1760 0.0449							
0.1480 0.0701 0.230 0.2230 0.0151 0.418							
0.0820 0.1160 0.126							
0 0.2590 0.0	0 4.53 31.2						
0.2590 0 0.588							
0.2260 0.0417 0.557 0.2870 0.0103 0.855							
0.0930 0.2090 0.186							
0.1660 0.1570 0.534							
0 0.3240 0.0 0.0368 0.2890 0.0859	0 7.58 52.3 9 0.592 7.54 52.0						
0.3330 0 1.44	9.93 0.0 0						
0.0880 0.2480 0.186							
0.2160 0.1250 0.944							
0.2090 0.1350 0.952 0.3250 0.0417 1.91	6.56 5.26 36.3 13.2 1.53 10.5						
0.3550 0.0151 2.55	17.6 0.592 4.08						
0.1020 0.3530 0.631							
	84.1 15.3 105.5						
0.4140 0.0593 14.6 0.1550 0.3210 2.09	100.7 7.20 49.6 14.4 23.4 161.3						
0.2170 0.2600 3.40	23.4 22.2 153.1						
0.4370 0.0401 19.3	133.1 4.80 33.1						
0.4740 0.0113 23.8 0.4880 0 26.5	164.1 1.38 9.51 182.7 0.0 0						
0.0966 0.4010 0.807	5.56 24.8 171.0						
0 0.5080 0.0	0 16.4 113.1						
0.0639 0.4610 0.391 0 0.5270 0.0	2.70 26.5 182.7 0 26.5 182.7						
Concentration of DGA before addition of	of gas = 70 wt %						
140 333.2 0.3230 0.0230 0.184	1.27 0.263 1.81						
160 344.3 0.3190 0.0220 0.623 180 355.4 0.3180 0.0230 1.75	4.30 0.596 4.11 12.1 0.971 6.69						
* calculated by the compiler.							

ORIGINAL MEASUREMENTS: Isaacs, E.E.; Otto, F.D.; Mather,A.E. Can. J. Chem. Eng. <u>1977</u> , 55, 210-212.
(Complete data in the Centre for Unpublished Data, National Science Library, National Research Council, Ottawa, Ontario K1A 052, Canada.)
PREPARED BY:
P.G.T. Fogg
amine) = 2.5 kmol m^{-3} (2.5 mol dm^{-3})
Mole ratios in liquid phase $H_2S/DIPA$ $CO_2/DIPA$
1.316 0.051 1.213 0.040 1.174 0.078 1.130 0.138 1.128 0.166 1.079 0.143 1.057 0.045 1.021 0.129 1.010 0.246 1.001 0.166 0.994 0.118 0.976 0.370 0.975 0.142 0.956 0.392 0.933 0.059 0.891 0.307 0.877 0.399 0.861 0.142
Y INFORMATION
SOURCE AND PURITY OF MATERIALS:
No information ESTIMATED ERROR: $\delta T/K = \pm 0.5$ $\delta (CO_2/DIPA); \delta (H_2S/DIPA) = \pm 0.02 \text{ or}$ 4%, whichever is the larger (authors) REFERENCES: 1. Ruska, W.E.A.; Hurt, L.J.; Kobayashi, R. Rev. Sci. Inst. <u>1979</u> , 41, 1444.

COMPONENTS: ORIGINAL MEASUREMENTS: 1. Hydrogen sulfide; H_2S ; Isaacs, E.E.; Otto, F.D.; Mather, 2. Carbon dioxide; CO2; [124-38-9] Isaacs, E.E.; Otto, F.D.; Mather, 3. Water; H_00 ; (7732-18-5] Can. J. Chem. Eng. 1977, 55, 210- (diisopropanolamine); CeH15NO2; [110-97-4] EXPERIMENTAL VALUES: Concentration of DIPA (diisopropanolamine) = 2.5 kmol m ⁻³ (2.5 mol dm ⁻¹) Concentration of DIPA (diisopropanolamine) = 2.5 kmol m ⁻³ (2.5 mol dm ⁻¹) 313.2 499.8 48.9 0.859 0.663 1072.1 512.2 0.856 0.291 914.9 427.4 0.821 0.262 313.2 499.8 48.9 0.651 0.291 914.9 427.4 0.821 0.262 319.2 19.9 0.719 0.73 2140.8 2332.4 0.790 0.531 447.4 121.3 0.722 0.651 206.1 19.9 0.719 0.79 55.7 109.6 0.594 0.257 595.7 100.3 0.650 0.91 888.7 669.4 0.598 0.36	
$\begin{bmatrix} 7783-06-41 \\ 2. Carbon dioxide; CO_2; [124-38-9] \\ 3. Water; H_2O; [7732-18-5] \\ 4. 1,1'-Iminobis-2-propanol, \\ (disopropanolamine); C_{6H_1}SNO_2; \\ [110-97-4] \\ \hline \\ $	•
2. Carbon dioxide; CO ₂ ; [124-38-9] 3. Water; H ₂ O ₃ ; [7732-18-5] 4. 1,1'-Iminobis-2-propanol, (diisopropanolamine); C ₅ H ₁ 5NO ₂ ; [110-97-4] EXPERIMENTAL VALUES: Concentration of DIPA (diisopropanolamine) = 2.5 kmol m ⁻³ (2.5 mol dm ⁻¹) T/K P_{H_2S}/kPa P_{CO_2}/kPa Mole ratios in liquid phase H ₂ S/DIPA CO ₂ /DIPA 313.2 499.8 48.9 0.859 0.063 1072.1 512.2 0.856 0.291 914.9 427.4 0.821 0.262 349.5 35.1 0.811 0.073 2140.8 2332.4 0.790 0.531 447.4 121.3 0.722 0.168 206.1 19.9 0.719 0.079 505.3 461.2 0.655 0.352 379.2 192.3 0.651 0.257 186.1 62.0 0.598 0.364 255.7 109.6 0.594 0.257 186.1 62.0 0.593 0.190 85.4 13.0 0.583 0.094 1955.0 3334.1 0.554 0.756 144.7 62.0 0.593 0.190 85.4 13.0 0.583 0.94 1956.0 3334.1 0.554 0.756 144.7 62.0 0.593 0.190 85.4 13.0 0.583 0.94 1958.0 3334.1 0.554 0.756 144.7 62.0 0.594 0.257 186.1 0.257 199.6 0.594 0.257 186.1 62.0 0.594 0.257 196.1 843.2 0.498 0.210 80.6 23.4 0.470 0.918 2496.5 3310.0 0.418 0.365 734.9 1227.9 0.417 0.655 106.1 96.5 0.411 0.322 40.6 15.1 0.397 0.219 106.1 84.1 0.387 0.354 70.3 34.4 0.387 0.283	r,A.E.
$\begin{array}{c cccc} \mbox{Concentration of DIPA (diisopropanolamine) = 2.5 kmol m^{-3} (2.5 mol dm^{-3} T/K $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $$	r nce cil,
T/K P_{H_2S}/kPa P_{CO_2}/kPa Mole ratios in liquid phase $H_2S/DIPA$ 313.2499.848.90.8590.0631072.1512.20.8560.291914.9427.40.8210.262349.535.10.8110.0732140.82332.40.7900.531447.4121.30.7220.168206.119.90.7190.079505.3461.20.6550.352379.2192.30.6510.257595.7110.30.6500.091888.7669.40.5980.364255.7109.60.5930.19085.413.00.5830.0941958.03834.10.5540.756144.762.00.5350.247117.832.40.5000.197710.1843.20.4980.126113.028.20.4980.21080.623.40.4700.1982496.53810.00.4370.8411891.24177.40.4320.851150.9133.00.4180.365734.91227.90.4170.655106.196.50.4110.32240.615.10.3970.219106.184.10.3870.230488.1922.50.3770.65359.232.40.3760.283	<u> </u>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- ³)
$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

ł

ł

COMPONEI	NTS:		ORIGINAL MEASUREME	NTS:
1. Hydrogen sulfide; H ₂ S;		Isaacs, E.E.: Otto	, F.D.; Mather,A.E.	
<pre>[7783-06-4] 2. Carbon dioxide; CO₂; [124-38-9] 3. Water; H₂O; [7732-18-5] 4. 1,1'-Iminobis-2-propanol, (disopropanolamine); C₆H₁₅NO₂; [110-97-4]</pre>			<u>1977</u> , 55, 210-212. the Centre for National Science Research Council,	
EXPERIM	ENTAL VALUES:			· · · · · · · · · · · · · · · · · · ·
		(diisopropapola	mine) = 2.5 kmol m ⁻³	$(2.5 \text{ mol } dm^{-3})$
т/к				
I/K	^P H₂S ^{/kPa}	P _{CO2} /kPa	Mole ratios in liq H ₂ S/DIPA CO ₂	/DIPA
313.2	894.9 99.2 273.0 273.7 894.9 47.5 204.0 28.2 326.1 237.1 15.1 10.3 31.0 13.0 216.4 517.7 438.5 226.8 430.9 158.5 128.2 1.3 1.3 3.4 3.4 6.2 17.2 22.0	$\begin{array}{r} 4896.6\\ 172.3\\ 1489.9\\ 911.4\\ 4833.1\\ 106.1\\ 1047.3\\ 22.7\\ 3109.5\\ 1540.9\\ 42.7\\ 26.8\\ 101.3\\ 25.5\\ 5282.0\\ 5276.5\\ 4555.3\\ 3224.6\\ 5391.6\\ 3678.3\\ 2625.5\\ 8.9\\ 11.0\\ 22.0\\ 22.7\\ 70.3\\ 318.5\\ 549.5 \end{array}$	$\begin{array}{ccccccc} 0.228 & 0 \\ 0.221 & 0 \\ 0.216 & 0 \\ 0.191 & 1 \\ 0.182 & 0 \\ 0.165 & 0 \\ 0.165 & 0 \\ 0.165 & 0 \\ 0.150 & 0 \\ 0.145 & 0 \\ 0.124 & 0 \\ 0.122 & 0 \\ 0.122 & 0 \\ 0.122 & 0 \\ 0.121 & 0 \\ 0.122 & 0 \\ 0.121 & 0 \\ 0.115 & 1 \\ 0.115 & 1 \\ 0.115 & 1 \\ 0.115 & 1 \\ 0.115 & 1 \\ 0.115 & 1 \\ 0.076 & 1 \\ 0.076 & 1 \\ 0.076 & 1 \\ 0.076 & 1 \\ 0.071 & 1 \\ 0.045 & 0 \\ 0.045 & 0 \\ 0.041 & 0 \\ 0.041 & 0 \\ 0.035 & 0 \\ 0.031 & 0 \\ \end{array}$.970 .494 .802 .730 .020 .492 .777 .351 .940 .869 .454 .410 .531 .409 .030 .052 .053 .999 .089 .067 .011 .365 .392 .465 .452 .554 .731 .791
373.2	4126.4 1797.4 1819.5 2748.9 1851.9 1107.9 2137.3 1103.1 1475.4 2151.1 2363.5 606.0 504.6 2080.1 875.6 617.7 2002.9 2220.0 591.5 774.9 810.1 753.5	574.3 523.9 754.9 2475.1 1392.7 237.1 1375.4 324.7 999.7 2273.8 3261.1 212.3 56.5 4123.0 373.6 236.4 4029.9 3727.9 191.6 346.1 894.9 951.4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.059 .079 .117 .273 .176 .065 .234 .083 .202 .337 .381 .095 .039 .456 .150 .098 .476 .474 .084 .161 .255 .278

ł

COMPONE	NTS:		ORIGINAL MEASUREMENTS:
 Hydrogen sulfide; H₂S; 			Isaacs, E.E.; Otto, F.D.; Mather, A.E.
<pre>[7783-06-4] 2. Carbon dioxide; CO₂; [124-38-9] 3. Water; H₂O; [7732-18-5] 4. 1,1'-Iminobis-2-propanol, (diisopropanolamine); C₆H₁₅NO₂; [110-97-4]</pre>			Can. J. Chem. Eng. <u>1977</u> , 55, 210-212. (Complete data in the Centre for Unpublished Data, National Science Library, National Research Council, Ottawa, Ontario K1A 0S2, Canada.)
EXPERIM	ENTAL VALUES:		
Concent	ration of DIP	A (diisopropanola	mine) = 2.5 kmol m^{-3} (2.5 mol dm^{-3})
т/к	P _{H2} S/kPa	P _{CO2} /kPa	Mole ratios in liquid phase $H_2S/DIPA$ $CO_2/DIPA$
373.2	313.7 395.7 332.3 890.1 868.7 244.7 1567.8 1109.3 708.0 434.3 185.4 1296.8 162.0 211.6 218.5 725.3 253.0 1005.2 146.8 384.0 219.9 302.6 1213.4 129.6 128.2 150.9 392.9 222.0 447.4 79.2 80.6 133.0 472.9 318.5 172.3 203.3 155.8 230.9 53.7 187.5 224.7 48.9 319.2 215.1 36.5 68.9 717.0 314.7 374.3	$\begin{array}{c} 62.0\\ 170.9\\ 55.8\\ 1650.5\\ 1613.3\\ 35.1\\ 4374.6\\ 1851.9\\ 1233.4\\ 385.4\\ 48.2\\ 3230.8\\ 37.2\\ 140.6\\ 157.1\\ 1838.8\\ 261.9\\ 2676.5\\ 26.8\\ 677.7\\ 154.4\\ 427.4\\ 4767.6\\ 68.9\\ 36.5\\ 117.2\\ 1094.8\\ 288.8\\ 1272.0\\ 29.6\\ 17.2\\ 175.1\\ 1990.4\\ 1074.1\\ 144.7\\ 532.9\\ 257.8\\ 854.9\\ 16.5\\ 451.6\\ 743.2\\ 19.3\\ 1349.2\\ 741.8\\ 9.6\\ 54.4\\ 5274.4\\ 11.0\\ 2031.8\\ 3219.8\\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

COMPONE	INTS:	<u></u>	ORIGINAL MEASUREMENTS:	
1. Hydrogen sulfide; H ₂ S;			Isaacs, E.E.; Otto, F.D.; Mather	,A.E.
<pre>[7783-06-4] 2. Carbon dioxide; CO₂; [124-38-9] 3. Water; H₂O; [7732-18-5] 4. 1,1'-Iminobis-2-propanol, (diisopropanolamine); C₆H₁₅NO₂; [110-97-4]</pre>			Can. J. Chem. Eng. 1977, 55, 210 (Complete data in the Centre for Unpublished Data, National Scient Library, National Research Counc. Ottawa, Ontario K1A 0S2, Canada.	ce il,
EXPERIM	IENTAL VALUES:			
Concent	ration of DIP	A (diisopropanola	mine) = 2.5 kmol m^{-3} (2.5 mol dm ⁻	³)
т/к	P _{H2S} /kPa	P _{CO₂} /kPa	Mole ratios in liquid phase H ₂ S/DIPA CO ₂ /DIPA	
373.2	794.9 43.4 53.7 25.5 103.4 44.8 61.3 421.9 361.9 32.7 92.3 94.4 66.8 28.9 107.5 196.4 24.1 42.7 46.8 144.0 312.3 42.0 70.3 173.0 278.5 323.3 8.2 6.8 9.9 5.5 11.3 95.8 19.9	$\begin{array}{r} 4421.5\\ 63.4\\ 230.9\\ 24.1\\ 437.8\\ 88.2\\ 204.7\\ 3872.0\\ 3854.1\\ 44.5\\ 530.2\\ 661.2\\ 276.4\\ 355.8\\ 1119.0\\ 4474.6\\ 22.0\\ 88.9\\ 177.8\\ 3454.2\\ 5991.4\\ 63.4\\ 424.7\\ 5239.9\\ 5543.3\\ 7391.1\\ 4.8\\ 4.1\\ 22.5\\ 4.1\\ 33.8\\ 5885.3\\ 5619.1\\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	152.3 11.0	5591.6 3157.7	0.005 0.754 0.002 0.644	

COMPONEI	NTS:	· · · · ·		OR	IGINAL ME	ASUREMEN	rs:	
1. Hydro	ogen sulfid	e; H ₂ S;		Is	aacs, E.E	.; Otto,	F.D.; M	lather,A.E.
2. Carbo 3. Wate: 4. 1,1' (<i>diis</i>	3-06-4] on dioxide; r; H ₂ O; [77 -Iminobis-2 sopropanola -97-4]	32-18-5] -propano	1,	(C Un Li	n. J. Cher omplete da published brary, Nat tawa, Onta	ata in tl Data, Na tional Re	he Centr ational esearch	Science Council,
EXPERIM	ENTAL VALUE	s:						
various in the 1	les give va partial pr liquid phas	essures e.	of H ₂ S in	the g	as phase a	and mole		
	ration of D	IPA =	2.5 kmol	m ⁻ " (2.5 mol di	m ⁻ ")		
Mole rat CO ₂ /DIP2		0.000	0.100	0.200	0.300	0.400	0.500	0.600
т/к	P _{H₂S} /kPa							
	1.0 3.16 10.0 31.6 100 316 1000 3000	0.063 0.185 0.335 0.565 0.752 0.902 1.126 1.620	0.612 0.759 0.983	0.670 0.907	0.108 0.205 0.310 0.429 0.606	0.006* 0.069 0.133 0.213 0.338 0.527 0.772 1.080*	0.029* 0.075 0.143 0.248 0.440 0.677 0.960*	0.045 0.092 0.170 0.347 0.570
Mole ra CO2/DIP	tio A	0.700	0.800	0.900	1.000	1.100	1.200	
т/к	P _{H₂S} /kPa							
	10.0 31.6 100 316 1000 3000	0.024 0.063 0.133 0.263 0.472 0.720*	0.039 0.102 0.202 0.370 0.622*	0.018 0.072 0.160 0.293 0.488*	0.232	0.029* 0.088* 0.185 0.340*	0.018* 0.067* 0.155 0.288*	
Mole ra CO ₂ /DIP		0.000	0.100	, 0.200	0.300	0.400	0.500	
т/к	P _{H2S} /kPa				·			-
	3.16 10.0 31.6 100 316 1000 3000	0.025 0.086 0.178 0.311 0.541 0.880 1.200	0.018* 0.052 0.138 0.245 0.423 0.705 1.042	0.010* 0.036 0.092 0.200 0.346 0.580 0.880	0.028 0.065 0.150 0.286 0.490 0.770	0.020 0.053 0.120 0.239 0.412 0.665	0.015* 0.041 0.093 0.189 0.337 0.552*	-
Mole rat CO ₂ /DIP		0.600	0.700	0.800	0.900	1.000		
т/к	P _{H2S} /kPa							
373.2	10.0 31.6 100.0 316 1000 3000	0.010* 0.023 0.073 0.142 0.272 0.470*	0.016* 0.058 0.111 0.212 0.397*	0.037 0.080* 0.163* 0.331*	0.130*	0.039* 0.107*		
* extrapolated values given by the authors.								

COMPONENTS:	EVALUATOR:
 Hydrogen sulfide; H₂S; [7783-06-4] Non-aqueous solvents 	Peter G.T. Fogg, Department of Applied Chemistry and Life Sciences, Polytechnic of North London, Holloway, London N7 8DB, U.K.
	July 1987

The solubilities of hydrogen sulfide in a wide range of organic solvents have been measured at pressures above and below barometric pressure. These measurements are of varying reliability. Error limits are likely to vary from about $\pm 2\%$ to about $\pm 10\%$ but it is not always possible to quantify these error limits. This must be borne in mind when attempts are made to deduce a general pattern of solubilities of hydrogen sulfide from the experimental data which have been reported.

Non-aromatic hydrocarbons

Propane; $C_{3}H_{8}$; [74-98-6]	Butane; C4H10; [106-97-8]
2-Methylpropane; $C_{4}H_{10}$; [75-28-5]	Pentane; C ₅ H ₁₂ ; [109-66-0]
Hexane; C ₃ H ₁₄ ; [110-54-3]	Heptane; C ₇ H ₁₆ ; [142-82-5]
Octane; C ₈ H ₁₈ ; [111-65-9]	Nonane; C ₉ H ₂₀ ; [111-84-2]
Decane; C10H22; [124-18-5]	Undecane; $C_{11}H_{24}$; [1120-21-4]
Dodecane; C ₁₂ H ₂₆ ; [112-40-3]	Tridecane; $C_{13}H_{28}$; [629-50-5]
Tetradecane; C ₁₄ H ₃₀ ; [629-59-4]	Pentadecane; C15H32; [629-62-9]
Hexadecane; C16H34; [544-76-3]	Cyclohexane; C ₆ H ₁₂ ; [110-82-7]
Methylcyclohexane; C ₇ H ₁₄ ; [108-87-2]	Ethylcyclohexane; C ₈ H ₁₆ ; [1678-91-7]
Propylcyclohexane; C ₉ H ₁₈ ; [1678-92-8]	<pre>(1-Methylethyl)-cyclohexane;</pre>
Decahydronaphthalene; C10H18; [91-17-8]	$C_{9}H_{18}$; [696-29-7]
1,1'-Bicyclohexyl; C ₁₂ H ₂₂ ; [92-51-3]	Liquid paraffin

The solubilities of hydrogen sulfide at a partial pressure of 1.013 bar and temperatures in the range 288 - 343 K in hexane, octane, decane, dodecane, tetradecane, hexadecane have been reported by King & Al-Najjar (1). Makranczy et al. (2) reported solubilities in the straight chain alkanes from pentane to hexadecane also at a partial pressure of 1.013 bar at temperatures of 298.15 K and 313.15 K. Mole fraction solubilities reported by Makranczy et al. for 298.15 K are all within 4% of values reported by King & Al-Najjar. The mole fraction solubility at 313.15 K in hexadecane reported by Makranczy differs from the interpolated value from King & Al-Najjar by 7%. Measurements of solubilities in other alkanes at 313.15 by Makranczy are within 5% of interpolated values from King & Al-Najjar. Measurements by the two groups indicate that mole fraction solubilities at a partial pressure of hydrogen sulfide of 1.013 bar increase with the length of the carbon chain, in the temperature range 288 - 303 K. This pattern was found by Bell (3) at 293 K for hexane, octane, dodecane and hexadecane. Bell, however, used rather simpler apparatus and individual values are likely to be less reliable than those of King & Al-Najjar or of Makranczy. This pattern of solubilities is not substantiated by measurements of the solubility in hexane by Hayduk & Pahlevanzadeh (4), nor that in heptane measured by Ng et al. (5), nor that in decane measured by Gerrard (6) and by Reamer et al. (7), nor that in hexadecane measured by Tremper & Prausnitz (8). Mole fraction solubilities at 298.15 K from measurements by the different authors are shown in fig. 2. The biggest discrepancy is between the value of the mole fraction solubility in hexadecane of 0.040 by extrapolation of measurements by Tremper & Prausnitz and the value of 0.0573 given by Makranczy et al. and also by King & Al-Najjar. There are similar discrepancies between mole fraction solubilities of sulfur dioxide in alkanes from measurements by different authors. These differences have

Phase equilibria between propane and hydrogen sulfide from 341 K to 367 K and total pressures from 27.6 bar to 41.4 bar were investigated by Gilliland and Scheeline (10). Data may be extrapolated to give approximate values of mole fraction solubilities for partial pressures of hydrogen sulfide of 1.013 bar in this temperature range. These are consistent with the pattern shown by the higher alkanes mentioned above.

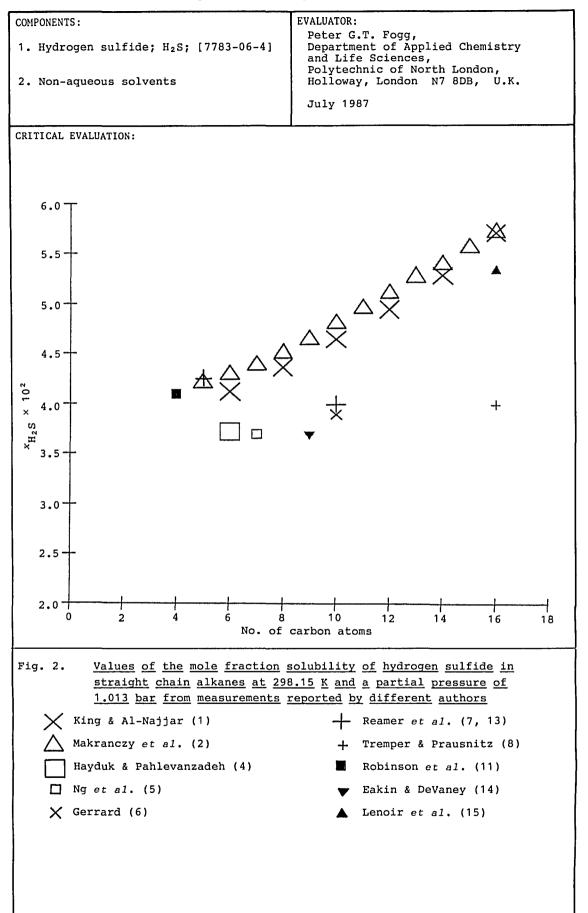
The butane-hydrogen sulfide system was investigated by Robinson *et al.* (11) in the temperature range 311 K to 394 K and pressure range 4.2 to 78.5 bar. An approximate value of the mole fraction solubility at 298.15 K and a partial pressure of 1.013 bar may be estimated by extrapolation of these measurements. The value of 0.041 is consistent with the pattern of mole fraction solubilities for higher straight chain alkanes given by Makranczy (2).

COMPONENTS:	EVALUATOR:
 Hydrogen sulfide; H₂S; [7783-06-4] Non-aqueous solvents 	Peter G.T. Fogg, Department of Applied Chemistry and Life Sciences, Polytechnic of North London, Holloway, London N7 8DB, U.K.
	July 1987

The 2-methylpropane-hydrogen sulfide system has been studied by Besserer & Robinson (12) over the temperature range 278 K to 378 K and pressure range 1.8 to 61.7 bar. Approximate values for mole fraction solubilities for a partial pressure of 1.013 bar may be estimated. The value for 298.15 K is 0.038, apparently slightly less than the value for the straight chain isomer.

Phase equilibria between pentane and hydrogen sulfide at high pressures have also been investigated. Reamer, Sage and Lacey (13) made measurements on this system between 278 K and 444 K and total pressures from 1.4 bar to 89.6 bar. These measurements are consistent with the data presented by Makranczy *et al.* (2). Extrapolation of mole fraction compositions of the liquid phase at 298.15 K to a partial pressure of hydrogen sulfide of 1.013 bar gives a value differing from the Makranczy value by less than 1%. The extrapolated value for 313.15 K differs from the corresponding Makranczy value by 5%.

The mole fraction solubility in hexane of 0.0372 at a partial pressure of 1.013 bar and 298.15 reported by Hayduk & Pahlevanzadeh (4) is significantly lower than the Makranczy value of 0.0429. These recent measurements by Hayduk were carried out using apparatus of high precision but the relative reliability of the two values cannot be judged. The solubility in hexane was also measured by Bell (3). Bell's value at 293.15 is lower than the value by extrapolation of Makranczy's measurements. Bell used very simple apparatus and more recent measurements are likely to be of greater reliability.


The heptane-hydrogen sulfide system has been investigated by Ng, Kalra, Robinson & Kubota (5) from 311 - 478 K and 1.6 to 8.4 bar. In this case extrapolated values of mole fraction solubilities for partial pressures of hydrogen sulfide of 1.013 bar are considerably lower than found by Makranczy (2). At 298.15 the value from Ng *et al.* is 0.037 whereas the Makranczy value is 0.0439. The corresponding values for 313.15 K are 0.028 and 0.0325 respectively. Measurements reported by Ng *et al.* were made over a pressure range and are internally self-consistent. They cast further doubt on the pattern indicated by Makranczy *et al.* (2) and by King & Al-Najjar (1).

The nonane-hydrogen sulfide system was investigated by Eakin & DeVaney (14) at temperatures from 311 K to 478 K and pressures from 1.37 bar to 27.6 bar. Measurements are self-consistent. The data may be used to estimate mole fraction solubilities at a partial pressure of 1.013 bar. Extrapolation of these estimated values to 298.15 K gives a mole fraction solubility at this temperature of 0.037 which is appreciably below the Makranczy (2) value of 0.0465.

The decane-hydrogen sulfide system was studied by Reamer *et al.* (7) in the temperature range 278 K to 444 K and pressure range 1.4 bar to 124 bar. Measurements are self-consistent. Extrapolation of mole fraction solubilities to a partial pressure of hydrogen sulfide of 1.013 bar and a temperature of 298.15 K gives a value of 0.040, close to the value of 0.039 by extrapolation of measurements by Gerrard (6) but appreciably lower than the figures of 0.0481 and 0.0465 from measurements by Makranczy (2) and by King (1) respectively.

The solubilities in hexadecane reported by Tremper & Prausnitz (8) were given as Henry's constants based on measurements made at an unspecified pressure or pressures below 1.33 bar. Mole fraction solubilities may be estimated on the assumption that there is a linear variation of mole fraction solubility with pressure to 1.013 bar. The interpolated value of the mole fraction solubility at 298.15 is 0.040 compared with the value of 0.0573 from measurements by Makranczy (2) and also by King (1). The higher value is also supported by the estimation of a value of 0.0535 from gas chromatographic measurements by Lenoir *et al.* (15) and by the value of 0.058 at 293.15 K published by Bell (3).

As may be seen in fig 2, data for the solubility of hydrogen sulfide in alkanes fall into two groups. Some data indicate that the mole fraction solubility does not change appreciably with the length of the hydrocarbon chain. Other data indicate a marked increase with increase in chain length. Further experimental measurements are needed to clarify the situation. When solubility data for these systems are used the discrepancies between different measurements should be borne in mind.

 Hydrogen sulfide; H₂S; [7783-06-4] Non-aqueous solvents 	VALUATOR: Peter G.T. Fogg, Department of Applied Chemistry and Life Sciences, Polytechnic of North London, Holloway, London N7 8DB, U.K. July 1987

The solubility of hydrogen sulfide in octane in the presence of methane at various pressures to 103 bar in the temperature range 233 K to 293 K has been studied by Asano $et \ al.$ (16) using a chromatographic method. K-values or ratios of the mole fraction of hydrogen sulfide in the vapor phase to that in the liquid phase are reported. These correspond to very low partial pressures of hydrogen sulfide and may be taken to be equivalent to values for infinite dilution of hydrogen sulfide. These ratios may be used to estimate limiting values of Henry's law constants which are subject to the uncertainties associated with Henry's law constants determined by chromatographic methods. These Henry's law constants can then be used to estimate approximate mole fraction solubilities for a partial pressure of hydrogen sulfide of 1.013 bar. Values indicate that the solubility of hydrogen sulfide decreases with increasing concentration of methane in the liquid phase which is in accord with the apparent decrease of solubility of hydrogen sulfide with decrease in chain length of alkane as discussed above. These apparent Henry's law constants may be extrapolated to zero concentration of methane and the extrapolated value used to estimate solubility of pure hydrogen sulfide in octane to enable direct comparison with data discussed above. At a temperature of 293.15 K the extrapolated value, calculated from the experimental values of K rather than the smoothed values, indicates a mole fraction solubility of about 0.06 for a This may be compared with the value of 0.0474 partial pressure of 1.013 bar. given by King & Al-Najjar (1) at this temperature. In the opinion of the compiler the measurements presented by Asano *et al.* (16) are likely to correspond to the general pattern of behaviour of the hydrogen sulfide-methane-octane system. It must be borne is mind that errors can arise from surface effects when the gas-chromatographic method is used to determine solubilities of gases in liquids.

Solubilities in cyclohexane were measured at pressures from 0.133 to 1.067 bar and temperatures from 283.2 to 313.2 K by Tsiklis & Svetlova (17). These are a self-consistent set of measurements. Bell (3) reported the mole fraction solubility at 293.2 K and a partial pressure of 1.013 bar to be 0.0338. This is appreciably different from the interpolated value of 0.0422 from measurements by Tsiklis & Svetlova. The measurements by Tsiklis & Svetlova are probably the more reliable because they were carried out over a temperature and pressure range although they do not fit into the pattern shown by alkyl substituted cyclohexanes.

Solubilities in methyl, ethyl and propylcyclohexane were measured by Robinson and co-workers (18,19) and in (1-methylethyl)-cyclohexane by Eakin & DeVaney (14) at pressures above 1.013 bar and temperatures in the range 311 K to 478 K. These measurements are consistent with one another and may be accepted on a tentative basis. Mole fraction solubilities for a partial pressure of 1.013 bar may be found by extrapolation. There is an increase in these mole fraction solubilities as the number of carbon atoms in the side chain is increased with the values for (1-methylethyl)-cyclohexane close to those for propylcyclohexane. Values for cyclohexane itself, from measurements by Tsiklis (17), do not fall into the pattern.

Smoothed and extrapolated values of solubilities of cyclohexanes estimated by the evaluator are shown below:

Solvent	mole fraction so 300 K	lubility, × _H 350 K	2 ^S 400 K	bar)
Cyclohexane	0.038			
Methylcyclohexane	0.034	0.015	0.009	
Ethylcyclohexane	0.036	0.018	0.011	
Propylcyclohexane	0.043	0.023	0.014	
(1-Methylethyl)-cyclohexa	ne 0.041	0.023	0.015	

Solubilities in 1,1'-bicyclohexyl, published by Tremper & Prausnitz (8), and those in decalin, found by Lenoir *et al.* (15) from chromatographic measurements, are consistent with solubilities reported for cyclohexanes.

Solubilities in liquid paraffin, reported by Devyatykh *et al.* (20), are subject to the uncertainties associated with measurements by chromatography.

COMPONENTS :	EVALUATOR:
 Hydrogen sulfide; H₂S; [7783-06-4] Non-aqueous solvents 	Peter G.T. Fogg, Department of Applied Chemistry and Life Sciences, Polytechnic of North London, Holloway, London N7 8DB, U.K.
	July 1987

Hannaert *et al.* (21) have reported the solubilities, in a form equivalent to Henry's constants, in kerosene A-1 (distillation range 423 - 553 K; average relative molecular mass 170). Values are similar to those for pure dodecane which also has a relative molecular mass of 170.

Aromatic hydrocarbons

Solubilities in methylbenzene have been measured by Gerrard (6) and by Bell (3) at barometric pressure from 265 K to 298 K. Ng, Kalra, Robinson and Kubota (5) investigated phase equilibria at total pressures from 2 bar to 116 bar in the temperature range 311 K to 478 K. Mole fraction solubilities at partial pressures of 1.013 bar may be found by extrapolating mole fraction solubilities at higher pressures calculated from data given by Ng *et al*. These extrapolated values are consistent with mole fraction solubilities at lower temperatures calculated from data presented by Gerrard and by Bell. All mole fraction solubilities at a partial pressure of 1.013 bar lie above the reference line defined by the Raoult's law relationship and may be fitted to the equation :

 $\log_{10} x_{\text{H}_{2}\text{S}} = -3.811 + 768 / (T/K)$

The standard deviation in values of $x_{\rm H_2S}$ is ± 0.005. The equation in based upon data for the range 265 K - 478 K.

Phase equilibria between hydrogen sulfide and 1,3,5-trimethylbenzene have been investigated by Eakin & DeVaney (14) at total pressures from 1.3 bar to 32.6 bar at 311, 366 and 478 K. The solubility at a partial pressure of 1.013 bar and 298 K has been reported by Patyi *et al.* (22). This value is consistent with mole fraction solubilities estimated by extrapolation of data provided by Eakin and DeVaney to a partial pressure of 1.013 bar. The four values of mole fraction solubilities at a partial pressure of 1.013 bar lie above the reference line corresponding to the Raoult's law equation but below values for methylbenzene. They fit the equation :

 $\log_{10} x_{H_{0}S} = -3.495 + 648 / (T/K)$

The standard deviation in values of $x_{\rm H_2S}$ is ± 0.001. The equation is based upon data for the range 298 K to 478 K.

The mole fraction solubility in benzene at a partial pressure of 1.013 bar was reported by Bell (3) to be 0.0563 at 293.15 K. Gerrard (6) made measurements of solubility at barometric pressure in the range 265.15 K to 293.15 K. The mole fraction solubility at 293.15 K from Gerrard's measurements, corrected to a partial pressure of 1.013 bar is 0.062. Measurements by Bell and by Gerrard are incompatible with the value of 0.0358 at 298.15 K calculated from a solubility measurement by Patyi *et al.* (22). Gerrard's measurements at three temperatures are consistent with each other and may be more reliable than the single measurements reported by Patyi.

Gerrard measured solubilities in 1,2-dimethylbenzene at barometric pressure in the temperature range 265 K to 293 K. Huang & Robinson (23) measured solubilities in 1,3-dimethylbenzene at various total pressures from 1.5 to 131 bar in the temperature range 311 K to 478 K. These data for the xylenes may be accepted on a tentative basis.

The mole fraction solubilities at a partial pressure of 1.013 bar and 298 K of ethylbenzene, propylbenzene and (1-methylethyl)-benzene may also be calculated from solubility data given by Patyi *et al.* (22). The values for propylbenzene and (1-methylethyl)-benzene are close to values for methylbenzene and 1,3,5-trimethylbenzene. The value for ethylbenzene is about 20% lower and

COMPONENTS:	EVALUATOR:
 Hydrogen sulfide; H₂S; [7783-06-4] Non-aqueous solvents 	Peter G.T. Fogg, Department of Applied Chemistry and Life Sciences, Polytechnic of North London, Holloway, London N7 8DB, U.K. July 1987

closer to the value for benzene, discussed above, from measurements by these authors. The merit of these measurements cannot be judged.

Tremper & Prausnitz (8) reported Henry's constant for solubilities in 1-methylnapthalene and in 1,1'-methylenebisbenzene for the temperature range 300 K to 475 K. No other measurements on these systems are available for comparison but there is no reason to doubt the reliability of these measurements. Mole fraction solubilities for a partial pressure oa 1.013 bar may be calculated on the assumption that mole fraction solubility varies linearly with pressure at pressures to 1.013 bar.

Kragas & Kobayashi (24) measured limiting values of Henry's constants for dissolution of hydrogen sulfide in 9-methylanthracene. A chromatographic method was used with hydrogen at pressures of 13 bar to 58 bar as the carrier gas. Temperatures were in the range 373 K to 423 K. Values of Henry's constant in the absence of hydrogen were found by extrapolation. These Henry's constants should be used with caution in the estimation of solubilities for finite pressures of hydrogen sulfide because of the uncertainties associated with the chromatographic method of measuring solubilities.

Apparent values of mole fraction solubilities in aromatic hydrocarbons at a partial pressure of 1.013 bar and 298.15 K based on the measurements discussed above, are given below.

Hydrocarbon x	H ₂ S at P _{H2} S	= 1.013 bar Source and T = 298.15 K
Benzene	0.056	Gerrard (6) (extrapolated)
Methylbenzene	0.036 0.058	Patyi <i>et al</i> . (22) Egn. given above
1,2-dimethylbenzene	0.060	Gerrard (6) (extrapolated)
1,3-dimethylbenzene	0.037	Huang & Robinson (23) (extrap.)
1,3,5-trimethylbenzene	0.048	Eqn. given above
Ethylbenzene	0.042	Patyi et al. (22)
Propylbenzene	0.052	Patyi et al. (22)
(1-methylethyl)-benzene	0.053	Patyi et al. (22)
	0.033	Tremper & Prausnitz (8)
1,1'-methylenebisbenzene Value from Raoult's	0.031	Tremper & Prausnitz (8)
law equation	0.049	

Solubilities in alcohols

Methanol; CH₄O; [67-56-1] Ethanol; C₂H₆O; [64-17-5] 1-Butanol; C₄H₁₀O; [71-36-3] Benzenemethanol; C₇H₈O; [100-51-6] 1-Octanol; C₈H₁₈O; [111-87-5] 2-Ethoxyethanol; C₄H₁₀O₂; [110-80-5] 1,2-Ethanediol (ethylene glycol); C₂H₆O₂; [107-21-1]

Solubilities in methanol, ethanol, butanol and octanol have been reported. Available data indicate that mole fraction solubilities for a partial pressure of 1.013 bar increase from ethanol to octanol. Below 273 K the mole fraction solubility in methanol is less than that in ethanol but extrapolation of the values for methanol indicates that the solubility in methanol would be higher than that of ethanol at higher temperatures. Methanol shows an apparently similar anomaly when the mole fraction solubilities of amines in alkanols are compared (25).

Solubilities in methanol in the range of total pressures from 2.0 to 5.9 bar and from 248 - 273 K have been measured by Yorizane, Sadamoto, Masuoka and Eto (26). Short, Sahgal and Hayduk (27) reported mole fraction solubilities at 263 K and 333 K and a partial pressure of hydrogen sulfide of 1.013 bar. The mole fraction solubilities at high pressures reported by Yorizane et al. are self-consistent. In addition mole fraction solubilities at a partial pressure

COMPONENTS:	EVALUATOR:
 Hydrogen sulfide; H₂S; [7783-06-4] Non-aqueous solvents 	Peter G.T. Fogg, Department of Applied Chemistry and Life Sciences, Polytechnic of North London, Holloway, London N7 8DB, U.K.
	July 1987

of 1.013 bar estimated by extrapolation of these data are consistent with the mole fraction solubilities reported by Short et al.

Bezdel & Teodorovich (28) measured solubilities in methanol at partial pressures to 0.080 bar at temperatures 223.2 K, 243.2 K and 303.2 K. Mole fraction solubilities may be calculated from these data. Extrapolation to a partial pressure of 1.013 bar, assuming linear variation of mole fraction solubility with pressure at pressures to 1.013 bar, gives values of 0.35 at 223.2 K, 0.16 at 243.2 K and 0.021 at 303.2 K. The mole fraction solubility, estimated from data given by Short *et al.* and by Yorizane *et al.* is 0.12 at 243.2 K and 0.028 at 303.2 K. The evaluator considers that measurements by Short *et al.* and by Yorizane *et al.* are more reliable than those published by Bezdel & Teodorovitch.

Solubilities in ethanol and octanol were measured by Gerrard (6). Values for ethanol at 283 K and 293 K are within 5% and the value for 273 K is within 10% of values reported many years ago by Fauser (29). Gerrard's data for these two alcohols may be accepted as tentative values.

The solubilities in butanol at a partial pressure of 1,013 bar reported by Short, Sahgal and Hayduk (27) are likely to be reliable and can be accepted as tentative values.

Lenoir, Renault and Renon (15) used a gas-liquid chromatographic technique to measure the Henry's constant for dissolution of hydrogen sulfide in benzenemethanol 298.2 K and very low partial pressures. This measurement may be unreliable because of surface adsorption of gas. The estimated mole fraction solubility at 298 K and 1.013 bar, assuming a linear relationship between mole fraction solubility and pressure to 1.013 bar, is close to the value for 1-octanol mentioned above and about 85% of the Raoult's law value.

Solubility data for 2-ethoxyethanol, obtained using a chromatographic method by Devyatykh *et al.* (20) should also be considered to be of semi-quantitative significance until they can be independently confirmed.

Measurements of solubilities in 1,2-ethanediol made by Short *et al.* (27) agree closely with earlier measurements by Gerrard (6). This may be seen in the following table:

T/K Mole fraction solubility for $P_{H_2S} = 1.013$ bar Gerrard Short *et al*.² (interpolated)

265.15	0.0352	0.0309
267.15	0.032	0.0288
273.15	0.023	0.0235
283,15	0.017	0.0175
293.15	0.013	0.0136

Lenoir *et al.* (15) measured the Henry's constant at 298.15 by a chromatographic method. The corresponding mole fraction for a partial pressure of gas of 1.013 bar is 0.0189 compared with a value of 0.0122 given by Short *et al.* (27) Since solubilities measured by chromatographic methods are prone to errors due to surface effects this high value may be disregarded. Measurements of solubility at 297.1 K have been reported by Byeseda *et al.* (30) The Ostwald coefficient given by these workers corresponds to a mole fraction solubility at a partial pressure of 1.013 bar of 0.016 compared with the value of 0.0125. The apparatus used by Short *et al.* is likely to have yielded the more reliable solubility data and the higher value should be disregarded. Data published by Short *et al.* are recommended by the evaluator.

Triethylene glycol and polyethylene glycols are discussed below.

Hydrogen Sulfide in Non-aqueous Solvents		
COMPONENTS:	EVALUATOR:	
 Hydrogen sulfide; H₂S; [7783-06-4] Non-aqueous solvents 	Peter G.T. Fogg, Department of Applied Chemistry and Life Sciences, Polytechnic of North London, Holloway, London N7 8DB, U.K.	
	July 1987 .	
CRITICAL EVALUATION:		
<u>Compounds</u> containing carbon-oxygen-carbo	on links	
1,1'-Oxybisethane; (diethyl ether); C4H 1,1'-Oxybisoctane; (dioctyl ether); C16H Ethoxybenzene; C8H100; [103-73-1] Tetrahydrofuran; C4H80; [109-99-9] Oxybispropanol (dipropylene glycol); C6H 2,2'[1,2-Ethanediylbis(oxy)]bisethanol	I ₃₄ 0; [629-82-3] 1,4-Dioxane; C ₄ H ₈ O ₂ ; [123-91-1] I ₁₄ O ₃ ; [25265-71-8]	
α-hydro-ω-hydroxy-poly(oxy-1,2-ethanediy		
2-(2-Methoxyethoxy)ethanol (diethylene g		
3,6,9,12-Tetraoxahexadecan-1-ol (tetrae)		
1,1'-Oxybis(2-methoxyethane) (diethylene	e glycol dimethyl ether); C ₆ H ₁₄ O ₃ ; [111-96-6]	
2,5,8,11-Tetraoxadodecane (triethylene glycol dimethyl ether); C ₈ H ₁₈ O ₄ ; [112-49-2]		
2,5,8,11,14-Pentaoxapentadecane (tetrae)	thylene glycol dimethyl ether); CloH22O5; [143-24-8]	
<pre>2-Methyl-3,6,9,12,15,18-hexaoxanonadeca isopropyl ether); C14H30O6; ©Sepasolv MPE (A mixture of oligo methy 1,4,7,10-Tetraoxacyclododecane (12-crow 1,4,7,10,13-Pentaoxacyclopentadecane (1 4-Methyl-1,3-dioxolan-2-one (propylene)</pre>	l isopropyl ethers developed by BASF) n-4); $C_8H_{16}O_4$; [294-93-9] 5-crown-5); $C_{10}H_{20}O_5$; [33100-27-5]	
The solubility in diethyl ether at 299. was measured by Parsons (31). The avera the liquid corresponds to a mole fractic diethyl ether is about 0.074 bar at this solvent was much greater than the partia experiments. The data indicate that the pressure of gas of 1.013 bar is about 0 value of 0.047. There are, however, no diethyl ether with which to make compari classified as tentative.	age concentration of hydrogen sulfide on of 0.026. The vapor pressure of pu s temperature so the partial pressure al pressure of hydrogen sulfide in the e mole fraction solubility for a parti 10, more than double the Raoult's law other measurements of the solubility	in of se al
Gerrard (6) measured solubilities in 1,7 1.015 bar and temperatures of 265 K to 2 measurements to 298.15 K and correction a mole fraction solubility of 0.088, con diethyl ether. In the absence of other 1,1'-oxybisoctane should be accepted on	293 K. Extrapolation of these to a partial pressure of 1.013 bar gi aparable with the value estimated for data for comparison, Gerrard's data f	ves
Solubilities in ethoxybenzene and 1,4-di consistent with the general pattern four tentative basis. Measurements of the so and 298.15 K reported by Short <i>et al.</i> (2 also be accepted on a tentative basis in system by other workers.	nd for ethers and may be accepted on a plubility in tetrahydrofuran at 263.15 27) are likely to be reliable but must	K
Byeseda <i>et al.</i> (30) reported the Ostwald 2,2'[1,2-ethanediylbis(oxy)]bisethanol mole fraction solubility for a partial p this Ostwald coefficient is 0.0618. The	triethylene glycol) at 297.1 K. The pressure of 1.013 bar corresponding to)

this Ostwald coefficient is 0.0618. This is close to the value of 0.065 estimated from graphs of solubilities from 273.15 K to 373.15 K and partial pressures of gas from 1.013 to 11.355 bar published by Blake (32). The data at other temperatures and pressures given by Blake cannot be confirmed by comparison with other measurements. Blake gave no information on the method used and data can only be considered to be tentative.

Solubility data for four polyethylene glycols of different average relative masses have been published by Gestrich & Reinke (33). This work appears to be self consistent and the measurements fit into a general pattern discussed below.

COMPONENTS:	EVALUATOR:
1. Hydrogen sulfide; H ₂ S; [7783-06-4]	Peter G.T. Fogg, Department of Applied Chemistry and Life Sciences, Polytechnic of North London,
2. Non-aqueous solvents	Holloway, London N7 8DB, U.K.
	July 1987

Solubilities in diethylene glycol monomethyl ether and in tetraethylene glycol monobutyl ether have been measured by Sciamanna (34). These measurements appear to be of high accuracy but must be considered to be tentative until other measurements on these systems are reported.

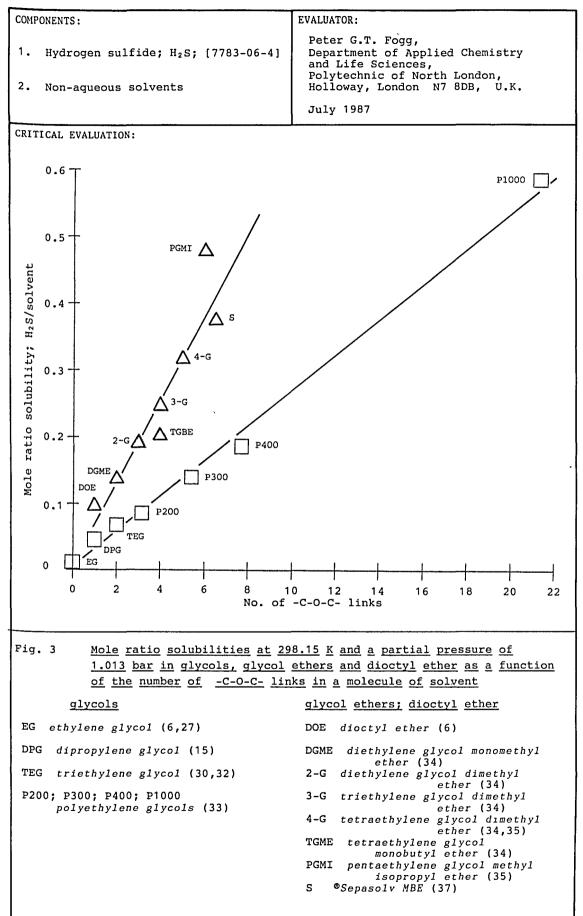
Measurements of solubilities in polyglycol ethers have been made by Sciamanna (34), by Härtel (35) and by Sweeney (36). Each of these workers measured the solubility in tetraethylene glycol dimethyl ether. Solubilities were reported as Henry's constants, *H*. Sciamanna made measurements in the temperature range 288 K to 373 K and reported limiting values for zero partial pressure in the form of equations of the form:

 $\ln (H/kPa) = A/T + B$

Härtel based his values on measurements with the mole fraction of hydrogen sulfide in the liquid phase not greater than 0.16. In this range the variation of mole fraction solubility was found to be almost linear with a correlation coefficient greater than 0.99. The Henry's law constant published by Sweeney is based upon gas chromatographic measurements. Henry's law constants in tetraglyme from measurements by the different authors are as follows:

T/K		H/bar	
	Sciamanna	Härtel	Sweeney
293.15	3.71	3.390	
298.15	4.22	3.97*	3.91
313.15	6.07	6.179	
323.15	7.58	7.20*	7.46
333.15	9.35	8.310	
353.15	13.73	11.321	
373.15	19.34	16.901	

* interpolated values.


(Henry's law constant = partial pressure of gas / mole fraction solubility)

The evaluator recommends that, for the temperature range 298.15 to 323.15, the Henry's constant is taken to be the mean of values from measurements by Sciamanna and Härtel. Outside this temperature range the divergence of measurements is too great for values to be recommended.

Sciamanna (34) also measured solubilities in diethylene glycol dimethyl ether and triethylene glycol dimethyl ether.

The available experimental solubility data for glycols, polyglycols and ethers derived from these compounds can be correlated with the number of carbon-oxygen -carbon links in these molecules. The evaluator has estimated mole ratio solubilities (H_2S /solvent) at 298.15 K for a partial pressure of 1.013 bar. If the value for ethylene glycol, propylene glycol triethylene glycol and the polyethylene glycols are plotted against the number of carbon-oxygen-carbon links in the molecule then the points lie close to a straight line (see fig.3). In the case of the polyethylene glycols the number of links is taken as the average number calculated from the average relative molecular masses of the samples.

Mole ratio solubilities for five of the glycol diethers fall close to a similar straight line if a value for ©Sepasolv MBE based upon measurements by Wolfer *et al.* (37) is included. The mole ratio solubility of dioctyl ether also lies close to this line. The estimated value for pentaethylene glycol methyl isopropyl ether does not fit into the pattern. Härtel (35) published Henry's law constants for this compound and has shown that the mole fraction solubility is proportional to pressure to a mole fraction of 0.16, with a correlation coefficient of better than 0.99. The evaluator has estimated the mole ratio solubility at 298.15 K and 1.013 bar from an apparent mole fraction solubility of 0.323 calculated from an interpolated value of Henry's law constant. This may be an over-estimate because it is outside the range in which a linear relationship between mole fraction solubility and pressure has been experimentally demonstrated.

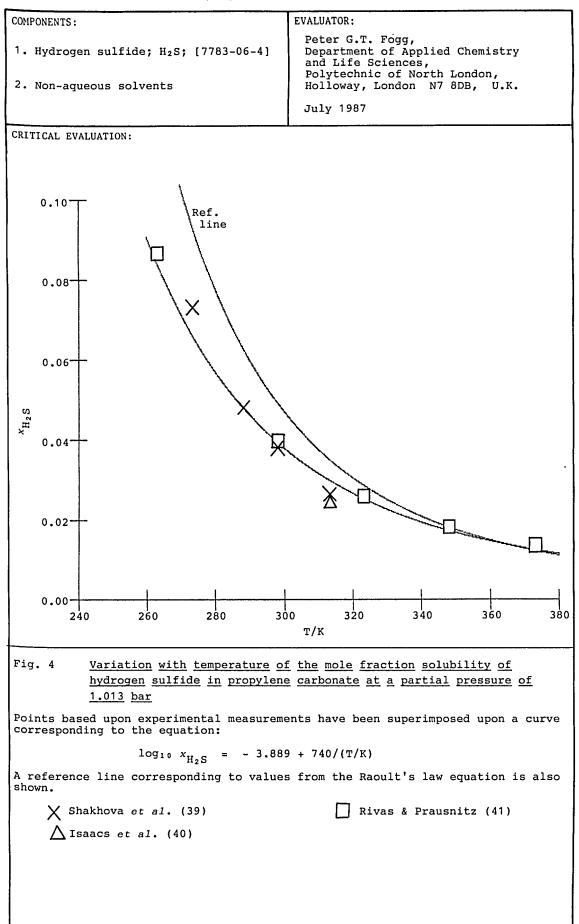
COMPONENTS :	EVALUATOR:
 Hydrogen sulfide; H₂S; [7783-06-4] Non-aqueous solvents 	Peter G.T. Fogg, Department of Applied Chemistry and Life Sciences, Polytechnic of North London, Holloway, London N7 8DB, U.K.
	July 1987

The overall graphical pattern of measurements on the two series of compounds indicates that most of the solubilities in individual solvents are likely to be reliable.

Mole fraction solubilities in two of the crown ethers, 12-crown-4 and 15-crown-5, have been published by Linford & Thornhill (38). The values at 295.2 K for a partial pressure of 1.013 bar are 0.31 and 0.33 respectively and are greater than values for polyglycol ethers having the same number of carbonoxygen-carbon bonds discussed above (0.20 and 0.24 at 298.15 K respectively). No other solubilities in crown ethers are available for comparison but these values may be accepted as being tentative.

Solubilities in propylene carbonate have been measured by several workers and there is fairly good agreement between different sets of measurement. Lenoir et al. (15) and Sweeney (36) reported Henry's constants measured by a chromatographic method. Mole fraction solubilities from these constants are higher than those from other measurements and may be less reliable. Shakhova et al. (39) measured solubilities over the temperature range 273.2 K to 313.2 K and pressure range 0.267 to 1.013 bar. The apparent values of mole fraction solubilities do not vary linearly with pressure over this pressure range. Isaacs, Otto & Mather (40) measured solubilities at 313.2 K and 373.2 K over a pressure range of 1.847 to 49.60 bar. The evaluator has estimated the corresponding mole fraction solubilities at 1.013 bar by use of the Krichevskii-II'inskaya equation. The apparent mole fraction solubility at 313.2 K is 0.023 and at 373.2 K is 0.009. The mole fraction solubility at 313.2 K and 1.013 bar from Shakhova et al. is 0.0264. Data given by Isaacs et al. appear to be reliable with the exception of the solubility at 373.2 K and 1.847 bar. The solubility which has been reported is less than the experimental error in the measurements and seems to be out of line with other measurements.

Henry's constants at temperatures from 263.15 K to 373.15 K have been reported by Rivas & Prausnitz (41). These may be used to estimate mole fraction solubilities at a partial pressure of 1.013 bar but the apparent deviation from a linear variation of mole fraction solubility with variation of pressure indicated by Shakhova's measurements should be borne in mind. Mole fraction solubilities for a partial pressure of 1.013 bar from measurements by Shakhova et al., by Isaacs et al., and by Rivas & Prausnitz are shown in fig.4. These values are fitted by the equation:


> $\log_{10} x_{H_2S} = -3.889 + 740/(T/K)$ $\delta x_{H_2S} = \pm 0.003$

Other compounds of carbon, hydrogen and oxygen

Acetic acid; $C_2H_4O_2$; [64-19-7]Acetic anhydride; $C_4H_6O_3$; [108-24-7]2-Propanone; C_3H_6O ; [67-64-1]2-Hydroxybenzoic acid, methyl ester (methyl salicylate); $C_8H_8O_3$; [119-36-8]Phenol; C_6H_6O ; [108-95-2]2-Furancarboxaldehyde; $C_5H_4O_2$; [98-01-1]Benzenedicarboxylic acid, didecyl ester; $C_{28}H_{46}O_4$; [84-77-5]Dibenzofuran; $C_{12}H_8O$; [132-64-9]

Solubilities in acetic acid at 298 K and 303 K were reported by Short, Sahgal and Hayduk (27) and in hexanoic acid over the range 265 - 293 K by Gerrard (6). In each case the mole fraction solubilities for a partial pressure of 1.013 bar fall below values corresponding to the Raoult's law equation. Extrapolation of solubilities to common temperatures shows a higher mole fraction solubility for the longer chain acid. Solubilities in either solvent can be accepted as tentative values.

Solubilities in acetic anhydride were also measured by Gerrard (6). Mole fraction solubilities lie above a reference line corresponding to Raoult's law in this case and when extrapolated to 303 K are about double the values for acetic acid. This difference may be due to stronger solvent-solvent hydrogen bonding in the case of acetic acid. There is no reason to doubt the data for acetic anhydride.

COMPONENTS:	EVALUATOR:
 Hydrogen sulfide; H₂S; [7783-06-4] Non-aqueous solvents 	Peter G.T. Fogg, Department of Applied Chemistry and Life Sciences, Polytechnic of North London, Holloway, London N7 8DB, U.K.
	July 1987

Short *et al.* (27) reported solubilities at a partial pressure of 1.013 bar in 2-propanone at 263 K and 298 K. These measurements are likely to be reliable but must be accepted on a tentative basis in the absence of similar systems for comparison. Mole fraction solubilities, in this case, are greater than those in acetic anhydride under the same conditions.

Solubilities in methyl salicylate at a total pressure of 1.004 bar in the temperature range 265.15 K to 293.15 K have been measured by Gerrard (6). The values are self-consistent and may be accepted as tentative values until other measurements on this or similar systems are available for comparison.

Lenoir *et al.* (15) measured the Henry's law constant for phenol at 323.2 K by a chromatographic method. The reliability of this method cannot be judged because of uncertainties associated with the method used. No other measurements on this system are available for comparison. Devyatykh *et al.* (20) also used a similar chromatographic method to measure solubilities in 2-furancarboxaldehyde and in 2-benzenedicarboxylic acid, didecyl ester. Again there are no similar systems for comparison and no judgement of reliability can be made.

Kragas & Kobayashi (24) used a high pressure chromatographic method to measure limiting values of Henry's constants for dissolution of hydrogen sulfide in dibenzofuran in the presence of hydrogen. Hydrogen pressures ranged from 7 bar to 59 bar. Temperatures were 373.2 K and 398.2 K. At each temperature a plot of the reciprocal of the Henry's law constant against hydrogen pressure is close to a straight line enabling approximate values of Henry's constants at zero hydrogen pressure to be estimated. No other measurements on this system are available for comparison and the reliability of these Henry's constants, for estimation of solubilities at finite partial pressure, cannot be judged.

Halogenated compounds

Bromoethane; C₂H₅Br; [74-96-4] 1-Bromobutane; C4H9Br; [109-65-9] 1-Bromooctane; C₈H₁₇Br; [111-83-1] 1,2-Dibromoethane; C₂H₄Br₂; [106-93-4] Tribromomethane; CHBr₃; [75-25-2] 1,1,2,2-Tetrabromoethane; C₂H₂Br₄; [79-27-6] Trichloromethane; CHCl₃; [67-66-3] Tetrachloromethane; CCl₄; [56-23-5] 1,1,2,2-Tetrachloroethane; C₂H₂Cl₄; Tetrachloroethene; C₂Cl₄; [127-18-4] Pentachloroethane; C₂HCl₅; [76-01-7] [79-34-5] 2,2,2-Trichloroethanol; C₂H₃Cl₃O; 2,2-Dichloroacetic acid; C₂H₂Cl₂O₂; [79-43-6] [115-20-8] 1,1'-Oxybis(2-chloroethane); C₄H₈Cl₂O; [111-44-4] Chlorobenzene; C₆H₅Cl; [108-90-7] Bromobenzene; C₆H₅Br; [108-86-1] Iodobenzene; C_6H_5I ; [591-50-4]

Solubilities in 1-bromooctane at a total pressure of 1.007 bar in the temperature range 265.15 K to 293.15 K were measured by Gerrard (6). Mole fraction solubilities for a partial pressure of 1.013 bar calculated from these measurements fall on a smooth curve lying above the reference line based on the Raoult's law equation when plotted against temperature. The mole fraction solubility in 1-bromobutane for 265.15 K and 1.013 bar partial pressure estimated from the solubility reported by Gerrard is 0.135 compared with 0.143 in 1-bromooctane under the same conditions. The mole fraction solubility in bromoethane given by Bell (3) for 1.013 bar partial pressure and 293.15 K is 0.126 compared with a value of 0.074 for 1-bromooctane at this temperature. The difference in this case could be due to bromoethane having the greater tendency to form hydrogen bonds with sulfur in hydrogen sulfide.

Gerrard's measurements (6) indicate that mole fraction solubilities in tribromomethane and 1,2-dibromoethane are within about 2% of each other at a partial pressure of 1.013 bar and 283.15 K and 293.15 K. Values at 293.2 K are close to values given by Bell (3). These mole fraction solubilities are about 20% lower than corresponding values for 1-bromooctane. Bell's value for mole fraction solubility in 1,1,2,2-tetrabromoethane at 293.15 K and 1.013 bar is about 60% of the value for 1-bromooctane under the same conditions. Steric factors may play an important role in determining the tendency for hydrogen bonding to occur and hence the solubility.

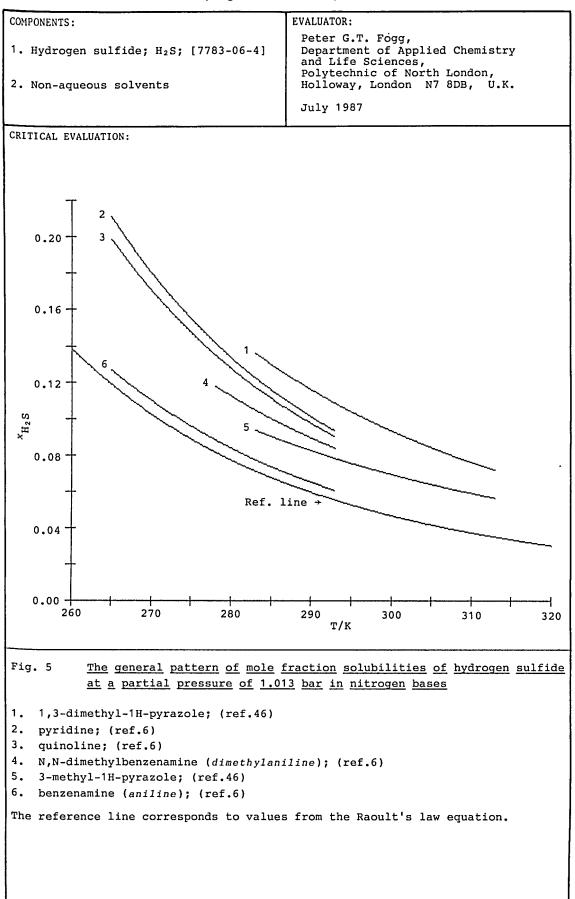
COMPONENTS :	EVALUATOR:
 Hydrogen sulfide; H₂S; [7783-06-4] Non-aqueous solvents 	Peter G.T. Fogg, Department of Applied Chemistry and Life Sciences, Polytechnic of North London, Holloway, London N7 8DB, U.K. July 1987

Solubilities in these brominated compounds measured by Bell and by Gerrard should be treated as tentative values.

Bell (3) also measured the mole fraction solubility in trichloromethane at a partial pressure of 1.013 bar and 293.15 K. The value at 265.15 K may be calculated from Gerrard's measurements and is consistent with Bell's value for 293.15 K. The value of 0.103 at 293.15 K may be compared with the value for tribromomethane mentioned above of 0.059 under these conditions. There would be less steric hindrance to hydrogen bond formation with hydrogen sulfide in the case of the chloro-compound and this may account for the apparent large difference in mole fraction solubilities. The corresponding reference value based upon Raoult's law is 0.055.

The mole fraction solubility in 1,1,2,2-tetrachloroethane at 293.15 K and 1.013 bar given by Bell (3) is 0.0702. This is close to the value of 0.0719 for 1,2-dichloroethane. The corresponding tetrabromo compound has a lower value 0.0446. Bell's values for mole fraction solubilities under these conditions in pentachloroethane and in trichloroethene are 0.0514 and 0.0482 respectively. Values for tetrachloromethane and tetrachloroethene, which contain no hydrogen, are even lower; 0.0419 and 0.0372 respectively.

The mole fraction solubility in 2,2,2-trichloroethanol, at 273.15 and 1.013 bar, calculated from Gerrard's data (6), is about 15% greater than the corresponding value for ethanol. The value for 2,2-dichloroacetic acid at 283.15 K from Gerrard's measurements is about 30% greater than the hypothetical value for acetic acid found by extrapolating solubilities measured at temperatures above the melting point. The mole fraction solubility in 1,1'-oxybis(2-chloroethane). at 293.2 K and 1.013 bar may be estimated from the chromatographic data given by Devyatykh *et al.* (20) to be 0.053. This may be compared with an approximate value for 1,1'-oxybisethane (diethyl ether) of 0.1 at 299.2 K and a more reliable value of 0.088 for 1,1'-oxybisoctane (dioctyl ether). However, values of solubilities from chromatographic data should be used with caution.


There is no reason, however, to doubt solubilities in chloro-compounds discussed above and reported by Bell and by Gerrard. Values should therefore be accepted as tentative.

Solubilities in chlorobenzene have been measured by Bell (3), by Gerrard (6), by Patyi *et al.* (20) and by Short *et al.* (27) in the temperature range 263.15 K to 333.15 K and at barometric pressures. Interpolated values of mole fraction solubilities for a partial pressure of 1.013 bar from data published by Short *et al.* are within 4% of values calculated from Gerrard's data for 273.15 K, 283.15 K and 293.15 K but are about 12% lower than Gerrard's values for 265.15 K and 267.15 K. The interpolated value for 293.15 is about 40% higher than Bell's value. The value for 298.15 is about 30% higher than the value given by Patyi *et al.* Despite these differences the evaluator is of the opinion that the measurements by Short *et al.* using modern techniques and apparatus are the most reliable and should be accepted on a tentative basis.

Solubilities in bromobenzene have been measured by Gerrard (6) at barometric pressure over the temperature range 266.15 K to 293.15 K. The mole fraction solubility for a partial pressure of gas of 1.013 bar calculated from Gerrard's data is about 49% greater than the figure given by Bell (3). The extrapolated value for 298.15 K is about 34% greater than the value given by Patyi *et al.* (20). Values from Gerrard's measurements are, however, close to interpolated values for chlorobenzene from the work by Short *et al.* (27) mentioned above. They are also close to values for iodobenzene and for benzene which may also be found from the data which he has reported.

Gerrard (6) measured the solubility of hydrogen sulfide at barometric pressure in iodobenzene over the range 265.15 K to 293.15 K. As indicated above, mole fraction solubilities fit into a general pattern but no other solubility data for this gas in this solvent have been found in the literature.

COMPONENTS:	EVALUATOR:	
<pre>1. Hydrogen sulfide; H₂S; [7783-06-4]</pre>	Peter G.T. Fogg, Department of Applied Chemistry and Life Sciences, Polytechnic of North London,	
2. Non-aqueous solvents	Holloway, London N7 8DB, U.K.	
	July 1987	
CRITICAL EVALUATION:		
Compounds containing nitrogen		
1-Methyl-2-pyrrolidinone; C_5H_9NO ; $[872-50-4]$ Benzenamine (aniline); C_6H_7N ; N,N-Dimethylbenzenamine (dimethylaniline); $C_8H_{11}N$; $[121-69-7]$ [62-53-3] N-Methylbenzenamine (methylaniline); C_7H_9N ; $[100-61-8]$ N-Ethylbenzenamine (diethylaniline); $C_8H_{11}N$; $[103-69-5]$ N,N-Diethylbenzenamine (diethylaniline); $C_{10}H_{15}N$; $[91-66-7]$ Pyridine; C_5H_5N ; $[110-86-1]$ Quinoline; C_9H_7N ; $[91-22-5]$ 3-Methyl-1H-pyrazole; $C_5H_6N_2$; $[1453-58-3]$ 1,3-Dimethyl-1H-pyrazole; $C_5H_8N_2$; $[694-48-4]$ Nitrobenzene; $C_6H_5NO_2$; $[98-95-3]$ Acetonitrile; C_2H_3N ; $[75-05-8]$ Benzonitrile; C_7H_5N ; $[100-47-0]$ N,N-Dimethylformamide; C_3H_7NO ; $[68-12-2]$ N,N-Dimethylacetamide; C_4H_9NO ; $[127-19-5]$ Hexahydro-1-methyl-2H-azepin-2-one (N-methyl- ε -caprolactam); $C_7H_{13}NO$; [2556-73-2]		
Mole fraction solubilities of hydrogen s		
	ared with solubilities in other compounds	
Various measurements of the solubilities different conditions of temperature and (15, 36, 41-44). There are discrepancies different authors as may be seen below:	pressure have been reported.	
	's constant/bar 5 K 323.15 K	
Lenoir et al (15) 5.56 Sweeney (36) 5.81 Rivas & Prausnitz (41,43) 7.6 Yarym-Agaev et al (42) 6.41 Murrieta-Guevara & Rodriguez (44) 7.5	12.3 13.5	
[†] calculated by the evaluator from	the solubility at 1.013 bar	
The chromatographic method used by Lenoir <i>et al</i> and by Sweeney can give unreliable results. Murrieta-Guevara & Rodriguez have plotted their measurements at 298.2 K and partial pressures from 0.21 to 1.64 bar to show a linear variation of mole fraction solubility with pressure with a slope corresponding to a Henry's constant of 7.5, close to the value obtained by Rivas & Prausnitz. The line, however, does not pass through the origin. This may be an artefact of the apparatus or may reflect the limitations of Henry's law as applied to this system. The high pressure measurements by Yarym-Agaev <i>et al</i> . may be accepted on a tentative basis as reflecting the overall pattern of behaviour over the temperature and pressure range in which measurements were made. Mole fraction solubilities at a partial pressure of 1.013 bar may be estimated from Henry's constants reported by Rivas & Prausnitz but the evaluator cannot judge whether these estimated solubilities are more reliable than solubilities at this pressure reported by Yarym-Agaev <i>et al</i> .		
presence of about 12 mole % of 2-(2-amir Muerieta-Guevara and Rodriguez (44) meas	ubilities in methyl pyrrolidinone in the noethoxy)-ethanol (diglycolamine). sured solubilities in the presence of 5.1 pethanolamine). These measurements may be	
Solubilities in benzenamine at pressures by Gerrard (6) over the temperature range et al. (22) at 298.15 K. Bancroft & Bel pressure range from 0.14 to 1.55 bar at fraction solubilities for a partial press Gerrard's measurements give a value whice et al. and about 7% above a value from the calculated from the Henry's constant give greater than the value from Gerrard.	ge 265.15 K to 293.15 K and by Patyi den (45) made measurements over a 295.15 K. Extrapolation of mole ssure of 1.013 bar calculated from ch is 24% above the value given by Patyi the work by Bancroft & Belden. The value	

COMPONENTS :	EVALUATOR:
 Hydrogen sulfide; H₂S; [7783-06-4] Non-aqueous solvents 	Peter G.T. Fogg, Department of Applied Chemistry and Life Sciences, Polytechnic of North London, Holloway, London N7 8DB, U.K. July 1987

The solubility measurement by Lenoir *et al.* can be rejected because of the uncertainties associated with the chromatographic technique which was used. In the case of other solvents solubilities reported by Patyi *et al.* tend to be lower than those reported by other workers and the solubility at a single temperature may be less reliable than those reported by Gerrard over a temperature range in this case. Gerrard's measurements should therefore be accepted on a tentative basis.

Solubilities in N,N-dimethylbenzenamine have been measured at barometric pressure by Gerrard (6) at 278.15 K, 283.15K & 293.15 K and by Patyi *et al.* (22) at 298.15 K. The extrapolated value of the mole fraction solubility at 298.15 K from Gerrard's measurements is again appreciably higher than the value from Patyi *et al.*; 0.076 compared with 0.056. The evaluator considers the Gerrard value to be the more reliable but the discrepancy should be borne in mind.

Solubilities in N-methylbenzenamine, N-ethylbenzenamine and N,N-diethylbenzenamine have been reported by Patyi et al. (22) but there are no other measurements on these compounds for comparison.

Solubilities in pyridine and in quinoline have been measured by Gerrard (6) at barometric pressure in the temperature range 265.15 K to 293.15 K. The mole fraction solubilities for a partial pressure of 1.013 bar are similar in the two compounds (see fig.5). The solubilities in these compounds can be accepted as tentative values.

Solubilities in 3-methyl-1H-pyrazole and in 1,3-dimethyl-1H-pyrazole were measured by Egorova *et al.* (46) at pressures below 1.013 bar in the temperature range 283.2 K to 313.2 K. Values of Henry's constants were reported. No other data on these compounds are available for comparison and these measurements should be accepted on a tentative basis.

The general pattern of solubilities in nitrogen bases at a partial pressure of gas of 1.013 bar, on the basis of measurements discussed above, is shown in fig.5.

Solubilities in nitrobenzene at barometric pressure were measured by Gerrard (6) at temperatures from 265.15 K to 293.15 K. Solubilities have also been measured by chromatographic techniques by Devyatykh *et al.* (20) and by Lenoir *et al.* (15) The mole fraction solubility at 293.15 K calculated from data given by Devyatkh *et al.* is 0.053. Although, by itself, this value is of uncertain status because it is based upon chromatographic measurements it does substantiate the data reported by Gerrard. However, mole fraction solubilities at other temperatures, estimated from the distribution coefficient at 293.15 K and the heat of solution given by Devyatykh *et al.* do not agree with values from Gerrard's measurements. The mole fraction solubility for a partial pressure of 1.013 bar from data given by Lenoir *et al.* is 0.0535 at 298.15 K compared with a value of 0.046 by extrapolation of values based upon Gerrard's measurement by Gerrard may be accepted as tentative values, in preference to solubilities based upon chromatographic methods.

Solubility in acetonitrile has been measured by Hayduk & Pahlevanzadeh (4) at a total pressure close to 1.013 bar and temperatures in the range 268.15 K to 333.15 K. They found the corrected mole fraction solubility at 298.15 for a partial pressure of gas of 1.013 bar to be 0.0476. This value is in sharp contrast to the figure of 0.031 from measurements by Evans & Blount (47). In the opinion of the evaluator the data presented by Hayduk & Pahlevanzadeh are likely to be the more reliable and may be accepted on a tentative basis.

Gerrard (6) measured the solubility in benzonitrile at barometric pressure and temperatures from 265.15 K to 293.15 K. Mole fraction solubilities from this work lie close to a smooth curve above the reference line corresponding to the Raoult's law equation. There is no reason to doubt the reliability of these values which should be accepted on a tentative basis.

COMPONENTS:	EVALUATOR:
 Hydrogen sulfide; H₂S; [7783-06-4] Non-aqueous solvents 	Peter G.T. Fogg, Department of Applied Chemistry and Life Sciences, Polytechnic of North London, Holloway, London N7 8DB, U.K.
	July 1987

Solubilities in N,N-dimethylformamide measured at pressures of about 1 bar, have been reported by the following:

DuPont du Nemours and Co. (Inc.) (48) (298.15 K) Gerrard (6) (265.15 K - 293.15 K) Byeseda, Deetz & Manning (30) Hayduk & Pahlevanzadeh (4) (297.1 K) (268.15 K - 333.15 K)

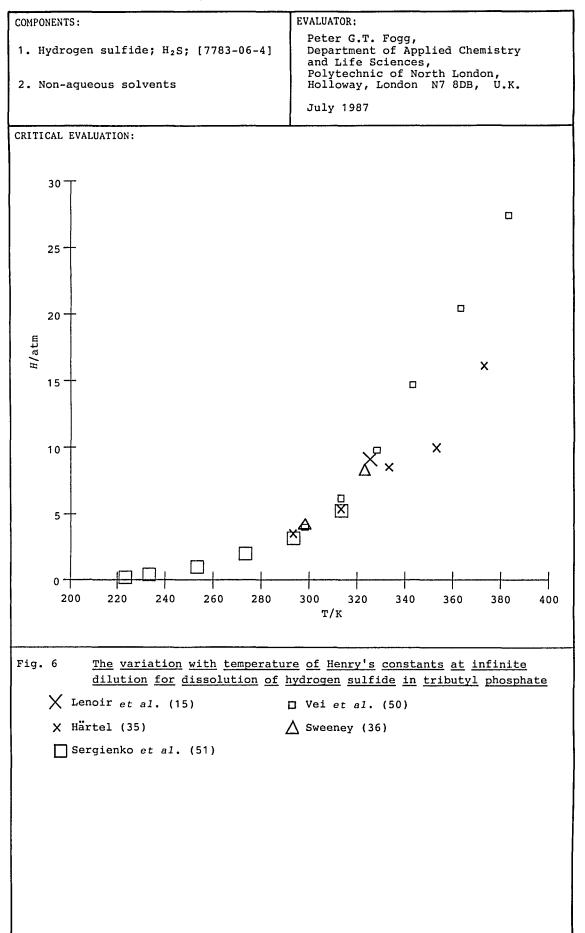
When measurements by Gerrard and by Hayduk are corrected to a partial pressure of 1.013 bar there is very good agreement between the two sets of results over the whole of the temperature range. The DuPont value is slightly lower and the Byeseda value appreciably lower than the Gerrard and the Hayduk values. The corrected mole fraction solubility at 298.15 K from Gerrard's measurements is 0.119 compared with a value of 0.116 given by Hayduk and 0.109 from the solubility given by DuPont. The value of 0.097 at 297.1 K from measurements by Byeseda must be disregarded. The following equation for mole fraction solubilities at a partial pressure of 1.013 bar is based upon measurements by Gerrard and by Hayduk & Pahlevanzadeh :

l

 $\log_{10} x_{\text{H}_2\text{S}} = -4.053 + 930/(T/K)$ $= \pm 0.003$; valid for 265.15 K to 333.15 K.

^{δ x}H₂S

Hayduk & Pahlevanzadeh (4) have also measured solubilities in N,N-dimethylacetamide over the temperature range 268.15 K to 333.15 K. These measurements are likely to be reliable but should be accepted on a tentative basis until other measurements on this system are available for comparison.


Solubility in hexahydro-1-methyl-2H-azepin-2-one (N-methyl-E-caprolactam) has been reported by Wehner *et al.* (49). The evaluator has estimated that the mole fraction solubility is about 0.18 at 293.2 K and a partial pressure of 1.013 bar. There are no data on comparable systems.

Compounds containing phosphorus

Phosphoric acid, trimethyl ester; C₃H₉O₄P; [512-56-1] Phosphoric acid, triethyl ester; C₆H₁₅O₄P; [78-40-0] Phosphoric acid, tripropyl ester; $C_9H_{21}O_4P$; [513-08-6] Phosphoric acid, tributyl ester; $C_1H_{27}O_4P$; [126-73-8] Phosphoric acid, tributyl ester; $C_1_2H_{27}O_4P$; [126-71-6] Phosphoric triamide, hexamethyl; C₆H₁₈NO₃P; [680-31-9]

The solubility in tributyl phosphate has been measured by Hartel (35) over the temperature range 293 - 373 K. Measurements were reported as Henry's constants. based on measurements to a mole fraction concentration not greater than 0.16. The author found that mole fraction solubility varied approximately linearly with pressure. Henry's constants at infinite dilution were also reported by Vei et al. (50) for the temperature range 298 to 383 K and by Lenoir et al. (15) for 298.15 K and by Sweeney (36) for 298.15 & 323.15 K. Sergienko et al. (51) published small scale graphs showing variation of mole fraction solubility with pressure to 0.86 bar in the temperature range 223 to 313 K. These may be used to estimate limiting values of Henry's constant for comparison purposes. Values of Henry's constants from measurements by various workers are shown in fig.6.

Lenoir et al. (15) also published Henry's law constants, (partial pressure of gas/mole fraction solubility) for the trimethyl, triethyl, tripropyl and tris(2-methyl propyl) esters of phosphoric acid and also hexamethyl phosphoric triamide. These were also measured by gas chromatography at low partial pressures of hydrogen sulfide. , The evaluator has found no other measurements of solubilities of hydrogen sulfide in these compounds recorded in the literature. An estimation of the reliability of these measurements is not possible. The chromatographic technique can give unreliable solubility measurements. There are divergences between values of solubilities in other solvents published in this paper and values from other sources. The Henry's law constant reported for hexamethylphosphoric triamide is exceptionally low (1.63 Even if this value is reliable it is incorrect to assume a bar or 1.61 atm).

COMPONENTS:	EVALUATOR:
 Hydrogen sulfide; H₂S; [7783-06-4] Non-aqueous solvents 	Peter G.T. Fogg, Department of Applied Chemistry and Life Sciences, Polytechnic of North London, Holloway, London N7 8DB, U.K.
	July 1987

linear variation of mole fraction solubility with partial pressure to 1.013 bar. Linear variation would give a mole fraction of 0.621 but appreciable deviation from proportionality will occur at a much lower concentration.

Compounds containing sulfur

Sulfinylbismethane (dimethylsulfoxide); C_2H_6OS ; [67-68-5]Tetrahydro-1,1-thiophene ($^{\textcircled{S}}$ Sulfolane); $C_6H_8O_2S$; [126-33-0]Carbon disulfide; CS_2 ; [75-15-0]Sulfur; S; [7704-34-9]

Lenoir *et al.* (15) measured Henry's constant in dimethylsulfoxide by a chromatographic method. The reliability of the measurement cannot be judged but it is subject to the same uncertainty as other chromatographic measurements of solubility.

Henry's constants for solubility in [®]Sulfolane have been measured by Rivas & Prausnitz (41) at temperatures from 303.15 K to 373.15 and unspecified pressures below 1.013 bar. Mole fraction solubilities for a partial pressure of 1.013 bar may be calculated on the assumption that there is linear variation of mole fraction solubility with pressure. Extrapolation of these solubilities to 297.1 K gives a mole fraction solubility of 0.055. This value may be compared with the value of 0.0686 at this temperature which may be calculated from the data given by Byeseda *et al.* (30). The Rivas & Prausnitz data are, however, likely to be the more reliable and may be accepted on a tentative basis.

Vapor pressures of various mixtures of hydrogen sulfide and carbon disulfide have been measured by Gattow & Krebs (52) in the temperature range 153 - 213 K.. These measurements correspond to a self-consistent pattern of variation of mole fraction solubility with variation in partial pressure of hydrogen sulfide and can be accepted on a tentative basis. There are no other measurements on this system available for comparison.

The solubility of hydrogen sulfide in molten sulphur has been measured by Fanelli (53) at barometric pressure from 399.2 K to 623.2 K. The reversible absorption of hydrogen sulfide increases with increase in temperature until it reaches a maximum at about 644 K. It subsequently decreases as the boiling point of sulfur in approached. This behaviour is consistent with the reversible formation of unstable polyhydrogen sulfides by an endothermic process. The measurements reported by Fanelli form a consistent set but there are no other comparable measurements in the literature to judge them against. There is no reason to question their reliability and they can be accepted as tentative measurements.

<u>Compounds</u> <u>containing</u> <u>silicon</u>

Triethoxysilane; $C_6H_{16}O_3Si$; [998-30-1] Silicic acid, tetraethyl ester; $C_8H_{28}O_4Si$; [78-10-4] Silicone oils.

Devyatykh *et al.* (20) measured distribution constants for triethoxysilane, tetraethylsilicate, and three different silicones by a chromatographic method. It is uncertain whether these may be equated with Ostwald coefficients. Surface effects and non-equilibrium conditions can cause errors in the estimation of solubility by the chromatographic method.

References

HSDS-G*

- 1. King, M.B.; Al-Najjar, H. Chem. Eng. Sci. <u>1977</u>, 32, 1241-1246.
- Makranczy, J.; Megyery-Balog, K.; Rusz, L.; Patyi, L. Hung. J. Ind. Chem. <u>1976</u>, 4, 269-280.

COMPO	NENTS:	EVALUATOR:	
	ydrogen sulfide; H ₂ S; [7783-06-4] Non-aqueous solvents	Peter G.T. Fogg, Department of Applied Chemistry and Life Sciences, Polytechnic of North London, Holloway, London N7 8DB, U.K.	
		July 1987	
CRITI	CAL EVALUATION:		
з.	Bell, R.P. J. Chem. Soc. <u>1931</u> , 1371	-1382.	
4.	Hayduk, W.; Pahlevanzadeh, H. Can.	J. Chem. Eng. <u>1987</u> , 65, 299-307.	
5.	Ng, HJ.; Kalra, H.; Robinson, D.B.; Kubota, H. J. Chem. Eng. Data <u>1980</u> , 25, 51-55.		
6.	. Gerrard, W. J. Appl. Chem. Biotechnol. <u>1972</u> , 22, 623-650.		
7.	Reamer, H.H.; Selleck, F.T.; Sage, Ind. Eng. Chem. <u>1953</u> , 45, 1810-1812		
8.	Tremper, K.K.; Prausnitz, J.M. J. C	Chem. Engng. Data <u>1976</u> , 21, 295-298.	
9.	Young, C.L. Solubility Data Series Volume 12, F	Pergamon Press, New York, <u>1983</u> , 116.	
10.	Gilliland, E.R.; Scheeline, H.W. In	nd. Eng. Chem. <u>1940</u> , 32, 48-54.	
11.	Robinson, D.B.; Hughes, R.E.; Sande Can. J. Chem. Eng. <u>1964</u> , 42(4), 143		
12.	Besserer; G.J.; Robinson, D.B. J. C	Chem. Eng. Japan <u>1975</u> , 8, 11-13.	
13.	Reamer, H.H.; Sage, B.H.; Lacey, W. Ind. Eng. Chem. <u>1953</u> , 45, 1805-1809		
14	Eakin, B.E.; DeVaney, W.E. Am. Inst. Chem. Engnrs. Symp. Ser.	<u>1974</u> , No. 140, <i>70</i> , 80-90.	
15.	Lenoir, J-Y.; Renault, P.; Renon, H. J. Chem. Eng. Data <u>1971</u> , 16, 340-34		
16.	Asano, K.; Nakahara, T.; Kobayashi, R. J. Chem. Eng. Data <u>1971</u> , 16, 16-18.		
17.	Tsiklis, D.S.; Svetlova, G.M. Zh. F	⁷ iz. Khim. <u>1958</u> , 32, 1476-1480.	
18.	Ng, H-J.; Robinson, D.B. Fluid Phas	se Equilibria <u>1979</u> , 2, 283-292.	
19.	Huang, S. SS.; Robinson, D.B. J.	Chem. Eng. Data <u>1985</u> , 30, 154-157.	
20.	Devyatykh, G.G.; Ezheleva, A.E.; Zc Zh. Neorgan. Khim. <u>1963</u> , 8(6), 1307 Russ. J. Inorg. Chem. <u>1963</u> , 8, 678-	7-1313.	
21.	Hannaert, H.; Haccuria, M.; Mathieu Ind. Chim. Belge <u>1967</u> , 32, 156-164.		
22.	Patyi, L.; Furmer, I.E.; Makranczy, Berengarten, M.G. Zh. Prikl. Khim. J. Applied Chem. (Russ.) <u>1978</u> , 51,		
23.	Huang, S.SS.; Robinson, D.B. Flui	ld Phase Equilibria <u>1984</u> , 17, 373-382.	
24.	Kragas, T.K.; Kobayashi, R. Fluid P	² hase Equilibria <u>1984</u> , <i>16</i> , 215-236.	
25.	Fogg, P.G.T. Solubility Data Series Vol.21, Perg	jamon Press, New York, <u>1985</u> , 85-91.	
26.	Yorizane, M.; Sadamoto, S.; Masuoka Kogyo Kagaku Zasshi <u>1969</u> , 72, 2174-		
27.	. Short, I.; Sahgal, A.; Hayduk, W. J. Chem. Eng. Data <u>1983</u> , 28, 63-66.		
28.	Bezdel, L.S.; Teodorovich, V.P. Gaz	zovaya Prom. <u>1958</u> , No.8, 38-43.	

COMPONENTS:	EVALUATOR:		
1. Hydrogen sulfide; H_2S ; [7783-06-4]	Peter G.T. Fogg, Department of Applied Chemistry and Life Sciences, Polytechnic of North London,		
2. Non-aqueous solvents	Holloway, London N7 8DB, U.K.		
	July 1987		
CRITICAL EVALUATION:			
9. Fauser, G. Math. Naturwiss. Ber. Ung. <u>1888</u> , 6, 154.			
 Byeseda, J.J.; Deetz, J.A.; Manning, W.P. Proc. Laurance Reid Gas Cond. Conf. <u>1985</u>. 			
31. Parsons, L.B. J. Amer. Chem. Soc.	• Parsons, L.B. J. Amer. Chem. Soc. <u>1925</u> , 47, 1820-1830.		
32. Blake, R.J. <i>0il Gas J.</i> <u>1967</u> , 65(2)	, 105-108.		
33. Gestrich, W.; Reinke, L. ChemIng	Tech. <u>1983</u> , 55, 629-631.		
34. Sciamanna, S.F. Ph.D. Dissertation, Department of California, Berkeley, U.S.A. <u>1986</u> .	Chemical Engineering, University of (Directed by Lynn, S.)		
35. Härtel, G.H. J. Chem. Eng. Data 19	<u>85</u> , 30, 57-61.		
36. Sweeney, C.W. Chromatographia 1984	, 18, 663-667.		
37. Wolfer, W.; Schwartz, E.; Vodrazka Oil Gas J. <u>1980</u> , 78(3), 66-70.	, W.; Volkamer, K.		
38. Linford, R.G.; Thornhill, D.G.T. J. Chem. Thermodynamics <u>1985</u> , 17,	701-702.		
39. Shakhova, S.F.; Bondareva, T.I.; Z Khim. Prom. <u>1966</u> , (10), 753-754.	ubchenko, Yu.P.		
40. Isaacs, E.E.; Otto, F.D.; Mather, Can. J. Chem. Eng. <u>1977</u> , 55, 751-7	A.E. 52.		
41. Rivas, O.R.; Prausnitz, J.M. Am. I	nst. Chem. Engnrs. <u>1979</u> , 25, 975-984.		
Yarym-Agaev, V.G.; Matvienko, V.G.; Povalyaeva, N.V. Zhur. Prikl. Khim. <u>1980</u> , 53, 2456-2461. J. Applied Chem. (Russ.) <u>1980</u> , 53, 1810 -1814.			
43. Rivas, O.R.; Prausnitz, J.M. Ind.	Eng. Chem. Fundam. <u>1979</u> , 18, 289-292.		
44. Murrieta-Guevara, F.; Rodriguez, A J. Chem. Eng. Data <u>1984</u> , 29, 456-4	.T. 60.		
45. Bancroft, W.D.; Belden, B.C. J. Ph	ys. Chem. <u>1930</u> , 34, 2123-2124.		
46. Egorova, V.I.; Grishko, N.I.; Neok Podvigailova, I.G. Deposited docum			
47. Evans, J.F.; Blount, H.N. Anal. Le	tt. <u>1974</u> , 7 <i>(6)</i> , 445-451.		
48. DuPont de Nemours and Co. (Inc.) C	hem. Eng. News <u>1955</u> , 33, 2366.		
49. Wehner, K; Burk, W.; Kisan, W. Chem. Tech. (Leipzig) <u>1977</u> , 29(8),	445-448.		
50. Vei,D.; Furmer, I.E.; Sadilenko, A Gracheva, N.V. Gazov. Prom-st. <u>197</u>	.S.; Efimova, N.M.; Stepanova, Z.G.; 5, 7(7), 47-49.		
51. Sergienko, I.D.; Kosyakov, N.E.; Y Pushkin, A.G. Vop. Khim. Tekhnol.			
52. Gattow, G.; Krebs, B. Z. anorg. al	1gem. Chem. <u>1963</u> , 325, 15-25.		
53. Fanelli, R. Ind. Eng. Chem. 1949,	41, 2131-2033.		

COMPONENTS:		ORIGINAL MEASUREME	NTS:	
1. Hydrogen sulfide; H ₂ S; [7783-06-4]			Makranczy, J.; Megyery-Balog, K.; Rusz, L.; Patyi, L.	
2. Alkanes, C ₅ to	D C10	Hung. J. Ind. Chem. <u>1976</u> , 4, 269-280.		
VARIABLES:	<u> </u>	PREPARED BY:		
Temperature		P.G.T. Fogg		
EXPERIMENTAL VALUES:	·····	I., <u>,,,,,,,,</u> ,	······································	
Solvent	T/K Ostwa	ld coefficient L	Mole fraction of H ₂ S [*] ^x H ₂ S (1.013 bar)	
Pentane; C ₅ H ₁₂ ; [109-66-0]	298.15 313.15	9.147 6.93	0.0421 0.0314	
Hexane; C ₆ H ₁₄ ; [110-54-3]	298.15 313.15	8.230 6.23	0.0429 0.0319	
Heptane; C ₇ H ₁₆ ; [142-82-5]	298.15 313.15	7.520 5.69	0.0439 0.0325	
Octane; C ₆ H ₁₈ ; [111-65-9]		6.986 5.28	0.0451 0.0335	
Nonane; C ₉ H ₂₀ ; [111-84-2]		6.560 4.96	0.0465 0.0345	
Decane; C ₁₀ H ₂₂ ; [124-18-5]		6.232 4.71	0.0481 0.0356	
festimated by the	e compiler using de	nsities from the	chemical literature.	
	AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCE		SOURCE AND PURITY	OF MATERIALS:	
was used (ref. (1)	that apparatus ly by Bodor <i>et al</i> .	Analytical gra	ade reagents were used.	
below 273 K and re	an apparatus for			

COVED	
COMPONENTS:	ORIGINAL MEASUREMENTS:
1. Hydrogen sulfide; H ₂ S; [7783-06-4]	Makranczy, J.; Megyery-Balog, K.; Rusz, L.; Patyi, L.
2. Alkanes, C_{11} to C_{16}	Hung. J. Ind. Chem. <u>1976</u> , 4, 269-280.
VARIABLES:	PREPARED BY:
Temperature	P.G.T. Fogg
EXPERIMENTAL VALUES:	
Solvent T/K Ostwal	d coefficient Mole fraction of H_2S^* L x_{H_2S} (1.013 bar)
Undecane; C ₁₁ H ₂₄ ; 298.15 [1120-21-4] 313.15	5.9490.04964.500.0368
	5.698 0.0511 4.31 0.0379
	5.5010.05284.150.0390
	5.305 0.0541 4.02 0.0402
	5.1520.05583.890.0413
	4.999 0.0573 3.80 0.0427
	Isities from the chemical literature.
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
The authors stated that apparatus described previously by Bodor <i>et al.</i> was used (ref. (1)). However Bodor <i>et al.</i> described apparatus for use below 273 K and referred to another paper (2) in which an apparatus for	Analytical grade reagents were used.
use above 273 K was described. Bodor <i>et al.</i> stated that, in each case, the volume of gas absorbed by	ESTIMATED ERROR:
a given quantity of liquid at a particular pressure was measured by a gas burette. Bodor <i>et al.</i> gave	$\delta L/L = \pm 0.03$ (authors)
details of a method of calculating gas solubilities applicable to either apparatus, with allowance for the vapor pressure of the solvent.	<pre>REFERENCES: 1. Bodor, E; Bor, G.J. Mohai, B.; Sipos, G. Veszpremi. Vegyip. Egy. Kozl. 1957, 1, 55. 2. Schay, G.; Szekely, G.; Racz, Gy. Periodica Polytechnica Ser. Chem. Eng. (Budapest) 1958, 2, 1.</pre>

COMPONENTS:	ORIGINAL MEASUREMENTS:		
<pre>1. Hydrogen sulfide; H₂S; [7783-06-4]</pre>	Bell, R.P. J. Chem. Soc. <u>1931</u> , 1371-1382.		
2. Alkanes			
VARIABLES:	PREPARED BY: C.L. Young		
EXPERIMENTAL VALUES:			
Solvent T/K	Partition Mole fraction [§] coefficient, of hydrogen sulfide in s ⁺ liquid, x _{H2S}		
Hexane; C ₆ H ₁₄ ; [110-54-3] 293.15	6.30 0.0341		
Octane; C ₈ H ₁₈ ; [111-65-9]	6.80 0.0440		
Dodecane; C ₁₂ H ₂₆ ; [112-40-3]	5.71 0.0513		
Hexadecane; C ₁₆ H ₃₄ ; [544-76-3]	5.05 0.0578		
Cyclohexane; C ₆ H ₁₂ ; [110-82-7]	7.50 0.0338		
s^+ defined as $s = 22.4 \times \frac{293}{273} \times equivalents/litre".§ for a partial pressure of 101.325$	c where c is the "solubility in kPa.		
AUXILIARY	INFORMATION		
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:		
Volumetric apparatus consisting of bulb (~50cm ³ capacity) extended at the top as a graduated tube and joined at bottom to a capillary u-tube. Liquid saturated with gas at atmospheric pressure. Gas with- drawn in a current of air absorbed in sodium hydroxide and hydrogen peroxide. Excess hydrogen peroxide removed by heating and excess sodium hydroxide titrated.	 Prepared by reaction of sodium sulfide on hydrochloric acid. Merck and Kahlbaum samples dried over calcium chloride and fractionally distilled. 		
	ESTIMATED ERROR: $\delta T/K = \pm 0.1; \ \delta x_{H_2S} = \pm 1$ %. (estimated by compiler)		
	REFERENCES :		

COMPONENTS:	ODICINAL MELCURRENT
	ORIGINAL MEASUREMENTS:
<pre>1. Hydrogen sulfide; H₂S; [7783-06-4]</pre>	Gilliland, E.R.; Scheeline, H.W.
2. Propane, C ₃ H ₈ ; [74-98-6]	Ind. Eng. Chem. <u>1940</u> , 32, 48-54.
VARIABLES:	PREPARED BY:
Temperature, pressure	C.L. Young
EXPERIMENTAL VALUES:	
	ole fraction of hydrogen sulfide n liquid, in gas, ^x H ₂ S ^y H ₂ S
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0.037 0.122 0.054 0.159 0.241 0.379 0.322 0.499 0.014 0.021 0.081 0.130 0.395 0.547 0.055 0.076 0.078 0.101 0.342 0.455 0.592
AUXILIARY	INFORMATION
METHOD / APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
Mixture studied in a high pressure glass equilibrium still. Analysis of gas and liquid samples used absorption of hydrogen sulfide in caustic soda solution and subsequent titration with iodine and sodium thiosulfate. Remaining propane measured volumetrically. Details of apparatus in ref. (1).	 Matheson Co. C.P. grade. Phillips Petroleum C.P. grade purity 99.9 mole per cent.
	ESTIMATED ERROR: $\delta T/K = \pm 0.6; \ \delta P/10^5 Pa = \pm 0.15; \ \delta x_{H_2S}, = \delta y_{H_2S} = \pm 0.005.$ REFERENCES: 1. Scheeline, H.W.; Gilliland, D.R. Ind. Eng. Chem. <u>1939</u> , 31, 1050

COMPONENTS:			ORIGINAL MEASUR	REMENTS:	
<pre>1. Hydrogen sulfide; H₂S; [7783-06-4]</pre>			Robinson, D.B.; Hughes, R.E.; Sandercock, J.A.W.		
2. Butane; C ₄ H ₁₀ ; [106-97-8]			Can. J. Chem. Eng. <u>1964</u> , 42,(4), 143-6.†		
VARIABLES:			PREPARED BY:		
Temperature, pr	essure		P.G.T.	Fogg	
EXPERIMENTAL VALUES:			· · · · · · · · · · · · · · · · · · ·		·····
т/°F т/К*	Total pressure /psia	Total pressur /bar*	e of H ₂ S	caction in phase	Mole fraction of H ₂ S in gas phase
<pre>100 310.93 * calculated by * data in docume Photoduplicati</pre>	ent no. 7952 v	with the	Auxiliary Pub	56 76 31 09 55 58 97 07 16 05 58 c square olication	
		AUXILIARY	INFORMATION		
METHOD / APPARATUS / PRO	CEDURE:		SOURCE AND PUR	ITY OF MAT	ERIALS:
METHOD/APPARATUS/PROCEDURE: Mixtures of hydrogen sulfide and butane were confined in a stainless steel cell. This cell was thermostatted and the contents were compressed by a mercury pump. Contents of the cell could be mixed by spraying liquid phase through the vapor phase and observed through a glass window. Pressures were measured by Heise bourdon tube gauges. There was provision for withdrawing either samples of the liquid or the vapor and subsequent analysis by chromatography.		and eva 99.9 mc 2. commerce frozen, purity ESTIMATED ERRCE $\delta T/K = \delta P/psia = 0$	cial samp vial samp vevacuat at least R: ± 0.02 = ±0.5 (1	<pre>le dried, frozen purity at least le distilled, ed and dried; 99.9 mol% -1000 psia); sia) [authors]</pre>	

Hydrogen Sulfide in Non-aqueous Solvents

1

ł

1

83-06-4]	ulfide; H₂S; H₁₀; [106-97- LUES:	-8]		•	
ENTAL VAI		-8]		1064 10 (1)	
	LUES:		Can. J. Chem. Eng. <u>1964</u> , 42,(4), 143-6		
т/к*					
	Total pressure /psia	Total pressure /bar*	Mole fraction of H_2S in liquid phase	of H ₂ S in	
324.82	102 128 144 160	7.03 8.83 9.93 11.03	0.035 0.096 0.118 0.150	0.405 0.460	
	201 214 234	13.86 14.75 16.13	0.247 0.262	0.635 0.633 0.688	
	246 247 253	16.96 17.03	0.325 0.332 0.349	0.725	
	275 282	18.96 19.44	0.399	0.769	
	392 419	27.03 28.89	0.631	0.811 0.877 0.891	
	420 447 457	28.96 30.82 31.51	0.716 0.778 0.791	0.913	
	483 487	33.30 33.58	0.862	0.945	
352.59	411 477	28.34 32.89	0.364 0.465	0.525 0.680 0.749 0.840	
366.48	741 340	51.09 23.44	0.810	0.900 0.431	
	435 437 537	29.99 30.13	0.275 0.287	0.582	
	554 654 683 768	38.20 45.09 47.09	0.520 0.560	0.693 0.770	
	853 990	58.81 68.26	0.767	0.854 0.906	
	1060 1100	73.1 75.8	0.920	0.955	
380.37	1139 365	78.5 25.17	0.133	0.985 0.322 0.509	
	705 745	48.61 51.37	0.465	0.631 0.683	
	930 1008	64.12 69.5	0.709 0.725	0.784 0.800 0.812	
394.26	1080 494 537	74.5 34.06 37.02	0.809 0.159 0.187	0.319 0.380	
	751 820	43.30 51.78 56.54	0.284 0.396 0.459	0.454 0.523	
	907 931	56.40 62.54 64.19	0.530 0.541	0.558 0.581 0.588	
	352.59 366.48 380.37 394.26	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

COMPONENTS:	······································	ORIGINAL MEASUREMENTS:		
		Besserer, G.J.; Robinson, D.B.		
<pre>1. Hydrogen sulfide; H₂S; [7783-06-4]</pre>				
<pre>2. 2-Methylpropane; C₄H₁₀; [75-28-5]</pre>		J.Chem.Eng.Japan <u>19</u>	<u>75</u> , 8, 11 - 13.	
VARIABLES:		PREPARED BY:		
Temperature, concentration		P.G.T. Fogg		
]		
EXPERIMENTAL VALUES:				
T/°F T/K [*] P _{total} /psia	P _{total} /b	ar [*] Mole fraction in liquid phase ^x H ₂ S	Mole fraction in gas phase ^y H ₂ S	
	1 0 2	0.0000	0.0000	
40.1 277.65 26.4	1.82	0.0000	0.0000 0.1270	
30.0	2.07	0.0175 0.1231	0.6025	
56.9 67.0	3.92 4.62	0.1792	0.6700	
67.0 92.1	4.62 6.35	0.3090	0.7831	
92.1 112.8	0.35 7.78	0.4460	0.8460	
112.8	9.03	0.6011	0.8819	
147.9	10.20	-	0.9239	
152.7	10.20	0.8287	-	
165.0	11.38	0.9772	0.9846	
168.0	11.58	1.0000	1.0000	
	AUXILIARY	INFORMATION		
METHOD /APPARATUS / PROCEDURE :		SOURCE AND PURITY OF MAT	ERIALS:	
The apparatus is described	in	1. Matheson C.P. gr	ade: purity >	
ref. (1). It consisted of		99.8 mol%; distilled before use.		
variable volume metal cell				
piston at each end and an		2. Matheson instrument grade;		
observation window at the	centre.	purity > 99.9 mol%.		
Pressures were measured wi	th a			
pressure transducer attach	ed to the			
cell. Gas and liquid phase	es were	ESTIMATED ERROR:		
analysed by gas chromatogra	aphy.			
		REFERENCES :	<u>-</u>	
		1. Besserer, G.J.;	Robinson, D.B.	
		Can. J. Chem. En	g. <u>1971</u> , 49, 651.	
		ł		

COMPON	ONENTS: ORIGINAL MEASUREMENTS:				TS:	
Hydrogen sulfide; H ₂ S; [7783-06-4]				Besserer, G.J.; Robinson, D.B.		
-		-		J.Chem.Eng.Japan <u>1975</u> , 8, 11 -		
	Methylp: 5-28-5]	ropane; C ₄ H ₁₀ ;				
EXPERI	MENTAL V	/ALUES:	l.			
T/°F	т/к*	^P total ^{/psia}	P _{total} /ba	In IIduia buase	Mole fraction in gas phase	
		· · · · · · · · · · · · · · · · · · ·		×H ₂ S	^y H ₂ S	
100.0	310.93	72.5	5.00	0.0000	0.0000	
		107.4	7.40	0.0849	0.3755	
		153.2	10.56	0.1985	0.5912	
		176.3	12.16	0.2574	0.6559	
		224.3	15.46	0.3927	0.7563	
		259.1	10.97	0.4895	0.8024	
		310.8	21.43	0.6600	0.8621	
		343.1	23.66	0.7680	0.8992	
		365.8	25.22	0.8646	0.9304	
		385.4	26.57	0.9497	0.9713	
		394.0	27.17	1.0000	1.0000	
160.2	344.37	160.2	11.05	0.000	0.000	
		211.2	14.56	0.0774	0.2746	
		267.2	18.42	0.1613	0.4353	
		344.5	23.75	0.2809	0.5834	
		405.2	27.94	0.3824	0.6658	
		515.6	35.55	0.5464	0.7662	
		620.5	42.78	0.7299	0.8654	
		701.4	48.36	0.8548	0.9186	
		741.9	51.15	0.9316	0.9576	
		773.0	53.30	1.0000	1.0000	
220.0	377.59	313.5	21.62	0.000	0.000	
		383.1	26.41	0.0663	0.1543	
		497.2	34.28	0.1851	0.3485	
		618.2	42.62	0.3303	0.5138	
		692.2	47.73	0.4047	0.5810	
		738.2	50.90	0.4524	0.6043	
		787.9	54.32	0.5065	0.6271	
		811.8	55.97	0.5205	0.6330	
		867.0	59.78	0.5804	0.6635	
		872.5	60.16	0.5847	0.6653	
		894.6	61.68	0.6023	0.6775	

* calculated by compiler.

ļ

ĺ

COMPONENTS:	ORIGINAL MEASUREMENTS:
1. Hydrogen sulfide; H ₂ S;	Reamer, H.H.; Sage, B.H.; Lacey, W.N.
[7783-06-4]	Ind. Eng. Chem., <u>1953</u> , 45, 1805-1812.
2. Pentane; C ₅ H ₁₂ ; [109-66-0]	
VARIABLES:	PREPARED BY:
Temperature, pressure	C. L. Young
EXPERIMENTAL VALUES:	
T/K P/bar	Mole fraction of hydrogen sulfide in liquid, x_{H_2S} in gas, y_{H_2S}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccccc} 0.0617 & 0.7842 \\ 0.1425 & 0.8950 \\ 0.2260 & 0.9304 \\ 0.3232 & 0.9534 \\ 0.4372 & 0.9685 \\ 0.6106 & 0.9820 \\ 0.821 & 0.993 \end{array}$
310.9 3.45 6.89 10.34 13.79 17.24 20.68 24.13	0.0788 0.6684 0.1951 0.8310 0.3151 0.8970 0.4380 0.9280 0.5662 0.9491 0.7080 0.9675 0.860 0.985
344.3 13.79 20.68 27.58 34.47 41.37 48.26	0.07990.51240.22180.73550.36260.82790.49950.88400.63720.92770.76870.95530.9000.981
AU	XILIARY INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
PVT cell pressure measured with pressure balance, temperature measured with platinum resistan thermometer. Co-existing phase sampled and analysed by gas den measurements. Details in source ref. (1).	aluminium sulfide. Fractionated twice. s sity 2. Phillips Petroleum Co. sample,
	ESTIMATED ERROR: $\delta T/K = \pm 0.01; \ \delta P/bar = \pm 0.02;$ $\delta x_{H_2}S = \pm 0.003$ (Calculated by compiler) REFERENCES: 1. Sage, B.H.; Lacey, W.N., Trans. Am. Inst. Mining and Met. Eng., <u>1940</u> , 136, 136.

т/к	P/bar	Mole fraction of h in liquid, x_{H_2S}	nydrogen sulfide in gas, y _{H2} S
377.6	6.89 13.79 20.68 27.58 34.47 41.37 48.26 55.16 62.05 68.95 75.84 82.74 89.63	0.0062 0.1014 0.1965 0.2912 0.3838 0.4740 0.5604 0.6421 0.7165 0.7859 0.8506 0.9110 0.966	0.0559 0.4698 0.6251 0.7147 0.7745 0.8185 0.8518 0.8769 0.8963 0.9125 0.9289 0.9289 0.9474 0.968
410.9	13.79	0.0118	0.0662
	20.68	0.0897	0.3452
	27.58	0.1630	0.4850
	34.47	0.2326	0.5698
	41.37	0.3003	0.6292
	48.26	0.3655	0.6709
	55.16	0.4294	0.7018
	62.05	0.4910	0.7230
	68.95	0.5510	0.7356
	75.84	0.6108	0.7420
	82.74	0.680	0.749
444.3	27.58	0.0402	0.1385
	34.47	0.0983	0.2732
	41.37	0.1585	0.3689
	48.26	0.2217	0.4420
	55.16	0.2880	0.4990
	62.05	0.3547	0.5352
	68.95	0.428	0.566
	75.84	0.515	0.575

COMPONENTS:	ORIGINAL MEASUREMENTS:
1. Hydrogen sulfide; H_2S ; [7783-06-4]	King, M. B.; Al-Najjar, H.
	Chem. Eng. Sci.
2. Hexane; C_6H_{14} ; [110-54-3]	1977, 32, 1241-6.
VARIABLES:	PREPARED BY:
Temperature	C. L. Young
EXPERIMENTAL VALUES:	
T/K Mole fraction	n of hydrogen sulfide [*]
	pressure of 101.3 kPa
288.2	0.0483
293.2 298.2	0.0446 0.0412
303.2	0.0381
*	
allowance was made for the non of hydrogen sulfide.	n-ideal gas behaviour
AUXILIARY	INFORMATION
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
Solvent degassed by spraying into a	
continuously evacuated chamber.	
Solvent flows in a thin film down a	No details given.
	No details given.
glass spiral into a buret system	
containing the gas to be dissolved.	
Flow rates may be varied over a wide	
range without affecting the solu-	
bility. Similar to the apparatus	ESTIMATED ERROR:
of Morrison and Billett.	$\delta T/K = \pm 0.1; \delta x_{H_2S} = \pm 2\%$
	-
	(estimated by compiler).
	REFERENCES:
	1. Morrison, T. J.; Billett, F.
	J. Chem. Soc.
	<u>1952</u> , 3819.
1	

,

1

	-	_			
COMPONENTS:			ORIGINAL MEASUREMENT	'S:	
	rogen sulfide; H 83-06-4]	2S;	Hayduk, W.; Pahlevan	zadeh, H.	
2. Ethyl Acetate; C ₃ H ₈ O ₂ ; [141-78-6]			Can. J. Chem. Eng. <u>1</u> 299-307.	<u>987</u> , 65,	
Chlo	ane; C ₆ H ₁₄ ; [110 orobenzene; C ₆ H ₅ 8-90-7]				
VARIAB	-		PREPARED BY:		
Тег	mperature		P.G.T. Fogg		
	MENTAL VALUES:				
				*	
т/к	Total press. /kPa	Mole fractions of the solubility at the solubility at the solubility at the solution of the so	at solubility at	Ostwald [*] coeff. L	
Ethyl Ad	cetate				
268.15	101.6	0.183	0.186	52.2	
298.15	101.3	0.0764	0.0866	23.3	
333.15	100.8	0.0187	0.0413	11.3	
Hexane					
268.15	100.4	0.0902	0.0905	18.0	
298.15	101.0	0.0299	0.0372	7.10	
Chlorob	enzene				
298.15	100.7	0.0497	0.0508	12.7	
at a gas	partial pressur me of solvent.	e of 1 atm. w	lated as the volume of nich will completely d	gas lissolve in	
·			INFORMATION		
METHOD/A	PPARATUS/PROCEDU	RE:	SOURCE AND PURITY OF		
Solubilit	ties were measur	ed using a	1. from Matheson of	Canada.	
	solvent flow ap	-	2. from Aldrich Chemicals;		
	d in (1). Solven	-	ethyl acetate & chlorobenzene HPLO grade of minimum purity 99.9%;		
-	s were calculate		hexane of minimum	purity 99.0%	
	constants given s of solvents we	• • •	ESTIMATED ERROR:		
	in (3). The ga				
_	were calculated		REFERENCES :		
		2	1. Asatani, H.; Hayd	luk, W.	
second virial coefficient given in (4).		Can.J.Chem.Eng. <u>1</u> 2. Reid, R.C.; Praus Sherwood, T.K. Th Gases and Liquids McGraw-Hill, New 3. Zhang, G.; Hayduk Eng. <u>1984</u> , 62, 71	nitz, J.M.; e Properties of , <u>1977</u> , York. , W. Can.J.Chem. 3.		
			 Dymond, J.H.; Smi Virial Coefficien and Mixtures, <u>198</u> University Press, 	ts of Pure Gases 0, Oxford	

COMPONENTS :			ORIGINAL MEASUREMENTS:		
<pre>1. Hydrogen sulfide; H₂S; [7783-06-4] 2. Heptane; C₇H₁₆; [142-82-5]</pre>			Ng, HJ.; Kalra, D. B.; Kubota, H. J. Chem. Eng. Data		
VARIABLES: Temperature, pressure			PREPARED BY: C. L. Young		
EXPERIMENTAL	VALUES:				
т/к	P/psia	<i>P/</i> MPa	Mole fraction of h in liquid, ^{\$\$\$\$#42\$\$\$\$\$\$\$}	nydrogen sulfide in vapor, ^Y H ₂ S	
310.93	23.2 81.9 88.0 148 149	0.160 0.565 0.607 1.02 1.03	0.043 0.166 0.180 0.311 0.318	0.933 0.977 0.978 0.988 0.989	
352.59	194 234 236 293 294 335 351 40.5 151 154 286 289 451 455 619 625	1.34 1.61 1.63 2.02 2.03 2.29 2.31 2.42 0.279 1.04 1.06 1.97 1.99 3.11 3.14 4.27 4.31	0.435 0.538 0.545 0.675 0.680 0.819 0.845 0.927 0.037 0.164 0.167 0.347 0.351 0.556 0.561 0.745 0.750	0.992 0.992 0.991 0.993 0.994 0.996 0.996 0.997 0.780 0.937 0.937 0.937 0.963 0.963 0.963 0.976 0.977 0.985 0.985 0.986	
			(con	it.)	
		AUXILIARY	INFORMATION		
METHOD/APPAR	ATUS/PROCEDURE:		SOURCE AND PURITY OF MA	TERIALS:	
Stirred static cell used at highest temperature as described in ref. (1). Variable volume static cell used in measurement at lower temperatures. Details in ref. (2). Temperature measured with thermocouple and pres- sure measured with Bourdon gauge. After equilibrium established gas		etermined by C 2. Aldrich Chemica purity better t per cent as det ESTIMATED ERROR:	al purity at e per cent, as GC. als sample, chan 99.9 mole cermined by GC.		
and liquid phase sampled and analysed by gas chromatography using a thermal					
conductiv	ity detector.	-	$\delta x_{H_2S}, \ \delta y_{H_2S} = \pm 0.$ REFERENCES:		
source.	source.		 Ng, HJ.; Rot J. Chem. Eng. I Besserer, G. J. 	Dinson, D. B. Data <u>1978</u> , 23, 325. .; Robinson, D. B. Eng. <u>1971</u> , 8, 334.	

;

,

Ì

COMPONENTS:			ORIGINAL MEASUREMENTS	5:
l. Hydrogen		H ₂ S;	Ng, HJ.; Kalra,	H.; Robinson,
[7783-06-			D. B.; Kubota, H.	1000 05 55 55
2. Heptane;	C7H16;	[142-82-5]	J. Chem. Eng. Data	<u>1980</u> , 25, 51-55.
EXPERIMENTA	L VALUES:		Mole fraction of	hydrogen sulfide
Т/К	P/psia	P/MPa	in linuid	in vapor, ^y H ₂ S
352.59	790 807	5.45	0.896 0.908	0.992
394.26	87.8 159	0.605	0.041 0.094	0.702
477.59	162 338 509 729 909 912 1063 1079 1198 1221 1354 1385 182 242 334 488 652 856 964	1.12 2.33 3.51 3.51 5.03 6.27 6.29 7.33 7.44 8.26 8.42 9.34 9.55 1.25 1.67 2.30 3.36 4.50 5.90 6.65	0.096 0.234 0.385 0.384 0.549 0.665 0.667 0.749 0.757 0.811 0.821 0.871 0.871 0.880 0.0177 0.0414 0.0929 0.188 0.279 0.386 0.447	0.810 0.916 0.933 0.935 0.948 0.953 0.955 0.957 0.959 0.959 0.959 0.960 0.957 0.954 0.104 0.260 0.443 0.589 0.652 0.677 0.760
	1093 1168 1213	7.54 8.05 8.36	0.514 0.552 0.578	0.707 0.704 0.676

COMPONENTS:	ORIGINAL MEASUREMENTS:
1. Hydrogen sulfide, H_2S ;	King, M. B.; Al-Najjar, H.
[7783-06-4]	Chem. Eng. Sci.
2. Octane; $C_{g}H_{1g}$; [111-65-9]	1977, 32, 1241-6.
VARIABLES:	PREPARED BY:
Temperature	C. L. Young
EXPERIMENTAL VALUES:	
	*
T/K Mole fractio	n of hydrogen sulfide
at a partial	pressure of 101.3 kPa
288.2	0.0513
293.2	0.0474
298.2 303.2	0.0437 0.0402
503.2	
*	
* allowance was made for the non of hydrogen sulfide.	-ideal gas behaviour
or nydrogen surrae.	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Solvent degassed by spraying into a	
continuously evacuated chamber.	
Solvent flows in a thin film down a	
glass spiral into a buret system	No details given.
containing the gas to be dissolved.	
Flow rates may be varied over a wide	
range without affecting the solu-	
bility. Similar to the apparatus	
of Morrison and Billett.	ESTIMATED ERROR:
	$\delta T/K = \pm 0.1; \delta x_{H_2S} = \pm 2\%$
	(estimated by compiler).
	REFERENCES:
	1. Morrison, T. J.; Billett, F.
	J. Chem. Soc.
	<u>1952</u> , 3819.

ì

i

COMPONENTS:	· · · · · · · · · · · · · · · · · · ·	ORIGINAL MEASUREMENTS:	
1. Hydrogen sulfide; H_2S ;		Eakin, B.E.; DeVan	ey, W.E.
[7783-06-4]		Am. Inst. Chem. En	gnrs. Symp. Ser.
2. Nonane; C ₉ H ₂₀ ; [111-84-2]		<u>1974</u> , No. 140. 70, 80-90.	
VARIABLES:	<u> </u>	PREPARED BY:	
Temperature, p	pressure	C.L.	Young
EXPERIMENTAL VALUES:		l	
т/к	<i>P/</i> 10 ⁵ Pa	Mole fraction of hyd in liquid, x _{H2S}	rogen sulfide in gas,y _{H2} S
310.9	1.37	0.0448	0.99131
	2.26 3.43	0.0747 0.1160	0.99436 0.99666
	4.61	0.1584	0.99693
	5.79	0.2004	0.99749
366.5	2.55	0.0419	0,9052
	4.88	0.0799	0.9670
	7.39 9.71	0.1234 0.1645	0.9760 0.9824
	12.27	0.2088	0.9864
477.6	8.23	0.0441	0.5449
	12.88	0.0778	0.6635
	17.58 22.55	0.1222 0.1616	0.7314 0.8054
	27.65	0.2035	0.8048
METHOD/APPARATUS/PROCEDURE Rocking stainless ste	: el equilibrium		ple, purity
vessel, fitted with l sampling ports. Pres		better than 99 m	ole per cent.
with Bourdon gauge. Components charged into cell under pressure, equilibrated and samples withdrawn. Samples analysed by G.C. using thermal conductivity detector and Porapak P column.		2. Phillips Petrole purity 99.6 mole	
		ESTIMATED ERROR: $\delta T/K = \pm 0.06$ (at 366.5 K) ± 0.12 ($= \pm 0.2 \delta x_{H_2S}$, δ (estimated by co REFERENCES:	at 477.6K) $\delta P/MPa$ $y_{H_2S} = \pm 0.001.$
·····			

	ORIGINAL MEASUREMENTS:	
le; H ₂ S;	Reamer, H.H.; Selleck, F.T.; Sa B.H.; Lacey, W.N.	ge,
[124-18-5]	Ind. Eng. Chem. <u>1953</u> , 45, 1810-	1812
	DEEDADED DV.	<u> </u>
pressure	C.L. Young	
· · · · · · · · · · · · · · · · · · ·		
P/10 ⁵ Pa in		
-		
1.38		
6.89	0.446 0.999	
10.34	0.814 0.999	
3.45		
6 89	0.1572 0.9970	
20.68		
	INFORMATION	
DURE:	SOURCE AND PURITY OF MATERIALS:	
sure balance. ed using platinum	 Prepared by hydration of pur aluminium sulfide. Fraction twice. 	re nated
ses analysed by sulfide from known	2. Eastman Kodak sample. Fractionated sample impurit: mainly isomers.	ies
	ESTIMATED ERROR:	
	$\begin{cases} \delta T/K = \pm 0.1; \ \delta P/bar = \pm 0.015 \\ \delta x_{H_2S} = \pm 0.15 \$ \end{cases}$;
	REFERENCES:	
	 Sage, B.H.; Lacey, W.N.; <i>Trans. Am. Inst. Mining.Met</i> <i>Engnrs.</i> <u>1940</u>,136, 136. 	•
	P/10 ⁵ Pa in 1.38 (2.76 (4.14 (5.52 (6.89 (10.34 (3.45 (6.89 (10.34 (13.79 (17.24 (20.68 (24.13 (6.89 (13.79 (17.24 (20.68 (24.13 (6.89 (13.79 (le; H ₂ S; Reamer, H.H.; Selleck, F.T.; Sa pressure Ind. Eng. Chem. 1953, 45, 1810- pressure C.L. Young PREPARED BY: C.L. Young pressure C.L. Young $P/10^5Pa$ Mole fraction of hydrogen sulfide in gas x_{H_2S} y_{H_2S} 1.38 0.075 0.999 2.76 0.154 0.999 5.52 0.339 0.999 6.89 0.446 0.999 3.45 0.1153 0.999 1.37 0.4780 0.999 1.38 0.1572 0.999 1.34 0.3543 0.999 1.37 0.4780 0.999 1.37 0.4780 0.999 1.379 0.4780 0.999 20.68 0.7363 0.999 20.68 0.4444 0.9973 20.68 0.4444 0.9976 21.37 0.8107 0.9825 22.53 0.5760 0.9979 34.47 0.6971 0.9825 90 1.37 0.8107

ł

ì

r	
COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>1. Hydrogen sulfide; H₂S; [7783-06-4]</pre>	Reamer, H.H.; Selleck, F.T. Sage, B.H.; Lacey, W.N.
<pre>2. Decane, C₁₀H₂₂; [124-18-5]</pre>	Ind. Eng. Chem. <u>1953</u> , 45, 1810-1812
EXPERIMENTAL VALUES:	
T/K P/10 ⁵ Pa	Mole fraction of hydrogen sulfide
	in liquid, in gas, ^x H ₂ S ^y H ₂ S
377.6 13.79 27.58 41.37 55.16 68.95	0.2157 0.9914 0.4044 0.9927 0.5681 0.9938 0.7086 0.9949 0.8308 0.9960 0.9224 0.9060
82.74 410.9 27.58 41.37 55.16 68.95 82.74 96.53 110.32	0.9324 0.9966 0.1660 0.9690 0.3149 0.9808 0.4439 0.9832 0.5558 0.9839 0.6552 0.9841 0.7423 0.9843 0.8201 0.9831 0.8970 0.9807
444.3 27.58 41.37 55.16 68.95 82.74 96.53 110.32 124.11	0.13520.92340.26120.95600.37030.96460.46620.96820.55300.96880.62970.96630.70100.96320.76680.95770.83070.9478

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>1. Hydrogen sulfide; H₂S; [7783-06-4]</pre>	Gerrard, W.
2. Decane; $C_{10}H_{22}$; [124-18-5]	J. Appl. Chem. Biotechnol. <u>1972</u> , 22, 623-650.
VARIABLES:	PREPARED BY:
Temperature	P.G.T. Fogg
EXPERIMENTAL VALUES:	
T/K Moler	atio Mole fraction of H ₂ S [*] ^x H ₂ S
267.15 0.09	6 0.088
273.15 0.08	0 0.074
* calculated by the compiler for the	stated total pressure.
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Hydrogen sulfide was bubbled into a	It was stated that "All materials
weighed amount of component 2 in a	purified and attested by
bubbler tube as described in detail	conventional methods.
in the source. The amount of gas	
absorbed at equilibrium for the	
observed temperature was found by	
weighing.	
	ESTIMATED ERROR:
	$ \begin{cases} \delta x \\ H_2 S \end{cases} = \pm 4\% \text{ (author)} $
	REFERENCES:

ŧ

Hydrogen Sunde in r	von-aqueous Solvents 207
COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>l. Hydrogen sulfide; H₂S; [7783-06-4]</pre>	King, M. B.; Al-Najjar, H. <i>Chem. Eng. Sci.</i>
2. Decane; C ₁₀ H ₂₂ ; [124-18-5]	<u>1977</u> , 32, 1241-6.
VARIABLES:	PREPARED BY:
Temperature	C. L. Young
EXPERIMENTAL VALUES:	
T/K Mole fracti at a partia	on of hydrogen sulfide [*] l pressure of 101.3 kPa
288.2	0.0541
293.2 298.2	0.0502 0.0465
303.2 323.2 343.2	0.0428 0.0325 0.0252
	INFORMATION
METHOD/APPARATUS/PROCEDURE:	· · · · · · · · · · · · · · · · · · ·
TE THOD/AFFAKATUS/FROCEDUKE:	SOURCE AND PURITY OF MATERIALS:
Solvent degassed by spraying into a continuously evacuated chamber. Solvent flows in a thin film down a glass spiral into a buret system containing the gas to be dissolved. Flow rates may be varied over a wide range without affecting the solu-	No details given.
bility. Similar to the apparatus of Morrison and Billett.	ESTIMATED ERROR:
of morrison and princet.	$\delta T/K = \pm 0.1; \delta x_{H_2S} = \pm 2\%$
	(estimated by compiler).
, ,	REFERENCES: 1. Morrison, T. J.; Billett, F. <i>J. Chem. Soc.</i> <u>1952</u> , 3819.

COMPONENTS:	ORIGINAL MEASUREMENTS:
	ORIGINAL MENDORMENTS.
 Hydrogen sulfide; H₂S; 	King, M. B.; Al-Najjar, H.
[7783-06-4]	Chem. Eng. Sci.
2. Dodecane; $C_{12}H_{26}$; [112-40-3]	1977, 32, 1241-6.
	·
VARIABLES:	PREPARED BY:
Temperature	C. L. Young
	01 21 10ung
EXPERIMENTAL VALUES:	
T/K Mole fraction	on of hydrogen sulfide *
	l pressure of 101.3 kPa
288.2 293.2	0.0572 0.0533
293.2	0.0495
303.2	0.0475
323.2 343.2	0.0347 0.0268
545.2	0.0208
* allowance was made for the nor	n-ideal gas behaviour
of hydrogen sulfide.	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
	booked had really of the barrely,
Solvent degassed by spraying into a	
continuously evacuated chamber.	
Solvent flows in a thin film down a	
glass spiral into a buret system	No details given.
containing the gas to be dissolved.	
Flow rates may be varied over a wide	
range without affecting the solu-	
bility. Similar to the apparatus	ESTIMATED ERROR:
of Morrison and Billett.	
	$\delta T/K = \pm 0.1; \delta x_{H_2S} = \pm 2\%$
	(estimated by compiler).
	REFERENCES :
	1. Morrison, T. J.; Billett, F.
	J. Chem. Soc.
	<u>1952</u> , 3819.

<pre>l. Hydrogen sulfide; H₂S;</pre>	ORIGINAL MEASUREMENTS:
[7783-06-4] 2. Tetradecane; C1+H30; [629-59-4]	King, M. B.; Al-Najjar, H. <i>Chem. Eng. Sci.</i> <u>1977</u> , 32, 1241-6.
VARIABLES:	PREPARED BY:
Temperature	C. L. Young
EXPERIMENTAL VALUES:	
T/K Mole fractic at a partia	on of hydrogen sulfide [*] l pressure of 101.3 kPa
288.2 293.2 298.2 303.2 323.2 343.2	0.0615 0.0571 0.0530 0.0490 0.0370 0.0284
AUXILIARY	INFORMATION
AUXILIARY METHOD/APPARATUS/PROCEDURE:	INFORMATION SOURCE AND PURITY OF MATERIALS:

ORIGINAL MEASUREMENTS:
Lenoir, J-Y.; Renault, P.; Renon, H. J. Chem. Eng. Data, <u>1971</u> , 16, 340-2
5. Chem. Eng. Dava, <u>1571</u> , 10, 540-2
PREPARED BY:
C. L. Young
ant Mole fraction at 1 atm* ${}^{x}H_{2}S$
0.0535
/ linear function of p_{H_2S} vs x_{H_2S} , i.e.,
INFORMATION
SOURCE AND PURITY OF MATERIALS.
SOURCE AND PURITY OF MATERIALS: (1) L'Air Liquide sample, minimum purity 99.9 mole per cent. (2) Touzart and Matignon or Serlabo sample, purity 99 mole per cent. ESTIMATED ERROR: $\delta T/K = \pm 0.1; \ \delta H/atm = \pm 6\%$ (estimated by compiler). REFERENCES:

COMPONENTS:		ORIGINAL MEASUREMENTS:
	lfide; H ₂ S;	Tremper, K.K.; Prausnitz, J.M.
[7783-06-4]]	-
2. Hexadecane; [544-76-3]	; C ₁₆ H ₃₄ ;	J. Chem. Engng. Data <u>1976</u> , 21, 295-9
VARIABLES:		PREPARED BY:
Temperature		C.L. Young
EXPERIMENTAL VALUE	S:	
T/K	Henry's /at	Constant ^a Mole fraction ^b of m hydrogen sulfide at latm partial pressure, ^x _{H2} S
	25.	.2 0.0397
325	32.	.6 0.0307
350	40	.9 0.0244
375	49.	.7 0.0201
400	58.	.9 0.0170
425	68	.0 0.0147
450	76	.6 0.0131
475	82	.7 0.0121 ·
a.	Authors stated measurer and values of solubility Law region.	ments were made at several pressures y used were all within the Henry's
b.	Calculated by compiler mole fraction_ and press	assuming linear relationship between sure.
		INFORMATION
METHOD/APPARATUS/H		SOURCE AND PURITY OF MATERIALS:
described by Dy (1). Pressure	aratus similar to that mond and Hildebrand measured with a null recision gauge. Details	Solvent degassed. No other details given.
		ESTIMATED ERROR:
		$\delta T/K = \pm 0.1; \ \delta x_{H_2S} = \pm 1\%$
		REFERENCES: 1. Dymond, J.; Hildebrand, J.H. Ind. Chem. Eng. Fundam. <u>1967</u> , 6, 130. 2. Cukor, P.M.; Prausnitz, J.M. Ind. Chem. Eng. Fundam. <u>1971</u> , 10, 638.
	×	

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>l. Hydrogen sulfide; H₂S;</pre>	King, M. B.; Al-Najjar, H.
[7783-06-4]	Chem. Eng. Sci.
2. Hexadecane; $C_{16}H_{34}$; [544-76-3]	1977, 32, 1241-6.
VARIABLES:	PREPARED BY:
Temperature	C. L. Young
Temperature	0. 1. 10 m.y
EXPERIMENTAL VALUES:	
	· · · · · · · · · · · · · · · · · · ·
T/K Mole fracti at a partia	on of hydrogen sulfide 1 pressure of 101.3 kPa
298.2	0.0573
303.2 323.2	0.0529 0.0401
343.2	0.0308
* allowance was made for the no	n-ideal gas behaviour
of hydrogen sulfide.	
· · · · · · · · · · · · · · · · · · ·	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Solvent degassed by spraying into a	
continuously evacuated chamber.	
Solvent flows in a thin film down a	
glass spiral into a buret system	No details given.
containing the gas to be dissolved.	
Flow rates may be varied over a wide	
range without affecting the solu-	
bility. Similar to the apparatus	ESTIMATED ERROR:
of Morrison and Billett.	$\delta T/K = \pm 0.1; \delta x_{H_2S} = \pm 2\%$
or morrison and strict.	_
	(estimated by compiler).
	REFERENCES :
	1. Morrison, T. J.; Billett, F.
	J. Chem. Soc.
	1952, 3819.
	<u>1952</u> , 3819.
	<u>1952</u> , 3819.

···,····	
COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>1. Hydrogen sulfide; H₂S; [7783-06-4]</pre>	Asano.K.; Nakahara, T.; Kobayashi, R.
2. Octane; C ₈ H ₁₈ ; [111-65-9]	J.Chem.Eng.Data <u>1971</u> , 16, 16-18.
3. Methane; CH4; [74-82-8]	
VARIABLES:	PREPARED BY:
Temperature, Pressure of methane	P.G.T. Fogg
	1.0.1. 1099
EXPERIMENTAL VALUES:	
T/K P _{CH4} /psia P _{CH4} /bar Mole fra CH4 in lig	ction of K-value for H ₂ S uid phase* Exptl. Smoothed**
233.15 20 1.38 0.00	70 2.77 2.20
100 6.89 0.03	36 0.649 0.650
200 13.79 0.06	58 0.364 0.390
400 27.58 0.12	82 0.230 0.230
600 41.37 0.18	69 0.184 0.184
800 55.16 0.24	10 0.181 0.181
1000 68.95 0.28	82 0.186 0.186
1250 86.18 0.33	67 0.217 0.217
1500 103.42 0.37	74 0.275 0.265
The K-value for H_2S is defined as:	
mole fraction of H ₂ S in vapor phase/	mole fraction of H ₂ S in liquid phase
These K-values correspond to essentia	lly infinite dilution.
<pre>* calculated by the compiler from K-v ref.(1).</pre>	
** given by the authors	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Retention volumes for small samples	1. 99.6% pure.
of hydrogen sulfide were measured	2. 99.88% pure.
by gas chromatography with octane	
as the stationary phase and methane	3. 99.99% pure.
the carrier gas. Temperatures were	
maintained to \pm 0.1 K and the	ESTIMATED ERROR:
pressure of methane measured to ± 0.2%. Experimental details are	$\delta T/K = \pm 0.1; \delta P_{CH_4} = \pm 2\%$ (authors)
given in refs. (2) - (4).	REFERENCES:
	1. Kohn, J.P.; Bradish, W.F. <i>J.Chem.Eng.Data</i> <u>1964</u> , 9, 5.
	2. Van Horn, L.D.; Kobayashi, R.
	J.Chem.Eng.Data <u>1967</u> , 12, 294. 3. Masukawa, S.; Kobayashi, R.
	J.Gas Chromatogr. <u>1968</u> , 6, 257. 4. Koonce, K.T.; Kobayashi, R.
	<i>J.Chem.Eng.Data</i> <u>1964</u> , 9, 494.

				-		
COMPONENTS:			ORIGINAL MEASUREMENTS:			
1. Hydrogen sulfide; H ₂ S; [7783-06-4]			Asano.K.; Nakahara, T.; Kobayashi, R			
	tane; C_8H_{18}	; [111-65-	-9]	J.Chem.Eng	g.Data <u>1971</u> ,	, 16, 16-18.
3. Me	thane; CH4;	[74-82-8]]			
EXPERI	MENTAL VALU	ES:		l <u> </u>		
т/к	P _{CH4} /psia		Mole frac CH ₄ in liqu	ction of id phase*	K-value Exptl.	for H ₂ S Smoothed**
253.15	20	1.38	0.007	70	5.81	4.00
	100	6.89	0.033		1.26	1.16
	200	13.79	0.065		0.670	0.670
	400	27.58	0.128		0.407	0.400
	600	41.37	0.186		0.306	0.310
	800	55.16	0.241		0.290	0.284
	1000	68.95	0.288		0.275	0.280
	1250	86.18	0.336		0.298	0.298
	1500	103.42	0.37		0.318	0.318
273.15	20	1.38	0.007	70	9.37	6.70
	100	6.89	0.033	36	2.05	1.90
	200	13.79	0.065	58	1.10	1.10
Į	400	27.58	0.128	32	0.626	0.650
	600	41.37	0.186		0.488	0.488
	800	55.16	0.24	10	0.421	0.421
	1000	68.95	0.288	32	0.399	0.400
	1250	86.18	0.336	57	0.378	0.390
	1500	103.42	0.373	74	0.392	0.318
293.15	20	1.38	0.00	70	12.5	10.5
	100	6.89	0.033		3.17	2.99
	200	13.79	0.065		1.67	1.70
	400	27.58	0.128		0.954	0.970
	600	41.37	0.186		0.714	0.714
	800	55.16	0.241		0.589	0.589
	1000	68.95	0.288		0.517	0.540
	1250	86.18	0.336		0.525	0.520
	1500	103.42	0.377		0.518	0.518

The K-value for H_2S is defined as:

mole fraction of H_2S in vapor phase/mole fraction of H_2S in liquid phase These K-values correspond to essentially infinite dilution.

* calculated by the compiler from K-values for methane in octane from ref.(1).

214

COMPONENTS .	OPTCINAL MEACUDEMENTS.					
COMPONENTS:	ORIGINAL MEASUREMENTS:					
<pre>(1) Hydrogen sulfide; H₂S; [7783-06-4]</pre>	Hannaert, H.; Haccuria, M.; Mathieu, M. P.					
(2) Kerosene A-l	Ind. Chim. Belge <u>1967</u> , 32, 156-164.					
VARIABLES:						
T/K = 233.15 - 273.15	PREPARED BY: E. L. Boozer H. L. Clever					
EXPERIMENTAL VALUES:						
Interval of Sulfide	/atm ¹ Enthalpy of Constant at Dissolution A .15 K ΔH/kcal mol ⁻¹					
233.15-273.15 1 - 6 (18) 3.17 3.63					
¹ log ($K\pi\nu/atm$) = A - ($\Delta H/cal$ mol ⁻	¹)/(2.3 R(T/K))					
The author's definitions are:						
$K = y_1 / x_1 = \frac{\text{mole frac}}{\text{mole frac}}$	tion gas in gas phase tion gas in liquid phase					
$\pi/atm = total pressur$	е,					
v = coefficient of fu	gacity.					
The function, $K\pi\nu/atm$, is equivalent to a Henry's constant in the form $H_{1,2}/atm = (f_1/atm)/x_1$ where f_1 is the fugacity.						
AUXILIARY	INFORMATION					
METHOD /APPARATUS / PROCEDURE :	······					
 The authors describe three methods: 1.A. [Saturat. n°1]. A measure of the static pressure of saturation in an apparatus which gave a precision of 10 - 15 %. 	 SOURCE AND PURITY OF MATERIALS: (1) Hydrogen sulfide. Matheson Co., Inc. Purity 99.5 per cent. (2) Kerosene A-1 Distillation density mol wt 					
1.B. [Saturat. n°2]. A measure of the static pressure of satura- tion in an apparatus which gave a precision of 2 - 5 %.	<u>range, °C gcm⁻³,20°C</u> A-1 150-280 0.7805 170					
 [Chromato]. A Gas liquid chromatographic method estimated to have a precision of 2 - 5 %. 	ESTIMATED ERROR:					
 [Anal. directe]. Direct analysis of the gaseous and liquid phases. 	REFERENCES :					
Method l.B. was used for this system.						

.

OMPONENTS:		ORIGINAL M	ORIGINAL MEASUREMENTS:			
	sulfide; H ₂ S;	Tsiklis	, D.S.; Svetlov	a, G.M.		
[7783-06-	4]	Zh. Fiz	. Khim. <u>1958</u> , 3	2, 1476-1480.		
2. Cyclohexa	ne; C ₆ H ₁₂ ; [110-8	32-7]				
VARIABLES:		PREPARED I	3Y:			
Temperatu	re, pressure	Ρ.	G.T. Fogg			
EXPERIMENTAL VALU	JES:	I				
P _{H2S} /mmHg	P _{H2S} /bar	Mol	e fraction, $x_{\rm H_2}$	S		
-		283.2 K	293.2 K	313.2 K		
100	0.133	0.0034	0.0024	0.0020		
200	0.267	0.0076	0.0058	0.0046		
300	0.400	0.0126	0.0100	0.0080		
400	0.533	0.0186	0.0154	0.0122		
500	0.667	0.0265	0.0218	0.0170		
600	0.800	0.0334	0.0290	0.0224		
700	0.933	0.0424	0.0370	0.0288		
800	1.067	0.0524	0.0458	0.0360		
		AUXILIARY INFORMATIC	DN			
METHOD / APPARATUS	/PROCEDURE:	SOURCE AN	D PURITY OF MATERIA	ALS:		
-	nt of hydrogen su					
	l in a known weig		ated.			
-	and the resulting	total				
pressure was	measured by a					

pressure was measured by a manometer. The pressure of hydrogen sulfide was equal to the total pressure minus the vapor pressure of cyclohexane. Temperatures were controlled to ± 0.1 K.

ESTIMATED ERROR: $\delta T/K = \pm 0.1$ (authors)

REFERENCES:

				•			
COMPONENTS:				ORIGINAL	MEASUREMENT	rs :	
1. Hydrogen sulfide; H_2S ;			Ng, H-J.; Robinson, D. B.				
[7783-06-4]			Fluid	Phase Equ	ilibria		
<pre>2. Methylcyclohexane; C₇H₁₄; [108-87-2]</pre>			<u>1979</u> ,	2, 283-29	02.		
VARIABLES	3:			PREPARED	BY:		
	Temp	erature, pres	sure		с. 1	. Young	
EXPERIMEN	TAL VALUES	:					
T/K	P/MPa	Mole fract hydrogen s in liquid,	sulfide	т/к	P/MPa	Mole frac hydrogen in liquid,	sulfide
	1 / M d	^x H ₂ S	^y H ₂ S	17 1	- / m u	^x H ₂ S	^y H ₂ S
310.9	0.265 0.682 1.372 2.061	0.065 0.204 0.449 0.732	0.963 0.988 0.993 0.995	394.3	0.470 1.303 2.841 4.406	0.030 0.127 0.307 0.470	0.630 0.860 0.932 0.950
352.6	2.434 2.599 0.250 0.752 1.600 2.689 3.757	0.913 0.970 0.029 0.114 0.265 0.462 0.659	0.999 0.999 0.800 0.934 0.969 0.981 0.983	477.6	5.681 7.433 8.701 9.322 1.820 3.199 4.316	0.600 0.762 0.858 0.900 0.071 0.184 0.256	0.958 0.963 0.967 0.963 0.411 0.644 0.740
	4.847 5.654	0.844 0.943	0.991 0.994		4.310 5.426 5.722 7.329 8.536 9.453	0.341 0.351 0.460 0.549 0.612	0.787 0.799 0.833 0.816. 0.801
	AUXILIARY INFORMATION						
METHOD/A	PPARATUS/PI	ROCEDURE:		SOURCE AND PURITY OF MATERIALS;			
Stirred static cell fitted with glass window. Temperature measured with thermocouple and pressure measured with Bourdon gauge. After equilibrium established gas and liquid phases sampled and analysed by			 distilled, final purity about 99.9 mole per cent. 2. Baker Analyzed Reagent grade, purity better than 99.9 mole per cent. 				
gas chromatography using a thermal conductivity detector. Details in ref. (1).			ESTIMATED ERROR: $\delta T/K = \pm 0.06; \delta P/MPa = \pm 0.2;$ $\delta x_{H_2S}, \delta y_{H_2S} = \pm 0.005.$			2;	
1				^o ^w H ₂ S'	0 ^g H ₂ S	LU.UUD.	
			REFERENCES: 1. Ng, H-J.; Robinson, D. B. J. Chem. Engng. Data				
				<u>197</u>	<u>18</u> , 23, 32	25.	

210		riyarogen Sunde in M			
COMPONENTS			ORIGINAL MEASUREMEN	TS:	
	gen sulfide;	H ₂ S;	Huang, S. SS.; Robinson, D. B.		
[7783-	-06-4]		J. Chem. Eng. 1	Data	
	yclohexane;	C ₈ H ₁₆ ;	<u>1985</u> , <i>30</i> , 154-1	157.	
[1678-	-91-7]				
VARIABLES:			PREPARED BY:		
Tempera	ture, pressu	ire	с. г	. Young	
EXPERIMENT. T/K	AL VALUES: P/MPa	Mole fraction of h in liquid, ^x H ₂ S	ydrogen sulfide in vapor, y _{H2} S		lues K
				K _{H2S}	K _{C8H16}
310.0	0.170 0.465	0.0490 0.1495	0.9811 0.9936	20.0 6.65	0.0199 0.00753
	0.972	0.3060	0.9964	3.26	0.00519
	1.54	0.5362	0.9975	1.86	0.00539
	2.21	0.8178	0.9988	1.22	0.00659
	2.52	0.9447	0.9995 0.9998	1.06 1.02	0.00904
352.6	2.66 0.273	0.9840 0.0465	0.9324	20.1	0.0125 0.0709
552.0	0.848	0.1518	0.9770	6.44	0.0271
	1.72	0.3157	0.9876	3.13	0.0181
	3.25	0.5822	0.9921	1.70	0.0189
1	4.59	0.8014	0.9947	1.24	0.0267
	5.67 6.10	0.9443 0.9841	0.9971 0.9988	1.06 1.01	0.0521 0.0755
394.3	0.383	0.0362	0.8067	22.3	0.201
	1.14	0.1273	0.9332	7.33	0.0765
	2.36	0.2767	0.9644	3.49	0.0492
	4.42 6.39	0.5045 0.6820	0.9769 0.9801	1.94 1.44	0.0466 0.0626
}	8.68	0.8820	0.9801	1.14	0.143
	9.65	0.9198	0.9787	1.06	0.266
477.6	0.820	0.0163	0.3444	21.1	0.666
	1.65	0.0735	0.6593	8.97	0.368
	3.92 6.63	0.2368 0.4109	0.8325 0.8742	3.52 2.13	0.219 0.214
	8.82	0.5437	0.8814	1.62	0.260
	11.13	0.6702	0.8698	1.30	0.395
	12.50	0.8313	0.8416	1.01	0.939
		AUXILIARY	INFORMATION		
METHOD / APP	ARATUS/PROCEDI	JRE:	SOURCE AND PURITY (OF MATERIALS:	
Stirred s	static cell	fitted with glass	1. Matheson sa	mple, purit	y 99.9
window.	-	e measured with	mole per cer	nt. Disti	lled.
		ssure with Bourdon			
	-	ibrium established			
-		s sampled and	purity 99 m	-	
analysed	using gas c	hromatography	better; no	impurity d	letected by
using a t	chermal cond	uctivity detector.	chromatogra	phy.	
Details i	in source an	d ref. (1).	ESTIMATED ERROR:		
			$\delta T/K = \pm 0.06;$	$\delta P/MPa = d$	£0.007;
			(up to 6.9 MPa); ±0.02	(above 6.9
			MPa). REFERENCES:		
			1. Ng, HJ.;	Robinson.	D. B.
1			J. Chem. En	-	
			<u>1978</u> , 23, 3		
			<u> </u>	~~ •	
L		·····	1		

		nyurogen Sunde In r			215	
COMPONENTS:			ORIGINAL MEASUREMENTS:			
<pre>1. Hydrogen sulfide; H₂S; [7783-06-4]</pre>			Huang, S. S.∸S.; Robinson, D. B. J. Chem. Eng. Data			
2. Propylcyclohexane; C ₉ H ₁₈ ;			1985, <i>30</i> , 154-15			
[1678	-92-8]		<u>1505</u> , 88, 154 15			
VARIABLES:			PREPARED BY:			
Tempera	ature, pres	sure	c. :	L. Young		
EXPERIMENTA	AL VALUES:	Mole fraction of h		K-v	alues	
Т/К	P/MPa	in liquid, <i>x</i> _{H2S}	in vapor, y _{H2} S	K _{H2S}	KC ₉ H ₁₆	
310.9	0.177	0.0642	0.9913	15.5	0.0093	
	0.585	0.2096	0.9981	4.76	0.0024	
	1.01 1.54	0.3810 0.5670	0.9988 0.9992	2.62 1.76	0.00194	
	2.03	0.7804	0.9995	1.28	0.00228	
	2.28	0.8503	0.9996	1.18	0.00267	
	2.58	0.9598	0.9998	1.04	0.00498	
352.6	0.220	0.0455	0.9651	21.2	0.0366	
	0.752 1.80	0.1543 0.3623	0.9892 0.9947	6.41 2.75	0.0128 0.00831	
	3.40	0.6455	0.9966	1.54	0.00959	
	4.93	0.8676	0.9974	1.15	0.0196	
	5.65	0.9494	0.9983	1.05	0.0336	
394.3	6.02 0.342	0.9832 0.0418	0.9993 0.8980	1.02 21.5	0.0417 0.106	
0,9410	1.11	0.1505	0.9668	6.42	0.0391	
	2.47	0.3230	0.9823	3.04	0.0261	
	4.53	0.5400	0.9876	1.83	0.0270	
	6.40 8.52	0.7010 0.8748	0.9886 0.9879	1.41 1.13	0.0381 - 0.0966	
2	8.56	0.8701	0.9864	1.13	0.105	
	9.65	0,9263	0.9857	1.06	0.194	
	9.99	0.9427	0.9839	1.04	0.281	
477.6	0.841 1.72	0.0448 0.1215	0.6356 0.7989	14.2 6.58	0.381 0.229	
	1,7 <i>4</i>		(cont		0.225	
		AUXILIARY	INFORMATION			
METHOD / APP	ARATUS/PROCEI	DURE:	SOURCE AND PURITY OF	MATERIALS:		
		l fitted with	1. Matheson sam		-	
-		mperature measured	per cent.	Distilled.		
	-	and pressure with	2 Obtained from	n Koch Tin	ht tab	
		fter equilibrium d liquid phases	2. Obtained from Koch-Light Lab.,			
	-	ed using gas	purity 99 mole per cent or greater. No impurity detected			
_	_				uerecreu	
		ng a thermal	by chromatog	rapny.		
conducti	vity detec	tor. Details in				
source and ref. (1).			ESTIMATED ERROR: $\delta T/K = \pm 0.06;$	$\delta P/MPa = \pm$	0.007;	
			(up to 6.9 MPa)			
			MPa).			
			REFERENCES:			
			1. Ng, HJ.;	Robinson,	D. B.	
			J. Chem. Eng			
			1978, 23, 32			
			1570, 20, 32			
						

<pre>COMPONENTS: 1. Hydrogen sulfide; H₂S; [7783-06-4] 2. Propylcyclohexane; C₉H₁₈; [1678-92-8]</pre>			ORIGINAL MEASUREMENTS:		
			Huang, S. SS.; Robinson, D. E J. Chem. Eng. Data <u>1985</u> , 30, 154-157.		
EXPERIM	ENTAL VALUI	35:			······································
			hydrogen sulfide	K-v	values
т/К	P/MPa	in liquid, ^x H ₂ S	in vapor, y_{H_2S}	K _{H2} S	KC ₉ H ₁₈
477.6	3.68 6.32 8.65 10.70 10.83 11.58 12.16 12.31 12.75 13.06	0.2805 0.4515 0.5909 0.6850 0.6888 0.7249 0.7463 0.7620 0.7912 0.8270	0.8922 0.9179 0.9200 0.9178 0.9160 0.9142 0.9070 0.8999 0.8912 0.8786	3.182.031.561.341.331.261.221.181.131.06	0.261 0.270 0.312 0.367

	·		
COMPONENTS:	ORIGINAL MEASUREMENTS:		
 Hydrogen sulfide; H₂S; 	Eakin, B.E.; DeVaney, W.E.		
[7783-06-4].			
	Am. Inst. Chem. Engnrs. Symp. Ser.		
2. (1-Methylethyl)-cyclohexane,	1974, No. 140, 70, 80-90.		
(<i>iso</i> -propylcyclohexane);			
C ₉ H ₁₈ ; [696-29-7]			
VARIABLES:	PREPARED BY:		
Temperature, pressure	C.L. Young.		
EXPERIMENTAL VALUES:			
	Mole fraction of hydrogen sulfide		
T/K P/10 ⁵ Pa	in liquid, x_{H_2S} in gas, y_{H_2S}		
· · · · · · · · · · · · · · · · · · ·			
310.9 1.12	0.0394 0.98835		
1.62	0.0533 0.99184		
2.09	0.0710 0.99316		
3.24	0.1058 0.99582 0.1378 0.99579		
4.32 5.34	0.1378 0.99579 0.1747 0.99705		
5.54	0.1/4/ 0.55/05		
366.5 2.50	0.0389 0.9315		
3.69	0.0568 0.9530		
4.30	0.0652 0.9649		
7.12	0.1113 0.9756		
9.90	0.1508 0.9810		
12.25	0.1834 0.9880		
477.6 7.93	0.0398 0.5779		
10.71	0.0655 0.7079		
13.27 18.41	0.0842 0.7490 0.1188 0.8078		
24.13	0.1570 0.8571		
29.65	0.1937 0.8649		
AUXILIARY	INFORMATION		
METHOD / APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:		
	1. Matheson Gas sample purity		
Rocking stainless steel equilibrium vessel, fitted with liquid and gas	better than 99 mole per cent.		
sampling ports. Pressure measured	better than yy hore per const		
with Bourdon gauge. Components	2. Phillips Petroleum sample,		
charged into cell under pressure,	purity better than 99.9 mole		
equilibrated and samples withdrawn.	per cent.		
Samples analysed by G.C. using			
thermal conductivity detector and			
Porapak P column.			
1			
	ESTIMATED ERROR:		
	$\delta T/K = \pm 0.06$ (at 310.9K and 366.5K		
	± 0.12 (at 477.6K) $\delta P/MPa = \pm 0.2$.		
	δx_{H_2S} , $\delta y_{H_2S} = \pm 0.001$. (estimated by compiler)		
	REFERENCES:		

ANY DOMINIMA					
COMPONENTS:	ORIGINAL MEASUREMENTS:				
1. Hydrogen sulfide; H_2S ; [7783-06-4]	Lenoir, J-Y.; Renault, P.; Renon, H.				
<pre>2. Decahydronaphthalene, (Decalin); C₁₀H₁₈; [91-17-8]</pre>	J. Chem. Eng. Data, <u>1971</u> , 16, 340-2.				
VARIABLES:	PREPARED BY:				
Temperature	C. L. Young				
EXPERIMENTAL VALUES:					
T/K Henry's constant H _{H2} S ^{/atm}	Mole fraction at 1 atm*				
298.2 29.8	0.0336				
323.2 37.6	0,0266				
* Calculated by compiler assuming a linear function of P_{H_2S} vs x_{H_2S} , i.e., $x_{H_2S}(1 \text{ atm}) = 1/H_{H_2S}$					
AUXILIARY	INFORMATION				
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:				
A conventional gas-liquid chromato-	(1) L'Air Liquide sample, minimum				
graphic unit fitted with a thermal conductivity detector was used. The carrier gas was helium. The value of Henry's law constant was calculated from the retention time. The value applies to very low partial pressures of gas and there may be a substantial difference from that measured at l atm. pressure. There is also considerable uncertainty in the value	cent.				
of Henry's constant since surface adsorption was not allowed for					
	ESTIMATED ERROR:				
although its possible existence was noted.					
	ESTIMATED ERROR: $\delta T/K = \pm 0.1; \ \delta H/atm = \pm 6\%$				
	ESTIMATED ERROR: $\delta T/K = \pm 0.1; \ \delta H/atm = \pm 6\%$ (estimated by compiler).				
	ESTIMATED ERROR: $\delta T/K = \pm 0.1; \ \delta H/atm = \pm 6\%$ (estimated by compiler).				

2010	lan totul
COMPONENTS:	ORIGINAL MEASUREMENTS:
1. Hydrogen sulfide; H_2S ; [7783-06-4]	Tremper, K.K.; Prausnitz, J.M.
<pre>2. l,l'-Bicyclohexyl; C12H22; [92-51-3]</pre>	J. Chem.Engng.Data <u>1976</u> ,21,295-9
VARIABLES:	PREPARED BY:
Temperature	C.L. Young
EXPERIMENTAL VALUES:	<u></u>
	Constant ^a tm Mole fraction ^b of of hydrogen sulfide at latm partial pressure, x _{H2} S
300 43.	0.0233
300 43. 325 55.	
325 55.	
375 91.	
400 112	-
425 129	
450 135	.0 0.00741
475 129	.0 0.00775
Law region. b Calculated by compiler a mole fraction and pressu	ssuming linear relationship between re.
AIIXTLTARY	INFORMATION
	SOURCE AND PURITY OF MATERIALS:
METHOD /APPARATUS/PROCEDURE Volumetric apparatus similar to that described by Dymond and Hildebrand (1). Pressure measured with a null detector and precision gauge. Details in ref. (2).	Solvent degassed, no details given.
	ESTIMATED ERROR: $\delta T/K = \pm 0.1; \ \delta x_{H_2S} = \pm 1$ %. REFERENCES: 1. Dymond, J.; Hildebrand, J.H. Ind. Eng. Chem. Fundam. <u>1967</u> , 6, 130 2. Cukor, P.M.; Prausnitz, J.M. Ind. Eng. Chem. Fundam. <u>1971</u> , 10, 638
	<pre>1. Dymond, J,; Hildebrand, J.H Ind. Eng. Chem. Fundam. 1967,6 2. Cukor, P.M.; Prausnitz, J.M</pre>

224 Hydrogen Sulfide in	Non-aqueous Solvents						
COMPONENTS:	ORIGINAL MEASUREMENTS:						
<pre>1. Hydrogen sulfide; H₂S; [7783-06-4]</pre>	Bell, R.P.						
2. Aromatic compounds	J. Chem. Soc. <u>1931</u> , 1371-1382.						
VARIABLES:	PREPARED BY:						
	c.	L. Young					
EXPERIMENTAL VALUES:	Partition	Mole fraction § of					
Solvent T/K	coefficient,	hydrogen sulfide liquid, x _{NH3}					
Benzene; C ₆ H ₆ ; [71-43-2] 293.15	15.68	0.0563					
Methylbenzene, (Toluene); C ₇ H ₈ ; [108-88-3]	16.90	0.0672					
Bromobenzene; C ₆ H ₅ Br; [108-86-1]	12.92	0.0376					
Chlorobenzene; C ₆ H ₅ Cl; [108-90-7]	13.80	0.0388					
[§] for a partial pressure	[§] for a partial pressure of 1 atmosphere						
AUXILIAR	INFORMATION						
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY	OF MATERIALS;					
Volumetric apparatus consisting of bulb (~50cm ³ capacity) extended at the top as a graduated tube and joined at bottom to a capillary u-tube. Liquid saturated with gas at atmospheric pressure. Gas with- drawn in a current of air, absorbed in sodium hydroxide and hydrogen peroxide. Excess hydrogen peroxide removed by heating and excess sodium hydroxide titrated.	 Prepared by sulfide on Merck and K over calciu 	reaction of sodium hydrochloric acid. ahlbaum samples dried m chloride and y distilled.					
	ESTIMATED ERROR: $\delta T/K = \pm 0.1$ (estimated REFERENCES:	; $\delta x_{H_2S} = \pm 1$ %. by compiler)					

ł

COMPONENTS:	ORIGINAL MEASUREMENTS:
1. Hydrogen sulfide; H ₂ S;	Gerrard, W.
[7783-06-4] 2. Benzene; C ₆ H ₆ ; [71-43-2]	J. Appl. Chem. Biotechnol. <u>1972</u> , 22, 623-650.
VARIABLES:	PREPARED BY:
Temperature	P.G.T. Fogg
EXPERIMENTAL VALUES:	
T/K P(total)/mmHg P(total)/ba	r Mole ratio Mole fraction of H_2S^* $^{x}H_2S$
278.15 766 1.021	0.088 0.081
283.15 766 1.021	0.073 0.068
293.15 766 1.021	0.060 0.057
	-
AUXILIARY	INFORMATION
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
Hydrogen sulfide was bubbled into a	It was stated that "All materials
weighed amount of component 2 in a	purified and attested by
bubbler tube as described in detail	conventional methods."
in the source. The amount of gas	
absorbed at equilibrium for the	
observed temperature and pressure was found by weighing. Pressure	
was measured with a mercury	
manometer.	ESTIMATED ERROR:
	$\delta x_{\rm H_2S} = \pm 4\% \text{ (author)}$
	$\delta x_{H_2S} = \pm 4$ % (author) REFERENCES:
	n ₂ 5
	n ₂ 5
	n ₂ 5

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>l. Hydrogen sulfide; H₂S; [7783-06-4] 2. Benzene; C₆H₆; [71-43-2]</pre>	Patyi, L.; Furmer, I. E.; Makranczy, J.; Sadilenko, A. S.; Stepanova, Z. G.; Berengarten, M. G.
	Zh. Prikl. Khim. <u>1978</u> , 51, 1296- 1300.
VARIABLES:	PREPARED BY:
	C. L. Young
EXPERIMENTAL VALUES:	
Τ/Κ α [†] σ	Mole fraction of hydrogen sulfide at a partial pressure of 101.325 kPa ^x H ₂ S
298.15 9.3	0.0358
AUXILIARY	INFORMATION
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
Volumetric method. Pressure measured when known amounts of gas were added, in increments, to a known amount of liquid in a vessel of known dimensions. Corrections were made for the partial pressure	Purity better than 99 mole per cent as determined by gas chromatography.
of solvent. Details in ref. (1).	ESTIMATED ERROR:
	$\delta T/K = \pm 0.1; \delta \alpha = \pm 4$ % or less.
	<pre>REFERENCES: 1. Bodor, E.; Bor, G. J.; Mohai, B.; Sipos, G. Veszpremi. Vegyip. Egy. Kozl. 1957, 1, 55.</pre>

	пус	arogen Sunde in	Non-aqueous Sol	
COMPONENTS:			ORIGINAL MEASU	REMENTS:
	[7783-06-4]		Gerrard, W.	•
<pre>2. Methylbenzene, (toluene); C₇H₈; [108-88-3] VARIABLES:</pre>		J. Appl. Chem. Biotechnol., <u>1972</u> , 22, 623-650 PREPARED BY:		
				Temperatu
EXPERIMENTAL VA	LUES:	<u></u>	<u> </u>	
т/к	P*/mmHg	P*/kPa	Mole ratio	Mole fraction ⁺ of hydrogen sulfide in liquid, ¤ _{H2} S
265.15	754	100.5	0.150	0.130
267.15	754	100.5	0.138	0.121
273.15	754	100.5	0.115	0.103
283.15	754	100.5	0.082	0.076
293.15	754	100.5	0.071	0.066
		AUXILIARY	INFORMATION	
weighed amou bubbler tube in the source absorbed at observed tem was determine was measured The amount of successively measured. E was reduced component 2. and infrared	fide was bubb nt of compone as described e. The amour equilibrium a perature and ed by weighin	ent 2. in a l in detail nt of gas and at the pressure ng. Pressure ed at mres was e pressure pressure pressure os tive index the liquid	1 and 2. (and attest	RITY OF MATERIALS: Components were purified ed by conventional methods OR: 2; $\delta x_{H_2S} = \pm 4$ %

Hydrogen Sulfide in N	Hydrogen Sulfide in Non-aqueous Solvents	
	ORIGINAL MEASUREMENTS:	

ĵ,

COMPONENTS:			ORIGINAL MEASUREMENTS:	·····
<pre>1. Hydrogen sulfide; H₂S; [7783-06-4] 2. Methylbenzene (toluene); C₇H₈; [108-88-3]</pre>			Ng, HJ.; Kalra, D. B.; Kubota, H. J. Chem. Eng. Data	
VARIABLES:	<u></u>		PREPARED BY:	
Temperature, pressure			C. L. 1	Young
EXPERIMENTAL	VALUES:			
т/к	P/psia	P/MPa	Mole fraction of hy in liquid, ^x H ₂ S	ydrogen sulfide in vapor, ^y H ₂ S
310.93	29.5 79.3 150 230 317 370	0.203 0.547 1.03 1.59 2.19 2.55	0.077 0.226 0.427 0.643 0.836 0.954	0.971 0.990 0.996 0.998 0.998 0.998 0.999
352.59	59.6 165 296 459 632 762 818	0.411 1.14 2.04 3.16 4.36 5.25 5.64	0.071 0.238 0.442 0.651 0.817 0.914 0.953	0.913 0.971 0.985 0.991 0.995 0.996 0.998
394.26	54.5 154 350 589 853 1114 1309 1413	0.376 1.06 2.41 4.06 5.88 7.68 9.03 9.74	0.031 0.135 0.305 0.502 0.686 0.816 0.891 0.932 (cor	0.677 0.891 0.944 0.963 0.975 0.975 0.975 0.975 0.978 nt.)
		AUXILIARY	INFORMATION	
AUXILIARY METHOD/APPARATUS/PROCEDURE: Stirred static cell fitted with glass window. Temperature measured with thermocouple and pressure measured with Bourdon gauge. After equilibrium established gas and liquid phases sampled and analysed by gas chromatography using a thermal conductivity detector. Details in ref. (1).			INFORMATION SOURCE AND PURITY OF MA 1. Thio-Pet Chemindistilled, fin least 99.9 moldetermined by 2. Phillips Petrodynamic grade sample, mole per cent. ESTIMATED ERROR: $\delta T/K = \pm 0.06; \delta P$ $\delta x_{H_2}S', \delta y_{H_2}S = \pm 0$ REFERENCES: 1. Ng, HJ.; Ro J. Chem. Eng. 325.	<pre>cals sample, al purity at e per cent as GC. leum research purity 99.94 /MPa = ±0.02; .003. binson, D. B.</pre>

[7782-	en sulfide; H ₂ S 06-4] benzene (toluene		ORIGINAL MEASUREM Ng, HJ.; Kalra D. B.; Kubota, H J. Chem. Eng. Dat	, H.; Robinson,
EXPERIMEN' T/K	TAL VALUES: P/psia	<i>P/</i> MPa	Mole fraction of h in liquid, ^x H ₂ S	ydrogen sulfide in vapor, ^y H ₂ S
477.59	200 399 619 1036 1468 1679	1.38 2.75 4.27 7.14 10.12 11.58	0.037 0.142 0.247 0.433 0.598 0.689	0.352 0.666 0.752 0.807 0.826 0.797

0000	ONENTC -			ODICINAL MOLO	
	ONENTS:	Ifide. H.S.		ORIGINAL MEASUR Gerrard, W.	EMENTS:
	<pre>1. Hydrogen sulfide; H₂S; [7783-06-4]</pre>				
2.	<pre>2. 1,2-Dimethylbenzene, (o-xylene); C₆H₁₀; [95-47-6]</pre>		J. Appl. Ch 623-650	em. Biotechnol., <u>1972</u> , 22,	
VARI	ABLES:	<u></u>		PREPARED BY:	
				C.L. Young	
	Temperature			C.D. Ioung	
EXPE	RIMENTAL VALUES	:		L	
	т/к	P*/mmHg	P*/kPa	Mole ratio	Mole fraction ⁺ of hydrogen sulfide in liquid, ¤ _{H2} S
	265.15	754	100.5	0.155	0.134
	267.15	754	100.5	0.145	0.127
	273.15	754	100.5	0.120	0.107
	283.15	754	100.5	0.084	0.077
1	293.15	754	100.5	0.075	0.070
		·····	AUXILIARY	INFORMATION	
MET	HOD/APPARATUS/PI	ROCEDURE:		SOURCE AND PUR	ITY OF MATERIALS:
wei bul in abs obs was was The suc mea was com and sho	METHOD/APPARATUS/PROCEDURE: Hydrogen sulfide was bubbled into a weighed amount of component 2. in a bubbler tube as described in detail in the source. The amount of gas absorbed at equilibrium and at the observed temperature and pressure was determined by weighing. Pressure was measured with a mercury manometer. The amount of gas absorbed at successively lower pressures was measured. Eventually the pressure was reduced to the vapor pressure of component 2. The refractive index and infrared spectrum of the liquid showed it to be essentially pure component 2.		and atteste	R: $\delta x_{\rm H_2S} = \pm 4\%$	

COMPONENTS	COMPONENTS:		ORIGINAL MEASUREMENTS:
	[7783-06-4]		Huang, S. SS.; Robinson, D.B.
<pre>2. 1,3-Dimethylbenzene; C₈H₁₀; [108-38-3]</pre>		C ₈ H ₁₀ ;	Fluid Phase Equilibria <u>1984</u> , 17, 373 - 382.
VARIABLES:			PREPARED BY:
Temperature	e, pressure		P.G.T. Fogg
EXPERIMENT	AL VALUES:		
т/к	P _{total} /MPa	Mole frac of H ₂ S ir liquid ph	of H_2S in
310.9	0.146 0.383 0.779 1.17 1.75 1.92 2.13 2.48	0.0403 0.1334 0.3139 0.4651 0.6873 0.7514 0.8394 0.9501	4 0.9949 9 0.9980 0.9987 8 0.9992 4 0.9994 4 0.9995 0.9997
352.6	2.63 0.365 1.10 1.72 3.24 4.41 5.41 6.14	0.9931 0.0690 0.2525 0.3899 0.6633 0.8233 0.9319 0.9888	0 0.9624 5 0.9874 9 0.9912 7 0.9960 8 0.9969 9 0.9980
394.3	0.256 0.869 2.44 4.63 7.03 8.94	0.0206 0.1106 0.3242 0.5637 0.7656 0.8783	5 0.7957 5 0.9381 2 0.9741 7 0.9834 5 0.9860 8 0.9858
477.6	10.21 0.938 1.59 3.87 6.31 9.13 11.32 13.12	0.9490 0.0310 0.0826 0.2582 0.4240 0.5859 0.6908 0.8450	0 0.5592 5 0.7125 2 0.8610 0 0.8956 9 0.9035 8 0.8989
	της, φ ¹ 1.φ ² .1φ ² .1φ	AUXILIARY I	INFORMATION
METHOD/APP/	ARATUS/PROCEDURE	6	SOURCE AND PURITY OF MATERIALS
A stirred static cell, fitted with a glass window, was used. Temperature was measured with a thermocouple and pressure with a Bourdon gauge. After equilibrium was established gas and liquid phases were analysed by gas chromatography. Techniques were similar to those described in refs. (1) & (2).		with a with a ilibrium iquid as es were	 from Matheson; purity 99.9 mol%. Matheson Chromatoquality; purity > 99 mol%; no impurites detected by chromatography. ESTIMATED ERROR REFERENCES Ng, H-J.; Robinson, D.B. Fluid Phase Equilibria, 1979, 2, 283. Ng, H-J., Robinson, D.B. J. Chem. Eng. Data, 1980, 25, 51.

COMPONENTS: L. Hydrogen sulfide		LODICINAL MEACHDRACK	177C •
	; H ₂ S; [7783-06-4]	ORIGINAL MEASUREMEN	
		Eakin, B.E.; D	evaney, w.E.
2. 1,3,5-Trimethylk	enzene,	Am. Inst. Chem	. Engnrs.Symp.Ser.
(mesitylene); C ₉	$H_{12}; [108-67-8]$	1974, No. 140	
		$\frac{1974}{1974}$, NO. 140	, 70, 80-90.
ARIABLES:		PREPARED BY:	
Temperature,	pressure	C.L	. Young
XPERIMENTAL VALUES:	<u> </u>	L	
T/K	P/10 ⁵ Pa Mol	e fraction of hy	drogen sulfide
1/1	r/101a Moi in	liquid, x _{H2S}	in gas, y _{H2} S
			La gale, g _{H2} S
310.9	1.31	0.0511	0.99457
510.5	2.14	0.0846	0.99663
	3.24	0.1314	0.99701
	4.62	0.1866	0.99787
	5.58	0.2354	0.99816
366.5	2.59	0.0411	0.9369
	5.26	0.0838	0.9590
	7.85	0.1292	0.9758
	10.52	0.1781	0.9871
	13.19	0.2321	0.9888
477.6	8.18	0.0391	0.6359
	14.07	0.0774	0.7517
	19.93	0.1270	0.8408
	26.20 32.61	0.1825 0.2215	0.8715 0.8945
	AUXILIARY	INFORMATION	
ÆTHOD /APPARATUS /PROCED		INFORMATION SOURCE AND PURITY	OF MATERIALS:
	URE:	SOURCE AND PURITY	
Rocking stainless s vessel, fitted with	URE: steel equilibrium h liquid and gas	SOURCE AND PURITY 1. Matheson Ga	
Rocking stainless s vessel, fitted with sampling ports. Pr	URE: steel equilibrium h liquid and gas cessure measured	SOURCE AND PURITY 1. Matheson Ga than 99 mol	s sample purity bette e per cent.
Rocking stainless s vessel, fitted with sampling ports. Pr with Bourdon gauge.	URE: steel equilibrium h liquid and gas cessure measured Components	SOURCE AND PURITY 1. Matheson Ga than 99 mol 2. Eastman Kod	s sample purity bette e per cent. ak Co. sample, boilin
Rocking stainless s vessel, fitted with sampling ports. Pr with Bourdon gauge. charged into cell u	URE: steel equilibrium h liquid and gas cessure measured Components ander pressure,	SOURCE AND PURITY 1. Matheson Ga than 99 mol	s sample purity bette e per cent. ak Co. sample, boilin
Rocking stainless a vessel, fitted with sampling ports. Pr with Bourdon gauge. charged into cell u equilibrated and sa Samples analysed by	URE: steel equilibrium h liquid and gas cessure measured Components ander pressure, amples withdrawn. G.C. using	SOURCE AND PURITY 1. Matheson Ga than 99 mol 2. Eastman Kod	s sample purity bette e per cent. ak Co. sample, boilin
Rocking stainless s vessel, fitted with sampling ports. Pr with Bourdon gauge. charged into cell u equilibrated and sa Samples analysed by thermal conductivit	URE: steel equilibrium h liquid and gas cessure measured Components ander pressure, amples withdrawn. G.C. using	SOURCE AND PURITY 1. Matheson Ga than 99 mol 2. Eastman Kod	s sample purity bette e per cent. ak Co. sample, boilin
Rocking stainless s vessel, fitted with sampling ports. Pr with Bourdon gauge. charged into cell u equilibrated and sa Samples analysed by thermal conductivit	URE: steel equilibrium h liquid and gas cessure measured Components ander pressure, amples withdrawn. G.C. using	SOURCE AND PURITY 1. Matheson Ga than 99 mol 2. Eastman Kod	s sample purity bette e per cent. ak Co. sample, boilin
Rocking stainless s vessel, fitted with sampling ports. Pr with Bourdon gauge. charged into cell u equilibrated and sa Samples analysed by thermal conductivit	URE: steel equilibrium h liquid and gas cessure measured Components ander pressure, amples withdrawn. G.C. using	SOURCE AND PURITY 1. Matheson Ga than 99 mol 2. Eastman Kod	s sample purity bette e per cent. ak Co. sample, boilin
Rocking stainless s vessel, fitted with sampling ports. Pr with Bourdon gauge. charged into cell u equilibrated and sa Samples analysed by thermal conductivit	URE: steel equilibrium h liquid and gas cessure measured Components ander pressure, amples withdrawn. G.C. using	SOURCE AND PURITY 1. Matheson Ga than 99 mol 2. Eastman Kod point range	s sample purity bette e per cent. ak Co. sample, boiling
Rocking stainless s vessel, fitted with sampling ports. Pr with Bourdon gauge. charged into cell u equilibrated and sa Samples analysed by thermal conductivit	URE: steel equilibrium h liquid and gas cessure measured Components ander pressure, amples withdrawn. G.C. using	SOURCE AND PURITY 1. Matheson Ga than 99 mol 2. Eastman Kod point range ESTIMATED ERROR:	s sample purity bette e per cent. ak Co. sample, boilin 160-163°C.
Rocking stainless s vessel, fitted with sampling ports. Pr with Bourdon gauge. charged into cell u equilibrated and sa Samples analysed by thermal conductivit	URE: steel equilibrium h liquid and gas cessure measured Components ander pressure, amples withdrawn. G.C. using	SOURCE AND PURITY 1. Matheson Ga than 99 mol 2. Eastman Kod point range ESTIMATED ERROR: $\delta T/K = \pm 0.06$ (s sample purity better e per cent. ak Co. sample, boilin 160-163°C. at 310.9K and 366.5K)
Rocking stainless s vessel, fitted with sampling ports. Pr with Bourdon gauge. charged into cell u equilibrated and sa Samples analysed by thermal conductivit	URE: steel equilibrium h liquid and gas cessure measured Components ander pressure, amples withdrawn. G.C. using	SOURCE AND PURITY 1. Matheson Ga than 99 mol 2. Eastman Kod point range ESTIMATED ERROR: δT/K = ±0.06 (±0.12 (at 477.	s sample purity better e per cent. ak Co. sample, boilin 160-163°C. at 310.9K and 366.5K) 6K) § <i>P</i> /MPa = ±0.2.
Rocking stainless s vessel, fitted with sampling ports. Pr with Bourdon gauge. charged into cell u equilibrated and sa Samples analysed by thermal conductivit	URE: steel equilibrium h liquid and gas cessure measured Components ander pressure, amples withdrawn. G.C. using	SOURCE AND PURITY 1. Matheson Ga than 99 mol 2. Eastman Kod point range ESTIMATED ERROR: δT/K = ±0.06 (±0.12 (at 477.	s sample purity better e per cent. ak Co. sample, boilin 160-163°C. at 310.9K and 366.5K) 6K) § <i>P</i> /MPa = ±0.2.
ÆTHOD/APPARATUS/PROCED Rocking stainless s vessel, fitted with sampling ports. Pr with Bourdon gauge. charged into cell u equilibrated and sa Samples analysed by thermal conductivit Porapak P column.	URE: steel equilibrium h liquid and gas cessure measured Components ander pressure, amples withdrawn. G.C. using	SOURCE AND PURITY 1. Matheson Ga than 99 mol 2. Eastman Kod point range ESTIMATED ERROR: δT/K = ±0.06 (±0.12 (at 477.	s sample purity bette: e per cent. ak Co. sample, boiling 160-163°C. at 310.9K and 366.5K) 6K) δ <i>P</i> /MPa = ±0.2. = ±0.001. (estimated 1
Rocking stainless s vessel, fitted with sampling ports. Pr with Bourdon gauge. charged into cell u equilibrated and sa Samples analysed by thermal conductivit	URE: steel equilibrium h liquid and gas cessure measured Components ander pressure, amples withdrawn. G.C. using	SOURCE AND PURITY 1. Matheson Ga than 99 mol 2. Eastman Kod point range ESTIMATED ERROR: $\delta T/K = \pm 0.06$ (± 0.12 (at 477. $\delta x_{H_2}S' \delta y_{H_2}S$	s sample purity better e per cent. ak Co. sample, boilin 160-163°C. at 310.9K and 366.5K) 6K) δ <i>P</i> /MPa = ±0.2. = ±0.001. (estimated 1
Rocking stainless s vessel, fitted with sampling ports. Pr with Bourdon gauge. charged into cell u equilibrated and sa Samples analysed by thermal conductivit	URE: steel equilibrium h liquid and gas cessure measured Components ander pressure, amples withdrawn. G.C. using	SOURCE AND PURITY 1. Matheson Ga than 99 mol 2. Eastman Kod point range ESTIMATED ERROR: $\delta T/K = \pm 0.06$ (± 0.12 (at 477. $\delta x_{H_2}S' \delta y_{H_2}S$	s sample purity bette: e per cent. ak Co. sample, boiling 160-163°C. at 310.9K and 366.5K) 6K) δ <i>P</i> /MPa = ±0.2. = ±0.001. (estimated 1
Rocking stainless s vessel, fitted with sampling ports. Pr with Bourdon gauge. charged into cell u equilibrated and sa Samples analysed by thermal conductivit	URE: steel equilibrium h liquid and gas cessure measured Components ander pressure, amples withdrawn. G.C. using	SOURCE AND PURITY 1. Matheson Ga than 99 mol 2. Eastman Kod point range ESTIMATED ERROR: $\delta T/K = \pm 0.06$ (± 0.12 (at 477. $\delta x_{H_2}S' \delta y_{H_2}S$	s sample purity bette: e per cent. ak Co. sample, boiling 160-163°C. at 310.9K and 366.5K) 6K) δ <i>P</i> /MPa = ±0.2. = ±0.001. (estimated 1
Rocking stainless s vessel, fitted with sampling ports. Pr with Bourdon gauge. charged into cell u equilibrated and sa Samples analysed by thermal conductivit	URE: steel equilibrium h liquid and gas cessure measured Components ander pressure, amples withdrawn. G.C. using	SOURCE AND PURITY 1. Matheson Ga than 99 mol 2. Eastman Kod point range ESTIMATED ERROR: $\delta T/K = \pm 0.06$ (± 0.12 (at 477. $\delta x_{H_2}S' \delta y_{H_2}S$	s sample purity bette e per cent. ak Co. sample, boilin 160-163°C. at 310.9K and 366.5K) 6K) δ <i>P</i> /MPa = ±0.2. = ±0.001. (estimated 3
Rocking stainless s vessel, fitted with sampling ports. Pr with Bourdon gauge. charged into cell u equilibrated and sa Samples analysed by thermal conductivit	URE: steel equilibrium h liquid and gas cessure measured Components ander pressure, amples withdrawn. G.C. using	SOURCE AND PURITY 1. Matheson Ga than 99 mol 2. Eastman Kod point range ESTIMATED ERROR: $\delta T/K = \pm 0.06$ (± 0.12 (at 477. $\delta x_{H_2}S' \delta y_{H_2}S$	s sample purity bette e per cent. ak Co. sample, boilin 160-163°C. at 310.9K and 366.5K) 6K) δ <i>P</i> /MPa = ±0.2. = ±0.001. (estimated 3

COMPONENTS:	ORIGINAL MEASUREMENTS:
 Hydrogen sulfide; H₂S; [7783-06-4] Alkylbenzenes 	Patyi, L.; Furmer, I. E. Makranczy, J.; Sadilenko, A. S.; Stepanova, Z. G.; Berengarten, M. G.
	Zh. Prikl. Khim. <u>1978</u> , 51, 1296- 1300.
VARIABLES:	PREPARED BY:
	C. L. Young
EXPERIMENTAL VALUES:	
Τ/Κ α [†]	Mole fraction of hydrogen sulfide at a partial pressure of 101.325 kPa ^{\$\mathcal{T}_H_2S\$}
Ethylbenzene; $C_{8}H_{10}$;	[100-41-4]
298.15 8.0	0.042
Propylbenzene; C ₉ H ₁₂ 298.15 8.8	; [103-65-1] 0.052
290.15 0.0	0.052
(1-methylethyl)-benzene (isopro	pylbenzene); C ₉ H ₁₂ ; [98-82-8]
298.15 8.9	0.053
1,3,5-Trimethylbenzene (mesi	tylene); C ₉ H ₁₂ ; [108-67-8]
298.15 8.22	0.0487
	· · · · · · · · · · · · · · · · · · ·
*	
	t 101.325 kPa and 273.15 K)
dissolved per volume of s	olvent.
	· · · · · · · · · · · · · · · · · · ·
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Volumetric method. Pressure	Purity better than 99 mole per
measured when known amounts of gas	cent as determined by gas
were added, in increments, to a	chromatography.
known amount of liquid in a vessel	
of known dimensions. Corrections	
were made for the partial pressure	
of solvent. Details in ref. (1).	ESTIMATED ERROR:
	$\delta T/K = \pm 0.1; \delta \alpha = \pm 4$ % or less.
	REFERENCES :
	1. Bodor, E.; Bor, G. J.; Mohai,
	B.; Sipos, G.
	Veszpremi. Vegyip. Egy. Kozl.
	1957, 1, 55.
]	

COMPONENT	S:		ORIGINAL MEASUREMENTS:
[7783-06-4]			Huang, S. SS.; Robinson, D.B.
<pre>2. 1,3,5-trimethylbenzene; C₉H₁₂; [108-67-8]</pre>			Fluid Phase Equilibria <u>1984</u> , 17, 373 - 382.
VARIABLES	:		PREPARED BY:
Temperatu	re, pressure		P.G.T. Fogg
EXPERIMEN	TAL VALUES:		•
т/к	P _{total} /MPa	Mole frac of H ₂ S ir liquid ph	n of H ₂ S in
310.9	0.172 0.424 0.827 1.36 2.02 2.48 2.63	0.0668 0.1721 0.3435 0.5832 0.8075 0.9407 0.9775	0.9985 0.9991 2.0.9994 5.0.9997 7.0.9998
352.6	0.186 0.620 1.17 1.97 3.45 4.86 5.58 6.22	0.0296 0.1247 0.2420 0.3976 0.6722 0.8605 0.9425 0.9953	0.9732 0.9922 0.9958 0.9970 0.9981 0.9988 0.9992
394.3	0.339 1.08 2.16 4.12 6.95 9.00 10.41	0.0340 0.1375 0.2772 0.5138 0.7676 0.8943 0.9639	0.9204 0.9762 2.0.9866 0.9907 5.0.9918 0.9900
477.6	0.674 1.85 3.53 5.72 9.45 11.78 13.75	0.0280 0.1160 0.2401 0.3885 0.6007 0.7146 0.8697	0 0.6247 0 0.8607 0.9211 0 0.9391 7 0.9427 0 0.9367
		AUXILIARY 1	INFORMATION
METHOD/AP	PARATUS/PROCEDURI	5	SOURCE AND PURITY OF MATERIALS
	static cell, fit	tted with	1. from Matheson; purity 99.9 mol%.
a glass window, was used. Temperature was measured with a thermocouple and pressure with a		1	2. from Aldrich Chemicals; purity > 99 mol%; no impurites detected by chromatography.
Bourdon gauge. After equilibrium			ESTIMATED ERROR
was established gas and liquid phases were analysed by gas		_	
-	raphy. Technique		REFERENCES
-	o those described		 Ng, H-J.; Robinson, D.B. Fluid Phase Equilibria, <u>1979</u>, 2, 283.
			 Ng, H-J., Robinson, D.B. J. Chem. Eng. Data, <u>1980</u>, 25, 51.

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>1. Hydrogen sulphide; H₂S; [7783-06-4]</pre>	Tremper, K.K.; Prausnitz, J.M.
<pre>2. l,l'-Methylenebisbenzene; (Diphenylmethane); C₁₃H₁₂; [101-81-5]</pre>	J. Chem. Engng. Data <u>1976</u> , 21, 295-9
VARIABLES:	PREPARED BY:
Temperature	C.L. Young
EXPERIMENTAL VALUES:	
T/K Henry's (/at	Constant ^a Mole fraction ^b of hydrogen sulfide at 1 atm partial pressure, ^x H ₂ S
300 32.	.9 0.0304
325 43.	.9 0.0228
350 56.	.2 0.0178
375 70.	.1 0.0143
400 86.	.1 0.0116
425 104.	.0 0.00962
450 123.	.0 0.00813
475 132.	.0 0.00758
and values of solubilit Law region. b. Calculated by compiler mole fraction and press	ments were made at several pressures ty used were all within the Henry's assuming linear relationship between sure. TNFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Volumetric apparatus similar to that described by Dymond and Hildebrand (1). Pressure measured with a null detector and precision gauge. Details in ref. (2).	Solvent degassed, no other details given.
	ESTIMATED ERROR:
	$\delta T/K = \pm 0.1; \ \delta x_{H_2S} = \pm 1\%$
	REFERENCES: 1. Dymond, J.; Hildebrand, J.H. Ind.Chem.Eng.Fundam. <u>1967</u> ,6,130. 2. Cukor, P.M.; Prausnitz, J.M. Ind.Chem.Eng.Fundam. <u>1971</u> ,10,638.
L	<u></u>

COMPONENTS:		ORIGINAL MEASUREMENTS:	
<pre>l. Hydrogen sulfide; H₂S; [7783-06-4]</pre>		Tremper, K.K.; Prausnitz, J.M. J. Chem. Engng. Data <u>1976</u> , 21, 295-9	
2. 1-Methylnaphthalene, C ₁₁ H ₁₀ ; [1321-94-4]		J. Chem. Engly, Data <u>1976</u> , 21, 293-9	
VARIABLES:		PREPARED BY:	
Temperature		C.L. Young	
EXPERIMENTAL VALUES:			
т/к	Henry /a	's Constant ^a tm	Mole fraction ^b of hydrogen sulfide at l atm partial pressure, x _{H2} S
300	3	1.7	0.0315
325	4	1.6	0.0240
350	5	5.8	0.0179
375	7	2.4	0.0138
400	8	9.4	0.0112
425	10	5.0	0.00952
450	11	7.0	0.00855
475	12	4.0	0.00806
a. Authors stated measurements were made at several pressures and values of solubility used were all within the Henry's Law region.			
b.	Calculated by compiler assuming linear relationship between mole fraction and pressure.		
AUXILIARY INFORMATION			
METHOD/APPARATUS/	PROCEDURE:	SOURCE AND PURITY O	F MATERIALS;
described by D (1). Pressure	paratus similar to that Dymond and Hildebrand Demossured with a null Drecision gauge. Detai	Solvent degass given.	ed, no other details
		ESTIMATED ERROR:	
		$\delta T/K = \pm 0.1;$	$\delta x_{\rm H_2S} = \pm 1 \%$
		Ind. Chem. Eng. Fun 2. Cukor, P.M.;	Hildebrand, J.H. <i>ndam.<u>1967</u>,6</i> ,130. Prausnitz, J.M. <i>ndam.<u>1971</u>,10</i> ,638.
L			·····

-

COMPONENTS:		ORIGINAL MEASUREMENTS:			
<pre>1. Hydrogen sulfide [7783-06-4]</pre>	; H ₂ S;	Kragas, T.K.; Kobayashi, R.			
2. Hydrogen; H ₂ ; [1]	333-74-0]	Fluid Phase Equilibria <u>1984</u> , 16, 215-236.			
3. 9-Methylanthracen [779-02-2]	ne; C ₁₅ H ₁₂ ;	213 230			
VARIABLES:	<u></u> ,_,,,,,,,,,,,,,,,,,,,,,,,,,,,	PREPARED BY:			
Pressure of hydroge	n	P.G.T. Fogg			
EXPERIMENTAL VALUES:	<u> </u>				
T/K	P _{H2} /MPa	Henry's Constant for H ₂ S at infinite dilution / MPa			
373.2	0 2.785 4.288 5.833	4.72 * 1.70 1.10 0.844			
398.2	0 1.344 2.255 3.530 5.061	* 4.68 2.79 1.80 1.31			
423.2	0 1.344 2.303 3.516 5.254	* 6.14 3.63 2.35 1.63			
	AUXILIAR	AUXILIARY INFORMATION			
METHOD / APPARATUS / PROCEDU		INFORMATION			
A high pressure chr	JRE:	SOURCE AND PURITY OF MATERIALS:			
	omatographic	SOURCE AND PURITY OF MATERIALS: 1. from Scientific Gas Products;			
method described in	omatographic ref. (1) was	SOURCE AND PURITY OF MATERIALS: 1. from Scientific Gas Products; 99.6% pure.			
method described in used. Hydrogen at	omatographic ref. (1) was various	SOURCE AND PURITY OF MATERIALS; 1. from Scientific Gas Products; 99.6% pure. 2. from Linde Division of Union			
method described in	omatographic ref. (1) was various	SOURCE AND PURITY OF MATERIALS: 1. from Scientific Gas Products; 99.6% pure.			
method described in used. Hydrogen at	omatographic ref. (1) was various	 SOURCE AND PURITY OF MATERIALS: 1. from Scientific Gas Products; 99.6% pure. 2. from Linde Division of Union Carbide Corporation. 3. from Aldrich Chem. Co.; purified 			
method described in used. Hydrogen at	omatographic ref. (1) was various	 SOURCE AND PURITY OF MATERIALS: 1. from Scientific Gas Products; 99.6% pure. 2. from Linde Division of Union Carbide Corporation. 3. from Aldrich Chem. Co.; purified 			
method described in used. Hydrogen at	omatographic ref. (1) was various	<pre>SOURCE AND PURITY OF MATERIALS: 1. from Scientific Gas Products; 99.6% pure. 2. from Linde Division of Union Carbide Corporation. 3. from Aldrich Chem. Co.; purified to > 99.95% by zone refining.</pre>			
method described in used. Hydrogen at	omatographic ref. (1) was various	<pre>SOURCE AND PURITY OF MATERIALS: 1. from Scientific Gas Products; 99.6% pure. 2. from Linde Division of Union Carbide Corporation. 3. from Aldrich Chem. Co.; purified to > 99.95% by zone refining. ESTIMATED ERROR:</pre>			
method described in used. Hydrogen at	omatographic ref. (1) was various	<pre>SOURCE AND PURITY OF MATERIALS: 1. from Scientific Gas Products; 99.6% pure. 2. from Linde Division of Union Carbide Corporation. 3. from Aldrich Chem. Co.; purified to > 99.95% by zone refining. ESTIMATED ERROR:</pre>			
method described in used. Hydrogen at	omatographic ref. (1) was various	<pre>SOURCE AND PURITY OF MATERIALS: 1. from Scientific Gas Products; 99.6% pure. 2. from Linde Division of Union Carbide Corporation. 3. from Aldrich Chem. Co.; purified to > 99.95% by zone refining. ESTIMATED ERROR:</pre>			

Hydrogen Sulfide in Non-aqueous Solvents

COMPO	NENTS:		ORIGINAL MEASUREMENTS:
1.	Hydrogen sulfid	le; H ₂ S;	Bezdel, L.S.; Teodorovich, V.P.
ł	[7783-06-4]		Gazovaya Prom. <u>1958</u> , No.8, 38 - 43.
2.	Methanol; CH ₄ O;	[67-56-1]	
VARIA	BLES:		PREPARED BY:
Tomp	erature, pressu	ro	P.G.T. Fogg
L TEWE	eracure, pressu	16	
EXPER	IMENTAL VALUES:		
т/к	P _{H2} S ^{/mmHg}	Volume of H ₂ S, to 273.15 K and dissolved by 1 kg	d 760 mmHg, in liquid phase*
223	.2 15.80	5.67	0.00814
	48.70	15.50	0.02194
243		0.27	0.00039
	3.16	0.37	0.00054
	12.45	1.57	0.00227
	11.20	1.84	0.00266
	16.50	2.60	0.00375
	17.50	2.56	0.00369
	47.50	7.07	0.01013
	49.20	7.17	0.01027
	60.25	9.13	0.01304
303		0.30 0.79	0.00043
	40.30 41.70	0.79	0.00114 0.00114
	catculated by t	the comprise. ,	60 mmHg = 1 atm = 1.013 bar.
		AUXILIARY	INFORMATION
METHO	DD /APPARATUS / PROCED	URE :	SOURCE AND PURITY OF MATERIALS:
Pre-	-cooled mixtures	of H_2 & H_2S were	1. dried with CaCl ₂ .
	oled through CH ₃		
	-	ption vessel of	
	ume 200 cm ³ . Tem	-	
		by addition of	
soli	d CO ₂ to butyl	alcohol in the	
ther	mostat and meas	ured by a pentane	
ther	mometer. After	6 - 8 h, 3 - 4	
samp	oles of the liqu	id phase were	
	ndrawn at 30 min		ESTIMATED ERROR:
	se, together wit		$\delta T/K = \pm 0.5$
	e analysed by io		(authors)
		t equilibrium was	REFERENCES :
	fected by the p		
1	cial excess of H	₂ S in the	
solu	ution.		
		······	l

· ·		von-aqueous Solvents 23
COMPONENTS:		ORIGINAL MEASUREMENTS:
<pre>1.Hydrogen sulfide; H₂S; [7783-06-4] 2. Methanol; CH₄O; [67-56-1]</pre>		Yorizane, M.; Sadamoto, S.; Masuoka, H.; Eto, Y. <i>Kogyo Kagaku Zasshi</i> <u>1969</u> , 72, 2174-7.
VARIABLES:	PREPARED BY:	
Temperature, pressure		C. L. Young
EXPERIMENTAL VALUES:	······	L
T/K P/atm	P/MP	Mole fraction of hydrogen sulfide a in liquid, ^{\$\mathcal{W}\$} H ₂ S
273.15 2.0 4.0 6.0 7.5 8.0 9.1	0.20 0.41 0.61 0.76 0.81 0.92	0.199 0.329 0.453 0.484 0.608
9.8 10.0 258.15 2.0 3.0 3.4 4.2 4.4 5.0	0.99 1.01 0.20 0.30 0.34 0.43 0.45 0.51	0.840 0.165 0.231 0.298 0.367 0.403
5.4 5.8 248.15 2.0 2.5 3.0 3.4 4.0 4.3	0.55 0.59 0.20 0.25 0.30 0.34 0.40 0.43	0.585 0.662 0.203 0.290 0.327 0.465 0.582
AUXI	LIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:		SOURCE AND PURITY OF MATERIALS:
Vapor-liquid equilibrium cell. Diagram given in source. (Original in Japanese.)		1. Purity 99.0 mole per cent.
		ESTIMATED ERROR: $\delta T/K = \pm 0.1; \delta x_{H_2S} = \pm 0.001$ (estimated by compiler).
		REFERENCES:

COMPONE	ENTS:			ORIGI	NAL MEASUREME	NTS:
[75	drogen sulf: 783-06-4] drogen; H ₂ ;	ide; H ₂ S; [1333-74-0]		Yorizane, M.; Sadamoto, S.; Masuoka, H.; Eto, Y.		
3. Met	thanol; CH40	D; [67-56-1]		Kogyo Kagaku Zasshi <u>1969</u> , 72, 2174 - 2177.		
VARIABI	LES:			PREPA	RED BY:	
Tempera	ature, pres	sure, composi	tion:	Ρ.	G.T. Fogg	
EXPERIN	MENTAL VALU	ES:				······································
т/к	Total pressure /atm	Mole fraction of H_2 in liquid	frac of H	ole ction S in guid	Mole fraction of H ₂ in gas	Mole fraction of H ₂ S in gas
243.2	10	0.003 0.010 0.004 0.006	0.0	397 568 721 776	0.813 0.692 0.702 0.655	0.187 0.308 0.298 0.345
	30	0.006 0.005 0.006	0.6	397 552 704	0.813 0.896 0.971	0.187 0.104 0.030
	50	0.010 0.013 0.012	0.0	333 521 313	0.977 0.941 0.929	0.023 0.059 0.071
273.2	10	0.003 0.006 0.002 0.003 0.002 0.002	0.0.0	043 107 205 379 517 588	0.925 0.813 0.702 0.400 0.237 0.163	0.075 0.187 0.298 0.600 0.763 0.837
	30	0.007 0.007 0.009 0.009 0.007 0.009 0.010	0.0000000000000000000000000000000000000	043 161 195 197 327 409 585	0.974 0.928 0.924 0.904 0.781 0.760 0.672	0.026 0.072 0.076 0.096 0.219 0.240 0.327
	50	0.012 0.014 0.014 0.010 0.013 0.015 0.018	0.0000)50 49 94 221 353 401 575	0.988 0.962 0.945 0.945 0.868 0.854 0.796	0.012 0.038 0.055 0.055 0.132 0.146 0.204
		AUX	ILIARY :	INFORMA	TION	
METHOD/	APPARATUS/	PROCEDURE		SOURC	E AND PURITY (OF MATERIALS
Vapor-1	liquid equi	librium cell.		1. Pu	rity 99.0 mol	÷.
-	m given in s					
(Origin	nal in Japa	nese)		EST	IMATED ERROR	
				REF	ERENCES	

COMPONENTS :	ORIGINAL MEASUREMENTS:		
 Hydrogen sulfide; H₂S; [7783-06-4] Methanol; CH₄0; [67-56-1] 	Short, I.; Sahgal, A.; Hayduk, W. J. Chem. Eng. Data <u>1983</u> , 28, 63-66.		
VARIABLES: T/K: 263.15, 298.15 P/kPa: 101.325	PREPARED BY: W. Hayduk		
EXPERIMENTAL VALUES:			
•	Sunsen Coefficient ² Mole Fraction ¹ (cm ³ (STP) cm ⁻³ atm ⁻¹ $10^4 x_1$		
263.15 40.2 298.15 26.93	41.73 689 24.67 276		
the following equations for ΔG° and $\Delta G^{\circ}/J \text{ mol}^{-1} = -RT \ln x_{1} = 858.98 \text{ M}$ $\ln x_{1} = 2050.8/T - 10.468$ $\frac{T/K}{263.15} 5.776$ $273.15 6.635$ $283.15 7.494$ $293.15 8.353$ $298.15 8.783$			
AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS;		
A volumetric method using a glass apparatus was employed. Degassed solvent contacted the gas while flowing as a thin film, at a constant rate, through an absorption spiral into a solution buret. A constant solvent flow was obtained by means of a calibrated syringe pump. The solution at the end of the spiral was considered saturated. Dry gas was maintained at atmosphe- ric pressure in a gas buret by mechanically raising the mercury level in the buret at an adjustable rate. The solubility was calculated from the constant slope of volume of gas dissolved and volume of solvent injected. Degassing was accomplished using a two stage vacuum process described by Clever et al. (1).	99.5 per cent. ESTIMATED ERROR: $\delta T/K = 0.1$ $\delta \pi / \pi = 0.01$		

£

ŀ

		ORIGINAL MEASU	REMENTS:		
<pre>1. Hydrogen sulfide; H₂S; [7783-06-4]</pre>					
2. Ethanol; C ₂ H ₆ O; [64-17-5]			em. Biotechnol., <u>1972</u> , 22		
VARIABLES: Temperature			PREPARED BY: C.L. Young		
UES:		1			
P*/mmHg	P*/kPa	Mole ratio	Mole fraction ⁺ of hydrogen sulfide in liquid, x _{H2S}		
769	102.5	0.078	0.072		
769	102.5	0.0725	0.0676		
769	102.5	0.054	0.051		
769	102.5	0.033	0.032		
769	102.5	0.018	0.018		
	AUXILIARY				
AUXILIARY METHOD/APPARATUS/PROCEDURE: Hydrogen sulfide was bubbled into a weighed amount of component 2. in a bubbler tube as described in detail in the source. The amount of gas absorbed at equilibrium and at the observed temperature and pressure was determined by weighing. Pressure was measured with a mercury manometer. The amount of gas absorbed at successively lower pressures was measured. Eventually the pressure was reduced to the vapor pressure of component 2. The refractive index and infrared spectrum of the liquid showed it to be essentially pure component 2.			NITY OF MATERIALS: Components were purified ed by conventional methods		
	<pre>4] C₂H₆O; [64-17 e UES:</pre>	<pre>4] C₂H₆O; [64-17-5] e UES:</pre>	sulfide; H ₂ S; Gerrard, W. 4] J. Appl. Ch C ₂ H ₆ O; [64-17-5] Gerrard, W. e PREPARED BY: ve C.L. Young ves: P*/mmHg P*/kPa 769 102.5 0.078 769 102.5 0.0725 769 102.5 0.054 769 102.5 0.033 769 102.5 0.018 ed by compiler essure Source AND PUF ide was bubbled into a at of component 2. in a as described in detail and atteste . The amount of gas quilibrium and at the erature and pressure dby weighing. Pressure with a mercury manometer. gas absorbed at lower pressure of othe vapor pressure of Source AND PUF		

COMPONENTS:	· · · · · <u>· · · · · · · · · · · · · · </u>	1	ORIGINAL MEASUREMENTS	:	
<pre>(1) Hydrogen sulfide; H₂S; [7783-06-4] (2) 1-Butanol; C₄H₁₀O; [71-36-3]</pre>		Short, I.; Sahga J. Chem. Eng. Da	• • •		
	: 263.15-333.15 : 101.325 LUES:		PREPARED BY: W. Hayduk		
T/K	Ostwald Coefficie L/cm ³ cm ⁻³		unsen Coefficient ² cm ³ (STP)cm ⁻³ atm ⁻¹		action ¹
263.15 298.15 333.15	22.8 8.58 3.65		23.67 7.86 2.99	0.0315	(0.0875) ³ (0.0314) (0.0126)
∆G°/J mo ln	$\frac{1^{-1} = -RT \ln x_{1} - x_{2}}{x_{1}} = 43.291 - 8.2$ ation for $\Delta G^{\circ} = 63$ $\frac{10^{-4} \Delta G^{\circ} / J \text{ mol}^{-1}}{5.261}$ $\frac{5.261}{6.147}$ 7.058 7.992	673.32 T 2056 ln T	$ \frac{T/K}{303.15} \qquad \frac{10^{-4} \Delta G^{\circ}}{313.15} \qquad 9.\\ 323.15 \qquad 10. $	9/J mol ⁻¹ .949 .929 .93 .95	$\frac{x_{j}}{0.0274}$ 0.0210 0.0162 0.0126
298.15	8.468	0.0314	INFORMATION		
AUXILIARY METHOD/APPARATUS/PROCEDURE: A volumetric method using a glass apparatus was employed. Degassed solvent contacted the gas while flowing as a thin film, at a constant rate, through an absorption spiral into a solution buret. A constant solvent flow was obtained by means of a calibrated syringe pump. The solution at the end of the spiral was considered saturated. Dry gas was maintained at atmosphe- ric pressure in a gas buret by mechanically raising the mercury level in the buret at an adjustable rate. The solubility was calculated from the constant slope of volume of gas dissolved and volume of solvent injected. Degassing was accomplished using a two stage vacuum process described by Clever et al. (1).		purity 99.0 ESTIMATED ERROR: $\delta T/K = 0.1$	onic. Spec ty 99.5 pe ecified min per cent. ; Battino, ; Gross, F	R.; P.M.	

COMPONENTS: 0RIGINAL MEASUREMENTS: 1. Hydrogen sulfide; H ₂ S; Gerrard, W. [7783-06-4] J. Appl. Chem. Biotechnol., <u>197</u> 2. 1-Octanol; C ₈ H ₁₈ O; 623-650	2 22
2. 1-Octanol; $C_{8}H_{18}O$; J. Appl. Chem. Biotechnol., <u>197</u> 623-650	2 22
2. 1-Octanol; $C_{8}H_{18}O$; 623-650	
	<u> </u>
VARIABLES: PREPARED BY:	
Temperature C.L. Young	
EXPERIMENTAL VALUES:	
T/K P*/mmHg P*/kPa Mole ratio Mole fraction [†] of hydrogen sulfide i liquid, ¤ _{H2} S	n
265.15 755 100.7 0.105 0.095	
267.15 755 100.7 0.097 0.091	
273.15 755 100.7 0.080 0.074	
283.15 755 100.7 0.064 0.060	
293.15 755 100.7 0.054 0.051	
AUXILIARY INFORMATION	
METHOD/APPARATUS/PROCEDURE: SOURCE AND PURITY OF MATERIALS:	
Hydrogen sulfide was bubbled into a weighed amount of component 2. in a bubbler tube as described in detail in the source. The amount of gas absorbed at equilibrium and at the observed temperature and pressure was determined by weighing. Pressure was measured with a mercury manometer. The amount of gas absorbed at successively lower pressures was measured. Eventually the pressure was reduced to the vapor pressure of	
component 2. The refractive index ESTIMATED ERROR:	
and infrared spectrum of the liquid showed it to be essentially pure component 2. $\delta T/K = \pm 0.2; \delta x_{H_2S} = \pm 4\%$	
REFERENCES:	

1

ł

COMPONENTS:	ORIGINAL MEASUREMENTS:		
<pre>1. Hydrogen sulfide; H₂S; [7783-06-4]</pre>	Lenoir, J-Y.; Renault, P.; Renon, H.		
<pre>2. Benzenemethanol (Benzyl alcohol); C₇H₈O; [100-51-6]</pre>	J. Chem. Eng. Data, <u>1971</u> , 16, 340-2.		
VARIABLES:	PREPARED BY:		
	C. L. Young		
EXPERIMENTAL VALUES:			
T/K Henry's constan H _{H2} S ^{/atm}	t Mole fraction at 1 atm* ${}^{x}H_{2}S$		
298.2 24.0	0.0417		
$x_{\rm H_2S}(1 \text{ atm}) = 1/H_{\rm H_2S}$			
AUXILIAR	INFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:		
A conventional gas-liquid chromato- graphic unit fitted with a thermal conductivity detector was used. The carrier gas was helium. The value of Henry's law constant was calculated from the retention time. The value applies to very low partial pressures of gas and there may be a substantial difference from that measured at 1 atm. pressure. There is also considerable uncertainty in the value of Henry's constant since surface	cent.		
adsorption was not allowed for although its possible existence was noted.	ESTIMATED ERROR: $\delta T/K = \pm 0.1; \ \delta H/atm = \pm 6\%$ (estimated by compiler).		
	REFERENCES:		

1

,

COMPONENTS:			ORIGINAL MEASUREMENTS:
1. Hydroge [7783-0	n sulfide; H ₂ 6-4]	S;	Lenoir, J-Y.; Renault, P.; Renon, H.
2. 1,2-Eth C ₂ H ₆ O ₂ ;	anediol, (Ethy] [107-21-1]	lene glycol);	J. Chem. Eng. Data, <u>1971</u> , 16, 340-2
VARIABLES:	<u></u>		PREPARED BY:
			C. L. Young
EXPERIMENTAL	VALUES:		· · · · · · · · · · · · · · · · · · ·
	т/к	Henry's consta H _{H2} S ^{/atm}	nt Mole fraction at 1 atm*
	298.2	52.9	0.0189
	<u> </u>	AUXILIARY	INFORMATION
METHOD/APPAR	ATUS/PROCEDURE:		SOURCE AND PURITY OF MATERIALS:
graphic un conductiv:	ional gas-liqu hit fitted wit		(1) L'Air Liquuide sample, minimum
Henry's la from the applies to of gas and difference l atm. pro	ity detector w as was helium. aw constant wa retention time o very low par d there may be e from that me essure. There	as used. The The value of s calculated . The value tial pressures a substantial asured at is also	purity 99.9 mole per cent. (2) Touzart and Matignon or Serlabo sample, purity 99 mole per cent.
Henry's is from the s applies to of gas and difference 1 atm. pro consideral of Henry's adsorption	ity detector w as was helium. aw constant wa retention time o very low par d there may be e from that me essure. There	as used. The The value of s calculated . The value tial pressures a substantial asured at is also y in the value ce surface wed for	purity 99.9 mole per cent. (2) Touzart and Matignon or Serlabo sample, purity 99 mole per cent.

				ORIGINAL MEASUREMENTS:		
1.	[7783-06-4]		Gerrard, W. J. Appl. Chem. Biotechnol., <u>1972</u> , 22,			
2.	l,2-Ethane [107-21-1]	ediol; C ₂ H ₆ O ₂ ;		623-650.	. 200000	
VARI	ABLES:	·		PREPARED BY:		
	Temperature	9		C.L. Young		
				I		
EXPE	RIMENTAL VALU				+	
<u></u>	т/к	P*/mmHg	P*/kPa	Mole ratio	Mole fraction ⁺ of hydrogen sulfide in liquid, ¤ _{H2S}	
	265.15	760	101.3	0.0365	0.0352	
	267.15	760	101.3	0.033	0.032	
	273.15	760	101.3	0.024	0.023	
	283.15	760	101.3	0.017	0.017	
	293.15	760	101.3	0.013	0.013	
			AUXILIARY	INFORMATION		
MET	HOD/APPARATUS	/PROCEDURE:	· · · · ·	SOURCE AND PUR	ITY OF MATERIALS:	
Hydrogen sulfide was bubbled into a weighed amount of component 2. in a bubbler tube as described in detail in the source. The amount of gas absorbed at equilibrium and at the observed temperature and pressure was determined by weighing. Pressure was measured with a mercury manometer. The amount of gas absorbed at successively lower pressures was measured. Eventually the pressure was reduced to the vapor pressure of			2. in a in detail of gas l at the essure manometer. at es was pressure	and attested	omponents were purified d by conventional methods.	
com and sho	ponent 2. infrared s	The refractiv spectrum of th se essentially	ve index Ne liquid	ESTIMATED ERRO $\delta T/K = \pm 0.2$ REFERENCES:	R: $\delta x_{H_2S} = \frac{+}{4} $	

ł

,

ł

COMPONENTS:	ORIGINAL MEASUREMENTS:		
<pre>(1) Hydrogen sulfide; H₂S; [7783-06-4]</pre>	Short, I.; Sahgal, A.; Hayduk, W. J. Chem. Eng. Data <u>1983</u> , 28, 63-66.		
(2) 1,2-Ethanediol (ethylene glycol); C ₂ H ₆ O ₂ ; [107-21-1]			
VARIABLES: <i>T</i> /K: 263,15-333.15	PREPARED BY:		
P/kPa: 101.325	W. Hayduk		
EXPERIMENTAL VALUES:			
-	$\begin{array}{llllllllllllllllllllllllllllllllllll$		
263.15 13.34 298.15 5.36 333.15 3.44	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		
$\Delta G^{\circ}/J \text{ mol}^{-1} = -RT \ln x_{1} = 12462 T$ $\ln x_{1} = 8146.8/T + 21.087 \ln T$ Std. deviation for $\Delta G^{\circ} = 28 \text{ J mol}^{-1}$	n T - 151.874		
$\frac{T/K}{2} \frac{10^{-4} \Delta G^{\circ}/J \text{ mol}^{-1}}{2} \frac{10^{4} x_{1}}{2} \frac{10^{4} x_{1}}{2}$	$T/K = \frac{10^{-4} \Delta G^{\circ}/J \text{ mol}^{-1}}{10^{4} x_{1}}$		
273.15 8.410 234.7 33 283.15 9.404 174.7 33	03.1511.21110.413.1512.0392.823.1512.7980.5033.1513.4971.80		
AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS;		
A volumetric method using a glass apparatus was employed. Degassed solvent contacted the gas while flowing as a thin film, at a constant rate, through an absorption spiral into a solution buret. A constant solvent flow was obtained by means of a calibrated syringe pump. The solution at the end of the spiral was considered saturated. Dry gas was maintained at atmosphe- ric pressure in a gas buret by mechanically raising the mercury level in the buret at an adjustable rate. The solubility was calculated from the constant slope of volume of gas dissolved and volume of solvent injected. Degassing was accomplished using a two stage vacuum process described by Clever et al. (1).	99.8 per cent. ESTIMATED ERROR: $\delta T/K = 0.1$ $\delta r / r = 0.01$		
L			

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>1. Hydrogen sulfide; H₂S; [7783-06-4]</pre>	Byeseda, J.J.; Deetz, J.A.; Manning, W.P.
2. Ethylene glycols	Proc.Laurance Reid Gas Cond.Conf. <u>1985</u> .
VARIABLES:	PREPARED BY:
	P.G.T. Fogg
EXPERIMENTAL VALUES:	
Solvent	Ostwald Mole fraction coeff. in liquid* L ^x H ₂ S
1,2-Ethanediol (ethylene glycol); C ₂ H ₆ O ₂ ; [107-21-1]	6.3 0.0160
2,2'[1,2-ethanediylbis(oxy)]bis- ethanol, (triethylene glycol); C ₆ H ₁₄ O ₄ ; [112-27-6]	11.9 0.0618
T/K = 297.1 P _{H2S} /psia = * calculated by the compiler.	14.73 P _{H2S} /bar = 1.016
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The H ₂ S was contained in a thermostatted metal cylinder connected to a pressure gage, vacuum pump and supply of gas. A tight fitting internal piston sealed with an O-ring fitted into the cylinder so that the volume of gas could be changed by controlled movement of the piston. A measured volume of solvent was injected into the	No information ESTIMATED ERROR:
cylinder by a syringe. The absorption of gas was found from the movement of the piston which was necessary to maintain constant pressure.	REFERENCES :

COMPONENTS:			ORIGINAL MEASUREMENTS:
1 Hydroge	en sulfide; H	ç.	
[7783-0	06-4]	207	Lenoir, J-Y.; Renault, P.; Renon, H.;
2. Oxybisp glycol)	<pre>propanol; ; C₆H₁₄O₃;</pre>	(Dipropylene [25265-71-8]	J. Chem. Eng. Data, <u>1971</u> , 16, 340-2.
VARIABLES:			PREPARED BY:
Temperature		e	C. L. Young
EXPERIMENTAL VALUES:			
	m /1/	Henry's consta	ant Mole fraction at 1 atm*
	т/к	H ₂ s/atm	^x H ₂ S
	298.2	22.9	0.0437
	323.2 343.2	30.7 74.3	0.0326 0.0135
^{<i>x</i>} H ₂ S ⁽¹)	atm) = 1/H ₁₂	5	Linear function of P _{H2} S ^{vs x} H2S, i.e.,
		AUXILIARY	INFORMATION
METHOD/APPAR	RATUS/PROCEDURE:		SOURCE AND PURITY OF MATERIALS;
graphic un conductiv: carrier ga Henry's la from the s applies to of gas and difference l atm. pro consideral of Henry's adsorptio	hit fitted wi ity detector y as was helium aw constant w retention tim o very low pa: d there may b e from that m essure. Ther ble uncertain s constant si n was not all	was used. The . The value of as calculated e. The value rtial pressures e a substantial easured at e is also ty in the value nce surface	 (1) L'Air Liquide sample, minimum purity 99.9 mole per cent. (2) Touzart and Matignon or Serlabo sample, purity 99 mole per cent. ESTIMATED ERROR: δT/K = ±0.1; δH/atm = ±6% (estimated by compiler). REFERENCES:

,

terms in community of the second second

COMPONENTS: 1. Hydrogen sulfide; H ₂ S;	ORIGINAL MEASURMENTS:
[7783-06-4] 2. 2,2'[1,2-ethanediylbis(oxy)]bis-	Blake, R.J.
ethanol, $(triethylene glycol);$ C ₆ H ₁ 4O ₄ ; [112-27-6]	<i>Oil & Gas J. <u>1967</u>, 65(2),</i> 105–108.
VARIABLES:	PREPARED BY:
Temperature, pressure.	P.G.T. Fogg

EXPERIMENTAL VALUES:

The author presented smooth curves showing the variation of the absorption coefficient, α , (volume of gas reduced to 273.15 K and 1.013 bar dissolved by one volume of the solvent at the experimental temperature) with change of T/°F. These curves were for partial pressures of 0, 25, 50, 10 & 150 psig. The compiler has used the curves to prepare the tables below.

т/к	T/K Partial pressure of H ₂ S/bar				
	1.013	2.737	4.460	7.908	11.355
273.15 283.15 293.15 303.15 313.15 323.15 343.15 343.15 353.15 363.15 373.15	21.5 16.4 12.8 10.2 8.1 6.8 5.6 5.0 4.4 4.2 4.0	41.3 31.6 25.9 21.6 18.5 16.0 14.2 12.5 11.1 10.2 9.6	50.5 41.4 35.0 30.2 26.2 23.1 20.1 17.7 15.4 13.5	64.2 55.2 47.9 42.0 36.7 32.2 27.8 23.9	75.8 63.7 54.9 47.2 40.7 34.7
T,	′κ	₽ _{H₂S} /ba	ar	Mole fraction ^x H ₂ S	in liquid
273.	.15	1.013		0.114 0.199	
283.	.15		2.737 1.013 2.737		
293.	.15	4.460 1.013 2.737 4.460) 3 7)	0.160 0.233 0.071 0.135 0.199	
303.	.15	7.908 1.013 2.737 4.460	3 7)	0.309 0.058 0.115 0.174	
313,	.15	7.908 1.013 2.737 4.460 7.908	3 7)	0.278 0.047 0.100 0.154 0.249	
	<u>u</u> r .	AUXILIARY 1	INFORMATIC)N	
METHOD/APPARATUS/PROCEDURE:			SOURCE P	ND PURITY OF M	ATERIALS:
No informatior	1.		No infor ESTIMATE	mation.	
		:	REFERENC	CES:	

Values of $\boldsymbol{\alpha}$ for various temperatures and pressures

COMPONENTS :	ORIGINAL MEASUREMENTS:			
 Hydrogen sulfide; H₂S; 	Gestrich, W.; Reinke, L.			
<pre>[7783-06-4] 2. Polyethylene glycols (α-hydro-ω- hydroxy-poly(oxy-1,2-ethanediyl);</pre>	ChemIngTech. <u>1983</u> , 55, 629-631			
$(C_2H_4O)_nH_2O;$ [25322-68-3]				
VARIABLES:	PREPARED BY:			
Temperature, pressure.	P.G.T. Fogg			
EXPERIMENTAL VALUES:				
Solubilities were measured at temperatures from 70 °C to 150 °C and pressures from 196 to 695 Torr. Over this pressure range the weight of gas absorbed per gram of solvent was found to be proportional to the pressure. Values of this proportionality constant were graphically displayed by the authors in small scale diagrams and also presented as equations of the form:				
$\ln (S/mg) = -A + $	B/(T/K)			
In these equations S is the weight of for a pressure of gas of 1 bar.	gas absorbed by 1 g of solvent			
A	B r ²			
Polyethylene glycol P200 3.	7573 1915.0 0.9943			
Polyethylene glycols P300 & P400 3.	6376 1904.0 0.9894			
Polyethylene glycol P1000 4.	6163 2263.6 0.9995			
P200, P300 etc. correspond to the nom Werke Huls.	enclature of the suppliers, Chemischen			
r = correlation coefficient.				
	INFORMATION			
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:			
TETROD/ALT ARATOS/TROCEDORE:	SOURCE AND PURITY OF MATERIALS:			
No information				
	ESTIMATED ERROR:			
	REFERENCES:			

	•
COMPONENTS:	ORIGINAL MEASUREMENTS:
1. Hydrogen sulfide; H ₂ S; [7783-06-4]	Härtel, G.H.
2. Polyethylene glycols (α-Hydro-ω- hydroxy-poly(oxy-1,2-ethanediyl); (C ₂ H ₄ O) _n H ₂ O; [25322-68-3]	J. Chem. Eng. Data <u>1985</u> , 30, 57-61.
VARIABLES:	PREPARED BY:
Temperature	P.G.T. Fogg
EXPERIMENTAL VALUES: T/K Henry's c H _{H2S} /	
Polyethylene333.1521.98glycol 200353.1533.12373.1544.81	1 0.031
Polyethylene333.159.49glycol 400353.1515.02373.1520.59	3 0.067
Henry's constant is given by :	re
$H_{H_2S} = $ mole fract	ion solubility
* Calculated by the compiler assuming solubility with variation of pressure [†] There is some ambiguity in the mann original paper. The compiler conside experimental measurements by the auth	was linear to 1.013 bar. er in which data are tabulated in the rs that these values correspond to
AUXILIARY	INFORMATION
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
Absorption was found from the decrease in pressure when a known volume of gas came into contact with a known mass of degassed solvent. Pressure changes were found by use of a transducer with a mercury manometer to provide a reference	 From Matheson, Heusenstamm, FRG; minimum purity 99.5%.
pressure.	ESTIMATED ERROR: $\delta P = \pm 0.25 \text{ mbar (author)}$ REFERENCES:

COMPONENTS:	ORIGINAL MEASUREMENTS:
1. Hydrogen sulfide; H_2S ;	Parsons, L.B.
[7783-06-4]	J. Amer. Chem. Soc. <u>1925</u> , 47,
<pre>2. 1,1'-Oxybisethane, (diethyl ether); C₄H₁₀O; [60-29-7]</pre>	1820-1830.
VARIABLES:	PREPARED BY:
	P.G.T. Fogg
	<u> </u>
EXPERIMENTAL VALUES:	
	ations of H_2S Average concentration [*] mality /mol dm ⁻³ x_{H_2S}
740 0.987 299.2 0.50	06 0.256 0.026
0.52	20
0.50	05
0.51	15
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	
	SOURCE AND PURITY OF MATERIALS.
I THE ELLET ADDEATS TO HAVE DEEN	SOURCE AND PURITY OF MATERIALS:
The ether appears to have been saturated with hydrogen sulfide by bubbling the gas through the solvent at room temperature and a total	 Prepared from 25% solution of sodium sulfide by treatment with concentrated acid. Washed with
saturated with hydrogen sulfide by bubbling the gas through the solvent at room temperature and a total pressure equal to barometric pressure. The gas dissolved by a measured volume of solution was then allowed to react with a 3% aqueous	 Prepared from 25% solution of sodium sulfide by treatment with concentrated acid. Washed with distilled water and dried with CaCl₂ and P₂O₅. Distilled from fused CaCl₂ and then treated with sodium wire; redistilled.
saturated with hydrogen sulfide by bubbling the gas through the solvent at room temperature and a total pressure equal to barometric pressure. The gas dissolved by a measured volume of solution was then	 Prepared from 25% solution of sodium sulfide by treatment with concentrated acid. Washed with distilled water and dried with CaCl₂ and P₂O₅. Distilled from fused CaCl₂ and then treated with sodium wire; redistilled.
saturated with hydrogen sulfide by bubbling the gas through the solvent at room temperature and a total pressure equal to barometric pressure. The gas dissolved by a measured volume of solution was then allowed to react with a 3% aqueous solution of cadmium sulfate so as to produce a precipitate of cadmium	 Prepared from 25% solution of sodium sulfide by treatment with concentrated acid. Washed with distilled water and dried with CaCl₂ and P₂O₅. Distilled from fused CaCl₂ and then treated with sodium wire; redistilled.
saturated with hydrogen sulfide by bubbling the gas through the solvent at room temperature and a total pressure equal to barometric pressure. The gas dissolved by a measured volume of solution was then allowed to react with a 3% aqueous solution of cadmium sulfate so as to produce a precipitate of cadmium sulfide and a solution of sulfuric	 Prepared from 25% solution of sodium sulfide by treatment with concentrated acid. Washed with distilled water and dried with CaCl₂ and P₂O₅. Distilled from fused CaCl₂ and then treated with sodium wire; redistilled.
saturated with hydrogen sulfide by bubbling the gas through the solvent at room temperature and a total pressure equal to barometric pressure. The gas dissolved by a measured volume of solution was then allowed to react with a 3% aqueous solution of cadmium sulfate so as to produce a precipitate of cadmium sulfide and a solution of sulfuric acid. There was good agreement between the amount of hydrogen sulfide calculated from the weight	 Prepared from 25% solution of sodium sulfide by treatment with concentrated acid. Washed with distilled water and dried with CaCl₂ and P₂O₅. Distilled from fused CaCl₂ and then treated with sodium wire; redistilled.
saturated with hydrogen sulfide by bubbling the gas through the solvent at room temperature and a total pressure equal to barometric pressure. The gas dissolved by a measured volume of solution was then allowed to react with a 3% aqueous solution of cadmium sulfate so as to produce a precipitate of cadmium sulfide and a solution of sulfuric acid. There was good agreement between the amount of hydrogen sulfide calculated from the weight of cadmium sulfide and the amount	 Prepared from 25% solution of sodium sulfide by treatment with concentrated acid. Washed with distilled water and dried with CaCl₂ and P₂O₅. Distilled from fused CaCl₂ and then treated with sodium wire; redistilled.
saturated with hydrogen sulfide by bubbling the gas through the solvent at room temperature and a total pressure equal to barometric pressure. The gas dissolved by a measured volume of solution was then allowed to react with a 3% aqueous solution of cadmium sulfate so as to produce a precipitate of cadmium sulfide and a solution of sulfuric acid. There was good agreement between the amount of hydrogen sulfide calculated from the weight	 Prepared from 25% solution of sodium sulfide by treatment with concentrated acid. Washed with distilled water and dried with CaCl₂ and P₂O₅. Distilled from fused CaCl₂ and then treated with sodium wire; redistilled.

	S:		ORIGINAL MEASUREMEN	ITS:	
	1 Hydrogen sulfide: H.S.				
	Hydrogen sulfide; H ₂ S; [7783-06-4]		Gerrard, W.		
	1'-Oxybisoctane; (29-82-3]	C ₁₄ H ₃₄ O ₃ ;	J. Appl. Chem. 22, 623-650.	Biotechnol. <u>1972</u> ,	
VARIABLES:			PREPARED BY:		
Temperature			P.G.T. Fo	933	
EXPERIMEN	TAL VALUES:	·····			
т/к	P(total)/mmHg	P(total)/ba	r Mole ratio	Mole fraction of Mole ^x H ₂ S	H ₂ S [*]
265.15	761	1.015	0.237	0.192	
267.15	761	1.015	0.223	0.182	
273.15	761	1.015	0.184	0.155	
283.15	761	1.015	0.138	0.121	
293.15	761	1.015	0.110	0.099	
					•
		AUXILIARY	INFORMATION		
ME THOD /AP	PPARATUS/PROCEDURE:	AUXILIARY	INFORMATION SOURCE AND PURITY	OF MATERIALS;	
ł	PPARATUS/PROCEDURE: en sulfide was bu		SOURCE AND PURITY	OF MATERIALS; that "All material	
Hydrog		obled into a	SOURCE AND PURITY	that "All material	s
Hydrog weighe	en sulfide was bu	obled into a nent 2 in a	SOURCE AND PURITY It was stated	that "All material attested by	
Hydrog weighe bubble	en sulfide was bu d amount of compo	obled into a nent 2 in a ed in detail	SOURCE AND PURITY It was stated purified and a	that "All material attested by	
Hydrog weighe bubble in the absorb	en sulfide was bu d amount of compo r tube as describe source. The amou ed at equilibrium	obled into a ment 2 in a ed in detail unt of gas for the	SOURCE AND PURITY It was stated purified and a	that "All material attested by	s
Hydrog weighe bubble in the absorb observ	en sulfide was bui d amount of compo r tube as describe source. The amou ed at equilibrium ed temperature and	obled into a nent 2 in a ed in detail int of gas for the d pressure	SOURCE AND PURITY It was stated purified and a	that "All material attested by	s
Hydrog weighe bubble in the absorb observ was fo	en sulfide was bui d amount of compo r tube as describe source. The amou ed at equilibrium ed temperature and und by weighing.	obled into a nent 2 in a ed in detail unt of gas for the d pressure Pressure	SOURCE AND PURITY It was stated purified and a conventional m	that "All material attested by	s
Hydrog weighe bubble in the absorb observ was fo was me	en sulfide was but d amount of compose r tube as describe source. The amou ed at equilibrium ed temperature and und by weighing. asured with a mer	obled into a nent 2 in a ed in detail unt of gas for the d pressure Pressure	SOURCE AND PURITY It was stated purified and a conventional m	that "All material attested by methods."	S
Hydrog weighe bubble in the absorb observ was fo	en sulfide was but d amount of compose r tube as describe source. The amou ed at equilibrium ed temperature and und by weighing. asured with a mer	obled into a nent 2 in a ed in detail unt of gas for the d pressure Pressure	SOURCE AND PURITY It was stated purified and a conventional m	that "All material attested by	s
Hydrog weighe bubble in the absorb observ was fo was me	en sulfide was but d amount of compose r tube as describe source. The amou ed at equilibrium ed temperature and und by weighing. asured with a mer	obled into a nent 2 in a ed in detail unt of gas for the d pressure Pressure	SOURCE AND PURITY It was stated purified and a conventional m	that "All material attested by methods."	s
Hydrog weighe bubble in the absorb observ was fo was me	en sulfide was but d amount of compose r tube as describe source. The amou ed at equilibrium ed temperature and und by weighing. asured with a mer	obled into a nent 2 in a ed in detail unt of gas for the d pressure Pressure	SOURCE AND PURITY It was stated purified and a conventional m ESTIMATED ERROR: $\delta x_{H_2S} = \pm 4$	that "All material attested by methods."	s
Hydrog weighe bubble in the absorb observ was fo was me	en sulfide was but d amount of compose r tube as describe source. The amou ed at equilibrium ed temperature and und by weighing. asured with a mer	obled into a nent 2 in a ed in detail unt of gas for the d pressure Pressure	SOURCE AND PURITY It was stated purified and a conventional m ESTIMATED ERROR: $\delta x_{H_2S} = \pm 4$	that "All material attested by methods."	s
Hydrog weighe bubble in the absorb observ was fo was me	en sulfide was but d amount of compose r tube as describe source. The amou ed at equilibrium ed temperature and und by weighing. asured with a mer	obled into a nent 2 in a ed in detail unt of gas for the d pressure Pressure	SOURCE AND PURITY It was stated purified and a conventional m ESTIMATED ERROR: $\delta x_{H_2S} = \pm 4$	that "All material attested by methods."	s
Hydrog weighe bubble in the absorb observ was fo was me	en sulfide was but d amount of compose r tube as describe source. The amou ed at equilibrium ed temperature and und by weighing. asured with a mer	obled into a nent 2 in a ed in detail unt of gas for the d pressure Pressure	SOURCE AND PURITY It was stated purified and a conventional m ESTIMATED ERROR: $\delta x_{H_2S} = \pm 4$	that "All material attested by methods."	s

}

,

			···			
				ORIGINAL MEASUR		
1.	. Hydrogen sulfide; H ₂ S; [7783-06-4]		Gerrard, W.	em. Biotechnol., 1972, 22,		
2.	2. Ethoxybenzene, (ethylphenyl ether); C ₀ H ₁₀ O; [103-73-1]			623-650		
VARIABLES:				PREPARED BY:		
	Temperature			C.L. Young		
EXPE	RIMENTAL VALUE	S:	- <u></u>	l		
	т/к	P*/mmHg	<i>P*/</i> kPa	Mole ratio	Mole fraction ⁺ of hydrogen sulfide in liquid, ¤ _{H2S}	
	265.15	748	99.7	0.175	0.149	
	267.15	748	99.7	0.164	0.141	
	273.15	748	99.7	0.135	0.119	
	283.15	748	99.7	0.100	0.091	
	293.15	748	99.7	0.078	0.072	
	<u></u>		AUXILIARY	INFORMATION	<u> </u>	
MET	HOD/APPARATUS/F	PROCEDURE :		SOURCE AND PUR	ITY OF MATERIALS:	
Hydrogen sulfide was bubbled into a weighed amount of component 2. in a bubbler tube as described in detail in the source. The amount of gas absorbed at equilibrium and at the observed temperature and pressure was determined by weighing. Pressure was measured with a mercury manometer. The amount of gas absorbed at successively lower pressures was measured. Eventually the pressure		and atteste	omponents were purified d by conventional methods.			
was	reduced to	the vapor p	ressure of	ESTIMATED ERRO		
and sho	component 2. The refractive index and infrared spectrum of the liquid showed it to be essentially pure component 2.			$; \delta x_{\rm H_2S} = \pm 4\%$		
				REFERENCES:		
				<u></u>		

COMPONENTS:	ORIGINAL MEASUREMENTS:				
 Hydrogen sulfide; H₂S; [7783-06-4] Polyglycol ethers 	Sciamanna, S.F. Ph.D. Dissertation, Department of Chemical Engineering, University of California, Berkeley, U.S.A. 1986.				
	(Directed by Lynn, S.)				
VARIABLES:	PREPARED BY:				
Temperature	P.G.T. Fogg				
EXPERIMENTAL VALUES:					
Solvent	A/K B H'/MPa 298.15 K 373.15 K				
1,1'-Oxybis(2-methoxyethane), (diethylene glycol dimethyl ether; diglyme); C ₆ H ₁₄ O ₃ ; [111-96-6]	-2095.9 13.483 2.50 10.27 ± 1.8% ± 0.8%				
2,5,8,11-Tetraoxadodecane, (triethylene glycol dimethyl ether; triglyme); C ₈ H ₁₈ O ₄ ; [112-49-2]	-2147.2 13.443 2.69 11.42 ± 3.4% ± 1.5%				
2,5,8,11,14-Pentaoxapentadecane, (tetraethylene glycol dimethyl ether; tetraglyme); C10H22O5; [143-24-8]	-2257.1 13.616 2.75 12.61 ± 0.4% ± 0.2%				
2-(2-methoxyethoxy)ethanol, (diethylene glycol monomethyl ether; methyl carbitol); C ₅ H ₁₂ O ₃ ;[111-77-3]	-1943.2 13.255 2.97 11.02 ± 1.0% ± 0.4%				
3,6,9,12-Tetraoxahexadecan-1-ol, (tetraethylene glycol monobutyl ether); Cl2H26O5; [1559-34-8]	-1817.2 12.500 4.10 13.97 ± 1.7% ± 0.7%				
Values of H' are Henry's law constant defined by the equation:	s, extrapolated to zero pressure, as				
H' = partial pressure of gas /	weight fraction solubility				
If Henry's law is taken to be of the	form:				
H = partial pressure of gas	/ mole fraction solubility.				
then the Henry's laws constant, <i>H</i> , extrapolated to zero partial pressure is given by:					
H / kPa = exp	[A/T + B]				
The values of A and B are based upon experimental measurements of solubilities carried out in the temperature range 288.2 K to 373.2 K at pressures which did not exceed 133 kPa.					
AUXILIARY	INFORMATION				
METHOD/APPARATUS/PROCEDURE	SOURCE AND PURITY OF MATERIALS				
Dried solvent was added to a flask of known weight. The solvent was then heated, degassed, and the flask reweighed. Subsequent steps were automated and data stored in a computer. The solvent vapor pressure was recorded after each	2-(2-methoxyethoxy)ethanol was referred to by the trade name ©Dowanol DM ; 3,6,9,12-tetraoxahexadecan-1-ol by the trade name ©Dowanol TBH.				
increment of temperature of 5 K from 288.2 to 373.2 K. The flask was	ESTIMATED ERROR:				
then cooled, a predetermined mass of gas added and total pressures	As indicated above.				
recorded at intervals of 5 K. The process was repeated with further additions of gas.	REFERENCES:				

Bydrogen Sulfide in Non-aqueous Solvents				
COMPONENTS:	ORIGINAL MEASUREMENTS:			
<pre>1. Hydrogen sulfide; H₂S; [7783-06-4]</pre>	Härtel, G.H.			
<pre>2. 2,5,8,11,14-Pentaoxapentadecane; (tetraethylene glycol dimethyl ether); C10H22O5; [143-24-8]</pre>	J.Chem.Eng.Data <u>1985</u> , 30, 57-61.			
VARIABLES:	PREPARED BY:			
Temperature	P.G.T. Fogg			
EXPERIMENTAL VALUES:	l			
T/K Henry's com H _{H2} S/bar	stant Mole fraction solubility x _{H2S} (1.013 bar) [*]			
293.15 3.390 313.15 6.179 333.15 8.310 353.15 11.321 373.15 16.901	0.299 0.164 0.122 0.089 0.060			
Henry's constant is defined as :				
	essure			
$H_{H_2S} = $ mole fract	ion solubility			
Solubilities were measured at concentrations not greater than $x_{H_2S} = 0.16$. The variation of mole fraction solubility with pressure was found to be almost linear with a correlation coefficient of better than 0.99. * Calculated by the compiler assuming that the variation of mole fraction solubility with variation of pressure was linear to 1.013 bar. (The value for 293.15 K lies outside the range for which linearity was experimentally demonstrated by the author)				
AUXILIARY	INFORMATION			
METHOD/APPARATUS/PROCEDURE	SOURCE AND PURITY OF MATERIALS			
Absorption was found from the decrease in pressure when a known volume of gas came into contact with a known mass of degassed solvent. Pressure changes were found by use of a transducer with a mercury	 From Matheson, Heusenstamm, FRG; minimum purity 99.5%. 			
manometer to provide a reference	ESTIMATED ERROR			
pressure.	$\delta P = \pm 0.25 \text{ mbar (author)}$			
	REFERENCES			
	······································			

Hydrogen Sunde in	Non-aqueous Solvents 259			
COMPONENTS:	ORIGINAL MEASUREMENTS:			
<pre>1. Hydrogen sulfide; H₂S; [7783-06-4]</pre>	Härtel, G.H.			
<pre>2. 2,5,8,11,14-Pentaoxapentadecane (tetraethylene glycol dimethyl ether); C10H22O5; [143-24-8]</pre>	J.Chem.Eng.Data <u>1985</u> , 30, 57-61.			
3. Tricyclodecanedimethanol C ₁₂ H ₁₀ O ₂ ; [26896-48-0]				
VARIABLES:	PREPARED BY:			
Temperature	P.G.T. Fogg			
EXPERIMENTAL VALUES:	I			
The solvent consisted of a mixture of ether (85 wt%) and tricyclodecanedime				
T/K Henry's con				
H _{12S} /bar	× _{H2S} (1.013 bar) [*]			
293.15 5.169	0.196			
313.15 8.487	0.119			
333.15 12.097	0.084			
353.15 15.464	0.066			
373.15 21.551	0.047			
Henry's constant is defined as :				
pressure .				
$H_{H_2S} =$	ion solubility			
Solubilities were measured at concentrations not greater than $x_{H_2S} = 0.16$. The variation of mole fraction solubility with pressure was found to be almost linear with a correlation coefficient of better than 0.99.				
* Calculated by the compiler assuming that the variation of mole fraction solubility with variation of pressure was linear to 1.013 bar. (The value for 293.15 K lies outside the range for which linearity was experimentally demonstrated by the author)				
AUXILIARY INFORMATION				
METHOD/APPARATUS/PROCEDURE	SOURCE AND PURITY OF MATERIALS			
Absorption was found from the decrease in pressure when a known volume of gas came into contact with	 From Matheson, Heusenstamm, FRG; minimum purity 99.5%. 			
a known mass of degassed solvent.	ESTIMATED ERROR			
Pressure changes were found by use				
of a transducer with a mercury	$\delta P = \pm 0.25 \text{ mbar (author)}$			
manometer to provide a reference]			
pressure.	REFERENCES			
	l			

COMPONENTS:	ORIGINAL MEASUREMENTS:			
<pre>1. Hydrogen sulfide; H₂S; [7783-06-4]</pre>	Sweeney, C.W.			
2. Polar solvents	Chromatographia <u>1984</u> , 18, 663-7.			
VARIABLES:	PREPARED BY:			
Temperature	P.G.T. Fogg			
EXPERIMENTAL VALUES:				
Solvent	Henry's constant/bar			
	298.15 К 323.15 К			
Phosphoric acid, tributyl ester (tributyl phosphate); C ₁₂ H ₂₇ PO ₄ ; [126-73-8]	4.14 8.27			
4-Methyl-1,3-dioxolan-2-one (propylene carbonate); C₄H₅O₃; [108-32-7]	22.6 37.4			
1-Methyl-2-pyrrolidinone (N-methylpyrrolidone); C5H9NO; [872-50-4]	5.81 12.3			
2,5,8,11,14-Pentaoxapentadecane 3.91 7.46 (tetraethylene glycol dimethyl ether); $C_{10}H_{22}O_5$; [143-24-8]				
The Henry's constant, H, was defined as :				
$H = \frac{f_{H_2S}}{x_{H_2S}} (x_{H_2S} \rightarrow 0)$ where f_{H_2S} is the fugacity of H_2S in the gas phase and x_{H_2S} the mole fraction of H_2S in the liquid phase.				
AUXILIARY	INFORMATION			
METHOD/APPARATUS/PROCEDURE	SOURCE AND PURITY OF MATERIALS			
Henry's constants were calculated from retention volumes measured with a modified 204 Series Pye- Unicam gas chromatograph. Helium was used as carrier gas and the support material was PTFE. Further	 from Cambrian Gases, London; 97.5 - 99.9% pure. from Aldrich Chemicals, Gillingham, U.K.; re-distilled. 			
details are given in refs. 1 - 3. The author noted that the Henry's constant which he reported for dissolution in N-methylpyrolidone	ESTIMATED ERROR $\delta T/K = \pm 0.05$; $\delta H/H = \pm 0.05$ (author)			
at 298 K was 16-20% lower than literature values and suggested	REFERENCES :			
that the discrepancy could be due to adsorption at the gas-liquid interface in these chromatographic measurements.	 Conder, J.R.; Young C.L., "Physicochemical Measurements by Gas Chromatography", Wiley, Chichester, U.K. 			
	<pre>2. Ng, S.; Harris, H.G.; Prausnitz, J.M. J. Chem. Eng. Data <u>1969</u>, 14, 482.</pre>			
	3. Lin, P.J.; Parcher, J.F. J. Chromatogr. Sci. <u>1982</u> , 20, 33.			

COMPONENTS:		ORIGINAL MEASUREMENTS:
		Härtel, G.H.
1. Hydrogen sulfide; H ₂ S; [7783-06-4]	J. Chem. Eng. Data <u>1985</u> , 30,	
2. 18-Methyl-2,5,8,11,14,1 hexaoxanonadecane (pent glycol methyl isopropyl C ₁₄ H ₃₀ O ₆ ; [63095-29-4]	aethylene	57-61.
VARIABLES:		PREPARED BY:
Temperature		P.G.T. Fogg
	enry's con ^H H2S ^{/bar}	stant Mole fraction solubility
293.15 313.15 333.15 353.15 373.15	2.804 4.859 6.667 11.739 17.921	0.361 0.208 0.152 0.086 0.057
Henry's constant is given by		essure
$H_{H_2S} = -$	mole fract	ion solubility
solubility with variation of	pressure e outside	that the variation of mole fraction was linear to 1.013 bar. (Values the range for which linearity has
	AUXILIARY	INFORMATION
METHOD / APPARATUS / PROCEDURE :		SOURCE AND PURITY OF MATERIALS:
	b -	1. From Matheson, Heusenstamm, FRG;
Absorption was found from t decrease in pressure when a volume of gas came into con	known	minimum purity 99.5%.
a known mass of degassed so Pressure changes were found of a transducer with a merc	lvent. by use ury	
Pressure changes were found of a transducer with a merc manometer to provide a refe	lvent. by use ury	
Pressure changes were found of a transducer with a merc	lvent. by use ury	ESTIMATED ERROR:
Pressure changes were found of a transducer with a merc manometer to provide a refe	lvent. by use ury	
Pressure changes were found of a transducer with a merc manometer to provide a refe	lvent. by use ury	ESTIMATED ERROR:

COMPONENTS :	ORIGINAL MEASUREMENTS:			
<pre>1. Hydrogen sulfide; H₂S; [7783-06-4]</pre>	Wolfer, W.; Schwarz, E.; Vodrazka, W.; Volkamer, K.			
2. Sepasolv MPE [†]	<i>Oil Gas J.</i> <u>1980</u> , 78(3), 66-70.			
VARIABLES:	PREPARED BY:			
Temperature	P.G.T. Fogg			
EXPERIMENTAL VALUES:				
The authors stated that BASF had developed Sepasolv MPE, a special mixture of oligoethylene glycol methyl isopropyl ethers with a mean relative molecular mass of 316. Solubilities of several gases were presented on a small scale graph with solubility, α , in units of m^3/m^3 bar, plotted against temperature. No experimental points were shown. The solubility of H ₂ S was plotted over the temperature range -5 °C to 145 °C. The compiler found that the line plotted for this gas fits the equation:				
	- 2.24 + 1090 K/T			
The compiler considers that α /pressur reduced to 273.15 K and 1 bar (or alt volume of solvent at the temperature	ernatively 1 atm), absorbed by one			
The pressure and temperatures at which measurements were made was not stated although the graphical information was intended to show behaviour of the solvent from low pressures to pressures greater than 1 bar. Use of the data implies an assumption that the reduced volume of gas absorbed is proportional to partial pressure of gas. The higher the pressure the greater the errors introduced by this assumption.				
AUXILIARY	INFORMATION			
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:			
No information.	No information.			
	ESTIMATED ERROR:			
	$\delta \alpha / \alpha = \pm 10$ % (estimated by the compiler)			
	REFERENCES:			

	· · · · · · · · · · · · · · · · · · ·	
	ORIGINAL MEASUREMENTS:	
2 ^{5;} C ₄ H ₈ 0;		-
.15	PREPARED BY: W. Hayduk	
Ed ad a web la a mu		Mala Russidan l
		Mole Fraction ¹
	79.82 30.60	0.222 0.1014
s for ∆G° and	$\ln x_1$ and table of	sed to determine smoothed values:
10 ⁻⁴ ∆G°/J mc 3.250 3.921 4.592 5.264 5.600	$\begin{array}{c} x_{1} \\ 0.2220 \\ 0.1739 \\ 0.1385 \\ 0.1121 \\ 0.1014 \end{array}$	
AUXILIARY	INFORMATION	······
	SOURCE AND PURITY OF M	ATERIALS;
ng a glass Degassed s while at a an absorption ouret. A as obtained d syringe the end of ed saturated. at atmosphe- aret by	minimum purity 2. Canlab. Baker of minimum spe	99.5 per cent. analyzed grade cified purity
	$C_4H_80;$ $C_4H_80;$ 15 15 15 a/c	J. Chem. Eng. Data $C_4H_80;$ J.J.SolutionS

COMPONENTS:		ORIGINAL MEASUREMEN	TG ·	
	ļ	ORIGINAL ILADORIEN	10.	
<pre>1. Hydrogen sulfide; H₂S; [7783-06-4]</pre>		Gerrard, W. J. Appl. Chem. Biotechnol. <u>1972</u> , 22, 623-650.		
<pre>[7783-06-4] 2. 1,4-Dioxane; C₄H₈O₂; [123-91-1]</pre>				
VARIABLES:		PREPARED BY:		
Temperature		P.G.T. Fo	aa	
EXPERIMENTAL VALUES:				<u></u>
T/K P(total)/mmHg	P(total)/bar	Mole ratio	Mole	fraction of H ₂ S [*]
283.15 752	1.003	0.147		0.128
293.15 752	1.003	0.100		0.091
				·
	AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDURE:	AUXILIARY	INFORMATION SOURCE AND PURITY (OF MATE	ERIALS :

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>1. Hydrogen sulfide; H₂S; [7783-06-4]</pre>	Linford, R.G.; Thornhill, D.G.T. J. Chem. Thermodynamics <u>1985</u> , 17,
2. Crown Ethers	701-702.
VARIABLES:	PREPARED BY:
	P.G.T. Fogg
EXPERIMENTAL VALUES:	
Crown ether	Mole fraction of H ₂ S in liquid, × _{H2} S
1,4,7,10-Tetraoxacyclododecane; (12-crown-4); C ₈ H ₁₆ O ₄ ; [294-93-9]	0.31
1,4,7,10,13-Pentaoxacyclopentadecane; (15-crown-5); C ₁₀ H ₂₀ O ₅ ; [33100-27-5]	0.33
T/K = 295.2	
P/bar = 1.01325	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: Solubilities were determined by a method based upon that described by Gerrard (1) who measured increases in weight when gases were bubbled through solvents under test. In the case of these systems equilibrium was reached in 0.2 h.	 SOURCE AND PURITY OF MATERIALS: 1. supplied by Cambrian Chemicals; purity 99.6 mole %. 2. from Borregaard, Sarpsburg, Norway and supplied by Trafford Chemicals, Altrincham, U.K.
	ESTIMATED ERROR:
	REFERENCES:
	1. Gerrard, W.
	J.Appl.Chem.Biotechnol. <u>1972</u> , 22, 623.
L	

ł

ł

ł

COMPONENTS:			ORIGINAL MI	EASUREMENTS:		
1. Hydrogen s	1. Hydrogen sulfide; H ₂ S; [7783-06-4]			a, S.F.; Bondareva, T.I.;		
2. 4-Methyl-] (propylene [108-32-7]	carbonate		Zubchenko, Yu. P. Khim. Prom. <u>1966</u> , (10), 753-4.			
VARIABLES:			PREPARED B	v.		
Temper	Temperature, pressure			C.L. Young.		
EXPERIMENTAL VAL	UES:		α ⁺	Mole fraction of		
т/к	P/mmHg	P/kPa	vol/vol	hydrogen sulfide in liquid, ^{xx} H ₂ S		
273.15	200 400 600 760	26.7 53.3 80.0 101	5.46 11.2 16.7 20.9	0.0206 0.0408 0.0596 0.0730		
288.15	200 400 600 760	26.7 53.3 80.0 101	3.59 7.00 10.4 12.8	0.0138 0.0266 0.0386 0.0480		
298.15	200 400 600 760	26.7 53.3 80.0 101	2.90 5.60 8.30 10.4	0.0112 0.0218 0.0314 0.0380		
313.15	200 400 600 760	26.7 53.3 80.0 101	2.00 3.90 5.65 6.90	0.0080 0.0150 0.0214 0.0264		
and 1	+ appears to be volume of gas reduced to T/K = 273.15 and P = 1 atmosphere absorbed by unit volume of liquid (measured at room temperature).					
		AUXILIARY	INFORMATION			
METHOD/APPARATUS	/PROCEDURE:		SOURCE AND	PURITY OF MATERIALS:		
Glass equilik magnetic stin liquid analys hydrogen sulf source and re	rer. Samp sed by stri ide. Deta	les of pping out	N	o details given.		
				ERROR: ± 0.1 ; $\delta P/kPa = \pm 1.0$; $\delta x_{H_2S} =$ timated by compiler).		
				: derei, E.R.;Zel'venskii, Ya.D. ovskii, F.P.		
			Khim	. Prom. <u>1960</u> , 370.		

001/201000				
COMPONENTS:		00 00 47	ORIGINAL MEASUREMENTS:	
1. Hydroge	en sulfide; H ₂ S; [77	83-06-41	Lenoir, J-Y.; Renault, P.; Renon, H.	
	y1-1,3-dioxolan-2-on lene Carbonate); C⊾H 2-7]		J. Chem. Eng. Data; <u>1971</u> , 16, 340-2	
WARTART PC				
VARIABLES:			PREPARED BY:	
Te	mperature		C.L. Young	
EXPERIMENTAL		Henry's ^H H ₂ S /	Constant Mole fraction at 1 atm* atm ^x H ₂ S	
	298.15	20.9	0.0478	
	323.15	33.8	0.0296	
	343.15	40.1	0.0249	
* Calcula ie. x _{H2}	ted by compiler assu _S (l atm) = 1/H _{H2} S	uming a l	inear function of $P_{H_2S} vs x_{H_2S'}$	
		AUXILIARY	INFORMATION	
1	ATUS/PROCEDURE:		SOURCE AND PURITY OF MATERIALS:	
	onal gas-liquid chro it fitted with a the		(1) L'Air Liquide sample, minimum purity 99.9 mole per cent.	
conductivi carrier ga Henry's la from the r applies to of gas and difference l atm. pres	ty detector was used s was helium. The v w constant was calcu etention time. The very low partial pr there may be a subs from that measured	l. The value of value value cessures stantial at so	<pre>(2) Touzart and Matignon or Serlabo sample, purity 99 mole per cent.</pre>	
of Henry's	constant since surf was not allowed for	ace	ESTIMATED ERROR:	
	ts possible existence		$\delta T/K = \pm 0.1; \delta H/atm = \pm 6\%$ (estimated by compiler).	
			REFERENCES :	

•

COMPONENTS:	·····	ORIGI	NAL MEASUREMENTS:	
	ydrogen sulfide; H ₂ S; [7783-06-4]		Isaacs, E.E.; Otto, F.D.; Mather, A.E.	
<pre>2. 4-Methyl-1,3-dioxolan-2-one, (propylene carbonate); C₄H₆O₃; [108-32-7]</pre>		one, Car	Can.J.Chem.Eng. <u>1977</u> , 55, 751 - 752.	
VARIABLES:		PREP	ARED BY:	
Temperature			P.G.T. Fogg	
EXPERIMENTAL VAL	UES:		·······	
т/к	P _{H₂S} /kPa H	Mole ratio in liquid 2S/propylene ca	Mole fraction [*] Arbonate ^X H ₂ S	
313.2 373.2 * calculated	2378.4 2140.9 1430.7 616.2 244.7 4960.0 3594.4 2189.1 639.1 184.7 by the compile	2.631 1.943 0.943 0.231 0.062 1.202 0.622 0.308 0.062 0.0066	0.725 0.660 0.485 0.188 0.058 0.546 0.383 0.235 0.058 0.0066	
		AUXILIARY INFO	RMATION	
METHOD / APPARATUS	/PROCEDURE:	SOUR	CE AND PURITY OF MATERIALS:	
METHOD/APPARATUS/PROCEDURE: The equilibrium cell consisted of a Jerguson gauge with a 250 cm ³ gas reservoir. Temperatures were measured by thermocouples and controlled to ± 0.5 K by an air-bath. Pressures were measured by a Heise Bourdon tube gauge. The cell was charged with solvent. H ₂ S was added to give an appropriate pressure. Nitrogen was added, when necessary, to ensure that total pressure > 350 kPa. Gases were circulated by a magnetic pump for at least 8 h. The gas phase was analysed by gas chromatography. Samples of the liquid phase were withdrawn, heated at barometric pressure and the quantity of gas evolved found from P-V-T values.		ted of a m ³ gas 1. are and 2. basured by The cell 2. The cell 2. 4. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5	no information from Eastman Kodak Co.; minimum purity 98%. MATED ERROR: $\Gamma/K = \pm 0.5$ (mole ratio) = ± 0.02 or 4%, whichever is the larger (authors). RENCES:	

COMPONENTS:	ORIGINAL MEASUREMENTS:		
 Hydrogen sulfide; H₂S; 	Rivas, O.R.; Prausnitz, J.M.		
[7783-06-4]			
2. 4-Methyl-1,3-dioxolan-2-one, (Propylene carbonate); C ₄ H ₈ O ₃ ;	Am. Inst. Chem. Engnrs. J. 1979, 25, 975-984.		
[108-32-7]	<u>1919</u> / 203 913 904		
-			
VARIABLES:	PREPARED BY:		
Temperature	C.L. Young		
EXPERIMENTAL VALUES:			
EXPERIMENTAL VALUES:			
T/K Henry's consta	nt,H Mole fraction of +		
/MPa	hydrogen sulfide		
	in liquid, $x_{\rm H_2S}$		
263.15 1.17	0.0866		
298.15 2.56	0.0396		
323.15 3.91	0.0259		
348.15 5.55	0.0183		
373.15 7.48	0.0136		
+ at a partial pressure of	101.3 kPa calculated by		
compiler assuming Henry's			
pressure.			
AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:		
Volumetric apparatus with a fused quartz precision bourdon pressure	1. and 2. Purity at least 99 mole per cent.		
gauge. Solubility apparatus	93 more per cent.		
carefully thermostatted. Solvent			
degassed in situ. Apparatus			
described in ref. (1) and modificat-			
ions given in source.			
	ESTIMATED ERROR:		
	$\delta T/K = \pm 0.05; \ \delta x_{H_2S} = \pm 1\%.$		
	_		
	DEFEDENCIES		
	REFERENCES:		
	1. Cukor, P.M.; Prausnitz, J.M.		
	Ind. Eng. Chem. Fundam. <u>1971</u> , 10, 638.		

,

COMPONENTS :	· · ·	ORIGINAL MEASUREMENTS:	
COMPONEN IS:		ORIGINAL MEASUREMENTS:	
[7783-		Short, I.; Sahgal J. Chem. Eng. Date	, A.; Hayduk, W. z <u>1983</u> , 28, 63-66.
[64-19	acid; C ₂ H ₄ 0 ₂ ; -7]		
VARIABLES: T/K	: 298.15, 333.15	PREPARED BY:	
	: 101.325	W. Hayduk	
EXPERIMENTAL VAL	UES:	I	
T/K	Ostwald Coefficient ¹ B	Bunsen Coefficient ²	Mole Fraction ¹
		(cm ³ (STP) cm ⁻³ atm ⁻¹	$\frac{10^4 x_1}{10^4 x_2}$
298.15 333.15	12.47 6.97	11.42 5.72	287 150.7
¹ Original d			
1	by compiler		
The mole find	raction solubility of the ing equations for ΔG° and	original data was up $\ln x$ and table of	used to determine
ΔG°/J mol	$x_1^{-1} = -RT \ln x_1 = 794.52 T$	r = 150015	
	$x_{1} = 1828.2/T - 9.6826$		
	1		
	T/K10 ⁻⁴ ΔG°/J π	$10^{1} \qquad 10^{4} x_{1}$	
	298.15 8.687	287.0	
	303.159.084313.159.879	259.4 214.0	
	323.15 10.67	178.6	
	333.15 11.47	150.7	
	AUXILIARY	INFORMATION	
METHOD/APPARATUS	S/PROCEDURE:	SOURCE AND PURITY OF MA	ATERIALS:
apparatus was solvent cont	c method using a glass as employed. Degassed tacted the gas while	minimum purity	ic. Specified y 99.5 per cent.
	a thin film, at a te, through an absorption	2. Canlab. Spect purity 99.7 pe	
spiral into	a solution buret. A		
	lvent flow was obtained a calibrated syringe		
pump. The	solution at the end of was considered saturated.	}	
Dry gas was	maintained at atmosphe-	ESTIMATED ERROR:	
	e in a gas buret by y raising the mercury	$\delta T/K = 0.1$	
level in the	e buret at an adjustable solubility was calculated	$\delta_{m}/r = 0.01$	
from the con	nstant slope of volume		······
of gas disso solvent inje	olved and volume of ected.	REFERENCES:	
-		1. Clever, H.L.;	
two stage va	as accomplished using a accuum process described	Saylor, J.H.;	-
by Clever et		J. Phys. Chem. 1078.	1337, 01,
L		<u> </u>	

į

COMPONENTS :			ORIGINAL MEASU	REMENTS .	
			Gerrard, W.		
[7783-06-	[7783-06-4]		J. Appl. Ch	em. Biotechnol., <u>1972</u> . 22,	
(Acetic a	2. Acetic acid anhydride; (Acetic anhydride); C ₄ H ₆ O ₃ ; [108-24-7]		623-650		
VARIABLES:			PREPARED BY:		
Temperatur	e		C.L. Young		
EXPERIMENTAL VAL	UES:				
т/к	P*/mmHg	P*/kPa	Mole ratio	Mole fraction [†] of hydrogen sulfide in liquid, <i>x</i> _{H2} S	
265.15	758	101.1	0.151	0.131	
267.15	758	101.1	0.144	0.126	
273.15	758	101.1	0.120	0.107	
283.15	758	101.1	0.085	0.078	
293.15	758	101.1	0.066	0.062	
	···	AUXILIARY	INFORMATION		
METHOD/APPARATUS	/PROCEDURE:		SOURCE AND PUR	ITY OF MATERIALS:	
Hydrogen sulfide was bubbled into a weighed amount of component 2. in a bubbler tube as described in detail in the source. The amount of gas absorbed at equilibrium and at the observed temperature and pressure was determined by weighing. Pressure was measured with a mercury manometer. The amount of gas absorbed at successively lower pressures was measured. Eventually the pressure was reduced to the vapor pressure of		and atteste	components were purified d by conventional methods.		
component 2.	The refractiv	ve index	ESTIMATED ERRO	DR:	
	spectrum of the be essentially		$\delta T/K = \pm 0.2$; $\delta x_{\text{H}_2 \text{S}} = \pm 4\%$	
			REFERENCES:		

COMPONE	ENTS:			ORIGINAL MEASURE	EMENTS:
	Hydrogen sulfide; H ₂ S; [7783-06-4]			Gerrard, W.	
	Hexanoic acid; C ₆ H ₁₂ O ₂ ; [142-62-1]			J. Appl. Chen 623-650	n. Biotechnol., <u>1972</u> , 22,
VARIABLES:				PREPARED BY:	
Temperature				C.L. Young	
EXPERIM	MENTAL VALU	ES:			
т/	′κ	P*/mmHg	<i>P*/</i> kPa	Mole ratio	Mole fraction ⁺ of hydrogen sulfide in liquid, ^x H ₂ S
26	5.15	766	102.1	0.116	0.104
26	57.15	766	102.1	0.109	0.098
27	3.15	766	102.1	0.089	0.081
28	33.15	766	102.1	0.069	0.065
29	3.15	766	102.1	0.057	0.054
AUXILIARY INFORMATION					
METHOD/APPARATUS/PROCEDURE: Hydrogen sulfide was bubbled into a weighed amount of component 2. in a bubbler tube as described in detail in the source. The amount of gas absorbed at equilibrium and at the observed temperature and pressure was determined by weighing. Pressure was measured with a mercury manometer.			2. in a n detail of gas at the essure Pressure		

COMPONENTS :	·		ORIGINAL MEASUREMEN	NTS:	
1. Hydrogen sulfide; H ₂ S;		Gerrard, W:			
<pre>[7783-06-4] 2. 2-Hydroxybenzoic acid, methyl ester (methyl salicylate); C₈H₈O₃; [119-36-8]</pre>			J. Appl. Chem. Biotechnol. <u>1972</u> , 22, 623-650.		
VARIABLES:			PREPARED BY:		
Temperature		P.G.T. Fo	933		
EXPERIMENTAL VA	LUES:		L	<u> </u>	
T/K P(to	otal)/mmHg	P(total)/ba	r Mole ratio	Mole fraction of H_2S^* $^{x}H_2S$	
265.15	753	1.004	0.147	0.128	
267.15	753	1.004	0.136	0.120	
273.15	753	1.004	0.111	0.100	
283.15	753	1.004	0.082	0.076	
293.15	753	1.004	0.064	0.060	
* calculated					
* calculated					
* calculated		AUXILIARY	INFORMATION		
* calculated	JS/PROCEDURE :	AUXILIARY	INFORMATION SOURCE AND PURITY	OF MATERIALS;	
METHOD/APPARATE Hydrogen sul	lfide was bubbl	ed into a	SOURCE AND PURITY It was stated	that "All materials	
METHOD/APPARATU Hydrogen sul weighed amou	lfide was bubbl ant of componen	ed into a t 2 in a	SOURCE AND PURITY It was stated purified and a	that "All materials ttested by	
METHOD/APPARATI Hydrogen sul weighed amou bubbler tube	lfide was bubbl int of componen as described	ed into a t 2 in a in detail	SOURCE AND PURITY It was stated	that "All materials ttested by	
METHOD/APPARATE Hydrogen sul weighed amou bubbler tube in the source	lfide was bubble ant of componen e as described ce. The amount	ed into a t 2 in a in detail of gas	SOURCE AND PURITY It was stated purified and a	that "All materials ttested by	
METHOD/APPARATE Hydrogen sul weighed amou bubbler tube in the source absorbed at	lfide was bubbl int of componen as described	ed into a t 2 in a in detail of gas r the	SOURCE AND PURITY It was stated purified and a	that "All materials ttested by	
METHOD/APPARATU Hydrogen su weighed amou bubbler tube in the source absorbed at observed ter	lfide was bubble ant of componen e as described ce. The amount equilibrium fo	ed into a t 2 in a in detail of gas r the ressure	SOURCE AND PURITY It was stated purified and a	that "All materials ttested by	
METHOD/APPARATI Hydrogen sul weighed amou bubbler tube in the sourc absorbed at observed ter was found by	lfide was bubble ant of componen e as described ce. The amount equilibrium fo mperature and p	ed into a t 2 in a in detail of gas r the ressure essure	SOURCE AND PURITY It was stated purified and a	that "All materials ttested by	
METHOD/APPARATI Hydrogen sul weighed amou bubbler tube in the sourc absorbed at observed ter was found by	lfide was bubble ant of componen e as described ce. The amount equilibrium fo mperature and p y weighing. Pr	ed into a t 2 in a in detail of gas r the ressure essure	SOURCE AND PURITY It was stated purified and a conventional m ESTIMATED ERROR:	that "All materials ttested by	
METHOD/APPARATI Hydrogen sul weighed amou bubbler tube in the source absorbed at observed ter was found by was measured	lfide was bubble ant of componen e as described ce. The amount equilibrium fo mperature and p y weighing. Pr	ed into a t 2 in a in detail of gas r the ressure essure	SOURCE AND PURITY It was stated purified and a conventional m	that "All materials attested by methods."	
METHOD/APPARATI Hydrogen sul weighed amou bubbler tube in the source absorbed at observed ter was found by was measured	lfide was bubble ant of componen e as described ce. The amount equilibrium fo mperature and p y weighing. Pr	ed into a t 2 in a in detail of gas r the ressure essure	SOURCE AND PURITY It was stated purified and a conventional m ESTIMATED ERROR: $\delta x_{H_2S} = \pm 4$	that "All materials attested by methods."	
METHOD/APPARATI Hydrogen sul weighed amou bubbler tube in the source absorbed at observed ter was found by was measured	lfide was bubble ant of componen e as described ce. The amount equilibrium fo mperature and p y weighing. Pr	ed into a t 2 in a in detail of gas r the ressure essure	SOURCE AND PURITY It was stated purified and a conventional m ESTIMATED ERROR: $\delta x_{H_2S} = \pm 4$	that "All materials attested by methods."	
METHOD/APPARATI Hydrogen sul weighed amou bubbler tube in the source absorbed at observed ter was found by was measured	lfide was bubble ant of componen e as described ce. The amount equilibrium fo mperature and p y weighing. Pr	ed into a t 2 in a in detail of gas r the ressure essure	SOURCE AND PURITY It was stated purified and a conventional m ESTIMATED ERROR: $\delta x_{H_2S} = \pm 4$	that "All materials attested by methods."	

Hydrogen Sulfide in Non-aqueous Solvents

COMPONENTS :		ORIGINAL MEASUREMENTS:	
[7783-06-4] (2) 2-Propanone	llfide; H ₂ S] e (acetone); C ₃ H ₆ 0;	Short, I.; Sahgal, J. Chem. Eng. Data	_
[67-64-1]	36		
VARIABLES: T/K: 263	.15,298.15	PREPARED BY:	
<i>P/</i> kPa: 101.		W. Hayduk	
EXPERIMENTAL VALUES:			
		unsen Coefficient ² cm ³ (STP)cm ⁻³ atm ⁻¹	Mole Fraction ¹
263.15 298.15	57.7 24.6	59.89 22.54	0.1607 0.0698
$\ln x_1 = -$	$-RT \ln x_{1} = 732.91 T$ $1869.3/T - 8.9319$ $T/K \qquad 10^{-4}\Delta G^{\circ}/J mo$ $263.15 \qquad 3.948$ $273.15 \qquad 4.681$ $283.15 \qquad 5.414$ $293.15 \qquad 6.146$ $298.15 \qquad 6.513$	$\frac{1^{-1}}{0.1607}$ 0.1607 0.1239 0.0973	
	AUXILIARY	INFORMATION	<u> </u>
METHOD/APPARATUS/PROC	CEDURE :	SOURCE AND PURITY OF MA	TERIALS:
apparatus was en solvent contacte flowing as a thi constant rate, t spiral into a so constant solvent by means of a ca pump. The solut the spiral was c	chrough an absorption olution buret. A flow was obtained alibrated syringe tion at the end of considered saturated. atained at atmosphe-	2. Canlab. Speci purity 99.5 pe	99.5 per cent. fied minimum
mechanically rai level in the bur rate. The solub	sing the mercury et at an adjustable pility was calculated at slope of volume and volume of	ESTIMATED ERROR: $\delta T/K = 0.1$ $\delta x_1/x_1 = 0.01$ REFERENCES:	
	complished using a a process described (1).	 Clever, H.L.; Saylor, J.H.; J. Phys. Chem. 1078. 	Gross, P.M.

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>1. Hydrogen sulfide; H₂S; [7783-06-4]</pre>	Lenoir, J-Y.; Renault, P.; Renon, H.
2. Phenol; C ₆ H ₆ O; [108-95-2]	J. Chem. Eng. Data, <u>1971</u> , 16, 340-3
VARIABLES:	PREPARED BY:
	C. L. Young
EXPERIMENTAL VALUES:	L
T/K Henry's consta H ₂ S ^{/atm}	ant Mole fraction at 1 atm* ^x H ₂ S
323.2 50.0	0.0200
$x_{H_2S}(1 \text{ atm}) = 1/H_{H_2S}$	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: A conventional gas-liquid chromato- graphic unit fitted with a thermal conductivity detector was used. The carrier gas was helfum. The value of Henry's law constant was calculated from the retention time. The value applies to very low partial pressures of gas and there may be a substantial difference from that measured at 1 atm. pressure. There is also considerable uncertainty in the value of Henry's constant since surface adsorption was not allowed for although its possible existence was noted.	cent.

.

COMPONENTS:		ORIGINAL MEASUREMENTS:
1. Hydrogen sul	lfide: H ₂ S:	Kragas, T.K.; Kobayashi, R.
[7783-06-4] 2. Hydrogen; H ₂		
		Fluid Phase Equilibria <u>1984</u> , 16, 215-236.
3. Dibenzofurar	$1; C_{12}H_{8}O; [132-64-9]$	
VARIABLES:		DEPART BY
		PREPARED BY:
Pressure of hyd	irogen	P.G.T. Fogg
EXPERIMENTAL VALUES	5:	······································
	р (мр.	
T/K	P _{H2} /MPa	Henry's Constant for H ₂ S at infinite dilution / MPa
373.2	0.731	6.68
	1.524 2.551	3.34 2.03
	3.434 4.440	1.51 1.17
	5.102	0.986
	5.723	0.907
398.2	1.703 2.165	3.62 2.91
	2.792	2.32
	3.833 4.681	1.74 1.47
	4.902 5.881	1.38 1.17
	AUXILIARY	INFORMATION
METHOD / APPARATUS / P	ROCEDURE:	SOURCE AND PURITY OF MATERIALS:
	e chromatographic	1. from Scientific Gas Products;
	ed in ref. (1) was	99.6% pure. 2. from Linde Division of Union
used. Hydrogen pressures was t	h at various the carrier gas.	2. from Linde Division of Union Carbide Corporation.
P		3. from Aldrich Chem. Co.; purified
		to > 99.95% by zone refining.
		ESTIMATED ERROR:
		δ(Henry's law constant) = ± 3.6%
		REFERENCES:
		1. Kragas, T.K.; Pollin, J.;
		Martin, R.J.; Kobayashi, R.
		Fluid Phase Equilibria <u>1984</u> , 16, 205.
		<u>1904</u> , 10, 205.

COMPONENTS :	ORIGINAL MEASUREMENTS:
 Hydrogen sulfide; H₂S; [7783-06-4] Various liquids 	Devyatykh, G.G.; Ezheleva, A.E.; Zorin, A.D.; Zueva, M. V. Zh. Neorgan. Khim. <u>1963</u> , 8(6), 1307-1313. Russ. J. Inorg. Chem. <u>1963</u> , 8, 678-682.
VARIABLES:	PREPARED BY:
Temperature, pressure	P.G.T. Fogg
EXPERIMENTAL VALUES:	
	ribution constant Heat of solution H ₂ S / vol.solvent / kcal mol ⁻¹
2-Ethoxyethanol; C ₄ H ₁₀ O ₂ ; [110-80-5]	12.5 - 0.9
Nitrobenzene; C ₆ H ₅ NO ₂ ;	12.4 - 2.29
[98-95-3] 2-Furancarboxaldehyde;	17.3 - 3.5
$C_5H_4O_2$; [98-01-1] 1,1'-Oxybis[2-chloroethane];	10.5 - 3.3
C ₄ H ₈ Cl ₂ O; [111-44-4] 1,2-Benzenedicarboxylic acid, didecy]	lester; 34.3 - 3.6
C ₂₈ H ₄₆ O ₄ ; [84-77-5] Triethoxysilane;	3.52 - 4.7
$C_6H_{16}O_3Si;$ [998-30-1] Silicic acid, tetraethyl ester;	5.21 - 4.5
$C_{8}H_{28}O_{4}Si;$ [78-10-4]	18.32 - 2.6
Liquid paraffin	
Silicone 702-DF	37.0 - 3.0
Silicone PFMS-4F	8.4 - 2.8
Silicone VKZh-94B	16.5 - 5.6
Temperature = 293.2	2 K
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
A chromatographic method was used.	1. from FeS and HCl; purified by
The support phase consisted of	vacuum distillation.
Nichrome spirals. The carrier gas was either nitrogen or hydrogen. the volume, V_1 , of the liquid phase was calculated from the weight of the column before and after filling with liquid and allowing to drain.	H ₂ & N ₂ : passed through activated carbon and through molecular sieve.
The free volume, V _g , was equated	ESTIMATED ERROR:
with the retention volume for hydrogen gas. the distribution	$\delta T/K = \pm 0.5$ (authors)
constant, K, was calculated from the	
James and Martin equation i.e.	REFERENCES:
$V_{R} = V_{g} + KV_{1}$	
where V_{R} is the retention volume for hydrogen sulfide.	

.

ł

COMPONENTS:	DRIGINAL MEASUREMENTS:	
[7783-06-4]	Devyatykh, G.G.; Ezheleva, A.E.; Zorin, A.D.; Zueva, M. V.	
	Zh. Neorgan. Khim. <u>1963</u> , 8(6), 1307–1313.	
	Russ. J. Inorg. Chem. <u>1963</u> , 8, 578-682.	
	578-882.	
EXPERIMENTAL VALUES:		
Distribution constants were measured be total pressure of hydrogen sulfide and (1.013 bar). In the case of measuremen pressure of hydrogen sulfide at the inl 21.9 mmHg. The partial pressure at the to 20.7 mmHg depending upon the inlet p column. The corresponding partial pres solvents were not stated but are likely	carrier gas of about 760 mmHg ts on 2-ethoxyethanol the partial et to the column varied from 1.4 t exit to the column varied from 0. ressure and the length of the sures during experiments on other	
The authors stated that, at a fixed tem constants did not depart from the mean mean values were reported at one temper said to have been calculated from the v. with temperature, were given. The deta given by the authors but the compiler c of the form: $\ln K = (-\Delta H/RT) +$	values by more than ± 3%. These ature only, but heats of solution, ariation of distribution constants il of these calculations were not onsiders that they used an equation	5
where K is the distribution constant fo of solution of hydrogen sulfide in the solvent. On the basis of this equation range 278.2 K to 323.2 K may be estimat corresponding heat of solution.	solvent and A is a constant for the distribution constants in the	1e
The equation for K may be written in th	e form:	
$K = \exp \left[A + ($	B/T)]	
The following values of A and B have be	en calculated by the compiler:	
Solvent	А В/К	
2-Ethoxyethanol	0.980 453	
Nitrobenzene	- 1.415 1153	
2-Furancarboxaldehyde	- 3.160 1762	
1,1'-Oxybis[2-chloroethane]	- 3.316 1662	
1,2-Benzenedicarboxylic acid, didecyl e		
Triethoxysilane	- 6.813 2367	
Silicic acid, tetraethyl ester	- 6.077 2266	
Liquid paraffin	- 1.557 1309	
Silicone 702-DF	- 1.541 1511	
Silicone PFMS-4F	- 2.680 1410	
Silicone VKZh-94B	- 6.814 2820	
In the opinion of the compiler, these d equated with Ostwald coefficients unless equilibrium was established between gas conditions of the experiment. In addit	istribution constants can not be s the assumption is made that and liquid phases under the	

conditions of the experiment. In addition, possible adsorption of the hydrogen sulfide at the stationary phase / carrier gas interface may have lowered the accuracy of the results.

Tyarogor		Non-aqueous convente	2.0
COMPONENTS:		ORIGINAL MEASUREME	NTS:
<pre>l. Hydrogen sulfide; H₂S; [7783-06-4]</pre>		Bell, R.P.	
2. Substituted methanes		J. Chem. Soc.	<u>1931</u> , 1371-1382.
VARIABLES:		PREPARED BY:	C.L. Young.
EXPERIMENTAL VALUES:		<u> </u>	- ٤
Solvent	T/K	Partition coefficient, s ⁺	Mole fraction [§] of hydrogen sulfide in liquid, ¤ _{H2} S
Tetrachloromethane, (Carbon tetrachloride); CCl ₄ ; [56-23-5]	293.15	10.79	0.0419
Trichloromethane; (Chloroform); CHCl ₃ [67-66-3]		32.8	0.103
Tribromomethane, (Bromoform); CHBr ₃ ; [75-25-2]		16.76	0.0581
in equivalents/litre". § for a partial pressure of	f 101.325	i kPa.	
	AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE:	<u></u>	SOURCE AND PURITY	OF MATERIALS:
Volumetric apparatus consist: bulb (~50cm ³ capacity) extended the top as a graduated tube a joined at bottom to a capilla u-tube. Liquid saturated with at atmospheric pressure. Gas withdrawn in a current of ain absorbed in sodium hydroxide hydrogen peroxide. Excess hy peroxide removed by heating a excess sodium hydroxide titra	ed at and ary th gas s r, and ydrogen and	sulfide on 2. Merck and B over calciu	y reaction of sodium hydrochloric acid. Kahlbaum samples dried um chloride and ly distilled.
		ESTIMATED ERROR:	·······
		$\delta T/K = \pm 0.1$	1; $\delta x_{H_2S} = \pm 1$ %.
			by compiler)
		REFERENCES:	

280 Hydrog	en Sumue mit	Non-aqueous Solvents	
COMPONENTS:		ORIGINAL MEASUREMENTS:	:
<pre>1. Hydrogen sulfide; H₂S; [7783-06-4]</pre>		Bell, R.P.	
2. Halogenated ethanes		J. Chem. Soc., <u>1</u>	<u>931</u> , 1371-1382
VARIABLES:		PREPARED BY:	
		С. L.	Young
EXPERIMENTAL VALUES:		D	Mole fraction [§] of
Solvent	т/к	Partition Coefficient, S ⁺	hydrogen sulfide in liquid, ^x H ₂ S
<pre>Pentachloroethane; (Pentachloroethane); C₂HCl₅; [76-01-7]</pre>	293.15	10.63	0.0514
Bromoethane; (Ethyl bromide); C ₂ H ₅ Br; [74-96-4]	293.15	43.3	0.126
l,1,2,2-Tetrachloroethane; (s-Tetrachloroethane); C ₂ H ₂ Cl ₄ ; [79-34-5]	293.15	16.66	0.0702
<pre>1,1,2,2-Tetrabromoethane; (s-Tetrabromoethane); C₂H₂Br₄; [79-27-6]</pre>	293.15	9.49	0.0446
s^+ defined as = 22.4 equivalents/litre" § for a partial pressur	270		lubility in
	AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE:		SOURCE AND PURITY OF	MATERIALS:
Volumetric apparatus consis bulb (~50 cm ³ capacity) ext the top as a graduated tube joined at bottom to a capil tube. Liquid saturated wit atmospheric pressure. Gas in a current of air, absorb sodium hydroxide and hydrog- peroxide. Excess hydrogen removed by heating and exce hydroxide titrated.	ended at and lary U- h gas at withdrawn ed in en peroxide	2. Merck and Kahll over calcium cl fractionally d: tetrachloroetha fractionally d: commercial samp ESTIMATED ERROR:	rochloric acid. baum samples dried hloride and istilled, except ane which was istilled from ple. H ₂ S = ±1%

COMPONENTS:	ORIGINAL MEASUREMENTS:	
 Hydrogen sulfide; H₂S; [7783-06-4] Ethene derivatives 	Bell, R.P. J. Chem. Soc., <u>l</u>	<u>931</u> , 1371-1382
VARIABLES:	PREPARED BY: C. L. Young	
EXPERIMENTAL VALUES:		
Solvent T/K	Partition Coefficient, S^+	Mole fraction ³ of hydrogen sulfide in liquid, x _{H2S}
Tetrachloroethene, 293.15 (Tetrachloroethylene); C ₂ Cl ₄ ; [127-18-4]	8.90	0.0372
Trichloroethene, (Trichloroethylene); C ₂ HCl ₃ ; [79-01-6]	13.16	0.0482
<pre>l,2-Dibromoethane; (Ethylene bromide); C₂H₄Br₂; [106-93-4]</pre>	17.80	0.0608
l,2-Dichloroethane; (Ethylene chloride); C ₂ H ₄ Cl ₂ ; [107-06-2]	23.0	0.0719
§ for partial pressure of 101.325 k	Pa	
AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF	MATERIALS:
Volumetric apparatus consisting of bulb (~ 50 cm ³ capacity) extended at the top as a graduated tube and	-	rochloric acid. baum samples dried hloride and
joined at bottom to a capillary U- tube. Liquid saturated with gas at atmospheric pressure. Gas withdrawn in a current of air, absorbed in sodium hydroxide and hydrogen peroxide. Excess hydrogen peroxide removed by heating and excess sodium hydroxide titrated.	fractionally d ESTIMATED ERROR: $\delta T/K = \pm 0.1; \delta x.$ (estimated by con- REFERENCES:	H ₂ S = ±1%

COMPONENTS :	ORIGINAL MEASUREMENTS:
1. Hydrogen sulfide; H_2S ;	Gerrard, W.
[7783-06-4]	J. Appl. Chem. Biotechnol. <u>1972</u> ,
2. Compounds containing chlorine	22, 623-650.
VARIABLES:	PREPARED BY:
Temperature	P.G.T. Fogg
EXPERIMENTAL VALUES:	
EXFERIMENTAL VALUES:	
T/K P(total)/mmHg P(total)/ba	r Mole ratio Mole fraction of H_2S^*
	×H ₂ S
Trichloromethane (chlo	roform); CHCl ₃ ; [67-66-3]
265.15 765 1.020	0.141 0.124
2,2,2-Trichloroethanol	: CoHaClaO: [115-20-8]
273.15 758 1.011	0.063 0.059
	d; $C_2H_2Cl_2O_2$; [79-43-6]
283.15 758 1.011	0.056 0.053
*	
[*] calculated by the compiler for the	stated total pressure.
AUXILIARY	INFORMATION
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
Hydrogen sulfide was bubbled into a weighed amount of component 2 in a	It was stated that "All materials
bubbler tube as described in detail	purified and attested by conventional methods."
in the source. The amount of gas	conventional methods.
absorbed at equilibrium for the	
observed temperature and pressure	
was found by weighing. Pressure	
was measured with a mercury	ESTIMATED ERROR:
manometer.	$ \delta x = \pm 4 \text{ (author)} $
	H ₂ S
	REFERENCES:

COMPONENTS	:		ORIGINAL MEASUREMEN	TTS:
1. Hydr	ogen sulfide; H ₂ ;	57	Gerrard, W.	
[7783-06-4]		J. Appl. Chem.	Biotechnol. 1972,	
2. Brominated hydrocarbons		22, 623-650.	<u></u> ,	
VARIABLES	:		PREPARED BY:	
Tem	perature		P.G.T. Fo	gg
EXPERIMENT	TAL VALUES:			
т/к	P(total)/mmHg	P(total)/ba	r Mole ratio	Mole fraction of H_2S^* $^{x}H_2S$
	1-Bromobi	ıtane; C₄H₃Br;	[109-65-9]	
265.15	760	1.013	0.156	0.135
	1,2-Dibro	omoethane; C ₂ H	4Br2; [106-93-4]	
284.15	760	1.013	0.083	0.077
293.15	760	1.013	0.062	0.058
	Tribromor	methane (bromo	form); CHBr ₃ ; [7	5-25-2]
283.15	765	1.020	0.082	0.076
293.15	765	1.020	0.0625	0.059
		AUXILIARY	INFORMATION	
METHOD/AP1	PARATUS/PROCEDURE:		SOURCE AND PURITY	OF MATERIALS:
	n sulfide was but			that "All materials
	amount of comportube as describe		purified and a conventional m	-
	source. The amou			
absorbed	d at equilibrium	for the		
1	d temperature and	-		
	nd by weighing.			
was mean manomete	sured with a merc	cury	ESTIMATED ERROR:	
and nome ce	51,		$\delta x_{\rm H_2S} = \pm 4\%$	(author)
1			PEFERENONG	
			REFERENCES :	
			ļ	
ł				

ORIGINAL MEASUREMEN Gerrard, W. J. Appl. Chem. 22, 623-650. PREPARED BY:	Biotechnol. <u>1972</u> ,
J. Appl. Chem. 22, 623-650.	Biotechnol. <u>1972</u> ,
22, 623-650.	Biotechnol. <u>1972</u> ,
PREPARED BY:	
P.G.T. Fog	ıa
r Mole ratio	Mole fraction of H_2S^* $^{x}H_2S$
0.167	0.143
0.156	0.135
0.128	0.113
0.097	0.088
0.080	0.074
INFORMATION	
SOURCE AND PURITY C	OF MATERIALS;
It was stated t	chat "All materials
purified and at	tested by
conventional me	ethods."
ESTIMATED ERROR:	
$\delta x_{\rm H_2S} = \pm 4\%$	(author)
REFERENCES:	
	0.167 0.156 0.128 0.097 0.080 stated total press INFORMATION SOURCE AND PURITY OF It was stated to purified and at conventional me ESTIMATED ERROR: $\delta x_{H_2S} = \pm 4\%$

COMPONENTS :	·····		ODICINAL MEACUD	ENGNOG	
			ORIGINAL MEASUREMENTS: Gerrard, W.		
<pre>1. Hydrogen sulfide; H₂S; [7783-06-4]</pre>					
2. Chlorobenz [108-90-7]				n. Biotechnol., <u>1972</u> , 22,	
	<u></u>				
VARIABLES:			PREPARED BY:		
Temperature			C.L. Young		
EXPERIMENTAL VALU	ES:				
т/к	P*/mmHg	P*/kPa	Mole ratio	Mole fraction ⁺ of hydrogen sulfide in liquid, ${}^{x}_{H_{2}S}$	
265.15	752	100.3	0.124	0.110	
267.15	752	100.3	0.115	0.103	
273.15	752	100.3	0.094	0.086	
283.15	752	100.3	0.075	0.070	
293.15	752	100.3	0.057	0.054	
		AUXILIARY	INFORMATION		
METHOD/APPARATUS/	PROCEDURE:		SOURCE AND PURI	TY OF MATERIALS;	
METHOD/APPARATUS/PROCEDURE: Hydrogen sulfide was bubbled into a weighed amount of component 2. in a bubbler tube as described in detail in the source. The amount of gas absorbed at equilibrium and at the observed temperature and pressure was determined by weighing. Pressure was measured with a mercury manometer. The amount of gas absorbed at successively lower pressures was measured. Eventually the pressure was reduced to the vapor pressure of component 2. The refractive index and infrared spectrum of the liquid showed it to be essentially pure component 2.		and attested			

	·
COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>l. Hydrogen sulfide; H₂S; [7783-06-4] 2. Chlorobenzene; C₆H₅Cl;</pre>	Patyi, L.; Furmer, I. E.; Makranczy, J.; Sadilenko, A. S.; Stepanova, Z. G.; Berengarten, M. G.
<pre>[108-90-7] or Bromobenzene; C₆H₅Br; [108-86-1]</pre>	2h. Prikl. Khim. <u>1978</u> , 51, 1296- 1300.
VARIABLES:	PREPARED BY:
	C. L. Young
EXPERIMENTAL VALUES:	
τ/κ α [†]	Mole fraction of hydrogen sulfide at a partial pressure of 101.325 kPa ^x H ₂ S
Chlorobenzene; C ₆ H ₅ C	1: [108-90-7]
298.15 9.0	0.039
Bromobenzene; C ₅ H ₅ Br	; [108-86-1]
298.15 8.3	0.038
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Volumetric method. Pressure measured when known amounts of gas were added, in increments, to a known amount of liquid in a vessel of known dimensions. Corrections were made for the partial pressure	Purity better than 99 mole per cent as determined by gas chromatography.
of solvent. Details in ref. (1).	ESTIMATED ERROR:
	$\delta T/K = \pm 0.1; \delta \alpha = \pm 4$ % or less.
	REFERENCES: 1. Bodor, E.; Bor, G. J.; Mohai, B.; Sipos, G. Veszpremi. Vegyip. Egy. Kozl. 1957, 1, 55.

ORIGINAL MEASUREMENTS:
Short, I.; Sahgal, A.; Hayduk, W. J. Chem. Eng. Data <u>1983</u> , 28, 63-66.
PREPARED BY:
W. Hayduk
-
The sum of the second
$\begin{array}{ccccccc} 25.85 & 0.1039 & (0.1039)^3 \\ 11.56 & 0.0505 & (0.0505) \\ 6.38 & 0.0294 & (0.0294) \end{array}$
original data was used to determine ln x_1 and table of smoothed values: - 191.80 T ln T - 186400 T - 23.923
$\frac{T/K}{10^{-4} \Delta G^{\circ}/J \text{ mol}^{-1}} \frac{x_1}{2}$
03.15 7.643 0.0463 13.15 8.315 0.0393 23.15 8.891 0.0338
INFORMATION
SOURCE AND PURITY OF MATERIALS:
 Liquid Carbonic. Specified minimum purity 99.5 per cent. Canlab. Baker Analyzed grade of minimum specified purity 99.0 per cent. ESTIMATED ERROR: δT/K = 0.1 δx₁/x₁ = 0.01
<pre>REFERENCES: 1. Clever, H.L.; Battino, R.; Saylor, J.H.; Gross, P.M. J. Phys. Chem. <u>1957</u>, 61, 1078.</pre>

Hydrogen Sulfide in Non-aqueous Solvents

ł

001/0 0110100				
			ORIGINAL MEASUR	CEMENTS:
[7783-06-4]			Gerrard, W.	
2. Bromobenzene; C ₆ H ₅ Br; [108-86-1]			J. Appl. Che 623-650	m. Biotechnol., <u>1972</u> , 22,
VARIABLES:			PREPARED BY:	
			0.1	
Temperature			C.L. Young	
EXPERIMENTAL VA	LUES:			
т/К	P*/mmHg	P*/kPa	Mole ratio	Mole fraction ⁺ of hydrogen sulfide in liquid, x _{H2} S
266.15	752	100.3	0.124	0.110
273.15	752	100.3	0.103	0.093
283.15	752	100.3	0.076	0.071
293.15	752	100.3	0.059	0.056
		AUXILIARY	INFORMATION	
METHOD/APPARATU	S/PROCEDURE:		SOURCE AND PUR	ITY OF MATERIALS:
Hydrogen sulfide was bubbled into a weighed amount of component 2. in a bubbler tube as described in detail in the source. The amount of gas absorbed at equilibrium and at the observed temperature and pressure was determined by weighing. Pressure was measured with a mercury manometer. The amount of gas absorbed at successively lower pressures was measured. Eventually the pressure was reduced to the vapor pressure of		and attested	mponents were purified by conventional methods.	
and infrared	The refract spectrum of	the liquid		$\delta x_{\rm H_2S} = \pm 4\%$
component 2.	be essential	ry pure	,,	H ₂ S
			REFERENCES:	
			I	

.

COMPONENTS:				
<pre>1. Hydrogen sulfide; H₂S; [7783-06-4]</pre>				
<pre>2. Iodobenzene; C₆H₅I; [591-50-4]</pre>			m. Biotechnol., <u>1972</u> , 22,	
VARIABLES: Temperature			PREPARED BY:	
ALUES:		I 		
P*/mmHg	P*/kPa	Mole ratio	Mole fraction [†] of hydrogen sulfide in liquid, ¤ _{H2} S	
752	100.3	0.139	0.122	
752	100.3	0.106	0.096	
752	100.3	0.080	0.074	
752	100.3	0.060	0.057	
*a	AUXILIARY	INFORMATION		
fide was bubbl nt of componen as described e. The amount equilibrium an perature and p ed by weighing with a mercur f gas absorbed lower pressur	t 2. in a in detail of gas d at the pressure y manometer. at es was pressure	l and 2. C and atteste	ITY OF MATERIALS: omponents were purified d by conventional methods.	
	<pre>5-4] sene; C₆H₅I; -4] are are ALUES: P*/mmHg 752 752 752 752 752 752 r52 r52</pre>	<pre>5-4] cene; C₆H₅I; -4] are are ALUES: P*/mmHg P*/kPa 752 100.3 752 100.3 752 100.3 752 100.3 752 100.3 752 100.3 ressure AUXILIARY US/PROCEDURE: fide was bubbled into a int of component 2. in a as described in detail e. The amount of gas equilibrium and at the perature and pressure ed by weighing. Pressure with a mercury manometer. f gas absorbed at lower pressures was ventually the pressure to the vapor pressure of</pre>	j=4] J. Appl. Che rene; C6H5I; 523-650 Alues: PREPARED BY: P*/mmHg P*/kPa Mole ratio 752 100.3 752 100.3 752 100.3 752 100.3 752 100.3 752 100.3 752 100.3 752 100.3 752 100.3 752 100.3 752 100.3 752 100.3 0.060 ressure SOURCE AND PUR fide was bubbled into a nt of component 2. in a as described in detail e. The amount of gas equilibrium and at the perature and pressure exit a mercury manometer. f gas absorbed at lower pressures was wentually the pressure	

ONFORENTS:1. Hydrogen sulfide; H_S; $(7783-06-4)$ 2. Benzonamine (aniline); C&H7N $(82-53-3)$ VARIABLES: PressurePressurePressurePLAS/mHgPH_S/bar* volume of benzonamine (mg cm ⁻²)a 102 2 0.126 2 0.265 2 0.395 2 0.395 3 0.722a 102 2 0.265 5 5.22 2 0.395 3 0.772b 102 2 0.265 5 5.22 3 0.772c 102 2 0.265 5 5.22 3 0.772a 102 2 0.265 5 5.22 3 0.772b 102 2 0.265 5 5.22 3 0.772c 102 2 0.265 5 5.22 3 0.772c 102 3 00 484 4 0.645 5 13.2 5 1.000 484 4 0.645 5 13.2 4.64a 102 3 00 4 06 4 0.645 5 13.2 5 1.000 4 0.0028 5 13 4 0.664 4 11.3 4 0.0221 1 160 4 0.0221 1 178 4 0.0231 4 6.4b 750 4 1.000 4 06 4 0.541 4 11.3 4 0.2231 4 6.4b 750 5 1.000 4 0.0223 4 6.4b 750 4 0.0231 4 6.4b 750 4 0.02231 4 6.4b 750 4 0.0224 <th></th> <th></th>			
$ \begin{bmatrix} 7783-06-41 \\ 2. Benzenamine (aniline); CeHrN; \\ [62-53-3] \\ \hline \\ $	COMPONENTS:	ORIGINAL MEASUREMENTS:	
[62-53-3] VARIABLES: Pressure PH_2S/MmHg P_{H_2S}/bar^* wt. of H,S per unit volume of benzenamine volume of benzenamine volume of benzenamine volume of herzenamine volume of the use of a there is no mention of the use of a theremostat. NUXILIARY INFORMATION RETHOD/APPARATUS/PROCEDURE: NUXILIARY INFORMATION RETHOD/APPARATUS/PROCEDURE: SURCE AND PURITY OF MATERIALS; The appartus and procedure described in (1) were used. A glass vessel containing Has Experiments apper to have been carried out at room temperature as there is no mention of the use of a thermostat. SURCE AND PURITY OF MATERIALS;		Bancroft, W.D.; Belden, B.C.	
Pressure P.G.T. Fogg EXPERIMENTAL VALUES: $P_{H_2S}/mmHg$ P_{H_2S}/bar^* Wt. of H_2S per unit volume of benzenamine of H_2S in liquid /mg cm ⁻¹ a 102 0.136 2.74 0.0073 199 0.265 5.32 0.0141 296 0.395 8.13 0.0213 390 0.520 10.6 0.0276 404 0.645 13.2 0.0342 579 0.772 15.6 0.0465 676 0.901 18.6 0.0475 674 1.165 24.0 0.06041 1160 1.547 31.6 0.0528 591 0.788 16.4 0.0425 513 0.654 11.3 0.0264 406 0.541 14.3 0.0224 310 0.413 8.45 0.0221 178 0.237 4.64 0.0123 * calculated by the compiler. $T/K = 295.2$ Set a coresponds to successive increases in pressure; set b to decreases. METHOD/APPARATUS/PROCEDURE: 1 Propared by heating 5b_25, with conc. HCl; washed with water		J. Phys. Chem. <u>1930</u> , 34, 2123-4.	
EXPERIMENTAL VALUES: $P_{H_2S}/mmHg$ P_{H_2S}/bar^* Wt. of H_2S per unit volume of bengenamine of H_2S in liquid //mg cm ⁻² a 102 0.136 2.74 0.0073 a 102 0.265 5.32 0.0141 296 0.265 8.13 0.0213 296 0.520 10.6 0.0276 454 0.645 13.2 0.0342 676 0.901 18.6 0.0475 676 0.901 18.6 0.0476 1160 1.547 31.6 0.0528 591 0.788 16.4 0.0421 406 0.541 11.3 0.0294 310 0.413 8.45 0.0221 778 0.237 4.64 0.0123 * calculated by the compiler. T/K = 295.2 Set a corresponds to successive increases in pressure; set b to decreases. AUXILIARY INFORMATION MUXILIARY INFORMATION MUXILIARY INFORMATION MUXILIARY INFORMATION AUXILIARY INFORMATION <td colsp<="" td=""><td>VARIABLES:</td><td>PREPARED BY:</td></td>	<td>VARIABLES:</td> <td>PREPARED BY:</td>	VARIABLES:	PREPARED BY:
$P_{H_2S}/mmHg$ P_{H_2S}/bar^* Wt. of H_2S per unit volume of benzenamine of H_2S in liquid $(Mg cm^{-3})^{-3}$ Mole fraction of H_2S in liquid $(Mg cm^{-3})^{-3}$ a 102 0.136 2.74 0.0073 a 109 0.265 5.32 0.0141 390 0.520 10.6 0.0276 484 0.645 13.2 0.0342 579 0.772 15.8 0.0406 676 0.901 18.6 0.0475 676 0.901 18.6 0.0475 674 1.155 24.0 0.6604 1160 1.547 31.6 0.0781 b 750 1.000 20.8 0.0425 513 0.684 14.3 0.0369 406 0.413 8.45 0.0221 178 0.237 4.64 0.0123 * calculated by the compiler. T/K = 295.2 Set a coresponds to successive increases in pressure; set b to decreases. AUXILIARY INFORMATION METHOD/APFARATUS/PROCEDURE: SOURCE AND PURITY OF MATERIALS: The apparatus and procedure d	Pressure	P.G.T. Fogg	
Auxiliary Other and the second	EXPERIMENTAL VALUES:		
199 0.265 5.32 0.0141 296 0.395 8.13 0.0213 390 0.520 10.6 0.0276 484 0.645 13.2 0.0342 579 0.772 15.8 0.0406 676 0.901 18.6 0.0475 874 1.165 24.0 0.0604 1160 1.547 31.6 0.0781 b 750 1.000 20.8 0.0528 591 0.788 16.4 0.0421 406 0.541 11.3 0.03294 406 0.541 11.3 0.0224 310 0.413 8.45 0.0221 178 0.237 4.64 0.0123 * calculated by the compiler. $T/K = 295.2$ Set a coresponds to successive increases in pressure; set b to decreases. METHOD/APPARATUS/FROCEDURE: SOURCE AND PURITY OF MATEMALS: 1. The apparatus and procedure described in (1) were used. A glass versel SOURCE AND PURITY OF MATEMALS:	P _{H2S} /mmHg P _{H2S} /bar [*] Wt. c volume	of H ₂ S per unit Mole fraction * e of benzenamine of H ₂ S in liquid /mg cm ⁻³	
AUXILIARY INFORMATIONMETHOD/APPARATUS/PROCEDURE:SOURCE AND PURITY OF MATERIALS:The apparatus and procedure described in (1) were used. A glass vessel containing a sample of benzenamine was connected via a vacuum line to a manometer and gas burette containing H2S. Experiments appear to have been carried out at room temperature as there is no mention of the use of a thermostat.1. Prepared by heating Sb2S3 with conc. HCl; washed with water and 	199 0.265 296 0.395 390 0.520 484 0.645 579 0.772 676 0.901 874 1.165 1160 1.547 5 0.788 513 0.684 406 0.541 310 0.413 178 0.237	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
METHOD/APPARATUS/PROCEDURE:SOURCE AND PURITY OF MATERIALS:The apparatus and procedure described in (1) were used. A glass vessel containing a sample of benzenamine was connected via a vacuum line to a manometer and gas burette containing H_2S. Experiments appear to have been carried out at room temperature as there is no mention of the use of a thermostat.1. Prepared by heating Sb_2S_3 with conc. HCl; washed with water and dried over P_2O_5.2. Freshly distilled before use.2. Freshly distilled before use.2. Freshly distilled before use.MethodMatter and dried over P_2O_5.3. Experiments appear to have been carried out at room temperature as there is no mention of the use of a thermostat.4. Method4. Method </td <td>Set a coresponds to successive incre</td> <td>eases in pressure; set b to decreases.</td>	Set a coresponds to successive incre	eases in pressure; set b to decreases.	
The apparatus and procedure described in (1) were used. A glass vessel containing a sample of benzenamine was connected via a vacuum line to a manometer and gas burette containing H ₂ S. Experiments appear to have been carried out at room temperature as there is no mention of the use of a thermostat. ESTIMATED ERROR:	AUXILIAR	Y INFORMATION	
	The apparatus and procedure described in (1) were used. A glass vessel containing a sample of benzenamine was connected via a vacuum line to a manometer and gas burette containing H_2S . Experiments appear to have been carried out at room temperature as there is no mention of the use of a	 1. Prepared by heating Sb₂S₃ with conc. HCl; washed with water and dried over P₂O₅. 2. Freshly distilled before use. ESTIMATED ERROR: δT/K = ± 1 REFERENCES: 1. Bancroft, W.D.; Barnett, C.E. 	

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>1. Hydrogen sulfide; H₂S; [7783-06-4]</pre>	Lenoir, J-Y.; Renault, P.; Renon, H.
	J. Chem. Eng. Data, <u>1971</u> , 16, 340-2.
2. Benzenamine (Aniline); C ₆ H ₇ N; [62-53-3]	
[02-33-3]	
VARIABLES:	PREPARED BY:
	C. L. Young
EXPERIMENTAL VALUES:	
EXPERIMENTAL VALUES:	
Henry's constant	Mole fraction at 1 atm*
T/K $H_{H_2}S/atm$	^x H ₂ S
298.2 15.1	0.0662
290.2 15.1	0.0002
* Calculated by compiler assuming a $1 - \pi = 1/H$	linear function of P_{H_2S} vs x_{H_2S} , i.e.,
H ₂ S ⁽¹ H ₂ S)	
	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
A conventional gas-liquid chromato- graphic unit fitted with a thermal	(1) L'Air Liquide sample, minimum purity 99.9 mole per cent.
conductivity detector was used. The	(2) Touzart and Matignon or
carrier gas was helium. The value of Henry's law constant was calculated	Serlabo sample, purity 99 mole per
from the retention time. The value	cent.
applies to very low partial pressures	
of gas and there may be substantial difference from that measured at	
1 atm. pressure. There is also	
considerable uncertainty in the value of Henry's constant since surface	
adsorption was not allowed for	ESTIMATED ERROR:
although its possible existence was noted.	$\delta T/K = \pm 0.1; \delta H/atm = \pm 6\%$
	(estimated by compiler).
	REFERENCES:
ł	
1	1

<u> </u>		·····				
				ORIGINAL MEASUREMENTS:		
Τ.	[7783-06-4]		Gerrard, W. J. Appl. Chem. Biotechnol., <u>1</u> 972, 22,			
2.	Benzenamine [62-53-3]	(Aniline);	C ₆ H ₇ N;	623-650	,	
VARI	ABLES:		<u></u>	PREPARED BY:		
Temperature				C.L. Young		
EXPE	ERIMENTAL VALUES	:		l		
	т/К	P*/mmHg	P*/kPa	mole ratio	Mole fraction ⁺ of hydrogen sulfide in liquid, ¤ _{H2} S	
	265.15	755	100.7	0.143	0.125	
	267.15	755	100.7	0.136	0.120	
	273.15	755	100.7	0.110	0.099	
	283.15	755	100.7	0.081	0.075	
	293.15	755	100.7	0.065	0.061	
 ,						
			AUXILIARY	INFORMATION		
Hyd wei bub in abs obs was	HOD/APPARATUS/PR ghed amount of bbler tube as the source. sorbed at equi served temperates determined h measured wit	e was bubble of component described i The amount librium and ture and pr by weighing.	2. in a n detail of gas at the essure Pressure	1 and 2. C and atteste	ITY OF MATERIALS: components were purified d by conventional methods	
				ESTIMATED ERRC $\delta T/K = \pm 0.2$ REFERENCES:	SR: $\delta x_{H_2S} = \pm 4\%$	

ł

COMPONENTS:	ORIGINAL MEASUREMENTS:
 Hydrogen sulfide; H₂S; [7783-06-4] Benzenamine and 	Patyi, L.; Furmer, I. E.; Makranczy, J.; Sadilenko, A. S.; Stepanova, Z. G.; Berengarten, M. G.
Methylbenzenamines	Zh. Prikl. Khim. <u>1978</u> , 51, 1296- 1300.
VARIABLES:	PREPARED BY:
	C. L. Young
experimental values: τ/κ α [†]	Mole fraction of hydrogen sulfide at a partial pressure of 101.325 kPa ^x H ₂ S
Benzenamine (Aniline); 298.15 11.0	C ₆ H ₇ N; [62-53-3] 0.043
N-Methylbenzenamine (Methyl 298.15 9.8	aniline); C ₇ H ₉ N; [100-61-8] 0.045
N,N-Dimethylbenzenamine (Dimeth 298.15 10.5	ylaniline); C ₈ H ₁₁ N; [121-69-7] 0.056
[†] volume of gas (measured at dissolved per volume of so	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Volumetric method. Pressure measured when known amounts of gas were added, in increments, to a known amount of liquid in a vessel of known dimensions. Corrections were made for the partial pressure	Purity better than 99 mole per cent as determined by gas chromatography.
of solvent. Details in ref. (1).	ESTIMATED ERROR: $\delta T/K = \pm 0.1; \delta \alpha = \pm 4$ % or less.
	REFERENCES: 1. Bodor, E.; Bor, G. J.; Mohai, B.; Sipos, G. Veszpremi. Vegyip. Egy. Kozl. <u>1957</u> , 1, 55.

COMPONENTS:				ORIGINAL MEASUREMENTS:		
[7783-06-4]				Gerrard, W.		
<pre>2. N,N-Dimethylbenzenamine; (Dimethylaniline); C₈H₁₁N; [121-69-7]</pre>		J. Appl. Chem. Biotechnol., <u>1972</u> , 22, 623-650				
VARI	VARIABLES:			PREPARED BY:	<u></u>	
Temperature				C.L. Young		
EXPE	EXPERIMENTAL VALUES:			L <u></u>		
	т/к	P*/mmHg	P*/kPa	Mole ratio	Mole fraction ⁺ of hydrogen sulfide in liquid, $x_{\rm H_2S}$	
	278.15	755	100.7	0.132	0.117	
	283.15	755	100.7	0.114	0.102	
	293.15	755	100.7	0.091	0.083	
		···· · · · · · · · · · · · · · · · · ·	AUXILIARY	INFORMATION		
METH	HOD/APPARATUS/	PROCEDURE :		SOURCE AND PUR	ITY OF MATERIALS:	
wei bub in abs obs was	ghed amount obler tube a the source. sorbed at eq served tempe determined	de was bubble of components s described The amount uilibrium and rature and p by weighing ith a mercury	t 2. in a in detail of gas d at the ressure . Pressure	and atteste	omponents were purified d by conventional methods.	
				ESTIMATED ERRO $\delta T/K = \pm 0.2$ REFERENCES:	R: ; $\delta x_{H_2S} = \pm 4\%$	

COMPONENTS:	ORIGINAL MEASUREMENTS:
 Hydrogen sulfide; H₂S; [7783-06-4] Ethylbenzenamines 	Patyi, L.; Furmer, I. E.; Makranczy, J.; Sadilenko, A. S.; Stepanova, Z. G.; Berengarten, M. G.
	Zh. Prikl. Khim. <u>1978</u> , 51, 1296- 1300.
VARIABLES:	PREPARED BY:
	C. L. Young
EXPERIMENTAL VALUES:	
τ/κ α [†]	Mole fraction of hydrogen sulfide at a partial pressure of 101.325 kPa x H ₂ S
N-Ethylbenzenamine (Ethyla)	niline); C ₈ H ₁₁ N; [103-69-5]
298.15 10.3	0.055
N,N-Diethylbenzenamine (Diethy	laniline); C ₁₀ H ₁₅ N; [91-66-7]
298.15 8.9	0.060
AUXILIARY	INFORMATION
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
Volumetric method. Pressure measured when known amounts of gas	Purity better than 99 mole per cent as determined by gas
were added, in increments, to a	chromatography.
known amount of liquid in a vessel	
of known dimensions. Corrections	
were made for the partial pressure of solvent. Details in ref. (1).	ESTIMATED ERROR:
	$\delta T/K = \pm 0.1; \delta \alpha = \pm 4$ or less.
	REFERENCES :
	1. Bodor, E.; Bor, G. J.; Mohai,
	B.; Sipos, G.
	Veszpremi. Vegyip. Egy. Kozl. <u>1957</u> , 1, 55.
1	

				ORIGINAL MEASUREMENTS:		
<pre>1. Hydrogen sulfide; H₂S; [7783-06-4]</pre>				Gerrard, W.		
2.	2. Pyridine; C ₅ H ₅ N; [110-86-1]			J. Appl. Ch 623-650	em. Biotechnol, <u>1972</u> , 22,	
VAR	IABLES:	<u></u>		PREPARED BY:		
	Temperature			C.L. Young		
EXPERIMENTAL VALUES:			<u> </u>		· · · · · · · · · · · · · · · · · · ·	
	T/K	P*/mmHg	P*/kPa	Mole ratio	Mole fraction ⁺ of hydrogen sulfide in liquid, ¤ _{H2} S	
	265.15	752	100.3	0.266	0.210	
	267.15	752	100.3	0.243	0.195	
	273.15	752	100.3	0.187	0.158	
	283.15	752	100.3	0.134	0.118	
ļ	293.15	752	100.3	0.103	0.093	
			AUXILIARY	INFORMATION	· · · · · · · · · · · · · · · · · · ·	
Hy we bu in ab ob wa	ighed amoun bbler tube the source sorbed at e served temp s determine	/PROCEDURE: ide was bubbl t of componen as described . The amount quilibrium an erature and p d by weighing with a mercur	t 2. in a in detail of gas d at the ressure . Pressure	l and 2. C and atteste	ITY OF MATERIALS: Components were purified ed by conventional methods.	

COMPONENTS:			ORIGINAL MEASU	REMENTS:	
1. Hydrogen s	ulfide; H ₂ S;		Gerrard, W.		
[7783-06-4]			-	em. Biotechnol., 1972, 22,	
2. Quinoline; C ₉ H ₇ N; [91-22-5]			623-650		
VARIABLES:			PREPARED BY:		
	perature		C.L. 3	coung	
EXPERIMENTAL VALU				· · · · + ·	
т/к	P*/mmHg	P*/kPa	Mole ratio	Mole fraction ⁺ of hydrogen sulfide in liquid, $x_{\rm H_2S}$	
265,15	748	99.7	0.246	0.197	
267.15	748	99.7	0.224	0,183	
273.15	748	99.7	0.175	0.149	
283.15	748	99.7	0.129	0.114	
293.15	748	99.7	0.098	0.089	
		AUXILIARY	INFORMATION		
METHOD/APPARATUS/	PROCEDURE :	<u>*************************************</u>	SOURCE AND PURITY OF MATERIALS:		
Hydrogen sulfi weighed amount bubbler tube a in the source. absorbed at eq observed tempe was determined was measured w	of component s described : The amount uilibrium and rature and pr by weighing	2. in a in detail of gas d at the cessure Pressure	1 and 2. C and attests	Components were purified ad by conventional methods.	
1					
)			ESTIMATED ERR		
			01/100.	2; $\delta x_{H_2S} = \pm 4\%$	
			REFERENCES :		
ļ			ABTERENCES:		
l					
L			<u>I</u>		

			r*		
COMPONENTS:			ORIGINAL MEASU		
1. Hydroge [7783-0	en sulfide; H ₂ 06-4]	s;	·	.; Blount, H	
<pre>2. Acetonitrile, C₂H₅N; [75-05-8] 3. Water; H₂O, [7732-18-5] Perchloric acid, lithium salt; LiClO₄; [7791-03-9]</pre>			Anal. Lett	. <u>1974</u> , 7(6)	, 445-451.
VARIABLES:			PREPARED BY:		······
Concentrations of water and of lithium perchlorate			P.G.T. Fogg		
EXPERIMENTAL	VALUES:				
Concn. of H_2O /mol dm ⁻³	Concn. of LiClO ₄ /mol dm ⁻³	Concn. of H ₂ S /mol dm ⁻³	Method of analysis	Number of analyses	Mole fraction ^x H ₂ S
0	0	0.532 ± 0.0	04 I	7	0.027*
0	0	0.532 ± 0.0 0.525 ± 0.0		10	
0.111	0	0.536 ± 0.0		4	
0.278	0	0.544 ± 0.0		4	
0.556	0	0.519 ± 0.0		4	
0	0.0999	0.537 ± 0.0	02 I	4	
0	0.201	0.547 ± 0.0	05 I	4	
<pre>I - iodimetry; G - gravimetry. * calculated by the compiler from the density of acetonitrile in ref. (1) and an average value of 0.528 mol dm⁻³ for the concentration of H₂S.</pre>					e in ref. (1) on of H ₂ S.
		AUXILIARY	INFORMATION		
Hydrogen su through and then through in a thermody vessel. Sa subsequent analysed. analysed by aqueous sta Others were silver nith the weighin formed. The absence 266.5 nm wa formation of	TUS/PROCEDURE: alfide was but hydrous acetor gh the liquid ostatted absor- amples of solu- ly withdrawn, Some samples y titration wi- andard iodine e analysed by rate solution ng of the silve e of a spectra as taken to in- of thioacetamic the experime	hitrile and under test rption ution were diluted and were ith acidic solution. addition of followed by ver sulfide al band at ndicate that ide did not	<pre>1. from Ma with ac 2. u.v. gr Labs., fractio and pas alumina traces content 3. LiClO4 distill crushed ESTIMATED ERR(</pre>	tivated alum ade from Bur Muskegon, Mi nally distil sed through column to r of water; fi 2.2×10^{-3} - Alfa: recr ed water; ai ; vacuum dri DR: $\pm 7 \times 10^{-4}$; .5	Products; dried nina. cdick & Jackson ichigan; lled from CaH ₂ an activated remove further nal water mol dm ⁻³ . cystallised from ir dried; dat 160 °C.

i

ORIGINAL MEASUREMENTS:
Hayduk, W.; Pahlevanzadeh, H.
PREPARED BY:
P.G.T. Fogg
tion Mole fraction Ostwald [*] y at solubility at coeff. ss. partial press. L of 101.325 kPa.
0.0211 10.0
0.253 97.2
0.116 41.1
0.0541 19.3
0.304 104.1
0.146 44.7
0.0661 19.9
lculated as the volume of gas . which will completely dissolve in
RY INFORMATION
SOURCE AND PURITY OF MATERIALS:
2. from Aldrich Chemicals; HPLC grade; minimum purity 99.9%
ESTIMATED ERROR:
REFERENCES: 1. Asatani, H.; Hayduk, W.
Can.J.Chem.Eng. <u>1983</u> , 61, 227.
lit pre 00 0421 0110 252 15 0520 803 45 0646 3 ca atm

	ONENTS: Hydrogen su [7783-06-4]	lfide; H ₂ S;		ORIGINAL MEASU Gerrard, W.		
2.	2. Benzonitrile; C7H5N; [100-47-0]			J. Appl. Ch 623-650	em. Biotechnol., <u>1972</u> , 22,	
VAR	ABLES:			PREPARED BY:		
:	Temperature			C.L. Young		
EXPI	ERIMENTAL VALUES	S:				
	т/к	P*/mmHg	P*/kPa	Mole ratio	Mole fraction ⁺ of hydrogen sulfide in liquid, ¤ _{H2} S	
	265.15	749	99.9	0.186	0.157	
	267.15	749	99.9	0.166	0.142	
	273.15	749	99.9	0.133	0.117	
	283.15	749	99.9	0.101	0.092	
	293.15	749	99.9	0.088	0.081	
			AUXILIARY	INFORMATION		
Hye we bul in ab ob wa	HOD/APPARATUS/P drogen sulfic ighed amount bbler tube as the source. sorbed at equ served temper s determined s measured wi	le was bubb of components described The amount ilibrium and ature and p by weighing	led into a it 2. in a in detail t of gas nd at the pressure g. Pressure	SOURCE AND PUE 1 and 2. (and attest	RITY OF MATERIALS; Components were purified ed by conventional methods.	

COMPONENTS :		ORIGINAL MEASUR	EMENTS:	
 Hydrogen sulfide; H₂S [7783-06-4] 	;	Egorova, V. Neokladnova	I.; Grishko, N.I. , L.N.; Furmanov, A.S.	
2. 3-Methyl-1H-pyrazole; [1453-58-3] 1,3-Dimethyl-1H-pyraz C ₅ H ₈ N ₂ ; [694-48-4]	· ·	Podvigailova, I.G. Deposited Document <u>1975</u> , VINITI 2907-76		
VARIABLES:		PREPARED BY:		
Temperature		P.G.T.	Fogg	
EXPERIMENTAL VALUES:		1		
Solvent	T/K Absory coei α	otion Henry's f.† consta H/mmH	$nt^{T} P_{H_{R}} = 1 atm$	
3-Methyl-1H-pyrazole	283.2	7910	0.096	
	298.2 9.	.1 11220	0.068	
	313.2	13200	0.058	
1,3-Dimethyl-1H-pyrazole	283.2	5490	0.138	
	298.2 21	5 8260	0.092	
	313.2	10420	0.073	
760 mmHg = 1.	013 bar =	1.013 × 10 ⁵ P	ascal	
[†] volume of gas, reduced volume of liquid when t	to 273.15 K he partial p	and 1.013 bar pressure of ga	, absorbed by one s is 1.013 bar.	
	AUXILIARY	INFORMATION		
METHOD /APPARATUS / PROCEDURE :		SOURCE AND PURI	TY OF MATERIALS:	
The volume of gas absorber solvent held in a thermos was measured at several p a total pressure of about The temperature was control	tatted cell ressures to 760 mmHg.	,	b.pt. 204 °C b.pt. 131-145 °C	
± 0.1 °C.	orreg to			
		ESTIMATED ERROR	R:	
		REFERENCES:		

•

	ORIGINAL MEASUREMENTS:
1. Hydrogen sulfide; H ₂ S;	DuPont de Nemours and Co. (Inc.)
[7783-06-4]	Chem. Eng. News <u>1955</u> , 33, 2366.
2. N,N-Dimethylformamide; C ₃ H ₇ NO; [68-12-2]	
VARIABLES:	PREPARED BY:
	P.G.T. Fogg
	1.0.1. 1099
EXPERIMENTAL VALUES:	
T/K ^P H ₂ S Vol. of H ₂ S per volume	absorbed [†] Mole fraction * of DMF x_{H_2S} (1 atm)
298.2 1 atm 35 (1.013 bar)	0.109
* calculated by the compiler using th	e density of DMF at 298.2 K from (1).
⁺ the volume of the gas has been red	uced to 273.15 K and 1.013 bar.
	INFORMATION
AUXILIARY METHOD/APPARATUS/PROCEDURE:	INFORMATION SOURCE AND PURITY OF MATERIALS:
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS: Not stated.
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS: Not stated.
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS: Not stated. ESTIMATED ERROR:
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS: Not stated. ESTIMATED ERROR: REFERENCES: 1. Lange's Handbook of Chemistry
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS: Not stated. ESTIMATED ERROR: REFERENCES:
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS: Not stated. ESTIMATED ERROR: REFERENCES: 1. Lange's Handbook of Chemistry 12th edition, McGraw-Hill,

•

OF	RIGINAL MEASUREMEN	TS:	
	Gerrard, W.		
7NO;	J. Appl. Chem. Biotechnol. <u>1972</u> , 22, 623-650.		
PI	REPARED BY:		
	P.G.T. Fo	aa	
	<u> </u>		
tal)/bar	Mole ratio	Mole fraction of H ₂ S [*]	
000	0.387	0.279	
000	0.360	0.265	
000	0.286	0.222	
000	0.205	0.170	
000	0.151	0.131	
UXILIARY IN	VFORMATION		
S	OURCE AND PURITY (DF MATERIALS;	
nto a	It was stated	that "All materials	
ina	purified and a	ttested by	
etail	conventional m	ethods"	
gas			
e			
ure			
re			
Е	STIMATED ERROR:		
	$\delta x_{H_2S} = \pm 4\%$	(author)	
R	REFERENCES :		
1			
	7NO; PI tal)/bar 000 000 000 000 000 000 000 0	J. Appl. Chem. 22, 623-650. PREPARED BY: P.G.T. Formation tal)/bar Mole ration 000 0.387 000 0.387 000 0.387 000 0.387 000 0.387 000 0.387 000 0.387 000 0.151 or the stated total pre UXILLARY INFORMATION VXILLARY INFORMATION It was stated purified and a conventional m gas e ure re ESTIMATED ERROR:	

ORIGINAL MEASUREMENTS:
Byeseda, J.J.; Deetz, J.A.; Manning, W.P.
Proc.Laurance Reid Gas Cond.Conf. <u>1985</u> .
PREPARED BY:
P.G.T. Fogg
Ostwald coeff. Mole fraction L in liquid* ^x H ₂ S
33.6 0.097
Y INFORMATION
SOURCE AND PURITY OF MATERIALS:
n
ESTIMATED ERROR:
REFERENCES :

COMPONENTS:	ORIGINAL MEASUREMENTS:
 Hydrogen sulfide; H₂S; [7783-06-4] 1-Methyl-2-pyrrolidinone; C₅H₉NO; [872-50-4] 	Lenoir, J-Y.; Renault, P.; Renon, H. J. Chem. Eng. Data <u>1971</u> , 16, 340-2
VARIABLES:	PREPARED BY: C.L. Young
EXPERIMENTAL VALUES: T/K Henry's H _{H2} S/	constant Mole fraction at atm 1 atm* ^x H ₂ S
298.15 5.	56 0.180
* Calculated by compiler assuming a i.e. $x_{\rm H_2S}$ (l atm) = $1/H_{\rm H_2S}$	н25 п25
AUXILIA	RY INFORMATION
METHOD/APPARATUS/PROCEDURE: A conventional gas-liquid chromato- graphic unit fitted with a thermal conductivity detector was used. The carrier gas was helium. The value of Henry's law constant was calculated from the retention time. The value applies to very low partial pressure of gas and there may be a substantia difference from that measured at 1 atm. pressure. There is also considerable uncertainty in the valu of Henry's constant since surface adsorption was not allowed for although its possible existence was noted.	of (2) Touzart and Matignon or Serlabo sample, purity 99 mole per cent.

COMPONENTS:	ORIGINAL MEASUREMENTS:		
1. Hydrogen sulfide; H_2S ; [7783-06-4]	Rivas, O.R.; Prausnitz, J.M.		
<pre>2. l-Methyl-2-pyrrolidinone; C₅H₉NO; [872-50-4]</pre>	Am. Inst. Chem. Engnrs. J. <u>1979</u> , 25, 975-984.		
VARIABLES:	PREPARED BY:		
Temperature	C.L. Young		
EXPERIMENTAL VALUES:	L		
T/K Henry's constant,# /MPa	Mole fraction of hydrogen ⁺ sulfide in liquid, x _{H2} S		
263.15 0.31 298.15 0.76 323.15 1.35 348.15 2.17 373.15 3.21	0.327 0.133 0.0751 0.0467 0.0316		
+ at a partial pressure of 10 compiler assuming Henry's 1 pressure.	1.3 kPa calculated by aw applies at that		
AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:		
Volumetric apparatus with a fused quartz precision bourdon pressure gauge. Solubility apparatus carefully thermostatted. Solvent degassed <i>in situ</i> . Apparatus described in ref. (1) and modifications given in source.	1. and 2. Purity at least 99 mole per cent.		
	ESTIMATED ERROR:		
	$\delta T/K = \pm 0.05; \ \delta x_{H_2S} = \pm 1\%.$		
	REFERENCES :		
	1. Cukor, P.M.; Prausnitz, J.M.		
	Ind. Eng. Chem. Fundam. <u>1971</u> , 10, 638.		

i

COMPONENTS:	ORIGINAL MEASUREMENTS:		
 Hydrogen sulfide; H₂S; 	Rivas, O.R.; Prausnitz, J.M.		
[7783-06-4]			
<pre>2. l-Methyl-2-pyrrolidinone; C₅H₉NO; [872-50-4]</pre>	Ind. Eng. Chem. Fundam. <u>1979</u> , 18,		
	289-292.		
VARIABLES:	PREPARED BY:		
Temperature	C.L. Young		
EXPERIMENTAL VALUES:			
T/K Henry's con			
/ atm	n. latm partial pressure		
296.65 7.2	0.139		
308.15 9.5	0.105		
* Calculated by compiler as	suming mole fraction		
solubility linear with pr	essure.		
	······································		
AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:		
Volumetric apparatus with a fused			
quartz precision bourdon pressure			
gauge. Solubility apparatus care- fully thermostatted. Solvent	. No details given.		
degassed in situ. Apparatus described in ref (1) and modificat-			
ions given in source.			
	ESTIMATED ERROR:		
	$\delta T/K = \pm 0.05; \ \delta x_{H_2S} = \pm 1$ %.		
	REFERENCES:		
	1. Cukor, P.M.; Prausnitz, J.M.		
	Ind. Eng. Chem. Fundam. <u>1971</u> ,		
	10, 638.		

Hydrogen Sulfide in Non-aqueous Solvents

				•	
COMPONENTS:		a		DRIGINAL MEASUREMENTS:	
<pre>l. Hydrogen sulfide; H₂S; [7783-06-4]</pre>			Rivas, O.R.; Prausnitz, J.M.;		
2. 1-Methyl-2-pyrrolidinone; C ₅ H ₉ NO; [872-50-4]			Ind. Eng. Chem. Fundam. <u>1979</u> , 18, 289-292.		
3. 2-(2-2 colam:	Aminoethoxy ine); C ₄ H ₁₁)-ethanol,() NO ₂ ; [929-0	Digly- 6-6]		
VARIABLES:		<u></u>		PREPARED BY:	
Temperature, liquid composition			C.L. Young.		
EXPERIMENTAL	VALUES:	<u> </u>		Mole fraction	
т/к	P/mmHg	P/kPa	Compor		
348.7	239.8	31.97	1 2 3	0.0207 0.9714 0.8585 0.0276 0.1208 0.0010	
	355.4	47.38	1 2 3	0.0297 0.9808 0.8506 0.0186 0.1197 0.0006	
382.65	196.4	26.19	1 2 3	0.0101 0.8812 0.8678 0.1140 0.1221 0.0048	
	368.3	49.10	1 2 3	0.0179 0.9367 0.8609 0.0607 0.1212 0.0026	
		AU	XILIARY	INFORMATION	
METHOD /ADDAD	ATUS/PROCEDUF)F .		COUDCE AND DUDITY OF NATERIALC.	
Volumetri quartz pr gauge. S carefully degassed described	c apparatus ecision bou olubility a thermostat in situ. P	with a fus apparatus ted. Solve apparatus and modifi	re ent	SOURCE AND PURITY OF MATERIALS: No details given.	
				ESTIMATED ERROR: $\delta T/K = \pm 0.05; \ \delta x_{H_2S} = \pm 1$ %. REFERENCES: 1. Cukor, P.M.; Prausnitz, J.M. Ind. Eng. Chem. Fundam. <u>1971</u> , 10, 638.	

* * * * *

COMPONENT	rs:		ORIGINAL MEASUREMENT	rs:
<pre>l. Hydrogen sulfide; H₂S; [7783-06-4] l. Hydrogen sulfide; H₂S; [7783-06-4] l. Hydrogen sulfide; H₂S; [7783-06-4] l. Hydrogen sulfide; H₂S; [7783-06-4] VARIABLES:</pre>			Povalyaeva, N. Zh. Prikl. Khim J. Appl. Chem. 1810-1814. PREPARED BY:	L.; Matvienko, V. G.; V. . <u>1980</u> , 53,2456-2461. (<i>Russ</i>). <u>1980</u> , 53,
EXPERIME T/K	NTAL VALUES: P _{H2S} /atm	P ^a H ₂ S/MPa	Solubility ^b	Mole fraction of ^a hydrogen sulfide, ^x H ₂ S
273.2 278.2 283.2	$ \begin{array}{c} 1.00\\ 2.00\\ 3.00\\ 4.00\\ 5.00\\ 6.00\\ 7.00\\ 8.00\\ 9.00\\ 1.00\\ 2.00\\ 3.00\\ 4.00\\ 5.00\\ 6.00\\ 7.00\\ 8.00\\ 9.00\\ 10.0\\ 1.00\\ 2.00\\ 3.00\\ 4.00\\ 5.00\\ 5.00\\ 5.00 \end{array} $	0.101 0.203 0.304 0.405 0.507 0.608 0.709 0.811 0.912 0.101 0.203 0.304 0.405 0.507 0.608 0.709 0.811 0.912 1.013 0.101 0.203 0.304 0.405 0.507	90 180 270 360 462 632 880 1290 2220 76 150 225 300 378 484 640 830 1170 1820 66 130 193 257 322	0.285 0.443 0.544 0.614 0.672 0.737 0.796 0.851 0.908 0.252 0.399 0.499 0.570 0.626 0.682 0.739 0.786 0.838 0.838 0.890 0.226 0.365 0.461 0.532 0.588 cont.)
[AUXILIARY	INFORMATION	
AUXILIARY METHOD/APPARATUS/PROCEDURE: Apparatus for high pressure work consisted of a thermostatted steel absorption vessel containing a weighed quantity of solvent and connected through valves to a thermostatted cylinder of liquid H_2S . High pressures were generated by heating the cylinder in a second thermostat and estimated from data given in ref. (1) and (2). The gas which dissolved in the liquid was estimated from the increase in weight of the vessel with allowance for the H_2S present in the gas phase. A flow technique was used at partial pressures of H_2S of equal to atmospheric pressure or less. The composition of the $N_2 + H_2S$ flow stream was adjusted to obtain the desired partial pressure of H_2S			paraffin and in liquid ni 2. Technical gr 15-20 mmHg; water; RI 1. ESTIMATED ERROR: $\delta T/K = \pm 0.1; \delta I$ $\delta x_{H_2S} = \pm 4$ % (e REFERENCES: 1. Technical Enco of Physical C Technological	heating sulfur with purified by freezing trogen. ade, distilled at contained 0.05% 4705 (20°C) P/atm = ±0.05; estimated by compiler) pyclopedia. Handbook Chemical and L Data, Vol.5, Izd. op. Moscow 1930. adbook Vol.1.

COMPONENTS:			ORIGINAL MEASUREM	ients:
1. Hydrogen sulfide; H ₂ S; [7783-06-4]			Yarym-Agaev, N.	L.; Matvienko, V.G.;
2. 1-Met	hyl-2-pyrroliding	one,	Povalyaeva, N.	
(N-Me	thylpyrrolidone)	; C5H9NO;		., <u>1980</u> , <i>53</i> ,2456-2461
[872-	-50-4]		J. Appl. Chem. 1810-1814.	(Russ), <u>1980</u> , 53,
EXPERIME	ENTAL VALUES:	2	h	Mole fraction of ^a hydrogen sulfide,
т/к	P_{H_2S}/atm	P ^a H ₂ S/MPa	${\tt Solubility}^{\tt b}$	^x H ₂ S
283.2	6.00 7.00	0.608 0.709	390 482	0.633 0.681
	8.00	0.811	616	0.732
	9.00	0.912	800	0.780
	10.0 11.0	1.013 1.115	1060 1440	0.824 0.864
	12.0	1.216	2200	0.907
288.2	1.00	0.101	57	0.201
	2.00 3.00	0.203 0.304	112 167	0.331 0.425
	4.00	0.405	222	0.496
	5.00 6.00	0.507 0.608	278 334	0.552 0.596
	7.00	0.709	402	0.640
	8.00	0.811	478	0.679
	9.00 10.0	0.912 1.013	574 700	0.718 0.756
	11.0	1.115	890	0.798
	12.0	1.216	1160	0.837
293.2	13.0 1.00	1.317 0.101	1590 49	0.876 0.178
	2.00	0.203	96	0.298
	3.00 4.00	0.304 0.405	141 188	0.384 0.454
	5.00	0.507	235	0.510
	6.00	0.608	282	0.555
	7.00 8.00	0.709 0.811	334 394	0.596 0.636
	9.00	0.912	460	0.671
	10.0 11.0	1.013 1.115	550 674	0.709 0.749
	12.0	1.216	834	0.787
	13.0	1.317	1066	0.825
	14.0 15.0	1.419 1.520	1400 1860	0.861 0.892
298.2	1.00	0.101	42	0.156
	2.00 3.00	0.203 0.304	84 121	0.271 0.349
	4.00	0.405	167	0.425
	5.00	0.507	210	0.482
	6.00 7.00	0.608 0.709	252 296	0.527 0.567
	8.00	0.811	340	0.601
	9.00 10.0	0.912 1.013	390 448	0.633 0.665
	11.0	1.115	526	0.699
	12.0	1.216	625	0.734
	13.0 14.0	1.317 1.419	750 910	0.768 0.801
	15.0	1.520	1120	0.832
	16.0 17.0	1.621 1.723	1380 1740	0.859 0.885
	18.0	1.824	2280	0.885
303.2	1.00	0.101	38	0.144
	2.00 3.00	0.203 0.304	75 113	0.249 0.333
	4.00	0.405	150	0.399
	5.00	0.507	187	0.453
			(cont.)

Hydrogen Sulfide in Non-aqueous Solvents
--

COMPONENTS:			ORIGINAL MEASUREM	ENTS:
1. Hydrogen sulfide; H ₂ S; [7783-06-4]			Yarym-Agaev, N. L.; Matvienko, V. G.;	
2. 1-Methyl-2-pyrrolidinone,			Povalyaeva, N. V.	
	thylpyrrolidone)			., <u>1980</u> , <i>53</i> ,2456-2461
	-50-4]		J. Appl. Chem. 1810–1814.	(Russ), <u>1980</u> , 53,
EXPERIME	NTAL VALUES:	<u></u>		Mole fraction of ^a
T/K	P _{H2S} /atm	P ^a /MPa	${\tt Solubility}^{{\tt b}}$	hydrogen sulfide,
	H ₂ S	H ₂ S [*]	-	^x H ₂ S
303.2	6.00	0.608	225	0.499
	7.00 8.00	0.709 0.811	264 302	0.539 0.572
	9.00	0.912	340	0.601
	10.0	1.013	384	0.630
	11.0 12.0	1.115 1.216	436 506	0.659 0.691
	13.0	1.317	594	0.724
	14.0 15.0	1.419 1.520	694 810	0.754 0.781
	16.0	1.621	940	0.806
	17.0	1.723	1100	0.830
	18.0 19.0	1.824 1.925	1340 1660	0.856 0.880
	20.0	2.027	2120	0.904
313.2	1.00	0.101 0.203	29 57	0.114 0.201
	2.00 3.00	0.304	85	0.273
	4.00	0.405	113	0.333
	5.00 6.00	0.507 0.608	141 169	0.384 0.428
	7.00	0.709	197	0.466
	8.00 9.00	0.811 0.912	225 256	0.499 0.531
	10.0	1.013	286	0.559
	11.0	1,115	320	0.586
	12.0 13.0	1.216 1.317	364 412	0.617 0.646
	14.0	1.419	466	0.673
	15.0 16.0	1.520 1.621	526 590	0.699 0.723
	17.0	1.723	660	0.745
	18.0	1.824	740	0.766
	19.0 20.0	1.925 2.027	840 970	0.788 0.811
273.2	0.075	0.0076	-7.5	0.032
	0.278 0.488	0.0282 0.0494	26.7 45.0	0.106 0.166
	0.779	0.0789	73.1	0.244
260 7	0.976	0.0989	88.7	0.282 0.394
260.1 273.2	1.00 1.00	0.101 0.101	147 90.9	0.394
283.8	1.00	0.101	64.6	0.222
289.2	1.00 1.00	0.101 0.101	55.8 40.5	0.198 0.152
303.2	1.00	0.101	37.1	0.141
313.2	1.00	0.101	29.0	0.114
314.4	1.00 1.00	0.101 0.101	27.8 21.5	0.110 0.087
333.2	1.00	0.101	17.8	0.073
342.9	1.00	0.101 0.101	14.7 11.0	0.061 0.046
355.4	1.00 1.00	0.101	8.99	0.0382
399.2	1.00	0.101	5.10	0.0221
	h	Calculated by o	-	
		volume of hydro 1 atmosphere d:	ogen sulfide measu issolved in l g of	N-methylpyrrolidone.

COMPONENTS: 1. Hydrogen sulfide; H ₂ [7783-06-4] 2. 1-Methyl-2-pyrrolidi (<i>N-methylpyrolidone</i> C ₅ H ₉ NO; [872-50-4] VARIABLES: Concentration EXPERIMENTAL VALUES: T/K Mo 298.15 * calculated by compiler.	S; none,); le fraction in liquid phase ^x H ₂ S 0.034 0.057 0.087 0.119 0.150 0.192	ORIGINAL MEASUREMENTS: Murrieta-Guevara, H J.Chem.Eng.Data 198 PREPARED BY: P.G.T. Fogg n P_{H_2S}/atm 0.207 0.395 0.638 0.911 1.191 1.619	
<pre>[7783-06-4] 2. 1-Methyl-2-pyrrolidi (N-methylpyrrolidone C5H9NO; [872-50-4] VARIABLES: Concentration EXPERIMENTAL VALUES: T/K Mo 298.15</pre>	none,); le fraction in liquid phase ^x H ₂ S 0.034 0.057 0.087 0.119 0.150 0.192	J.Chem.Eng.Data 198 PREPARED BY: P.G.T. Fogg n P_{H_2S}/atm 0.207 0.395 0.638 0.911 1.191	<pre><u>84</u>, 29, 456 - 460. P_{H2S}/bar[*] 0.210 0.400 0.646 0.923 1.207</pre>
Concentration EXPERIMENTAL VALUES: T/K Mo 298.15	le fraction in liquid phase x_{H_2S} 0.034 0.057 0.087 0.119 0.150 0.192	P.G.T. Fogg n P _{H2S} /atm 0.207 0.395 0.638 0.911 1.191	0.210 0.400 0.646 0.923 1.207
EXPERIMENTAL VALUES: T/K Mo 298.15	liquid phase ^x H ₂ S 0.034 0.057 0.087 0.119 0.150 0.192	n $P_{\rm H_2S}/\rm{atm}$ 0.207 0.395 0.638 0.911 1.191	0.210 0.400 0.646 0.923 1.207
т/к Мо 298.15	liquid phase ^x H ₂ S 0.034 0.057 0.087 0.119 0.150 0.192	0.207 0.395 0.638 0.911 1.191	0.210 0.400 0.646 0.923 1.207
298.15	liquid phase ^x H ₂ S 0.034 0.057 0.087 0.119 0.150 0.192	0.207 0.395 0.638 0.911 1.191	0.210 0.400 0.646 0.923 1.207
	0.034 0.057 0.087 0.119 0.150 0.192	0.395 0.638 0.911 1.191	0.400 0.646 0.923 1.207
	0.057 0.087 0.119 0.150 0.192	0.395 0.638 0.911 1.191	0.400 0.646 0.923 1.207
* calculated by compiler.	0.087 0.119 0.150 0.192	0.638 0.911 1.191	0.646 0.923 1.207
* calculated by compiler.	0.150 0.192	1.191	1.207
* calculated by compiler.	0.192		
* calculated by compiler.		1.619	1.640
* calculated by compiler.			
	AUXILIARY	INFORMATION	
METHOD / APPARATUS / PROCEDURE :		SOURCE AND PURITY OF MAY	TERIALS:
The apparatus consisted of a glass equilibrium cell fitted with inlet tube ending in a porous glass disc. The cell was attached to a gas storage cylinder. Pressure in the cylinder was measured by a Bourdon tube gage and in the cell by a pressure transducer. Measured amounts of solvent and of H_2S were passed into the cell and vapor was		 from Matheson; p purity > 99.5% ESTIMATED ERROR: 	ourity 99.5%
then continuously circul magnetic pump with liqui by a magnetic stirrer. T were controlled by an ai Equilibrium pressures we after about 30 min.	ated by a d stirred	$\delta T/K = \pm 0.1 ;$ $\delta x_{H_2S} = \pm 5\% (a)$ REFERENCES:	δP = ± 0.1% ; athors)

		· · · · · · · · · · · · · · · · · · ·		
COMPONENTS:		ORIGINAL MEASUREM	ENTS:	
<pre>1. Hydrogen sulfide; H₂S; [7783-06-4]</pre>		Murrieta-Guevara,	F; Rodriguez, A.T.	
2. 1-Methyl-2-pyrrolidinor	le,	J.Chem.Eng.Data 19	<u>984</u> , 29, 456 - 460.	
<pre>(N-methylpyrrolidone); [872-50-4]</pre>	C ₅ H ₉ NO;			
3. 2-Aminoethanol,				
(monoethanolamine); C ₂ H [141-43-5]	7 NO ;			
VARIABLES:		PREPARED BY:		
Concentration		P.G.T. Fogg		
EXPERIMENTAL VALUES:		I	<u></u>	
Composition of	Mole fract		P _{H2S} /bar [*]	
solvent before addition of H ₂ S	liquid ph	ase n ₂ 5	1125	
	^x H ₂ S			
NMP + 5.1 wt% MEA	0.089	0.199	0.202	
	0.129	0.377	0.382	
	0.167	0.661	0.670	
	0.208 0.237	1.052 1.387	1.066 1.405	
	0.264	1.735	1.758	
NMP + 14.3 wt% MEA	0.080	0.134	0.136	
	0.147	0.308	0.312	
	0.207	0.619	0.627	
	0.252	1.108	1.123	
	0.274	1.439 1.586	1.458	
	0.285	1.000	1.607	
T/K = 273.2	*	calculated by compil	.er.	
NMP = 1-methyl-2-pyrroli	dinone; (N-m	ethylpyrrolidone)		
MEA = 2-aminoethanol (m	onoethanola	mine)		
·····				
	AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDURE	:	SOURCE AND PURITY	OF MATERIALS:	
The apparatus consisted of equilibrium cell fitted wi		 from Matheson; purity 99.5% & 3. purity > 99.5% 		
tube ending in a porous gl	ass disc.			
The cell was attached to a gas storage cylinder. Pressure in the				
	-			
storage cylinder. Pressur cylinder was measured by a	e in the Bourdon	ESTIMATED ERROR:		
storage cylinder. Pressur cylinder was measured by a tube gage and in the cell pressure transducer. Meas	e in the Bourdon by a ured	ESTIMATED ERROR: δT/K = ± 0.1 ;	δP = ± 0.1%;	
storage cylinder. Pressur cylinder was measured by a tube gage and in the cell pressure transducer. Meas amounts of solvent and of	e in the Bourdon by a ured H ₂ S were	$\delta T/K = \pm 0.1;$	-	
storage cylinder. Pressur cylinder was measured by a tube gage and in the cell pressure transducer. Meas amounts of solvent and of passed into the cell and v then continuously circulat	e in the Bourdon by a ured H₂S were apor was ed by a		-	
storage cylinder. Pressur cylinder was measured by a tube gage and in the cell pressure transducer. Meas amounts of solvent and of passed into the cell and v	e in the Bourdon by a ured H₂S were apor was ed by a stirred	$\delta T/K = \pm 0.1;$	-	
storage cylinder. Pressur cylinder was measured by a tube gage and in the cell pressure transducer. Meas amounts of solvent and of passed into the cell and v then continuously circulat magnetic pump with liquid by a magnetic stirrer. Tem were controlled by an air	e in the Bourdon by a ured H ₂ S were apor was ed by a stirred peratures bath.	$\delta T/K = \pm 0.1;$ $\delta x_{H_2S} = \pm 5\%$ (a	-	
storage cylinder. Pressur cylinder was measured by a tube gage and in the cell pressure transducer. Meas amounts of solvent and of passed into the cell and v then continuously circulat magnetic pump with liquid by a magnetic stirrer. Tem	e in the Bourdon by a ured H ₂ S were apor was ed by a stirred peratures bath.	$\delta T/K = \pm 0.1;$ $\delta x_{H_2S} = \pm 5\%$ (a	-	
storage cylinder. Pressur cylinder was measured by a tube gage and in the cell pressure transducer. Meas amounts of solvent and of passed into the cell and v then continuously circulat magnetic pump with liquid by a magnetic stirrer. Tem were controlled by an air Equilibrium pressures were	e in the Bourdon by a ured H ₂ S were apor was ed by a stirred peratures bath.	$\delta T/K = \pm 0.1;$ $\delta x_{H_2S} = \pm 5\%$ (a	-	
storage cylinder. Pressur cylinder was measured by a tube gage and in the cell pressure transducer. Meas amounts of solvent and of passed into the cell and v then continuously circulat magnetic pump with liquid by a magnetic stirrer. Tem were controlled by an air Equilibrium pressures were	e in the Bourdon by a ured H ₂ S were apor was ed by a stirred peratures bath.	$\delta T/K = \pm 0.1;$ $\delta x_{H_2S} = \pm 5\%$ (a	-	
storage cylinder. Pressur cylinder was measured by a tube gage and in the cell pressure transducer. Meas amounts of solvent and of passed into the cell and v then continuously circulat magnetic pump with liquid by a magnetic stirrer. Tem were controlled by an air Equilibrium pressures were	e in the Bourdon by a ured H ₂ S were apor was ed by a stirred peratures bath.	$\delta T/K = \pm 0.1;$ $\delta x_{H_2S} = \pm 5\%$ (a	-	

COMPONENTS:	ORIGINAL MEASUREMENTS:		
 Hydrogen sulfide; H₂S; 	Wehner, K.; Burk, W. Kisan, W.		
[7783-06-4]	Chem. Tech. (Leipzig) <u>1977</u> ,		
 Hexahydro-1-methyl-2H-azepin- 2-one (N-methyl-ε-caprolactam); C₇H₁₃NO; [2556-73-2] 	29(8), 445-448.		
VARIABLES:	PREPARED BY:		
	P.G.T. Fogg		
EXPERIMENTAL VALUES:			
T/K Kuenen coefficient /cm³g ⁻¹ atm ⁻¹	, S, Mole fraction (1.013 bar) ^{**} $\frac{x_{H_2S}}{}$		
293.2 37.8	0.178		
The authors also gave a small scale g coefficient with temperature from abo	raph showing tha variation of Kuenen ut 280 K to about 400 K.		
1 atm = 1.013 bar =	1.013 × 10 ⁵ Pascal		
* This is the volume of gas, reduced dissolved by 1 g of solvent, divide atmospheres.	to 273.5 K and 1 atm, which is d by the partial pressure of the gas in		
** Calculated by the compiler on the assumption that the value of S is applicable to a partial pressure of 1 atm.			
AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:		
No details given except that			
measurements were made by staff at	No information given.		
VEB Leuna-Werke 'Walter Ulbricht'.			
	ESTIMATED ERROR:		
	DEFEDENCES.		
	REFERENCES :		
1			

COMPONENTS:	ORIGINAL MEASUREMENTS:
1. Hydrogen sulfide; H,S;	
[7783-06-4]	Lenoir, J-Y.; Renault, P.; Renon, H.
2. Nitrobenzene; C ₆ H ₅ NO ₂ ; [98-95-3]	J. Chem. Eng. Data, <u>1971</u> , 16, 340-2
VARIABLES:	PREPARED BY:
	C. L. Young
EXPERIMENTAL VALUES:	
T/K Henry's const. Henry's const.	ant Mole fraction at 1 atm* xH_2S
	τ <u>η που το ποληγη</u> θείας του ποληγοριάζει το ποιείου το πολογού τ
298.2 18.7	0.0535
$x_{H_2S}(1 \text{ atm}) = 1/H_{H_2S}$	 - - -
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
A conventional gas-liquid chromato- graphic unit fitted with a thermal conductivity detector was used. The carrier gas was helium. The value of Henry's law constant was calculated from the retention time. The value applies to very low partial pressures of gas and there may be a substantial difference from that measured at l atm. pressure. There is also considerable uncertainty in the value of Henry's constant since surface adsorption was not allowed for	
although its possible existence was noted.	$\delta T/K = \pm 0.1; \ \delta H/atm = \pm 6\%$ (estimated by compiler).
	REFERENCES:

1

.

			·····		
COMP	ONENTS:			ORIGINAL MEASUR	EMENTS:
1.	Hydrogen s [7783-06-4	sulfide; H ₂ S;		Gerrard, W.	
2.	•			J. Appl. Cher 623-650	m. Biotechnol., <u>1972</u> , 22,
VARI	ABLES:	<u></u>		PREPARED BY:	
	Temperature	2		C.L. Young	
EXPE	RIMENTAL VALU	ES:			
	т/к	P*/mmHg	P*/kPa	Mole ratio	Mole fraction ⁺ of hydrogen sulfide in liquid, ¤ _{H2} S
	265.15	748	99.7	0.146	0.127
	267.15	748	99.7	0.127	0.113
	273.15	748	99.7	0.098	0.089
1	283.15	748	99.7	0.074	0.069
	293.15	748	99.7	0.056	0.053
	AUXILIARY INFORMATION				
METHOD/APPARATUS/PROCEDURE:				SOURCE AND PUR	ITY OF MATERIALS;
Hydrogen sulfide was bubbled into a weighed amount of component 2. in a bubbler tube as described in detail in the source. The amount of gas absorbed at equilibrium and at the observed temperature and pressure was determined by weighing. Pressure was measured with a mercury manometer			t 2. in a in detail of gas 1 at the ressure . Pressure	and attested	mponents were purified by conventional methods.
				ESTIMATED ERROR:	
				$\delta T/K = \pm 0.2; \delta x_{H_2S} = \pm 4\%$	
				REFERENCES:	

COMPONENTS :		ORIGINAL MEASUREMEN	TTC •
COM ONENTS.		ORIGINAL TEASOREMEN	
<pre>1. Hydrogen sulfide; H₂S; [7783-06-4]</pre>		Fanelli, R.	
2. Sulfur; S; [7704-34-9]		Ind. Eng. Chem 2031-2033.	· <u>1949</u> , 41,
VARIABLES:		PREPARED BY:	
Temperatur	0	P.G.T. Fo	aa
Temperatur	6	1	22
EXPERIMENTAL VALU	JES:	I <u></u>	· • • • • • • • • • • • • • • • • • • •
T/K	Wt. of H ₂ S × 100 / wt of sulfur	т/к	Wt. of H ₂ S × 100 / wt of sulfur
399.2	0.057	632.2	0.186
414.2	0.067	642.2	0.188
423.2	0.088	644.2	0.189
431.2	0.117	646.2	0.186
440.2	0.133	661.2	0.182
448.2	0.139	671.2	0.173
475.2	0.160	673.2	0.171
506.2	0.177	700.2	0.141
546.2	0.179	710.2	0.116
573.2	0.190	713.2	0.098
595.2	0.189	717.2	0.065
611.2	0.187	717.8	0.049
623.2	0.189		
The total pre	ssure was equal to barom	etric pressure (INFORMATION	unspecified).
METHOD / APPARATUS /	/PROCEDURE :	SOURCE AND PURITY	OF MATERIALS:
	ide from a cylinder was		
bubbled throu	gh 50-60 g of molten	1. from a cyl	inder; filtered by
sulfur in a g	lass vessel of capacity	glass wool	•
40 cm ³ for a	period of 16 to 90 hr.		
Temperatures	were measured by a		
thermocouple	in a well inside the		
vessel. An e	lectric furnace		
controlled by	Fenwall thermoswitches		
was used for	heating. The amount of	ESTIMATED ERROR:	
absorbed hydr	ogen sulfide was found		
by connecting	the vessel to a Schiff		
gas burette a	nd collecting and		
measuring the	gas evolved as the	REFERENCES:	
	. The gas remaining in		
the solid sul	fur was found from the		
increase in w	eight of vessel and		
contents.			

,

ı.

, , , , , , , , , , , , , , , , , , , ,				
COMPONENTS:	ORIGINAL MEASUREMENTS:			
Hydrogen sulfide; H ₂ S; [7783-06-4]	Gattow, G.; Krebs, B.			
<pre>2. Carbon disulfide; CS₂; [75-15-0]</pre>	Z. anorg. allgem. Chem. <u>1963</u> , 325, 15-25			
VARIABLES:	PREPARED BY:			
Temperature, concentration	P.G.T. Fogg			
EXPERIMENTAL VALUES:				
The total pressure was given by:				
log ₁₀ (P/mmHg)	$= - \frac{A}{T/K} + B$			
The vapor pressure of pure CS_2 is ver measurement. e.g. at 195 K it is 0.6 therefore close to the partial pressu	3 mmHg. The total pressure was			
Mol % H ₂ S Temperature range in liquid	e/K A B			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
AUXILIARY INFORMATION				
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS;			
Vapor pressures were measured by a mercury manometer in an apparatus connected to a high-vacuum system. Temperatures were controlled by a petroleum ether bath cooled by a cold-finger containing liquid air. Quantities of liquid H ₂ S were measured out by volume at - 78 °C. Required volumes had been calculated using the density given in (1). Measured quantities of CS ₂ were introduced into the apparatus and frozen in liquid air. H ₂ S was vacuum distilled into the vessel containing CS ₂ . Mixtures were brought to the temperature of	1. purified by vacuum sublimation. 2. dried over P_2O_5 . ESTIMATED ERROR: $\delta T/K = \pm 0.1$ (authors)			
measurement, magnetically stirred and vapor pressures recorded.	REFERENCES: 1. Steele, B.D.; McIntosh, D.; Archibald, E.H. Z. physik. Chem. <u>1906</u> , 55, 129.			

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>1. Hydrogen sulfide; H₂S; [7783-06-4]</pre>	Lenoir, J-Y.; Renault, P.; Renon, H.
<pre>2. Sulfinylbismethane, (Dimethylsulfoxide); C₂H₆SO; [67-68-5]</pre>	J. Chem. Eng. Data, <u>1971</u> , 16, 340-2
VARIABLES:	PREPARED BY:
	C. L. Young
EXPERIMENTAL VALUES:	
T/K Henry's consta H ₂ S ^{/atm}	ant Mole fraction at l atm*
298.2 10.9	0.0917
<pre>* Calculated by compiler assuming a 1</pre>	Linear function of $P_{H_2S} vs x_{H_2S}$, i.e.,
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
A conventional gas-liquid chromato- graphic unit fitted with a thermal conductivity detector was used. The carrier gas was helium. The value of	 (1) L'Air Liquide sample, minimum purity 99.9 mole per cent. (2) Touzart and Matignon or
Henry's law constant was calculated from the retention time. The value applies to very low partial pressures of gas and there may be a substantial difference from that measured at 1 atm. pressure. There is also considerable uncertainty in the value of Henry's constant since surface	Serlabo sample, purity 99 mole per cent.
adsorption was not allowed for although its possible existence was	ESTIMATED ERROR:
noted.	$\delta T/K = \pm 0.1; \ \delta H/atm = \pm 6 $ (estimated by compiler).
	REFERENCES:
	I

COMPONENTS:	ORIGINAL MEASUREMENTS:		
1. Hydrogen sulfide; H ₂ S; [7783-06-4]	Rivas, O.R.; Prausnitz, J.M.		
2. Tetrahydrothiophene, 1,1- dioxide,([©] Sulfolane); C ₄ H ₈ O ₂ S; [126-33-0]	Am. Inst. Chem. Engnrs. J. <u>1979</u> , 25, 975-984.		
VARIABLES:	PREPARED BY:		
Temperature	C.L. Young.		
EXPERIMENTAL VALUES:			
T/K Henry's constan /MPa	t, H Mole fraction of ⁺ hydrogen sulfide in liquid, x _{H2} S		
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0.0489 0.0330 0.0222 0.0160		
+ at a partial pressure of 1 compiler assuming Henry's pressure.	01.3 kPa calculated by law applies at that		
	INFORMATION		
METHOD/APPARATUS/PROCEDURE: Volumetric apparatus with a fused quartz precision bourdon pressure gauge. Solubility apparatus carefully thermostatted. Solvent degassed <i>in situ</i> . Apparatus described in ref. (1). and modifications given in source.	SOURCE AND PURITY OF MATERIALS: 1. and 2. Purity at least 99 mole per cent.		
	ESTIMATED ERROR: $\delta T/K = \pm 0.05; \ \delta x_{H_2S} = \pm 1$ %. REFERENCES: 1. Cukor, P.M.; Prausnitz, J.M.		
	Ind. Eng. Chem. Fundam. <u>1971</u> , 10, 638.		

COMPONENTS:	· · · · · · · · · · · · · · · · · · ·		ORIGINAL MEASUREMENTS:		
1. Hydrogen [7783-06	<pre>sulfide; H₂S; -4]</pre>		Byeseda, J.J.; Deetz, J.A.; Manning, W.P.		
2. Tetrahyd ([®] Sulfola	rothiophene, 1, ne); C4H8O2S; [1-dioxide, 126-33-0]	Proc.Laurance Reid Gas Cond.Conf. <u>1985</u> .		
VARIABLES:			PREPARED BY:		
			P.G.T. Fog	a	
				55	
EXPERIMENTAL V.	ALUES:			<u></u>	
т/к	P _{H₂S} ∕psia	P _{H₂S} /bar [*]	Ostwald coeff.	Mole fraction in liquid ^x H2S	
297.1	14.73	1.016	15,2	0.0686	
*	calculated by c	compiler			
			\$		
		AUXILIARY	INFORMATION		
METHOD /APPARAT	US/PROCEDURE:		SOURCE AND PURITY O	OF MATERIALS:	
1	contained in a	1			
thermostatt	ed metal cylind	ler			
connected t	o a pressure ga	age, vacuum			
pump and su	pply of gas. A	tight			
_	ernal piston se				
1	itted into the	-			
1	volume of gas				
	controlled move				
the piston. A measured volume of solvent was injected into the			ESTIMATED ERROR:		
1	a syringe. Th				
	of gas was four				
1	the piston whi		REFERENCES:		
	o maintain cons				
pressure.					

COMPONENTS:	· · · · · · · · · · · · · · · · · · ·		ORIGINAL MEASUREMENTS:	
	n sulfide; H_2S ;		Lenoir, J-Y.; Renault, P.; Renon, H.	
	783-06-4] ters of phosphoric acid			
2. Esters	or phosphoric acid	L	J. Chem. Eng. Data, <u>1971</u> , 16, 340-2.	
VARIABLES:			PREPARED BY:	
	Temperature		C. L. Young	
EXPERIMENTAL	VALUES:			
	T/K Henr	y's consta H ₄₂ S ^{/atm}	nt Mole fraction at 1 atm* ^x H ₂ S	
	Phosphoric acid,		ester; C ₃ H ₉ O ₄ P; [512-56-1]	
	325.2	18.4	0.0543	
	Phosphoric acid, 325.2	triethyl e 28.6	ester; C ₆ H ₁₅ O ₄ P; [78-40-0] 0.0350	
	Phosphoric acid,	tripropyl	ester; C ₉ H ₂₁ O ₄ P; [513-08-6]	
	298.2 323.2	4.19 7.96	0.2387 0.1256	
	343.2	12.6	0.0794	
	Phosphoric acid,		ester; C ₁₂ H ₂₇ O ₄ P; [126-73-8]	
	325.2	9.07	0.1103	
Phos	phoric acid, tris 325.2	(2-methylp) 8.89	copyl) ester; C ₁₂ H ₂₇ O ₄ P; [126-71-6] 0.1125	
* Calculated by compiler assuming a linear function of P_{H_2S} vs x_{H_2S} , i.e. x_{H_2S} (1 atm) = $1/H_{H_2S}$				
	•	AUXILIARY	INFORMATION	
· ·	ATUS/PROCEDURE:		SOURCE AND PURITY OF MATERIALS:	
graphic un	onal gas-liquid ch it fitted with a t	hermal	(1) L'Air Liquide sample, minimum purity 99.9 mole per cent.	
	ty detector was us s was helium. The		(2) Touzart and Matignon or	
Henry's la	w constant was cal		Serlabo sample, purity 99 mole per cent.	
applies to	very low partial there may be a su	pressures		
difference	from that measure	ed at		
	le uncertainty in	the value		
adsorption	constant since su was not allowed f	or	ESTIMATED ERROR:	
although its possible existence was noted.		nce was	$\delta T/K = \pm 0.1; \ \delta H/atm = \pm 6\%$	
			(estimated by compiler).	
			REFERENCES:	

COMPONENTS:	ORIGINAL MEASUREMENTS:		
 Hydrogen sulfide; H₂S; [7783-06-4] Tributyl phosphate, (phosphoric acid, tributyl ester); C₁₂H₂₇O₄P; [126-73-8] 	Sergienko, I.D.; Kosyakov, N.E.; Yushko, V.L.; Khokhlov, S.F.; Pushkin, A.G. Vop.Khim.Tekhnol. <u>1973</u> , 29, 57 - 6		
VARIABLES:	PREPARED BY:		
Temperature, pressure	P.G.T. Fogg		
EXPERIMENTAL VALUES:	I		
The authors have given a small (3.3 c) fraction solubilities of H_2S as a fur The compiler has calculated approxima corresponding partial pressures from	nction of partial pressure of H_2S . Ate values of mole fractions and the		
T/K P _{H2} S ^{/mmHg} Mole fraction solubility, x _{H2} S	T/K P _{H2S} /mmHg Mole fraction solubility, x _{H2S}		
313.15 121 0.029 362 0.075 495 0.101 591 0.113 644 0.128	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
293.15 106 0.041 253 0.094 386 0.130 495 0.163 543 0.175	233.15 48 0.118 106 0.203 169 0.304 193 0.336		
273.15 84 0.051 159 0.101 275 0.162 398 0.219 442 0.240	223.15 72 0.211 145 0.310 181 0.344 .		
AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:		
A static method described in ref.1 was used.	 purity found by chromatographic analysis to be at least 99.9% 'pure' grade material used. 		
	ESTIMATED ERROR:		
	REFERENCES: 1. Braude, G.E.; Shakhova, S.F. Khim. prom. <u>1961</u> , 3, 29.		

where x_1 and x_2 are the mole fraction P_2 is the partial pressure of the gas coefficient A by the equation:	wevskii-Il'inskaya equation i.e. $\log_{10}(K/\text{mmHg}) - \beta (1 - x_1^2)$ us of solvent and gas respectively, a and β is related to a				
β = A/(2 T/K Henry's Law constant K/mmHg	T/K Henry's Law constant K/mmHg				
298.15 3020 313.15 4677 328.15 7413	343.15 11176 363.15 15510 383.15 20850				
The authors have given a small scale volume of gas absorbed per unit volum and 1.013 bar, with partial pressure approximate values of α from the smoot through experimental points and has e solubilities.	we of solvent, corrected to 273.15 K of H_2S . The compiler has calculated oth curves which the authors drew				
T/K P/mmHg α Mole fraction solubility ^x H ₂ S [*]	T/K P/mmHg α Mole fraction solubility ^X H ₂ S [*]				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
750 10.68 0.118 328.15 200 2.75 0.034 400 4.68 0.056 600 6.41 0.075 750 7.46 0.087	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
estimated by compiler using densities from 298 K to 338 K given in ref. 2.					
AUXILIARY INFORMATION METHOD/APPARATUS/PROCEDURE: SOURCE AND PURITY OF MATERIALS:					
A static method was used. The compiler was not able to consult the original Russian paper. Literature references could not be included in the English translation from which the compilation was prepared. (1)	No information. ESTIMATED ERROR: REFERENCES 1. British Gas Corporation Translations, T5408/BG/LRS/LRST492/80 2. J. Timmermans, "Physico-Chemical Constants of Pure Organic Compounds", Vol. 2, Elsevier, London. <u>1965</u> .				

t t

ł

aqueous Solvents S2
GINAL MEASUREMENTS:
Härtel, G.H.
J.Chem.Eng.Data <u>1985</u> , 30, 57-61.
PARED BY:
P.G.T. Fogg
ant Mole fraction solubility
0.286 0.187 0.118 0.100 0.062
ire
n solubility
hat the variation of mole fraction as linear to 1.013 bar. (Values he range for which linearity was
or.)
ORMATION
JRCE AND PURITY OF MATERIALS: From Matheson, Heusenstamm, FRG; minimum purity 99.5%.
TIMATED ERROR: SP/mbar = ± 0.25 (author) FERENCES:

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>1. Hydrogen sulfide; H₂S; [7783-06-4]</pre>	Lenoir, J-Y.; Renault, P.; Renon, H.
2. Phosphoric triamide, hexamethyl; C ₆ H ₁₆ NO ₃ P; [680-31-9]	J. Chem. Eng. Data, <u>1971</u> , 16, 340-2
VARIABLES:	PREPARED BY:
	C. L. Young
EXPERIMENTAL VALUES:	
т/к	Henry's constant H _{H2} S ^{/atm}
298.2	1.61
Reliable extrapolation to a partial	pressure of 1 atm is not possible
for this system.	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
A conventional gas-liquid chromato- graphic unit fitted with a thermal	(1) L'Air Liquide sample, minimum purity 99.9 mole per cent.
conductivity detector was used. The carrier gas was helium. The value of	(2) Touzart and Matignon or
Henry's law constant was calculated from the retention time. The value	Serlabo sample, purity 99 mole per cent.
applies to very low partial pressures	
of gas and there may be a substantial difference from that measured at	
l atm. pressure. There is also considerable uncertainty in the value	
of Henry's constant since surface adsorption was not allowed for	ESTIMATED ERROR:
although its possible existence was noted.	$\delta T/K = \pm 0.1; \ \delta H/atm = \pm 6\%$
	(estimated by compiler).
	REFERENCES:

•

COMPONENTS:	EVALUATOR:
 Deuterium sulfide; D₂S; [13536-94-2] Water - d₂; D₂O; [7789-20-0] 	Peter G.T. Fogg, Department of Applied Chemistry and Life Sciences, Polytechnic of North London, Holloway, London N7 8DB, U.K. July 1987

CRITICAL EVALUATION:

1

1

The solubility of deuterium sulfide in water- d_2 (D₂O) has been measured by Clarke and Glew (1) over the temperature range 278 to 323 K and a total pressure range of 0.437 to 1.044 bar. These measurements are consistent with each other and appear to be reliable. No other data are available for this system and these data should therefore be accepted on a tentative basis.

The evaluator has calculated mole fraction solubilities for a partial pressure of 1.013 bar from the data which has been published. These mole fraction solubilities fit the following equation:

 $\ln x_{D_{-}C} = -54.487 + 5727.1/(T/K) + 3.6052 \ln(T/K) + 0.028224 T/K$

Standard deviation for $x_{D_2S} = \pm 4.0 \times 10^{-6}$

This equation is based upon measurements from 278 to 323 K.

The mole fraction solubilities for a partial pressure of 1.013 bar in this temperature range lie close to mole fraction solubilities of hydrogen sulfide in water (H_2O). The evaluator has also derived a similar smoothing equation for solubilities of hydrogen sulfide in water at a partial pressure of 1.013 bar. All the corresponding values for deuterium sulfide in D_2O lie within the standard deviation for this smoothing equation for hydrogen sulfide.

References

1. Clarke, E.C.W.; Glew, D.N. Can. J. Chem. 1971, 49, 691-698.

			Deutone	im Suitide i	n Dout			
Сомі	PONENTS:				ORIGIN	AL MEA	SUREMENTS:	
1.	Deuterium sulfide; D ₂ S; [13536-94-2]			Cla	rke, I	E.C.W.; Glew	7, D.N.	
2.	•	d ₂ ; D ₂ O;			Can	. J. (Chem. <u>1971</u> ,4	9,691-698.
VAR	IABLES:				PREPA	RED BY:		
	Tempera	ture, pres	ssure				C.L. Youn	ng.
EXP	ERIMENTAL	VALUES:	······				······································	
	т/К	Total <u>p</u> P/atm	pressure P/kPa	D ₂ S in ^Y D ₂	-	D2S	Mole fra 5 in liquid 10 ³ x _{D2} S	DS in liquid [*]
St in sa me pr ca ca	278.103 278.119 278.119 278.120 278.120 283.162 283.161 283.161 283.161 283.167 283.167 283.167 283.165 288.146 288.145 288.145 288.144 288.144 288.144 288.148 288.147 293.165 THOD/APPARA atic equi source. turated a asured wi ecision E re was ta	0.47451 TUS/PROCEDUI librium c Vapor pr iqueous so th a fuse bourdon ga ken to ma	54.583 65.921 84.138 49.305 57.438 69.272 88.204 50.281 58.948 71.785 92.840 49.754 58.378 71.156 92.188 49.946 58.814 72.076 94.203 50.783 59.728 73.083 95.261 48.080 RE: ell descri essure ove	0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98	441 659 886 122 514 721 935 159 917 219 531 857 895 201 559 943 4416 098 526 943 4416 098 526 9748 INFORM SOURC 1. ESTIM	E AND I Prepa on al grade Conta oxide Atomi	1.4489 1.6916 2.0451 2.6113 1.5266 1.7806 2.1493 2.7373 1.3152 1.5453 1.8853 2.4409 1.3017 1.5308 1.8694 2.4248 1.1202 1.3239 1.6278 2.1331 1.1375 1.3425 1.6480 2.1535 0.9288 PURITY OF MATE red by the a uminium sulf K and K lal ined 0.25 we (water). S c Energy of RROR: $= \pm 0.0015; 6$	0.56 0.61 0.67 0.76 0.58 0.63 0.69 0.78 0.59 0.64 0.71 0.81 0.59 0.64 0.71 0.80 0.60 0.65 0.72 0.83 0.60 0.66 0.73 0.83 0.59 RIALS: action of D ₂ O fide (pure b). eight % protium Supplied by Canada.

 Deuteriu [13536-9 Water- a [7789-20 EXPERIMENTA 	94-2] 1 ₂ ; D ₂ 0;	e; D ₂ S;			
. Water- a [7789-20 	d ₂ ; D ₂ O;		}		.W.; Glew, D.N.
				Can. J. Che 691-698.	m. <u>1971</u> ,49,
	AL VALUES	:			
т/К	Total Pr P/atm		D ₂ S in gas ^Y D ₂ S	Mole fra D ₂ S in liquid ^{10³x} D ₂ S	DS- in liquid*
a <u>ta</u> i <u>a</u>		······································	- D ₂ S		
	0.56008		0.96388	1.1027	0.65
	0.68930 0.90742		0.97054 0.97748	1.3647 1.8056	0.72 0.83
	0.53870		0.94869	0.9207	0.64
298.151	0.65900	66.774	0.95792	1.1360	0.71
	0.85875		0.96752	1.4924	0.82
	0.55844		0.95048	0.9577	0.65
	0.68292 0.88929		0.95936	1.1807 1.5494	0.73 0.83
	0.88929		0.96861 0.94042	0.7867	0.59
	0.54848		0.94958	0.9401	0.65
	0,67873		0.95911	1.1736	0.72
298.155	0.90170	91.366	0.96902	1.5721	0.84
	0.55882		0.93309	0.8361	0.66
	0.69356		0.94589	1.0506	0.74
	0.92605		0.95922 0.93982	1.4196 0.9373	0.86 0.70
	0.77226		0.93982	1.1757	0.78
		104.447	0.96326	1.5853	0.91
	0.43164		0.84752	0.4797	0.57
	0.51421		0.87173	0.5874	0.63
	0.64240	65.092	0.89699	0.7543	0.71
		87.929		1.0469	0.84
	0.54232 0.68071		0.79389 0.83525	0.4746 0.6260	0.64 0.73
323.140	0.92773		0.83525	0.8956	0.87
	00		ated from the		
TOG	$10 K_{D_2S} =$: 54.50 -	3760 (т/к) -	20 log (T/K)	

ł

COMPONENTS:	EVALUATOR:
 Hydrogen selenide; H₂Se; [7783-07-5] Aqueous and non-aqueous solvents. 	Peter G.T. Fogg, Department of Applied Chemistry and Life Sciences, Polytechnic of North London, Holloway, London N7 8DB, U.K. July 1987
CRITICAL EVALUATION:	

Few measurements of the solubility of hydrogen selenide have been reported in the literature. At 298.15 K liquid hydrogen selenide has a lower vapor pressure than liquid hydrogen sulfide. Raoult's law leads one to expect that hydrogen selenide is likely to have a higher mole fraction solubility in a given solvent than hydrogen sulfide, at the same temperature and partial pressure of gas. This appears to be the case for eight of the nine non-aqueous solvents for which data is available. Hydrogen sulfide is, however, the more soluble in water under the conditions which have been investigated.

Devyatykh *et al.* (1) measured distribution constants for certain non-aqueous solvents. These can only be equated with Ostwald coefficients if it can be established that surface effects made negligible contribution to the chromatographic process and that conditions were close to equilibrium. In the absence of other data these measurements are best considered as an indication of approximate relative solubilities in different solvents. The following solvents were studied:

2-Ethoxyethanol; $C_{4}H_{10}O_{2}$; [110-80-5] 1,1'-Oxybis(2-chloroethane); Nitrobenzene; $C_{6}H_{5}NO_{2}$; [98-95-3] $C_{4}H_{8}Cl_{2}O$; [111-44-4] 2-Furancarboxaldehyde; $C_{5}H_{4}O_{2}$; [98-01-1] 1,2-Benzenedicarboxylic acid, didecyl ester; $C_{28}H_{46}O_{4}$; [84-77-5] Triethoxysilane; $C_{6}H_{16}O_{3}Si$; [998-30-1] Silicic acid, tetraethyl ester; Liquid paraffin $C_{8}H_{20}O_{4}Si$; [78-10-4]

In all these solvents, with the exception of 1,2-benzenedicarboxylic acid, didecyl ester, hydrogen selenide has a higher distribution constant than hydrogen sulfide at 293.2 K.

Solubility in water at a partial pressure of 1.013 bar has been reported by McAmis & Felsing (2) for 287.7 to 308.2 K and by Dubeau *et al.* (3) for 298.2 to 343.2 K. There is, on the whole, good agreement between the two sets of measurements (see fig.7). Mole fraction solubilities for a partial pressure of 1.013 bar may be fitted to the following equation:

```
\ln x_{\text{H}_2\text{Se}} = 9.15 + 974/(\text{T/K}) - 3.542 \ln (\text{T/K}) + 0.00420 (\text{T/K})\delta x_{\text{H}_2\text{Se}} = \pm 2.3 \times 10^{-5}
```

This equation is valid in the temperature range 287.7 to 343.2 K.

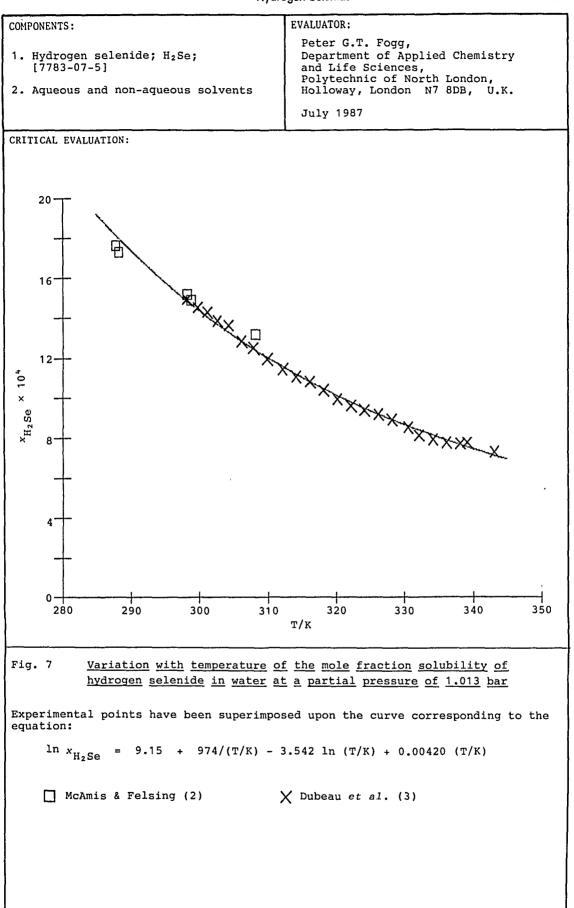
The value given by McAmis and Felsing for 308.2 K seems to be out of line with the data at higher temperatures by Dubeau and has not been used by the evaluator in the calculation of this smoothing equation.

McAmis & Felsing also investigated the solubility at 298.15 K and a total pressure of 1.013 bar in solutions of hydrogen iodide of concentrations to 2.73 mol dm⁻³. Solubilities increase with concentration of hydrogen iodide and follow a Sechenov relationship very closely. They may be fitted to the equation:

 $\log_{10}(\text{concn. H}_2\text{S/mol dm}^{-3}) = -1.0788 + 0.04011 (\text{concn. HI/mol dm}^{-3})$

Standard deviation of $\log_{10}(\text{concn. of } H_2S/\text{mol } dm^{-3}) = \pm 0.0035$

These data for solutions of hydrogen iodide appear to be reliable and may be accepted on a tentative basis.


References

 Devyatykh, G.G.; Ezheleva, A.E.; Zorin, A.D.; Zueva, M.V. Zh. Neorgan. Khim. <u>1963</u>, 8, 1307-1313. Russ. J. Inorg. Chem. <u>1963</u>, 8, 678-682.

2. McAmis, A.J.; Felsing, W.A. J. Am. Chem. Soc. <u>1925</u>, 4, 2633-2637.

3. Dubeau, C.; Sisi, J.-C.; Ozanne, N. J. Chem. Engng. Data 1971, 16, 78-79.

Hydrogen Selenide

COMPONENTS:	ORIGINAL MEASUREMENTS:			
COM ONENTS.	ORIGINAL MEASUREMENTS:			
1. Hydrogen selenide; H ₂ Se;	Devyatykh, G. G.; Ezheleva, A. E.;			
[7783-07-5]	Zorin, A. D.; Zueva, M. V.			
0 Neutona linuida	Russ. J. Inorg. Chem.			
2. Various liquids	1963, 8, 678-682.			
	<u></u> , , , ,			
VARIABLES:	PREPARED BY:			
Memocrature	P. G. T. Fogg			
Temperature, pressure	P. G. T. FOGG			
EXPERIMENTAL VALUES:	Distribution			
72	/mmHg constant Heat of			
Solvent ¹ H ₂ Se	$/mmHg$ vol_{H_2Se} $/kcal mol^{-1}$			
	/vol solvent			
2-Ethoxyethanol; C ₄ H ₁₀ O ₂ ;				
[110-80-5] 0	.3 14.42 - 1.6			
1,1'-oxybis[2-chloroethane];				
	.2 12.5 - 3.4			
Nitrobenzene; $C_6H_5NO_2$; [98-95-3]	.2 22.0 - 2.45			
• • • • • •	.3 30.0 -			
Temperature = 293.2 K. 760 mmHg	-1 $+$ -1 012 \times 105 D			
Distribution constants were measured total pressure of hydrogen selenide a				
At a fixed temperature the distributi				
mean values by more than ±3%. These	mean values were reported at one			
temperature only but heats of solution				
the variation of distribution constan If it is assumed that distribution co				
according to equations of the form:	nooanoo tary wron comporadare			
$\ln X = (-\Delta H/RT) +$	Δ			
	A			
	(cont.)			
AUXILIARY	INFORMATION			
METHOD / APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:			
A chromatographic method was used.				
Temperatures were controlled to	 Prepared by hydrolysis of Al₂Se₃; purified by vacuum distillation; 			
±0.5 K. The support phase consisted	chromatographically pure.			
	W and W a nagood through activated			
of Nichrome spirals. The carrier	H ₂ and N ₂ : passed through activated carbon and through mole-			
gas was either nitrogen or hydrogen.	cular sieve.			
The volume, V_{ℓ} , of the liquid phase				
was calculated from the weight of				
the column before and after filling				
with liquid and allowing to drain.	ESTIMATED ERROR:			
The free volume, $V_{\alpha}^{}$, was equated with				
the retention volume for hydrogen				
gas. The distribution constant, K,				
was calculated from the James and	REFERENCES:			
Martin equation:				
$v_{R} = v_{g} + k v_{\ell}$				
where $V_{R}^{}$ is the retention volume for				
hydrogen selenide.				

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>1. Hydrogen selenide; H₂Se; [7783-07-5]</pre>	Devyatykh, G. G.; Ezheleva, A. E.; Zorin, A. D.; Zueva, M. V. Russ. J. Inorg. Chem.
2. Various liquids	Russ. J. Inorg. Chem. <u>1963</u> , 8, 678-682.

EXPERIMENTAL VALUES:

Ł

where K is the distribution constant for a temperature T, ΔH is the heat of solution of hydrogen selenide in the solvent and A is a constant for the solvent, then distribution constants at any temperature in the range 278.2 K to 323.2 K may be estimated from a value at 293.2 K and the corresponding value of the heat of solution. The equation for K may be written in the form:

$$K = \exp \left[A + (B/T)\right].$$

The following values of A and B have been calculated by the compiler:

Solvent	A	B/K
2-Ethoxyethanol	- 0.079	806
1,1'-oxybis[2-chloroethane]	- 3.313	1712
Nitrobenzene	- 1.116	1234

In the opinion of the compiler these distribution constants can not be equated with Ostwald coefficients unless the assumption is made that equilibrium was established between gas and liquid phases under the conditions of the experiment.

COMPONENTS:	ORIGINAL MEASUREMENTS:
 Hydrogen selenide; H₂Se; [7783-07-5] Various liquids 	Devyatykh, G. G.; Ezheleva, A. E.; Zorin, A. D.; Zueva, M. V. <i>Russ. J. Inorg. Chem.</i> <u>1963</u> , <i>8</i> , 678-682.
VARIABLES:	PREPARED BY:
Temperature	P. G. T. Fogg
EXPERIMENTAL VALUES: Solvent	Distribution constant Heat of solution vol _{H3P} /kcal mol ⁻¹ /vol _{solvent}
2-Furancarboxaldehyde; C ₅ H ₄ O ₂ ; [98-01-1]	22.5 -
l,2-Benzenedicarboxylic acid, didecyl ester; C _{28H46} O ₄ ; [84-77-5]	28.5 -
Triethoxysilane; C ₆ H ₁₆ O ₃ Si; [998-30-1]	5.21 - 5.0
Silicic acid, tetraethyl ester; C ₈ H ₂₀ O ₄ Si; [78-10-4]	11.52 ~ 5.4
Distribution constants were measured partial pressures of hydrogen selenic made were not stated. The total pre- carrier gas was about 760 mmHg in eac were reported at one temperature only been calculated from the variation of temperature, were given in two cases.	de at which these measurements were assure of hydrogen selenide and th case. Distribution constants y but heats of solution, said to have distribution constants with
	(cont.)
	INFORMATION
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
A chromatographic method was used. Temperatures were controlled to ± 0.5 K. The support phase consisted of Nichrome spirals. The carrier gas was either nitrogen or hydrogen. The volume, V_{g} , of the liquid phase was calculated from the weight of	 1. Prepared by hydrolysis of Al₂Se₃; purified by vacuum distillation; chromatographi- cally pure. H₂ and N₂: passed through acti- vated carbon and
the column before and after filling	through molecular sieve.
with liquid and allowing to drain. The free volume, V_g , was equated with the retention volume for hydrogen gas. The distribution constant, K,	ESTIMATED ERROR:
was calculated from the James and Martin equation: $V_R = V_q + KV_k$	REFERENCES :

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>1. Hydrogen selenide; H₂Se; [7783-07-5] 2. Various liquids</pre>	Devyatykh, G. G.; Ezheleva, A. E.; Zorin, A. D.; Zueva, M. V. <i>Russ. J. Inorg. Chem.</i> <u>1963</u> , 8, 678-682.

EXPERIMENTAL VALUES:

If it is assumed that distribution constants vary with temperature according to equations of the form:

 $\ln K = (-\Delta H/RT) + A$

where K is the distribution constant for a temperature T, ΔH is the heat of solution in the solvent and A is a constant for the solvent, then distribution constants at any temperature in the range 278.2 K to 323.2 K may be estimated from a value at 293.2 K and the corresponding value of the heat of solution. The equation for K may be written in the form:

 $K = \exp [A + (B/T)].$

The following values of A and B have been calculated by the compiler:

Solvent	А	B/K
Triethoxysilane	- 6.936	2518
Silicic acid, tetraethyl ester	- 6.830	2719

In the opinion of the compiler these distribution constants can not be equated with Ostwald coefficients unless the assumption is made that equilibrium was established between gas and liquid phases under the conditions of the experiment.

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>l. Hydrogen selenide; H₂Se; [7783-07-5]</pre>	McAmis, A.J.; Felsing, W.A.
2. Water; H ₂ O; [7732-18-5]	J. Am. Chem. Soc. <u>1925</u> ,4,2633-2637
VARIABLES:	PREPARED BY:
Temperature	C.L. Young
EXPERIMENTAL VALUES: $P_{H_2Se} = 7$	60 mmHg = 101.3 kPa
T/°C T/K No. of determinations (Av. devn.%)	Moles H ₂ Se per Mole fraction of dm ³ of soln. + H ₂ Se, x _{H₂Se}
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0.09789 0.09611 0.00173 0.08415 0.00152 0.08277 0.00149
35.0 308.2 4 (0.23)	0.07317 0.00132
 + it appears that this concentrat: of mol dm⁻³ (soln) rather than model assumed that the molar volume of that of water for the purpose of 	ol dm ⁻³ (water). It has been
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Hydrogen selenide bubbled into water until saturated at the stated temper- atures. Samples of saturated	- on aluminium selenide.
solutions removed and analysed either volumetrically or gravimetrically. The gravimetric method was based on the reaction between silver nitrate and hydrogen selenide. In the volumetric method saturated sample added to an excess of standard iodine solution, the selenium allowed to settle, and the excess iodine	a
solution titrated against thiosulfate solution.	E ESTIMATED ERROR:
	$\delta T/K = \pm 0.1; \ \delta x_{H_2Se} = \pm 2\%$
	REFERENCES:
1	I Contraction of the second seco

;'

ŧ

-

COMPONENTS .	<u></u>		ODICINAL AT ACUDENTING	
COMPONENTS:			ORIGINAL MEASUREMENTS:	
 Hydrogen selenide; H₂Se; 		H ₂ Se;	Dubeau, C.; Sisi, JC.;	
[7783-07-5]			Ozanne, N.	
2. Wate:	r; H ₂ O; [7732-]	18-5]	J. Chem. Engng. Data	
			<u>1971</u> , <i>16</i> , 78-79.	
VARIABLES:			PREPARED BY:	
	Temperature	2	C. L. Young	
EXPERIMENT		tial pressure	= 1 atm = 101.3 kPa	
т∕°С	T/K	Solubilit	y [#] Mole fraction [§] of hydrogen selenide,	
1			^x H ₂ Se	
25.1	298.25	0.0834		
26.6	299.75	0.0806	2 0.00145	
28.0	301.15	0.0803 0.0794		
		0.0790	9 0.00143	
29.5	302.65	0.0767	5 0.00138	
31.1	304.25	0.0757 0.0753		
33.0	306.15	0.0709	0.00128	
34.7	307.85	0.0713		
		0.0691		
36.7	309.85	0.0664 0.0661	· · · · · · · · · · · · · · · · · · ·	
39.0	312.15	0.0633		
41.0	314.15	0.0609	7 0.00110	
		0.0614	1 0.00111 (cont.)	
		AUXILIARY	INFORMATION	
METHOD/APPA	ARATUS/PROCEDURE:		SOURCE AND PURITY OF MATERIALS:	
Sample	of water satura	ited with	1. Matheson sample, purity 98	
_	n selenide at 1		mole per cent.	
	ental temperatu			
sample withdrawn after 15 days.			2. Deoxygenated and demineralised.	
	ture increased	—		
-	nother sample v			
Samples	analyzed by gr	avimetric		
analysi	s using silver	nitrate as	ESTIMATED ERROR:	
precipitating agent. Details in source.		Details	$\delta T/K = \pm 0.1; \delta S = \pm 1$ % up to 50 °C and ± 2 % above 50 °C (estimated by compiler).	
			REFERENCES:	
L				

337

;

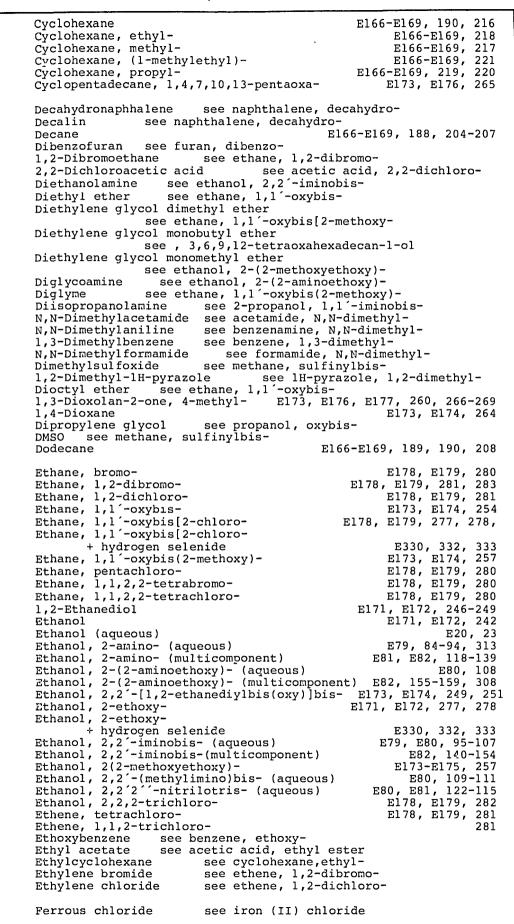
COMPONEN	TS:	ORIG	INAL MEASUREMENTS:
[7783	gen selenide; H ₂ Se; -07-5] ; H ₂ O; [7732-18-5]	Oza J.	beau, C.; Sisi, JC.; anne, N. <i>Chem. Engng. Data</i> <u>71</u> , 16, 78-79.
EXPERIME	NTAL VALUES:		······································
T∕°C	T/K	Solubility [#]	Mole fraction [§] of hydrogen selenide, ^{xx} H ₂ Se
43.0	316.15	0.05922	0.00107
45.0	318.15	0.06033 0.05833 0.05643	0.00109 0.00105 0.00102
47.0	320.15	0.05544	0.00100
49.0	322.15	0.05504 0.05361	0.000992 0.000967
51.0	324.15	0.05297 0.05249	0.000955 0.000947
53.0	326.15	0.05161 0.05079	0.000931 0.000916
55.0	328.15	0.05073 0.05012	0.000915 0.000904
57.4	330.55	0.0487 0.04672	0.000878 0.000843
59.0	332.15	0.04744 0.04587	0.000856 0.000827
61.0	334.15	0.04384 0.04465	0.000791 0.000805
63.0	336.15	0.04299 0.04397	0.000775 0.000793
65.0	338.15	0.04197 0.04377 0.04214	0.000757 0.000790 0.000760
66.0	339.15	0.04255 0.04228 0.04269	0.000767 0.000763 0.000770
70.0	343.15	0.0440 0.04017	0.000794 0.000725

 $^{\#}$ Moles of H_2Se per dm^3 of solution.

 5 Calculated by compiler assuming that 1 dm³ of solution contains 55.4 moles. It seems likely that the volume was measured at room temperature. The effect of the H_2Se on the density of water has been neglected.

)

ŧ


ŧ

ł

COMPONENTS:	ORIGINAL MEASUREMENTS:
1. Hydrogen selenide; H ₂ Se; (7783-07-5]	McAmis, A.J. Felsing, W.A.
2. Hydrogen iodide; HI; [10034-85-2]	J. Am. Chem. Soc. <u>1925</u> ,4,2633-2637
3. Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
Concentration of comp. 2.	C.L. Young
EXPERIMENTAL VALUES:	
T/°C T/K Conc. of HI/mol dm- ³	No. of Conc. of H ₂ Se, S determinations /mol dm ⁻³ (soln) (Av.devn. %)
25 298.2 0.20 0.40 2.73	4 (0.31) 0.08478 4 (0.31) 0.08634 4 (0.82) 0.11012
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Hydrogen selenide bubbled into hydriodic acid until saturated at the stated temperature. Samples of saturated solutions removed and	 Prepared by action of water on aluminium selenide. 2.and 3.
analysed by volumetric method. A saturated sample was added to an excess of standard iodine solution, the selenium allowed to settle and the excess iodine solution titrated against thiosulfate solution.	Hydrogen iodide prepared by reaction of red phosphorus and iodine in the presence of water was dissolved in conductivity water.
saturated sample was added to an excess of standard iodine solution, the selenium allowed to settle and the excess iodine solution titrated	reaction of red phosphorus and iodine in the presence of water was dissolved in conductivity water.
saturated sample was added to an excess of standard iodine solution, the selenium allowed to settle and the excess iodine solution titrated	reaction of red phosphorus and iodine in the presence of water was dissolved in conductivity water.
saturated sample was added to an excess of standard iodine solution, the selenium allowed to settle and the excess iodine solution titrated	reaction of red phosphorus and iodine in the presence of water was dissolved in conductivity water.
saturated sample was added to an excess of standard iodine solution, the selenium allowed to settle and the excess iodine solution titrated	<pre>reaction of red phosphorus and iodine in the presence of water was dissolved in conductivity water. ESTIMATED ERROR:</pre>

SYSTEM INDEX

E180, E181, E183, 299 Acetamide, N,N-dimethyl-Acetic acid E176, 270 Acetic acid anhydride E176, 271 Acetic acid, 2,2-dichloro-Acetic acid, ethyl ester E178, E179, 282 199 E180-E182, 298, 299 Acetonitrile see ethanol, 2-amino-2-Aminoethanol Ammonia (aqueous) E54, E55, 56-65 Ammonia (multicomponent) 66-78 39 Ammonium chloride (aqueous) Ammonium chloride (aqueous in ammonia solution) 66 see nitric acid, ammonium salt Ammonium nitrate see sulfuric acid, ammonium salt Ammonium sulfate see benzenamine Aniline Anthracene, 9-methyl-E170, E171, 237 2-H-Azepin-2-one, hexahydro-1-methyl- E180, E181, E183, 314 E180-E182, 290-293 Benzenamine E180-E182, 295 Benzenamine, N,N-diethyl-E180-E182, 293, 294 Benzenamine, N, N-dimethyl-E180-E182, 295 E180-E182, 293 Benzenamine, N-ethyl-Benzenamine, N-methyl-E170, E171, 224-226 Benzene E178, E179, 224, 286, 288 Benzene, bromo-E178, E179, 199, 224, 285-287 E170, E171, 230 E170, E171, 231 Benzene, chloro-Benzene, 1,2-dimethyl-Benzene, 1,3-dimethyl-Benzene, ethoxy-E173, E174, 256 E170, E171, 233 E178, E179, 289 E170, E271, 224, 227-229 Benzene, ethyl-Benzene, iodo-Benzene, methyl-Benzene, (1,1'-methylene)bis-Benzene, (1-methylethyl)-E170, E171, 235 233 E180, E182, 277, 278, 315, 316 Benzene, nitro-Benzene, nitro-+ hydrogen selenide E330, 332, 333 E170, E171, 233 E170, E171, 232-234 Benzene, propyl-Benzene 1,3,5-trimethyl-Benzenedicarboxylic acid, didecyl ether E176, E178, 277, 278 Benzenedicarboxylic acid, didecyl ether 334, 335 E171-E172, 245 + hydrogen selenide Benzenemethanol Benzoic acid, 2-hydroxy-, methyl ester E176, E178, 273 Benzonitrile E180-E182, 300 Benzyl alcohol 1,1'-Bicyclohexyl see benzenemethanol E166-E169, 223 Bromobenzene see benzene, bromo-1-Bromobutane see butane, 1-bromo-Bromoethane see ethane, tribromo-Bromoform see methane, tribromo-l-Bromooctane see octane, l-bromo-Butane E166-E169, 192, 193 E166-E169, 192, 193, 283 Butane, 1-bromo-E171, E172, 243 1-Butanol Calcium chloride (aqueous) E25, E26, 40, 44 E20, 21, E27, 48, 49, 50 68-79, E79-E83, 118-165 Carbon dioxide (aqueous) Carbon dioxide (multicomponent) E185, 318 75-77 Carbon disulphide Carbon monoxide (multicomponent) Carbonic acid, monosodium salt (aqueous) E27, 48 Carbonic acid, potassium salt (aqueous) E26, E27, 46, 47, 49, 50 Carbonic acid, sodium salt (aqueous) E26, E27, 45, 48 Chlorobenzene see benzene, chloro-Chloroform see methane, trichlorosee cyclododecane, 1,4,7,10-tetraoxa-see cyclopentadecane, 1,4,7,10,13,-pentaoxa-12-Crown-4 15-Crown-5 Cyclododecane, 1,4,7,10-tetraoxa-E173, E176, 265 System Index

System Index

```
Formamide, N,N-dimethyl-
                                      E180, E182, E183, 299, 302-304
2-Furancarboxyldehyde
                                                  E176, E178, 277, 278
2-Furancarboxyldehyde
        + hydrogen selenide
                                                        E330, 334, 335
E176, E178, 276
Furan, dibenzo-
                                                        E173, E174, 263
Furan, tetrahydro-
                see 1,2,3-propanetriol
Glycerol
                                              E166-E169, 188, 200, 201
Heptane
                                        E166-E69, 189, 190, 210-212
E166-E169, 188, 190, 198, 199
Hexadecane
Hexane
Hexanoic acid
                                                               E176, 272
2,5,8,11,14,17-Hexaoxanonadecane, 18-methyl-
                                                                       260
α-Hydro-ω-hydroxy-poly(oxy-1,2-ethandiy1) E173-E175, 252, 253
                                              75-77, 240, 276
E25, E26, 29, 30, 34-37
Hydrogen (multicomponent)
Hydrogen chloride
                                                            E26, 31, 339
Hydrogen iodide
Hydrogen selenide
        + 1,2-benzenedicarboxylic acid, didecyl ester
                                                         E330, 334, 335
E330, 332, 333
        + 2-ethoxyethanol
        + 2-furancarboxaldehyde
                                                          E330, 334, 335
                                                         E330, 332, 333
E330, 332, 333
E330, 332, 332
        + 1,1'-oxybis[2-chloroethane]
        + nitrobenzene
        + paraffin (liquid)
+ triethoxysilane
                                                          E330, 334, 335
        + silicic acid, tetraethyl ester
                                                         E330, 334, 335
1,1'-Iminobis-2-propanol
                                    see 2-propanol, 1,1'-iminobis-
Iodobenzene
               see benzene, iodo-
Iron (II) chloride (in hydrochloric acid)
                                                                  E26, 34
Kerosene A-1
                                                              E170, E171
                                                        75-77, 213, 214
E185, 319
Methane (multicomponent)
Methane, sulfinylbis-
Methane, tetrachloro-
                                                        E178, E179, 279
                                                   E178, E179, 279, 283
Methane, tribromo-
Methane, trichloro-
                                                   E178, E179, 279, 282
                                                    E171, E172, 238-241
Methanol
9-Methylanthracene see anthracene, 9-methyl-
N-Methyl-c-caprolactam
                 see 2-H-azepin-2-one, hexahydro-1-methyl-
Methylcyclohexane
                           see cyclohexane, methyl-
                          see cyclonexane, mccnji
see ethanol, 2,2'-(methylimino)di-
ne see benzene, 1,1'-methylenebis-
xane see cyclohexane, (l-methylethyl)-
Methyldiethanolamine s
1,1'-Methylenebisbenzene
(1-Methylethyl)cyclohexane
                         see naphthalene, 1-methyl-
1-Methylnaphthalene
2-Methylpropane
                        see propane, 2-methyl-
Methyl salicylate
                 see benzoic acid, 2-hydroxy-, methyl ester
3-Methyl-1H-pyrazole see 1H-pyrazole, 3-methyl-
1-Methyl-2-pyrrolidinone see 2-pyrrolidinone, 1-methyl-
                           see ethanol, 2-amino-
Monoethanolamine
Naphthalene, decahydro-
Naphthalene, 1-methyl-
Nitric acid, ammonium salt (aqueous)
                                                       E166-E169, 222
E170, E171, 236
                                                                       39
Nitric acid, potassium salt (aqueous)
Nitric acid, sodium salt (aqueous)
                                                                       39
                                                                       39
Nitrobenzene see benzene, nitro-
Nitrogen (multicomponent)
                                                                   75-77
Nonadecane, 18-methy1-2,5,8,11,14,17-hexaoxa-
                                                      E173, E174, 261
Nonane
                                                   E166-E169, 188, 203
                                              E166-E169, 188, 190, 202
Octane
Octane (ternary)
                                                                 213, 214
Octane, 1-bromo-
Octane, 1,1'-oxybis-
                                                         E178, E179, 284
                                                        E173, E174, 255
1-Octanol
                                                         E171, E172, 244
Paraffin (liquid)
                                                  E169, E170, 277, 278
Paraffin (liquid)
        + hydrogen sulfide
                                                               E330, 332
```

Pentadecane E166-E169, 189 Pentaethylene glycol methyl isopropyl ether see 3,6,9,12,15,18-hexaoxanonadecane, 2-methyl-E166-E169, 188, 196, 197 E173, E175, 257-260 Pentane 2,5,8,11,14-Pentaoxapentadecane E26, 38 298 Perchloric acid (aqueous) Perchloric acid, lithium salt (aqueous) Perchloric acid, sodium salt (aqueous) E26, 38, 40 E176, E178, 275 Phenol Phenol (aqueous) E20, 78 Phosphoric acid, tributyl ester Phosphoric acid, triethyl ester Phosphoric acid, trimethyl ester E183-E185, 260, 323-325 E183-E185 E183-E185 Phosphoric acid, tripropyl ester E183-E185 Phosphoric acid, tris(2-methylpropyl) ester E183-E185 E183-E185, 326 Phosphoric triamide, hexamethyl-Polyethylene glycol see α-hydro-ω-hydroxy-poly(oxy-1,2-ethanediy1)-mate see carbonic acid, potassium salt Potassium carbonate Potassium chloride (aqueous) E25, 39, 41 Potassium nitrate see nitric acid, potassium salt see sulfuric acid, potassium salt Potassium sulfate Propane, 2-methyl-E166, E169, 194, 195 E166, 191 Propane 1,2,3-Propanetriol (aqueous) E20, 24 2-Propanol, 1,1'-iminobis- (aqueous) 2-Propanol, 1,1'-iminobis- (multicomponent) E80, 116 E82, 117, 160-165 Propanol, oxybis-E173, E174, 250 2-Propanone E176, E178, 274 Isopropylbenzene see benzene, (1-methylethyl)see cyclohexane, (1-methylethyl)-see cyclohexane, propyl-see 1,3-dioxolan-2-one, 4-methyl-Isopropylcyclohexane Propylcyclohexane Propylene carbonate 1-H-Pyrazole, 1,3-dimethyl-1-H-Pyrazole, 3-methyl-E180, E182, 301 E180-E182, 301 E180-E182, 301 E180-E182, 301 Pyridine 2-Pyrrolidinone, 1-methyl-E180, E181, 260, 305-313 Quinoline E180-E182, 299 E51, 52, 53 E173-E175, 262 E185, 277, 278 Seawater Sepasolv MPE Silane, triethoxy-Silane, triethoxy-+ hydrogen selenide E330, 334, 335 Silicic acid, tetraethyl ester Silicic acid, tetraethyl ester E185, 277, 278 + hydrogen selenide £330, 334, 335 Silicone oils E185, 277, 278 Sodium bicarbonate see carbonic acid, monosodium salt see carbonic acid, sodium salt Sodium carbonate Sodium chloride (in hydrochloric acid) E26, 36, 37 Sodium chloride E25, E26, 36, 37, 39, 41, 42 Sodium nitrate see nitric acid, sodium salt see perchloric acid, sodium salt Sodium perchlorate Sodium sulfate see sulfuric acid, sodium salt Sodium sulfide 48 Sulfur E185, 317 Sulfuric acid E26, 32, 33 Sulfuric acid (multicomponent) 52, 53, 67 Sulfuric acid, ammonium salt (aqueous) Sulfuric acid, potassium salt (aqueous) Sulfuric acid, sodium salt (aqueous) 39, 67 39 E25, E26, 39, 40, 43 1,1,2,2-Tetrabromoethane 1,1,2,2-Tetrachloroethane ane see ethane, 1,1,2,2-tetrabromo-hane see ethane, 1,1,2,2-tetrachloro-see ethene, 1,1,2,2-tetrachloro-Tetrachloroethylene Tetrachloroethene see ethene, 1,1,2,2-tetrachloro-Tetradecane E166-E169, 189, 209 Tetraethylene glycol dimethyl ether see 2,5,8,11,14-pentaoxapentadecane Tetraethoxysilane see silicic acid, tetraethyl ester Tetraglyme see pentadecane, 2,5,11,14-pentaoxa-Tetrahydrofuran see furan, tetrahydroTetrahydrothiophene, 1,1-dioxide see thiophene, tetrahydro-, 1,1-dioxide E173-E175, 257 2,5,8,11-Tetraoxadodecane 3,6,9,12-Tetraoxahexadecan-l-ol, E173, E174, 257 Thiophene, tetrahydro-, l,l-dioxide (multicomponent) Thiophene, tetrahydro-, l,l-dioxide E18 117 E185, 320, 321 Tribromomethane see methane, tribromo-Tributyl phosphate see phosphoric acid, tributyl ester see ethanol, 2,2,2-trichloro-see ethene, 1,1,2-trichloro-2,2,2-Trichloroethanol Trichloroethene Trichloroethylene see ethene, 1,1,2-trichloro-Trichloromethane see methane, trichloro-Tricyclodecanedimethanol 259 Tridecane E166-E169, 189 see ethanol, 2,2',2'-nitrilotris Triethanolamine see silane, triethoxy-Triethoxysilane Triethylene glycol dimethyl ether see 2,5,8,11-tetraoxadodecane Triethylene glycol see ethanol, 2,2'-[1,2-ethanediylbis(oxy)]bissee dodecane, 2,5,8,11-tetraoxa-Triglyme 1,3,5-Trimethylbenzene see benzene, 1,3,5-trimethyl-Undecane E166-E169, 189 Urea E20, 22 Water-d2 + deuterium sulfide E327, 328, 329 E1-E3, 4-19 Water E20, 21-24, E25-E28, 29-50, E51, 52, 53, E54, E55, 56-78, E79-E83, Water (multicomponent) 84-165, 298, E330, E331, 336-339 Zinc chloride (in hydrochloric acid) E26, 35

Page numbers preceded by E refer to evaluation texts whereas page numbers not preceded by E refer to compiled tables Compounds are named as in Chemical Abstracts indexes (toluene appears under Benzene, methyl-).

REGISTRY NUMBER INDEX

Page numbers preceded by E refer to evalation texts whereas those not preceded by E refer to compiled tables.

56-23-5 E178, E179, 279 56-81-5 E20, 24 57-13-6 E20,22 60-29-7 E173-E175, 254 E180-E182, 290-293 62-53-3 64-17-5 E20, 23, E171, E172, 242 64-19-7 E176, 270 67-56-1 E171, E172, 238-241 67-64-1 E176, E178, 274 E178, E179, 279, 282 67-66-3 67-68-5 E185, 319 68-12-2 E180, E183, 299, 302-304 E171, E172, 243 E170, E171, 224-226 71-36-3 71-43-2 74-82-8 75, 76, 213, 214 74-96-4 E178, E179, 280 E166, 191 74-98-6 75-05-8 E180, E182, 298, 299 E185, 318 E178, E179, 279, 283 75-15-0 75-25-2 75-28-5 E166, E167, 194, 195 76-01-7 E178, E179, 280 E185, 277, 278, E330, 334, 335 E183, 322 78-10-4 78-40-0 79-01-6 281 79-27-6 E178, E179, 280 E178, E179, 280 E178, E179, 282 E176, E178, 277, 278, E330, 332, 333 79-34-5 79-43-6 84-77-5 91-17-8 E166, E169, 222 91-22-5 297 91-66-7 E180-E182, 295 92-51-3 E166, E169, 223 E170, E171, 230 E176, E178, 277, 278, E330, 334, 335 95-47-6 98-01-1 E170, E171, 233 E180, E182, 277, 278, 315, 316, E330, 332, 333 E170, E171, 233 98-82-8 98-95-3 100-41-4 100-47-0 E180, E182, 300 100-51-6 E171, E172, 245 100 - 61 - 8E180, E182, 293 101-81-5 E170, E171, 235 102-71-6 E80, E81, 112-115 E170, E171, 233 E180, E182, 295 103-65-1 103-69-5 103-73-1 E173-E175, 256 105-59-9 E80, 109-111 106-93-4 E178, E179, 281, 283 E166, E168, 192, 193 106-97-8 107-06-2 281 107-21-1 E171, E172, E175, 246-249 108 24-7 E176, 271 E173-E176, E177, 260, 266-269 108-32-7 108-38-3 E170, E171, 231 108-67-8 E170, E171, 232-234

108-86-1 E178, E179, 224, 286, 288 E168, E169, 217 E170, E171, 224, 227-229 E178, E179, 199, 224, 285, 287 E20, 78, E176, E178, 275 108-87-2 108-88-3 108-90-7 108-95-2 E178, E179, 283 109-65-9 E166-E168, 188, 196, 197 E173-E175, 263 E166-E168, 188, 190, 198, 199 109-66-0 109-99-9 110-54-3 110-80-5 E171, E172, 277, 278, E330, 332, 333 110-82-7 E169, 190, 216 110-97-4 E80 110-97-4 E82, 116, 117, 160-165, 308 111-42-2 E79, E80, E82, 95-107, 140-154 111-44-4 E178, E179, 277, 278, E330, 332, 333 111-65-9 E166-E169, 188, 190, 202, 213, 214 111-77-3 E173-E175, 257 111-83-1 E178, E179, 284 111-84-2 E166-E168, 188, 203 111-87-5 E171, E172, 244 E173-E175, 257 E173-E175, 249, 111-96-6 112-27-6 251 E166-E168, 189, 190, 208 112-40-3 E173-E175, 257 112-49-2 E178, E179, 282 115-20-8 E176, E178, 273 E180-E182, 293, 294 119-36-8 121-69-7 123-91-1 E173, 264 124-18-5 E166-E168, 188, 204-207 124-38-9 E20, 21, E27, 48-50, 68-78, E79-E83, 118-165 126-33-0 E185, 117, 320, 321 126-71-6 E183, 322 E183, 260, 332-325 E178, E179, 281 E180, E183, 299 126-73-8 127 - 18 - 4127-19-5 132-64-9 E176, E178, 276 141-43-5 E79, E81, E82, 84-94, 118-139, 313 199 141-78-6 142-62-1 E176, 272 142-82-5 E166-E168, 188, 200, 201 143-24-8 E173-E175, 257-260 144-55-8 48 294-93-9 E173-E176, 265 497-19-8 E26, E27, 45, 48 512-56-1 E183, 322 513-08-6 E183, 322 544-76-3 E166-E168, 189, 190, 210-212 E26, E27, 46, 47, 49, 50 E178, E179, 289 584-08-7 591-50-4 629-50-5 E166-E168, 189 629-59-4 E166-E168, 189, 209 629-62-9 E166-E168, 189 629-82-3 E173-E175, 255 630-08-0 75,76 680-31-9 E183, E185, 326

E180-E182, 301 694-48-4 696-29-7 E166, E169, 221 E170, E171, 237 779-02-2 872-50-4 E180, 260, 305-313 929-06-6 E80, E82, 108, 155-159 998-30-1 E185, 277, 278, E330, 334, 335 1120-21-4 E166-E168, 189 1313-82-2 48 1321-94-4 E170, E171, 236 1333-74-0 75, 76, 237, 240, 276 1453-58-3 301 1559-34-8 E173-E175, 257 1678-91-7 E168, E169, 218 E166, E169, 219, 220 E180, E184, 314 1678-92-8 2556-73-2 6484-52-2 39 39, 41 E26, 38, 40 E16, E26, 38 7447-40-7 7601-89-0 7601-90-3 7631-99-4 39 E26, 35 E25, E26, 29, 30, 34, 35-37 E25, E26, 36, 37, 39, 41, 42 E54, E55, 56-78 E26, 32, 33, 52, 53 7646-85-7 7647-01-0 7647-14-5 7664-41-7 7664-93-9 E185, 317 75, 76 7704-34-9 7727-37-9 7732-18-5 E1-E3, 4-19, E20, 21-24, E25-E28, 29-50, E54, E55, 56-78 E79-E83, 84-165, 298, E330, E331, 336-339 7757-79-1 E25, 39 E25, 39, 40, 43 7757-82-6 7758-94-3 E26, 34 7778-80-5 39 7783-06-4 E1-E3, 4-19, E20, 21-24, E25-E28, 29-50, E51, 52-53, E54 E55, 56-78, E79-E83, 84-165, E166-E187, 188-326 E330, E331, 332-339 7783-07-5 7783-20-2 39, 67 7789-20-0 E327, 328, 329 7791-03-9 298 10034-85-2 E26, 31, E330, 339 10043-52-4 E25, E26, 40, 44 12125-02-9 39, 66 13536-94-2 E327, 328, 329 E173, E175, 250 E173-E175, 252, 253 25265-71-8 25322-68-3 26896-48-0 259 33100-27-5 E173-E176 63095-29-4 E174-E176, 261

AUTHOR INDEX

Page numbers preceded by E refer to evaluation texts whereas those not preceded by E refer to compilation tables. E26, E28, 32 Aleksandrova, M.V. E166-E169, E185, 198, 202, 207-209, 212 Al-Najjar, H. E25, E27, 29 Andrews, J. C. E1-E3, 8, E25, E26, E28, 30, 34, 35, 41 E79-E82, 88, 97, 112 E169, E186, 213, 214 E79, E82 Anvaer, B.I. Arnold, M. R. Asano, K. Astarita, G. Atwood, K. E79-E82, 88, 97, 112 E54, E55, 68 Badger, E. H. M. Balzano, C. E79, E82 Bancroft, W.D. E180, E187, 290 E26, E28, 40 Becker, Th. E180, E187, 290 Belden, B.C. E166, E167, E170, E178, E179, E186, 190, 224, 279, 280, 281 Bell, R.P. E170, E171, E182, E186, 226, 233, 286, 293, 295 Berengarten, M.G. E27, E28, 48 Berl, A. E167, E186, 194, 195 Besserer, G.J. Beutier, D. E54, E55, 65 Bezdel, L.S. E172, E186, 238 E173, E187, 251 E182, E187, 298 E176, E177, E187, 266 Blake, R.J. Blount, H.N. Bondareva, T.I. E80, E83 Bottoms, R. R. E184, 187, 314 E1-E3, 19, E172, E173, E175, E184, E185, E187, 249, 304, 321 Burk, W. Byeseda, J.J. Carmichael, L.T. E1-E3, 9, 10 E1-E3, 12, 13, E327, 328, 329 E79, E81-E83, 89, 122-125 Clarke, E.C.W. Claytor, E. E. Jr. Danckwerts, P. V. E79, E82 E26, E28, 40 Dede, L. El-E3, 19, El72, El73, El75, El84, El85, El87, 249, 304, 321 Deetz, J.A. Deshmukh, R. D. DeVaney, W.E. E79, E83 E167-E170, E186, 203, 221, 232 E169, E172, E179, E180, E182, E185, E186, 227, 228, E330, 332-335 Devyatykh, G.G. Dingman, J. C. E79-E83, 155-159 Douabul, A.A. Dryden, I.G.C. E1-E3, 33, E51, 52, 53 E26-E28, 46, 49, E54, E55, 69-71 E330, E331, 337, 338 Dubeau, C. E184, E187, 302 DuPont de Nemours and Co. (Inc.) E167-E170, E186, 203, 221, 232 Eakin, B.E. Edwards, T.J. E54, E55 E183, E184, E187, 324 E181, E182, E187, 301 Efimova, N.M. Egorova, V.I. E79, E82, E83 Eisenberg, B. E171, E172, E186, 239, 240 Eto, Y. E182, E187, 298 E169, E172, E179, E180, E182, E185, E186, 227, 228, E330, 332-335 Evans, J.F. Ezheleva, A.E. Fanelli, R. E185, 317 E172, 175, E187 Fauser, G. E330, E331, 336, 339 Felsing, W.A. E171, E186 Fogg, P.G.T. E79, E81-E83, 89, 122-125 Froning, H. R. E182, E182, E187, 301 E170, E171, E182-E184, E186, E187, 226, 233, 286, Furmanov, A.S. Furmer, I.E. 293, 295, 324 Gamol skii, A. M. E54, 61, 62 Gamsjager, H. E1-E3, E25, E26, E28, 36-38, E51 E79, E81-E83, 92, 93, 104-106, 129, 130, 149-151 Garst, A. W. Gattow, G. 5165, 318

Author Index

Gerrard, W. E20, E166-E168, E170-E173, E175, E176, E178-E182, E184, E186, 206, 225, 227, 230, 242, 244, 247, 255, 256, 264, 271-273, 282-285, 288, 289, 292, 294, 296, 297, 300, 303 E173, E175, E187, 252 Gestrich, W. Gillespie, P. C. E54, E55, 73-77 Gilliland, E.R. E166, E186, 191 E79, E82 Gioia, F. E54, 63, 64 Ginzberg, D. M. E1-E3, 12, 13, E327, 328, 329 E20, 21, E54, 58, 78 E183, E184, E187, 324 Glew, D.N. Golutvin, Yu. M. Gracheva, N.V. E181, E182, E187, 301 Grishko, N.I. E170, E186, 215 E170, E186, 215 Haccuria, M. Hannaert, H. E174, E175, E183, E184, E187, 253, 258, 259, 261, Härtel, G.H. 325 E166-E168, E171-E173, E175, E176, E178, E179, E182, E184, E186, 199, 241, 243, 248, 263, 270, 274, 287, 299 Hayduk, W. E54, 56, 57, 66, 67, 72 Hoftijzer, P. J. E169-E171, E186, 218-220, 231, 234 Huang, S. S.-S. Hughes, R.E. E166, E168, E186, 192, 193 Huntjens, F. J. E54, 56, 57, 66, 67, 72 Isaacs, E.E. E79-E83, 94, 98-104, 117, 138, 139, 160-165, E176, E177, E187, 268 E79-E83, 155-159 Jackson, J. L. E79, E81-E83, 89, 122-125 Jones, J. H. Jou, F.-Y. E79-E81, E83, 109-111, 113-115 E166-E168, E170, E186, 200, 201, 228, 229 Kalra, H. Kapustinsky, A.F. E1-E3, 8, E25, E26, E28, 30, 34, 35, 41 Kendall, J. E25, E27, 29 Kent, R. L. E79, E82, E83 Khokhlov, S.F. Kindrick, R. C. E183, E184, E187, 323 E79-E82, 88, 97, 112 King, M.B. E166-E169, E185, 198, 202, 207-209, 212 E184, E187, 314 E1-E3, E20, 22-Kisan, W. Xiss, A. V. 22-24 Klimenko, N. N. E54, 61, 62 Klymer, S. D. E79, E83 Kobayashi, R. E169, E171, E178, E186, 213, 214, 237, 276 Kolesnikova, T. L. E79, E83 E183, E184, E187, 323 Kosyakov, N.E. Kozintseva, T.N. E1-E3, 11, E25, E28, 42-44 E171, E178, E186, 237, 276 Kragas, T.K. Krebs, B. E185, 318 Kubota, H. E166-E168, E170, E186, 200, 201, 228, 229 Lacey, W.N. E166-E168, E186, 196, 197, 204, 205, E1-E3, E20, 22-24 E79-E83, 107, 152-154 Lajtai, I. Lal, D. Lawson, J. D. E79, E81-E83, 92, 93, 104-106, 129, 130, 149-151 Lee, J.I. E1-E3, 14-18, E79-E83, 90, 91, 98-103, 116, 126-128, 131-135, 141-148 E79, E81, E83, 86, 87, 95, 96, 118, 140 E167 - E169, E172, E175, E176, E178, E180, E182-E186, 210, 222, 245, 246, 250, 267, 275, 291, 305, 315, 316, 319, 322, 326 E54, E55, 59, 60 Leibush, A. G. Lenoir, J-Y. Leyko, J. Linford, R.G. E175, E187, 265 E79, E83, 84, 85 Lingafelter, E. C. Litvin, V. P. E54, 63, 64 Litvinenko, M.S. E26-E28, 45, 47, 50 E1-E3, 6, 7 Maass, D. E166-E168, E170, E172, E182, E185, E186, 188, 189, Makranczy, J. 226, 233, 286, 293, 295 E20, 21, E54, 58, 78 Malysheva, T. V. Manning, W.P. E1-E3, 19, E172, E173, E175, E184, E185, E187, 249, 304, 321

Martin, J. L. E80, E82, E83, 108 Masuoka, H. Mather, A.E. Mathieu, M.P. Matvienko, V.G. McAmis, A.J. McLauchlan, W.H. McNeil, K. M. E79, E82 Megyery-Balog, K. Monaghan, P. R. Moore, T. F. Muhlbauer, H. G. Murrieta-Guevara, F. Nakahara, T. Nasir, P. Neokladnova, L.N. Newman, J. E54, E55 Ng, H-J. Otto, F.D. 268 Oratovskii, V. I. Owens, J. L. Ozanne, N. Pahlevanzadeh, H. Parsons, L.B. Patyi, L. Piatekiewicz, J. Pikulina, N. S. Pollitzer, F. Povalyaeva, N.V. Prausnitz, J.M. Pushkin, A.G. Rainer, W. Reamer, H.H. Reinke, L. Renault, P. Renon, H. Riegger, E. Riley, J.P. Rittener, A. Rivas, O.R. Robinson, D.B. Roāin, Yu. A. E79, E83 Roariguez, A.T. Rusz, L. Sadamoto, S. Sadilenko, A.S. Sage, B.H. Sahgal, A. Sandercock, J.A.W. Savage, D. W. E79, E82 Scheeline, H.W. Schindler, P. Schwartz, E. Sciamanna, S.F. Sechenov, E25, E27 Selleck, F.T. E183, E184, E187, 323 Sergienko, I.D.

E171, E172, E186, 239, 240 E1-E3, 14-18, E79-E83, 90, 91, 94, 98-103, 107-111, 113-116, 126-128, 131-139, 141-148, 152-154, 160-165, E176, E177, E187, 268 E170, E186, 215 E180, E187, 302-311 E330, E331, 336, 339 E1-E3, 4, E25, E28, 39 E166-E168, E185, 188, 189 E79, E81-E83, 119-121 E79-E83, 155-159 E79, E81-E83, 119-121 E180, E187, 312, 313 E169, E186, 213, 214 E80, E81, E83, 136, 137 E181, E182, E187, 301 E166-E168, E170, E186, 200, 201, 217, 228, 229 E79-E83, 90, 91, 94, 98-103, 107-111, 113-116, 126-128, 138, 139, 141-148, 152-154, E176, E177, E187, E54, 61, 62 E54, E55, 73-77 E330, E331, 337, 338 E166-E168, E182, E184, E186, 199, 299 E173, E175, E187, 254 E166-E168, E170, E171, E182, E185, E186, 188, 189, 226, 233, 286, 293, 295 E54, E55, 60 E54, 63, 64 E1-E3, E26, E28, 31 E180, E187, 309-311 E54, E55, E166-E169, E171, E176, E177, E180, E185-E187, 211, 223, 235, 236, 306-308, 320 E183, E184, E187, 323 E1-E3, E26, E28, 38, E51 E166-E168, E186, 196, 197, 204, 205 E173, E175, E187, 252 E167, E168, E172, E175, E176, E178, E180, E182-E186, 210, 222, 245, 246, 250, 267, 275, 291, 305, 315, 316, 319, 322, 326 E54, E55, 65, E167, E168, E172, E175, E176, E178, E180, E182-E186, 222, 245, 246, 250, 267, 275, 291, 305, 315, 316, 319, 322, 326 E79, E83, 84, 85 E1-E3, 33, E51, 52, 53 E27, E28, 48 E176, E177, E180, E185, E187, 269, 306-308, 320 E166-E168, E170, E171, E186, 192-195, 200, 201, 217-220, 228, 229, 231, 234 E180, E187, 213, 313 E166-E168, E185, 188, 189 E171, E172, E186, 239, 240 E170, E171, E182, E186, 226, 233, 286, 293, 295 E1-E3, 9, 10, E166-E158, E186, 196, 197, 204, 205 E171-E173, E175, E176, E178, E179, E186, 241, 243 248, 263, 270, 274, 287 E166, E168, E186, 192, 193 E166, E186, 191 E1-E3, E25, E26, E28, 36-38, E51 E174, E175, E187, 262 E174, E175, E187, 257 E1-E3, 9, 10, E166-E168, E186, 204, 205,

Author Index

E176, E177, E187, 266 E79, E81, E83, 86, 87, 95, 96, 118, 140 E171-E173, E175, E176, E178, E179, E186, 241, 243, 248, 263, 270, 274, 287 Shneerson, A. L. Short, I. Silver, L. E54, E55, 68 E330, E331, 337, 338 E20, 21, E54, 58, 78 E170, E171, E182-E184, E186, E187, 226, 233, Sisi, J.C. Skorobogatova, V. I. Stepanova, Z.G. 286, 293, 295, 324 Svetlova, G.M. E169, E186, 216 E174, E176, E183, E187, 260 Sweeney, C.W. E79, E83, 84, 85 Tartar, H. V. E172, E186, 238 Teodorovich, V.P. E176, E187, 265 Thornhill, D.G.T. Thury, G. E1-E3, E20, 22-24 Tremper, K.K. Tsiklis, D.S. E166-E169, E171, E186, 211, 223, 235, 236 E169, E186, 216 van Krevelen, D. W. E54, 56, 57, 66, 67, 72 E183, E184, E187, 324 E174, E175, E187, 262 E174, E175, E187, 262 Vei,D. Vodrazka, W. Volkamer, K. Wehner, K. E184, E187, 314 Weiss, R.F. E51 Wilson, G. M. E54, E55, 73-77 E1-E3, 5 Winkler, L.W. Wolfer, W. Wright, R.H. E174, E175, E187, 262 E1-E3, 6, 7 Yaroshchuk, E.G. E26, E28, 32 E180, E187, 309-311 E171, E172, E186, 239, 240 Yarym-Agaev, V.G. Yorizane, M. E166, E186 E183, E184, E187, 323 Young, C.L. Yushko, V.L. E169, E172, E179, E180, E182, E185, E186, 227, 278 Zorin, A.D. E330, 332-335 E176, E177, E186, 266 E169, E172, E179, E180, E182, E185, E186, 227, 278 E330, 332-335 Zubchenko, Yu.P. Zueva, M.V.

SOLUBILITY DATA SERIES

Volume 1	H. L. Clever, Helium and Neon
Volume 2	H. L. Clever, Ktpton, Xenon and Radon
Volume 3	M. Salomon, Silver Azide, Cyanide, Cyanamides, Cyanate, Selenocyanate and Thiocyanate
Volume 4	H. L. Clever, Argon
Volume 5/6	C. L. Young, Hydrogen and Deuterium
Volume 7	R. Battino, Oxygen and Ozone
Volume 8	C. L. Young, Oxides of Nitrogen
Volume 9	W. Hayduk, Ethane
Volume 10	R. Battino, Nitrogen and Air
Volume 11	B. Scrosati and C. A. Vincent, Alkali Metal, Alkaline Earth Metal and Ammonium Halides. Amide Solvents
Volume 12	C. L. Young, Sulfur Dioxide, Chlorine, Fluorine and Chlorine Oxides
Volume 13	S. Siekierski, T. Mioduski and M. Salomon, <i>Scandium, Yttrium, Lanthanum and Lanthanide Nitrates</i>
Volume 14	H. Miyamoto, M. Salomon and H. L. Clever, Alkaline Earth Metal Halates
Volume 15	A. F. M. Barton, Alcohols with Water
Volume 16/17	E. Tomlinson and A. Regosz, Antibiotics: I. B-Lactam Antibiotics
Volume 18	O. Popovych, Tetraphenylborates
Volume 19	C. L. Young, Cumulative Index: Volumes 1-18
Volume 20	A. L. Horvath and F. W. Getzen, Halogenated Benzenes, Toluenes and Phenols with Water
Volume 21	C. L. Young and P. G. T. Fogg, Ammonia, Amines, Phosphine, Arsine, Stibine, Silane, Germane and Stannane in Organic Solvents
Volume 22	T. Mioduski and M. Salomon, <i>Scandium, Yttrium, Lanthanum and Lanthanide Halides in Nonaqueous Solvents</i>
Volume 23	T. P. Dirkse, Copper, Silver, Gold, and Zinc, Cadmium, Mercury Oxides and Hydroxides
Volume 24	W. Hayduk, Propane, Butane and 2-Methylpropane
Volume 25	C. Hiraymana, Z. Galus and C. Guminski, Metals in Mercury
Volume 26	M. R. Masson, H. D. Lutz and B. Engelen, Sulfites, Selenites and Tellurites
Volume 27/28	H. L. Clever and C. L. Young, Methane
Volume 29	H. L. Clever, Mercury in Liquids, Compressed Gases, Molten Salts and Other Elements
Volume 30	H. Miyamoto and M. Salomon, Alkali Metal Halates, Ammonium lodate and lodic Acid
Volume 31	J. Eysseltová and T. P. Dirkse, Alkali Metal Orthophosphates
Volume 32	P. G. T. Fogg and C. L. Young, Hydrogen Sulfide, Deuterium Sulfide and Hydrogen Selenide
Volume 33	P. Franzosini, Molten Alkali Metal Alkanoates
Volume 34	A. N. Paruta and R. Piekos, 4-Aminobenzenesulfonamides. Part I: Non-cyclic Substituents
Volume 35	A. N. Paruta and R. Piekos, 4-Aminobenzenesulfonamides. Part II: 5-Membered Heterocyclic Substituents