INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY

ANALYTICAL CHEMISTRY DIVISION COMMISSION ON SOLUBILITY DATA

SOLUBILITY DATA SERIES

Volume 37

HYDROCARBONS WITH WATER AND SEAWATER

Part I: Hydrocarbons C5 to C7

SOLUBILITY DATA SERIES

Editor-in-Chief

A. S. KERTES The Hebrew University Jerusalem, Israel

EDITORIAL BOARD

W. E. Acree (USA)
A. F. M. Barton (Australia)
R. Battino (USA)
H. L. Clever (USA)
W. Davison (UK)
J. F. Fu (China)
F. W. Getzen (USA)
L. H. Gevantman (USA)
H. J. M. Grünbauer (Netherlands)
W. Hayduk (Canada)
P. Huyskens (Belgium)
G. Jancso (Hungary)

J. W. Lorimer (Canada) H. Ohtaki (Japan) A. N. Paruta (USA) M. Salomon (USA) D. G. Shaw (USA) A. Skrzecz (Poland) A. Szafranski (Poland) A. O. Vesala (Finland) J. D. Willey (USA) B. A. Wolf (FRG) S. H. Yalkowsky (USA) C. L. Young (Australia)

Managing Editor P. D. GUJRAL IUPAC Secretariat, Oxford, UK

INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY IUPAC Secretariat: Bank Court Chambers, 2-3 Pound Way, Cowley Centre, Oxford OX4 3YF, UK

NOTICE TO READERS

Dear Reader

If your library is not already a standing-order customer or subscriber to the Solubility Data Series, may we recommend that you place a standing order or subscription order to receive immediately upon publication all new volumes published in this valuable series. Should you find that these volumes no longer serve your needs, your order can be cancelled at any time without notice.

Robert Maxwell Publisher at Pergamon Press

A complete list of volumes published in the Solubility Data Series will be found on p. 528.

SOLUBILITY DATA SERIES

Editor-in-Chief A.S. KERTES

Volume 37

HYDROCARBONS WITH WATER AND SEAWATER

Part I: Hydrocarbons C₅ to C₇

Volume Editor DAVID G. SHAW University of Alaska Fairbanks, AK, USA

Co-Editors

MARIE-CLAIRE HAULAIT-PIRSON **GLENN T. HEFTER** Murdoch University Perth, Australia

ANDRZEJ MACZYNSKI Polish Academy of Sciences Warsaw, Poland

NIST Research Information Center

Ne

8515 . 491

> V. 1 1989

F. KAPUKU University of Leuven Leuven, Belgium

University of Leuven

Leuven, Belgium

Z. MACZYNSKA Polish Academy of Sciences Warsaw, Poland

> A. SZAFRANSKI Institute for Industrial Chemistrv Warsaw, Poland

Contributors

M. KLEINSCHMIDT University of Alaska Fairbanks, AK, USA

Η. ΜΙΥΑΜΟΤΟ Niigata University Niigata, Japan

C. TSONOPOULOS Exxon Research and Engineering Co. Florham Park, NJ, USA

D. MacKAY University of Toronto Toronto, Canada

W. Y. SHIU University of Toronto Toronto, Canada

C. L. YOUNG University of Melbourne Parkville, Australia

PERGAMON PRESS OXFORD · NEW YORK · BEIJING · FRANKFURT SÃO PAULO · SYDNEY · TOKYO · TORONTO

U.K.	Pergamon Press plc, Headington Hill Hall, Oxford OX3 0BW, England
U.S.A.	Pergamon Press Inc., Maxwell House, Fairview Park, Elmsford, New York 10523, U.S.A.
PEOPLE'S REPUBLIC OF CHINA	Pergamon Press, Room 4037, Qianmen Hotel, Beijing, People's Republic of China
FEDERAL REPUBLIC OF GERMANY	Pergamon Press GmbH, Hammerweg 6, D-6242 Kronberg, Federal Republic of Germany
BRAZIL	Pergamon Editora Ltda, Rua Eça de Queiros, 346, CEP 04011, Paraiso, São Paulo, Brazil
AUSTRALIA	Pergamon Press Australia Pty Ltd., P.O. Box 544, Potts Point, N.S.W. 2011, Australia
JAPAN	Pergamon Press, 5th Floor, Matsuoka Central Building, 1-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160, Japan
CANADA	Pergamon Press Canada Ltd., Suite No 271, 253 College Street, Toronto, Ontario, Canada M5T 1R5
	Copyright © 1989 International Union of Pure and Applied Chemistry
	All Rights Reserved. No part of this publication may be reproduced stored in a retrieval system or transmitted in any

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means: electronic, electrostatic, magnetic tape, mechanical, photocopying, recording or otherwise, without permission in writing from the copyright holders.

First edition 1989

The Library of Congress has catalogued this serial title as follows:

Solubility data series.—Vol. 1—Oxford; New York; Pergamon, c 1979v.; 28 cm. Separately catalogued and classified in LC before no. 18. ISSN 0191-5622 = Solubility data series. 1. Solubility—Tables—Collected works. QD543.S6629 541.3'42'05-dc19 85-641351 AACR 2 MARC-S

British Library Cataloguing in Publication Data

Hydrocarbons with water and seawater 1. Hydrocarbons. Solubility I. Shaw, David II. Series 547'.0104542 ISBN 0-08-029215-1

CONTENTS

Proface		V1 1 x
Introduct	ion to The Solubility of Liquids in Liquids	ri vi
The Phase	Behavior of Water + Hydrocarbon Systems	xui xvi
C5H6	1,3-Cyclopentadiene	1
C5H8	Cyclopentene	2
•••	2-Methyl-1,3-butadiene	7
	1,4-Pentadiene	11
	1-Pentyne	12
C5H10	Cyclopentane	13
	2-Methyl-2-butene	22
	3-Methyl-l-butene	27
	1-Pentene	28
	2-Pentene	29
C5H12	2,2-Dimethylpropane	30
	2-Methylbutane	31
	Pentane	42
C6H6	Benzene	59
C6H8	1,4-Cyclohexadiene	193
C6H10	Cyclohexene	197
	1,5-Hexadiene	209
	1-Hexyne	211
C6H12	Methylcyclopentane	212
	Cyclohexane	221
	2,3-Dimethyl-l-butene	272
	2-Methyl-l-pentene	273
	4-Methyl-l-pentene	274
	1-Hexene	275
	2-Hexene	282
C6H14	2,2-Dimethylbutane	283
	2,3-Dimethylbutane	289
	2-Methylpentane	296
	3-Methylpentane	307
	Hexane	314
с 7 н8	Toluene	369
	2,5-Norbornadiene	432
	1,3,5-Cycloheptatriene	433
	1,6-Heptadiyne	438
C7H12	l-Methylcyclohexene	439
	Cycloheptene	440
	1,6-Heptadiene	441
	1-Heptyne	442
C7H14	Ethylcyclopentane	443
	Methylcyclohexane	445
C7H14	Cycloheptane	454
	1-Heptene	455
	2-Heptene	460
^{C7H} 16	2,2,3-Trimethylbutane	464
	2,2-Dimethylpentane	465
	2,3-Dimethylpentane	467
	2,4-Dimethylpentane	469
	3,3-Dimethylpentane	476
	2-Methylhexane	4/8
	J-Methylhexane	481
	Heptane	486
System In	dex	519
Registry Number Index		521
Contract of the second se		
uthor In	dex	523

FOREWORD

If the knowledge is undigested or simply wrong, more is not better

How to communicate and disseminate numerical data effectively in chemical science and technology has been a problem of serious and growing concern to IUPAC, the International Union of Pure and Applied Chemistry, for the last two decades. The steadily expanding volume of numerical information, the formulation of new interdisciplinary areas in which chemistry is a partner, and the links between these and existing traditional subdisciplines in chemistry, along with an increasing number of users, have been considered as urgent aspects of the information problem in general, and of the numerical data problem in particular.

Among the several numerical data projects initiated and operated by various IUPAC commissions, the Solubility Data Project is probably one of the most ambitious ones. It is concerned with preparing a comprehensive critical compilation of data on solubilities in all physical systems, of gases, liquids and solids. Both the basic and applied branches of almost all scientific disciplines require a knowledge of solubilities as a function of solvent, temperature and pressure. Solubility data are basic to the fundamental understanding of processes relevant to agronomy, biology, chemistry, geology and oceanography, medicine and pharmacology, and metallurgy and materials science. Knowledge of solubility is very frequently of great importance to such diverse practical applications as drug dosage and drug solubility in biological fluids, anesthesiology, corrosion by dissolution of metals, properties of glasses, ceramics, concretes and coatings, phase relations in the formation of minerals and alloys, the deposits of minerals and radioactive fission products from ocean waters, the composition of ground waters, and the requirements of oxygen and other gases in life support systems.

The widespread relevance of solubility data to many branches and disciplines of science, medicine, technology and engineering, and the difficulty of recovering solubility data from the literature, lead to the proliferation of published data in an ever increasing number of scientific and technical primary sources. The sheer volume of data has overcome the capacity of the classical secondary and tertiary services to respond effectively.

While the proportion of secondary services of the review article type is generally increasing due to the rapid growth of all forms of primary literature, the review articles become more limited in scope, more specialized. The disturbing phenomenon is that in some disciplines, certainly in chemistry, authors are reluctant to treat even those limited-in-scope reviews exhaustively. There is a trend to preselect the literature, sometimes under the pretext of reducing it to manageable size. The crucial problem with such preselection - as far as numerical data are concerned - is that there is no indication as to whether the material was excluded by design or by a less than thorough literature search. We are equally concerned that most current secondary sources, critical in character as they may be, give scant attention to numerical data.

On the other hand, tertiary sources - handbooks, reference books and other tabulated and graphical compilations - as they exist today are comprehensive but, as a rule, uncritical. They usually attempt to cover whole disciplines, and thus obviously are superficial in treatment. Since they command a wide market, we believe that their service to the advancement of science is at least questionable. Additionally, the change which is taking place in the generation of new and diversified numerical data, and the rate at which this is done, is not reflected in an increased third-level service. The emergence of new tertiary literature sources does not parallel the shift that has occurred in the primary literature. With the status of current secondary and tertiary services being as briefly stated above, the innovative approach of the *Solubility Data Project* is that its compilation and critical evaluation work involve consolidation and reprocessing services when both activities are based on intellectual and scholarly reworking of information from primary sources. It comprises compact compilation, rationalization and simplification, and the fitting of isolated numerical data into a critically evaluated general framework.

The Solubility Data Project has developed a mechanism which involves a number of innovations in exploiting the literature fully, and which contains new elements of a more imaginative approach for transfer of reliable information from primary to secondary/tertiary sources. The fundamental trend of the Solubility Data Project is toward integration of secondary and tertiary services with the objective of producing in-depth critical analysis and evaluation which are characteristic to secondary services, in a scope as broad as conventional tertiary services.

Fundamental to the philosophy of the project is the recognition that the basic element of strength is the active participation of career scientists in it. Consolidating primary data, producing a truly critically-evaluated set of numerical data, and synthesizing data in a meaningful relationship are demands considered worthy of the efforts of top scientists. Career scientists, who themselves contribute to science by their involvement in active scientific research, are the backbone of the project. The scholarly work is commissioned to recognized authorities, involving a process of careful selection in the best tradition of IUPAC. This selection in turn is the key to the quality of the output. These top experts are expected to view their specific topics dispassionately, paying equal attention to their own contributions and to those of their peers. They digest literature data into a coherent story by weeding out what is wrong from what is believed to be right. To fulfill this task, the evaluator must cover all relevant open literature. No reference is excluded by design and every effort is made to detect every bit of relevant primary source. Poor quality or wrong data are mentioned and explicitly disqualified as such. In fact, it is only when the reliable data are presented alongside the unreliable data that proper justice can be done. The user is bound to have incomparably more confidence in a succinct evaluative commentary and a comprehensive review with a complete bibliography to both good and poor data.

It is the standard practice that the treatment of any given solute-solvent system consists of two essential parts: I. Critical Evaluation and Recommended Values, and II. Compiled Data Sheets.

The Critical Evaluation part gives the following information:

- (i) a verbal text of evaluation which discusses the numerical solubility information appearing in the primary sources located in the literature. The evaluation text concerns primarily the quality of data after consideration of the purity of the materials and their characterization, the experimental method employed and the uncertainties in control of physical parameters, the reproducibility of the data, the agreement of the worker's results on accepted test systems with standard values, and finally, the fitting of data, with suitable statistical tests, to mathematical functions;
- (ii) a set of recommended numerical data. Whenever possible, the set of recommended data includes weighted average and standard deviations, and a set of smoothing equations derived from the experimental data endorsed by the evaluator;
- (iii) a graphical plot of recommended data.

The Compilation part consists of data sheets of the best experimental data in the primary literature. Generally speaking, such independent data sheets are given only to the best and endorsed data covering the known range of experimental parameters. Data sheets based on primary sources where the data are of a lower precision are given only when no better data are available. Experimental data with a precision poorer than considered acceptable are reproduced in the form of data sheets when they are the only known data for a particular system. Such data are considered to be still suitable for some applications, and their presence in the compilation should alert researchers to areas that need more work. vii

The typical data sheet carries the following information:

- (i) components definition of the system their names, formulas and Chemical Abstracts registry numbers;
- (ii) reference to the primary source where the numerical information is reported. In cases when the primary source is a less common periodical or a report document, published though of limited availability, abstract references are also given;
- (iii) experimental variables;
- (iv) identification of the compiler;
- (v) experimental values as they appear in the primary source. Whenever available, the data may be given both in tabular and graphical form. If auxiliary information is available, the experimental data are converted also to SI units by the compiler.

Under the general heading of Auxiliary Information, the essential experimental details are summarized:

- (vi) experimental method used for the generation of data;
- (vii) type of apparatus and procedure employed;

- (vii) cype of apparatus and proceduce employer, (viii) source and purity of materials; (ix) estimated error; (x) references relevant to the generation of experimental data as cited in the primary source.

This new approach to numerical data presentation, formulated at the initiation of the project and perfected as experience has accumulated, has been strongly influenced by the diversity of background of those whom we are supposed to serve. We thus deemed it right to preface the evaluation/compilation sheets in each volume with a detailed discussion of the principles of the accurate determination of relevant solubility data and related thermodynamic information.

Finally, the role of education is more than corollary to the efforts we are seeking. The scientific standards advocated here are necessary to strengthen science and technology, and should be regarded as a major effort in the training and formation of the next generation of scientists and engineers. Specifically, we believe that there is going to be an impact of our project on scientific-communication practices. The quality of consolidation adopted by this program offers down-to-earth guidelines, concrete examples which are bound to make primary publication services more responsive than ever before to the needs of users. The self-regulatory message to scientists of the early 1970s to refrain from unnecessary publication has not achieved much. A good fraction of the literature is still cluttered with poor-quality articles. The Weinberg report (in 'Reader in Science Information', ed. J. Sherrod and A. Hodina, Microcard Editions Books, Indian Head, Inc., 1973, p. 292) states that 'admonition to authors to restrain themselves from premature, unnecessary publication can have little effect unless the climate of the entire technical and scholarly community encourages restraint...' We think that projects of this kind translate the climate into operational terms by exerting pressure on authors to avoid submitting low-grade material. The type of our output, we hope, will encourage attention to quality as authors will increasingly realize that their work will not be suited for permanent retrievability unless it meets the standards adopted in this project. It should help to dispel confusion in the minds of many authors of what represents a permanently useful bit of information of an archival value, and what does not.

If we succeed in that aim, even partially, we have then done our share in protecting the scientific community from unwanted and irrelevant, wrong numerical information.

A. S. Kertes

PREFACE

This volume presents solubility data for binary systems in which one component is a hydrocarbon containing 5, 6 or 7 carbon atoms and the second component is water, heavy water or seawater. Other volumes in this series either presently available or in preparation present analogous data for other hydrocarbons. The interested reader should consult the Solubility Data Series list of volume titles on page 528. For this volume seawater has been defined as, "all natural waters, synthetic seawater and aqueous solutions in which sodium chloride predominates."

A variety of units for the expression of solubility has appeared in the primary literature. For the purpose of comparison the compilers of this volume have, so far as possible, expressed all original results in terms of mass percent and mole fraction as well as the units presented by the original investigators. Where such conversions have been made, they are clearly attributed to the compiler and the source of any data not provided by the original investigators (such as hydrocarbon or seawater density) is specified. Definitions of mass percent and mole fraction as well as their relationship to other common measures of solubility are given in the Introduction to this volume.

The expression of the solubility of a hydrocarbon in natural seawater on a mole fraction basis presents special difficulties since the composition of seawater is not fully known and somewhat variable. However, the uncertainty introduced by this factor is generally less than 3%, smaller than the measurement uncertainty associated with many of these data. Some of the data for hydrocarbon solubility in seawater have been presented in terms of the Setschenow (also transliterated Sechenov and Setchenoff) equation. A thorough discussion, "The Sechenov Salt Effect Parameter", is presented in Volume 10 of this series (pp. xxix-xliii).

By far the most common approach to the measurement of solubility in hydrocarbon/water systems has been to prepare a saturated solution and then to analytically determine the concentration of the less abundant component. In these systems of low solubility the careful preparation of saturated solutions is critically important. The presence of only a small amount of the minor component in the form of colloidal droplets can significantly influence the solubility results obtained. This can lead to major positive systematic errors. Unfortunately, lack of experimental detail in some published reports makes these errors extremely difficult to evaluate. Users of this volume are advised to be aware of this potential source of error, especially for systems where only one or a few measurements have been reported or when solubilities are very low. Another approach to evaluating solubility data in these systems is to determine whether a particular result fits into a "reasonable" trend for a series of related compounds. While this approach undoubtedly has qualitative value, it must be used with caution. For instance, the solubilities of anthracene and phenanthrene differ by about a factor of 20; a fact that is supported by careful experimentation but not by "reasonable" inference.

Most measurements of hydrocarbon/water solubility have been made within the temperature range considered "room temperature" (275-300 K). In many reports system pressure is unspecified but can be assumed to be approximately 100 kPa (1 atm). Some measurements at elevated temperatures have been in sealed tubes. Generally the system pressure for these measurements is not known. For most purposes this lack of specification of system pressure is not important since hydrocarbon/water solubilities do not vary strongly with pressure.

This volume is the result of a careful search of the chemical literature. The goal of that search was to include all published data for the systems indicated in the title. Each evaluation includes a closing date for the literature search of that system, November 1981 or later. In spite of these efforts, some published measurements may have been missed. The editor will appreciate having his attention brought to any omitted source of solubility data for inclusion in future volumes.

The compilation and critical evaluation of solubility data presented here was a group effort. Each participant brought an individual style to the work. The editor's goal was to ensure that all text is simple, unambiguous English; not to attempt stylistic uniformity. Finally, the editor wishes to acknowledge the dedicated efforts of the compilers, evaluators and reviewers whose efforts have resulted in this volume, and especially to thank Mauricette Nicpon, Sheila Chapin and Bronwyn Airey for final typing.

David Shaw

х

INTRODUCTION TO THE SOLUBILITY OF LIQUIDS IN LIQUIDS

The Solubility Data Series is made up of volumes of comprehensive and critically evaluated solubility data on chemical systems in clearly defined areas. Data of suitable precision are presented on data sheets in a uniform format, preceded for each system by a critical evaluation if more than one set of data is available. In those systems where data from different sources agree sufficiently, recommended values are proposed. In other cases, values may be described as "tentative", "doubtful" or "rejected".

This volume is primarily concerned with liquid-liquid systems, but related gas-liquid and solid-liquid systems are included when it is logical and convenient to do so. Solubilities at elevated and low temperatures and at elevated pressures may be included, as it is considered inappropriate to establish artificial limits on the data presented.

For some systems the two components are miscible in all proportions at certain temperatures or pressures, and data on miscibility gap regions and upper and lower critical solution temperatures are included where appropriate and if available.

TERMINOLOGY

In this volume a mixture (1,2) or a solution (1,2) refers to a single liquid phase containing components 1 and 2, with no distinction being made between solvent and solute.

The *solubility* of a substance 1 is the relative proportion of 1 in a mixture which is saturated with respect to component 1 at a specified temperature and pressure. (The term "saturated" implies the existence of equilibrium with respect to the processes of mass transfer between phases).

QUANTITIES USED AS MEASURES OF SOLUBILITY

<u>Mole fraction</u> of component 1, x_1 or x(1):

$$x_1 = n_1 / \sum_{i=1}^{\infty} \frac{m_1 / M_1}{\sum_{i=1}^{\infty} (m_i / M_i)}$$

where n_i is the amount of substance (number of moles) of component i, m_i is the mass of substance i, and M_i is its molar mass.

Mole per cent of component 1 is $100x_1$.

<u>Mass fraction</u> of component 1, w_1

$$\omega_1 = m_1 \frac{\sum m_i}{i} i$$

where m_i is the mass of component *i*.

<u>Mass percent</u> of component 1 is $100\omega_1$, and may be described as g(1)/100 g sln which makes it clear that it is mass percent of solute relative to solution and not solvent. The equivalent terms "weight fraction" and "weight percent" are not used. The mole fraction solubility is related to the mass fraction solubility in a binary system by

$$x_{1} = \frac{w_{1}/M_{1}}{w_{1}/M_{1} + (1 - w_{1})/M_{2}}$$

<u>Amount-of-substance concentration</u> of component 1 in a solution of volume V,

$$c_1 = n_1/V$$

is expressed in units of mol dm^{-3} . The terms "molarity" and "molar" and the unit symbol *M* are not used.

<u>Mass ratio</u> is occasionally used in a two-component solution in the form $\frac{g(1)/g(2)}{g(2)}$, mg(1)/g(2), etc. The term "part per million" (ppm) is not used, but may be expressed as mg(1)/kg sln.

<u>Molality</u> of component 1 in component 2 is often used in solid-liquid systems, defined $m_1 = n_1/n_2 M_2$, with units mol kg⁻¹, but is not used in liquid-liquid systems where the distinction between "solute" 1 and "solvent" 2 is inappropriate. The term molality alone is inadequate, and the unit (mol kg⁻¹, mmol kg⁻¹) must be stated.

Mole fractions and mass fractions are appropriate to either the "mixture" or the "solution" point of view; the other quantities are appropriate to the solution point of view only.

ORDERING OF SYSTEMS

It is necessary to establish a method of ordering chemical compounds, to be used for the lists of saturating components which define each chemical system. This order is also used for ordering systems within volumes.

The systems are ordered first on the basis of empirical formula according to the Hill system (ref 2). The organic compounds within each Hill formula are ordered as follows:

- (i) by degree of unsaturation (e.g. cycloalkene, diene, alkyne, cycloalkane, alkane), then
- (ii) by order of increasing chain length in the parent hydrocarbon, then
- (iii) by order of increasing chain length of hydrocarbon branches, then
- (iv) numerically by position of unsaturation, then
- (v) numerically by position of substitution, then
- (vi) alphabetically by IUPAC name.

For example,

с ₅ н ₈	cyclopentene 2-methyl-1,3-butadiene 1,4-pentadiene 1-pentyne
C ₅ H ₁₀	cyclopentane 3-methyl-1-butene 2-methyl-2-butene 1-pentene 2-pentene
C ₅ H ₁₂	2,2-dimethylpropane 2-methylbutane pentane
с ₅ н ₁₂ о	2,2-dimethy1-1-propanol 2-methy1-1-butanol 2-methy1-2-butanol 3-methy1-1-butanol 3-methy1-2-butanol 1-pentanol 2-pentanol 3-pentanol

C₆H₁₂0 cyclohexanol 4-methyl-1-penten-3-ol 1-hexen-3-ol 4-hexen-3-ol C₁₈H₁₂ benzanthracene chrysene naphthacene triphenylene

Deuterated compounds immediately follow the corresponding ${}^{L}H$ compounds.

GUIDE TO THE COMPILATIONS AND EVALUATIONS

The format used for the compilations and evaluations has been discussed in the Foreword. Additional information on the individual sections of each sheet is now provided in the following.

"Components". Each component is listed by IUPAC name (ref 1), chemical formula according to the Hill system, and Chemical Abstracts Registry Number. Also included are trivial name or names if appropriate.

"Original Measurements". References are expressed in "Chemical Abstracts" style, journal names being abbreviated, and if necessary transliterated, in the forms given by the "Chemical Abstracts Service Source Index" (CASSI).

"Variables". Ranges of variations of temperature, pressure, etc. are indicated here.

"Prepared by". The compiler is named here.

"Experimental Values". Components are described as (1) and (2), as defined in "Components". The experimental data are presented in the units used in the original paper. Thus the temperature is expressed $t/^{\circ}C$ or $T/^{\circ}F$ as in the original, and conversion to T/K is made only in the critical evaluation. However, the authors's units are expressed according to IUPAC recommendations (ref 3,4) as far as possible.

In addition, compiler-calculated values of mole fractions and/or mass percent are included if the original data do not use these units. 1975 or 1977 atomic weights (ref 5) are used in such calculations. When appropriate, conversions from concentrations to mole fractions are included in the compilation sheets, with the values and sources of the densities being quoted and referenced.

Details of smoothing equations (with limits) are included if they are present in the original publication and if the temperature or pressure ranges are wide enough to justify this procedure.

Errors in calculations, fitting equations, etc. are noted, and where possible corrected. Material inserted by the compiler is identified by the word "compiler" in parentheses.

The precision of the original data is preserved when derived quantities are calculated, if necessary by the inclusion of one additional significant figure.

"Method". An outline of the method is presented, reference being made to sources of further detail if these are cited in the original paper. "Chemical Abstracts" abbreviations are often used in this text.

"Source and Purity of Materials". For each component, referred to as (1) or (2), the following information (in this order and in abbreviated form) is provided if it is available in the original paper:

source and specification method of preparation properties degree of purity. xiii

"Estimated Error". If this information was omitted by the authors, and if the necessary data are available in the paper, the compilers have attempted to estimate errors (identified by "compiler" in parentheses) from the internal consistency, the type of apparatus, and other relevant information. Methods used by the compilers for reporting estimating errors are based on the papers by Ku and Eisenhart (ref 6).

"References". These are the references (usually cited in the original paper) which the compiler considers particularly useful in discussing the method and material.

"Evaluator". The information provided here is the name of the evaluator, the evaluator's affiliation, and the date of the evaluation.

"Critical Evaluation". The evaluator aims, to the best of his or her ability, to check that the compiled data are correct, to assess their reliability and quality, to estimate errors where necessary, and to recommend numerical values. The summary and critical review of all the data supplied by the compiler include the following information:

(a) *Critical text*. The evaluator produces a text evaluating *all* the published data for the particular system being discussed, reviewing their merits or shortcomings. Only published data are considered, and even some of the published data may only be referred to in this text if it is considered that inclusion of a data compilation sheet is unjustified.

(b) Fitting equations. If the use of a smoothing equation is justifiable, the evaluator may provide an equation representing the solubility as a function of the variables reported in the compilation sheets, stating the limits within which it should be used.

(c) Recommended values. Data are recommended if the results of at least two independent experimental groups are available and are in good agreement, and if the evaluator has no doubt as to the adequacy and reliability of the experimental and computational procedures used.

Data are reported as *tentative* if only one set of measurements is available, or if the evaluator is uncertain of the reliability of some aspect of the experimental or computational method but judges that it should cause only minor error, or if the evaluator considers some aspect of the computational or experimental method undesirable but believes the data to have some value in those instances when an approximate value of the solubility is needed.

Data determined by an inadequate method or under ill-defined conditions is *rejected*, the reference being included in the evaluation together with a reason for its rejection by the evaluator.

(d) *References*. All pertinent references are listed here, including all those publications appearing in the accompanying compilation sheets and also those which have been rejected and not compiled.

(e) Units. The final recommended values are reported in SI units (ref 3).

Continuation Sheets. These are used for both compilations and evaluations, and include sections listing the "Components" and also the "Original Measurement" or "Evaluator". Compilation continuation sheets may include a section headed "Comments and/or Additional Data". REFERENCES

- Rigaudy, J.; Klesney, S.P. Nomenclature of Organic Chemistry (IUPAC), ("The Blue Book"), Pergamon, Oxford, <u>1979</u>.
- 2. Hill, E.A. J. Am. Chem. Soc. 1900, 22, 478.
- 3. Whiffen, D.H., ed. Manual of Symbols and Terminology for Physicochemical Quantities and Units (IUPAC), ("The Green Book"), Pergamon, Oxford, <u>1979</u>; Pure Appl. Chem. <u>1979</u>, 51, 1.
- McGlashan, M.L. Physicochemical Quantities and Units, 2nd ed. Royal Institute of Chemistry, London, <u>1971</u>.
- 5. IUPAC Commission on Atomic Weight, Pure Appl. Chem. <u>1976</u>, 47, 75; <u>1979</u>, 51, 405.
- Ku, H.H., and Eisenhart, C., in Ku, H.H., ed. Precision Measurement and Calibration, NBS Special Publication 300, Vol. 1, Washington D.C., <u>1969</u>.

THE PHASE BEHAVIOR OF WATER AND HYDROCARBON SYSTEMS

C. L. Young Department of Physical Chemistry Parkville, Victoria, 3052 Australia

In order to understand solubility in hydrocarbon + water systems at high pressure it is desirable to be aware of the various types of fluid phase equilibria possible in binary mixtures. Fluid phase equilibria of binary mixtures are conveniently discussed in terms of the classification proposed by Scott and van Konynenburg¹⁻⁴. They proposed that the phase behavior of binary mixtures could be classified into six broad groups. They found that five groups could be predicted using the van der Waals equation of state. The sixth class, which could not be predicted by the van der Waals equation, arises only in aqueous mixtures. The classification is most easily understood in terms of the pressure-temperature projection of the pressure-temperature-composition diagram. The six types of phase behavior are represented schematically in fig. 1. Only the "general" characteristics of the type of phase behavior can be understood from the diagrams given below. In practice solid phases often complicate the diagrams.

Type I. The phase diagram has a simple continuous gas-liquid critical locus with or without azeotropy.

Type II. The phase diagram is as for type I but with the addition of a three phase (liquid-liquid-gas) line ending at an upper critical end point, UCEP, and a (liquid-liquid) critical line starting from the UCEP and rapidly approaching high pressures. This type can occur with or without azeotropy.

Type III. This phase diagram has two distinct critical lines, one starts at the critical point of the pure component with the higher critical temperature but never approaches the critical point of the other component moving rapidly to high pressures. The other critical line starts at the critical point of the component with the lower critical temperature and meets a three phase (liquid-liquid-gas) line in an UCEP. The three phase line may be between the vapor pressure curves of the two components (as shown in fig. 1C) or may be above the vapor pressure curves of both components. There are several subgroups in type III behavior depending on whether there is a heteroazeotrope or not and on the shape of the critical line starting at the critical point with the higher temperature.

Type IV. This phase diagram has three distinct critical loci, one of which (the liquid-liquid critical line) starts at an UCEP on a three phase (liquid-liquid-gas) line and moves rapidly to higher pressures. The second line starts at the critical point of the component with the lower critical temperature and ends at an UCEP on a three phase line. The third line starts at the critical point of the other component and ends in a lower critical end point, LCEP, on the same three phase line as the second critical line.

Type V. This type is the same as type IV but without the liquidliquid critical line and the three phase line at lower temperatures.

Type VI. This type of phase behavior is characterized by a continuous critical locus between the critical point of the two pure components. However, at lower temperatures there is a three phase line which is bounded above and below by critical end points. A liquid-liquid critical line joins these two critical end points. There are several known configurations of the line joining the ends of the three phase line. In the example illustrated (fig. 1F) the liquid-liquid critical line has two branches with a region of complete liquid miscibility between them.

Most hydrocarbon + water systems studied to date exhibit type III phase behavior. Typical pressure-temperature-composition diagrams for type III behavior are illustrated in fig. 2A and 2B. The most common type of phase behavior found in hydrocarbon water mixtures corresponds to fig. 2A. The behavior shown in fig. 2B has not yet been observed in hydrocarbon + water systems. From fig. 1 and 2 it can be seen that the three phase line on the pressure-temperature projection is derived from three lines on the pressure-temperature-composition diagram representing, the composition of gas, liquid 1 and liquid 2. **Phase Behavior**

ior. Figures A, D, G and J are pressure-temperature projections of the four classes. Figures B, E, H and K are the constant temperature, T_1 , sections of the p,T,X diagrams; fig. C, F, I and L are analogous sections at temperature T_2 . Most hydrocarbon systems have behavior illustrated in fig. 3G, 3H and 31.

Phase Behavior

There are many sub-types of type III behavior. Consider the portion of the phase diagram in the region of the upper critical end point and the Consider the portion critical point of the pure component with the lower critical temperature. There are four possibilities. The three phase line could be at higher or lower pressures than the vapor pressure curve of the pure component. Each of these two cases could have the upper critical end point at a higher (or lower) temperature than the critical point. These four possibilities are illustrated in fig. 3. The position of the vapor pressure of the second component can be above or below that of the first component. In the case of hydrocarbon + water systems the two pure component vapor pressure curves sometimes cross on the pressure-temperature projection (e.g. benzene + water). Most hydrocarbons + water systems exhibit the behavior illustrated in fig. 3G. Consider fig. 3G, the three phase line is at higher pressures than the vapor pressure of the pure component (1). At a temperature, T_1 , the pressure-composition diagram is shown in fig. 3H. It can be seen that depending on the pressure and overall composition it is possible to have one, two, or three phases present. At high pressures we have a fluid-fluid equilibrium which if T_1 is sufficiently low, it is reasonable to refer to as a liquid-liquid equilibrium. Although a line parallel to the composition axis at pressures between the three phase line and the vapor-pressure of component (1) cuts the boundary lines in four places, only two phases can be in equilibrium. The two phases in equilibrium will depend on the overall composition. At temperature T_2 a different situation exists in that at pressures above the critical line it is possible to have two phases present (fig. 3I). At pressures below the critical point it is possible to have two phases coexisting out of a possible four phases. Which are the two coexist-ing phases dependings on the overall composition. At some compositions only one phase will be present. В Α LL LL Ρ P С

Fig. 4. Pressure, temperature, composition diagrams for two Type II systems. The three phase line is denoted -.-.-. The region in which two liquids coexist is denoted LL.

LL

Т

ԼԼ

т

Although most hydrocarbon + water systems studied to date exhibit type III phase behavior it is known that some hydrocarbons of greater molecular weight, such as biphenyl exhibit type II phase behavior⁶. Figures 4A and 4B illustrate the pressure-temperature-composition diagram for two type II systems. It appears that most, if not all, hydrocarbon + water systems which exhibit type II behavior have a minimum in temperature for the gas-liquid critical curve which corresponds to the behavior illustrated in fig. 4B.

Some hydrocarbon + water systems have been observed to exhibit the phenomenon referred to as gas-gas immiscibility $^{6'7}$. This phenomenon $^{5'8}$ occurs in type III phase behavior when the critical locus starting at the component with the highest critical temperature initially or eventually moves to high pressure at temperatures above the critical point of either component. If the critical locus always has a positive slope on the pressure-temperature projection the phenomenon is referred to as gas-gas immiscibility of the first kind (fig. 5A) whereas if the locus initially moves to lower temperatures, goes through a minimum and eventually moves to temperatures greater than the critical temperature of either component the mixture is said to exhibit gas-gas immiscibility of the second kind (fig. 5B). Gas-gas immiscibility of the second kind is exhibited by some hydrocarbon + water systems.

Fig. 5. Pressure, temperature projections for systems exhibiting gas-gas immiscibility. Figure 5A - immiscibility of the first kind. Figure 5B immiscibility of the second kind.

References.

- 1. Scott, R. L.; van Konynenburg, P. H.; Phil. Trans. Roy. Soc., London 1980, A298, 495.
- 2. Hicks, C. P.; Young, C. L.; Chem. Rev. 1975, 75, 119. 3. Gubbins, K. E.; Shing, K. S.; Streett, W. B.; J. Phys. Chem. 1983, 87, 4573.
- 4. Young, C. L.; Pure Appl. Chem. in press.
- 5. Schneider, G. M.; in Chemical Thermodynamics Vol. 2, ed. M. L. McGlashan, A Specialist Periodical Report, The Chemical Society, London, 1978, Chap. 4.
- 6. Brollos, K.; Peter, K.; Schneider, G. M.; Ber. Bunsenges. Phys. Chem.
- 1970, 74, 682. 7. De Loos, Th. W.; Penders, W. G.; Lichtenthaler, R. N.; J. Chem. Thermodyn. <u>1982</u>, 14, 83. 8. Tsiklis, D. S.; Rott, L. A.; Russ. Chem. Rev. <u>1967</u>, 36, 351.

XX

3	7	1

COMPONENTS: ORIGINAL MEASUREMENTS: (1) 1,3 Cyclopentadiene; C5H6; Streitweiser, A.; Nebenzahl, L.L. (2) Water; H20; [7732-18-5] J. Am. Chem. Soc. 1976, 98, 2188-9 VARIABLES: PREPARED BY:		
<pre>(1) 1,3 Cyclopentadiene; C₅H₆; [542-92-7] (2) Water; H₂O; [7732-18-5]</pre> Streitweiser, A.; Nebenzahl, L.L. J. Am. Chem. Soc. <u>1976</u> , 98, 2188-9 VARIABLES: PREPARED BY:		
VARIABLES: PREPARED BY:	90.	
Room Temperature M.C. Haulait-Pirson and G.T. Hefte	er	
EXPERIMENTAL VALUES:		
^a According to a footnote in the paper the experimental data were apparent- ly obtained by J. Cambray (presumably unpublished observations) but experimental details are given in the paper.		
AUXILIARY INFORMATION		
METHOD/APPARATUS/PROCEDURE: SOURCE AND PURITY OF MATERIALS:		
 Water was saturated by shaking with excess (1) and then centrifuged. The saturated solution so obtained was then diluted and analysed by UV spectrophotometry assuming the absorptivity to be the same as in ethanol. (1) Aldrich; distilled onto molecular sieves and used within 1h; analysed by GC. (2) Distilled; purity not specified. 		
ESTIMATED ERROR:	L.	
Not given.		
REFERENCES :		

COMPONENTS:	EVALUATOR:
(1) Cyclopentene; C ₅ H ₈ ; [142-24-0] (2) Water; H ₂ O; [7732-18-5]	G.T. Hefter, School of Mathematical and Physical Sciences, Murdoch University, Perth, Australia. November 1984.

CRITICAL EVALUATION:

Quantitative solubility data for the solubility of cyclopentene (1) in water (2) have been reported in the publications listed in Table 1.

TABLE 1: Quantitative Solubility Studies ofCyclopentene (1) in Water (2)

Reference	T/K	Method
McAuliffe (ref 1)	298	GLC
Pierotti and Liabastre (ref 2)	298,308	GLC

Solubilities of cyclopentene have also been reported in various aqueous salt solutions (ref 3) but will not be considered in this Evaluation. No solubility data appear to have been reported for the solubility of (2) in (1).

The reported solubilities of (1) in (2) are listed in Table 2. The results are in poor agreement, those of Pierotti and Liabastre (ref 2) being about three times higher than those of McAuliffe (ref 1). These results are typical of a wide variety of hydrocarbon-water systems investigated by these authors. In general the results of McAuliffe are in good agreement with other literature values in well-investigated systems (e.g. benzene in H_2O) whereas those of Pierotti and Liabastre are substantially higher. This situation is discussed in greater detail in the Critical Evaluation of the cyclopentane-water system. For the present system, in the absence of confirmatory studies, the data of Pierotti and Liabastre are not rejected but they should be regarded as order-of-magnitude values only. The datum of McAuliffe may be considered as "Tentative".

TABLE 2: Solubility Values of Cyclopentene (1) in Water (2)

T/K	Solubility values		
	Reported values	"Best" valı	ue ^a
	g(l)/100g sln	g(l)/100g sln	10 ⁴ x ₁
298	0.0535 (ref 1), 0.165 (ref 2)	0.054	1.4
308	0.175 (ref 2)		

a See text.

(continued next page)

COMPONENTS:	EVALUATOR:
(1) Cyclopentene; C ₅ H ₈ ; [142-24-0] (2) Water; H ₂ O; [7732-18-5]	G.T. Hefter, School of Mathematical and Physical Sciences, Murdoch University, Perth, Australia. November 1984.
CRITICAL EVALUATION: (continued)	l

REFERENCES

1. McAuliffe, C. J. Phys. Chem. <u>1966</u>, 70, 1267-75.

- Pierotti, R.A.; Liabastre, A.A. Structure and properties of water solutions. U.S. Nat. Tech. Inform. Serv., PB Rep. <u>1972</u>, No. 21163, 113 pp.
- 3. Natarajan, G.S.; Venkatachalam, K.A. J. Chem. Eng. Data <u>1972</u>, 17, 328-9.

COMPONENTS:	ORIGINAL MEASUREMENTS:	
(1) Cyclopentene; C _c H _o ; [142-29-0]	McAuliffe, C.	
(2) Water; H_00 ; [7732-18-5]	J. Phys. Chem. 1966, 70, 1267-75.	
VARIABLES:	PREPARED BY:	
One temperature: 25°C	A. Maczynski, Z. Maczynska, and A. Szafranski	
EXPERIMENTAL VALUES:		
The solubility of cyclopentene in water at 25°C was reported to be 535 g(1)/10 ⁶ g(2). The corresponding mass percent and mole fraction, x_1 , calculated by the compilers are 0.0535 g(1)/100 g sln and 1.41 x 10 ⁻⁴ .		
AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
In a 250-mL bottle, 10-20 mL of (1) was vigorously shaken for 1 hr, or magnetically stirred for 1 day, with 200 mL of (2) at 25°C. The bottle was set aside for 2 days to allow droplets of undissolved (1) to separate. Absence of emulsion was checked microscopically. A sample of the hydrocarbon-saturated water was withdrawn with a Hamilton syringe and gas liquid chromato- graphed in conjunction with a flame- ionization detector.	<pre>(1) Phillips Petroleum or Columbia Chemical; used as received. (2) distilled. ESTIMATED ERROR: temp. ± 1.5 K soly. 20 g(1)/10⁶ g(2) (standard deviation of mean) REFERENCES:</pre>	

37_4	5		
COMPONENTS:	ORIGINAL MEASUREMENTS:		
(1) Cyclopentene; C ₅ H ₈ ; [142-29-0] (2) Water; H ₂ O; [7732-18-5]	Natarajan, G.S.; Venkatachalam, K.A. <i>J. Chem. Eng. Data</i> <u>1972</u> , 17, 328-9.		
VARIABLES:	PREPARED BY:		
One temperature: 25°C	M.C. Haulait-Pirson, G.T. Hefter		
EXPERIMENTAL VALUES:			
The solubility of cyclopentene in water was reported to be 8.978 × 10^{-3} mol L ⁻¹ at 25°C. ^{<i>a</i>} Assuming a solution density of 1.00 g mL ⁻¹ the corresponding mass percent and mole fraction (x_1) solubilities, calculated by the compilers, are respectively 0.0611 g(1)/100 g sln and 1.62 × 10^{-4} .			
Solubility data are also presented as salt solutions.	a function of temperature in various		
a It should be noted that although the authors state that the solubility refers to "water" the context in the paper is ambiguous and the data were probably obtained in 0.001 mol L ⁻¹ HNO ₃ solution.			
AUXILIARY INFORMATION			
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:		
15 mL of the aqueous medium was equilibrated with 1 mL of (1) by mechanical shaking in a thermostatted glass burette. After settling (judged visually), 5 mL of the aqueous layer was withdrawn and the olefin content determined by titra- tion with bromine using standard procedures.	 Prepared by dehydration of cyclopentanol and then washed, dried, and fractionated. Purity (not specified) was determined by chromatography. Not specified. 		
	ESTIMATED ERROR:		
	Temp. ± 0.05 K Soly. not specified.		
	REFERENCES :		

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Cyclopentene; C ₅ H ₀ ; [142-29-0]	Pierotti, R.A.; Liabastre, A.A.
(2) Water; H ₂ O; [7732-18-5]	"Structure and properties of water solutions." U.S. Nat. Tech. Inform. Serv., PB Rep., <u>1972</u> , No. 21163, 113 p.
VARIABLES:	PREPARED BY:
Temperature: 298.26-308.36 K	M.C. Haulait-Pirson
EXPERIMENTAL VALUES:	
Solubility of cycl	opentene in water
<u>T/K</u> g(l)/100	g sln $10^3 x_1$
298.26 0.1645 ±	0.0049 0.4350
308.36 0.1748 ±	0.0044 0.4623
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
10 mL of (2) were placed along with 4-10 drops of (1) in 10 mL serum bottles, which were then tightly capped, and placed in the rotating basket and rotated for 24 hours. The bottles were then hand shaken to remove (1) droplets from the stoppers and then replaced in the bath with the tops down for an additional 24 hours. The solute concentrations were determined by	 (1) K & K Laboratories, Inc.; 95-99%; used as received. (2) laboratory distilled water.
use of a flame-ionization gas chromatograph. Many details about equipment, operating conditions and calculation are given in the paper.	ESTIMATED ERROR: soly.: standard deviation from at least 15 measurements are given above.

COMPONENTS:	EVALUATOR:
<pre>(1) 2-Methyl-1,3-butadiene; C₅H₈; [78-79-5]</pre>	G.T. Hefter, School of Mathematical and Physical Sciences, Murdoch
(2) Water; H ₂ O; [7732-18-5]	University, Perth, Australia.
	November 1984.

CRITICAL EVALUATION:

37 6

Quantitative solubility data for the system 2-methyl-1,3-butadiene (1) and water (2) have been reported in the publications listed in Table 1.

TABLE 1: Quantitative Solubility Studies of the2-Methyl-1,3-butadiene (1) - Water (2) System

Reference	T/K	Solubility	Method
McAuliffe (ref l)	298	(l) in (2)	GLC
Pavlova <i>et al</i> . (ref 2)	293 - 533	mutual	GLC, Karl Fischer

As only one study of the solubility of (2) in (1) has been reported (ref 2), no Critical Evaluation of those data can be made. The interested user is referred to the relevant data sheet for experimental values.

The reported values of the solubility of (1) in (2) are listed in Table 2 and plotted in Figure 1. The agreement at 298 K between the value of McAuliffe (ref 1) and the interpolated value of Pavlova *et al*. (ref 2) is reasonable so the "Best" values in Table 2 may be considered "Tentative", subject to further studies.

TABLE 2: Tentative Values of the Solubility of2-Methyl-1,3-butadiene (1) in Water (2)

T/K		Solubility v	values	
		Reported values	"Best" values (± σ _n)
		g(1)/100g sln	g(l)/100g sln	10 ⁴ x ₁
293	0.0545	(ref 2)	0.054	1.44
298	0.0642	(ref 1), 0.0572 ^{<i>a</i>} (ref 2)	0.061 ± 0.004 ^b	1.61 ^b
313	0.0665	(ref 2)	0.066	1.76
323	0.0761	(ref 2)	0.076	2.01
333	0.0867	(ref 2)	0.087	2.29

a Graphically interpolated by the Evaluator.

b "Best" value obtained by averaging; $\sigma_{\mathbf{n}}$ has no statistical significance.

(continued next page)

3	7	7

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) 2-Methyl-1,3-butadiene; C₅H₈; [78-79-5]</pre> (2) Water; H ₂ O; [7732-18-5]	McAuliffe, C. J. Phys. Chem. <u>1966</u> , 70, 1267-75.
VARIABLES: One temperature: 25°C	PREPARED BY: A. Maczynski, Z. Maczynska, and A. Szafranski
EXPERIMENTAL VALUES: The solubility of 2-methyl-1,3-butadi reported to be 642 g(1)/10 ⁶ g(2). The corresponding mass percent and mo by the compilers are 0.0642 g(1)/100	A. Szafranski Lene in water at 25°C was ole fraction, x_1 , calculated g sln and 1.70 x 10 ⁻⁴ .
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
In a 250-mL bottle, 10-20 mL of (1) was vigorously shaken for 1 hr, or magnetically stirred for 1 day, with 200 mL of (2) at 25°C. The bottle was set aside for 2 days to allow droplets of undissolved (1) to separate. Absence of emulsion was checked microscopically. A sample of the hydrocarbon-saturated water was withdrawn with a Hamilton syringe and gas liquid chromato- graphed in conjunction with a flame- ionization detector.	<pre>(1) Phillips Petroleum or Columbia Chemical; used as received. (2) distilled. ESTIMATED ERROR: temp. ± 1.5K soly. 10 g(1)/10⁶ g(2) (standard deviation of mean) REFERENCES:</pre>

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) 2-Methyl-1,3-butadiene; C ₅ H ₈ ; [78-79-5]	Pavlova, S.P.; Pavlov, S.Yu.; Serafimov, L.A.; Kofman, L.S.
(2) Water; H ₂ O; [7732-18-5]	Promyshlennost. Sinteticheskogo Kauchuka <u>1966</u> , 3, 18–20.
VARIABLES:	PREPARED BY
Temperature: 20-60°C	A. Maczynski
EXPERIMENTAL VALUES:	
Solubility of 2-methyl-	1,3-butadiene in water
$t/^{\circ}C$ $10^{4}x_{1}$	g(l)/l00 g sln (compiler)
20 1.441	0.05448
40 1.758	0.06646
50 2.013	0.07609
60 2.294	0.08671
Solubility of water in	2-methyl-1,3-butadiene
±/°C 10 ³ -	
	(compiler)
20 2.26	0.0598
40 3.58	0.0949
60 5.53	0.1468
AUXILIA	RY INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The solubility of (1) in (2) was	(1) source not specified;
determined by glc. The solubility of (2) in (1) was	better than 99.7 wt%.
determined by the Karl Fischer	(2) doubly distilled.
reagent method.	
	ESTIMATED ERROR:
	temp: f 0.1K
	DEEEDENCIS.
1	

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) 1,4-Pentadiene; C ₅ H ₈ ; [591-93-5]	McAuliffe, C.
(2) Water; H ₂ O; [7732-18-5]	J. Phys. Chem. <u>1966</u> , 70, 1267-75.
VARIABLES:	A. Maczynski, Z. Maczynska, and
	A. Szafranski
EXPERIMENTAL VALUES:	
The solubility of 1,4-pentadiene in w to be 558 g(1)/10 ⁶ g(2). The corresponding mass percent and mo by the compilers are 0.0558 g(1)/100	eater at 25°C was reported the fraction, x_1 , calculated g sln and 1.48 x 10^{-4} .
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
In a 250-mL bottle, 10-20 mL of (1) was vigorously shaken for 1 hr, or magnetically stirred for 1 day, with 200 mL of (2) at 25°C. The bottle was set aside for 2 days to allow droplets of undissolved (1) to separate. Absence of emulsion was checked microscopically. A sample of the hydrocarbon-saturated water was withdrawn with a Hamilton syringe and gas liquid chromato-	 (1) Phillips Petroleum or Columbia Chemical; used as received. (2) distilled.
graphed in conjunction with a flame- ionization detector.	ESTIMATED ERROR:
	temp. ± 1.5K soly. 27 g(1)/10 ⁶ g(2) (standard deviation of mean)
Į	REFERENCES :

COMPONENTS	OPICINAL MEASUREMENTS.
	VEDELIÉEE O
(1) 1-Pentyne; C ₅ H ₈ ; [627-19-0]	MCAUIIIIE, C.
(2) Water; H ₂ O; [7732-18-5]	J. Phys. Chem. <u>1966</u> , 70, 1267-75.
VARIABLES :	PREPARED BY:
One temperature: 25°C	A. Maczynski, Z. Maczynska, and A. Szafranski
EXPERIMENTAL VALUES:	
The solubility of l-pentupe in water	at 25°C was reported
to be 1570 $g(1)/10^6 g(2)$.	
The corresponding mass percent and mo	le fraction, x_1 , calculated
by the compilers are $0.1570 \text{ g}(1)/100$	$g \ sln \ and \ 4.15 \ x \ 10^{-4}$.
	· ····
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
$T_{n} = 250 - mT$ bottle $10 - 20 mT$ of (1)	(1) Phillips Potroloum or
was vigorously shaken for 1 hr, or	Columbia Chemical; used
magnetically stirred for 1 day,	as received.
bottle was set aside for 2 days to	(2) distilled.
allow droplets of undissolved (1)	
was checked microscopically. A	
sample of the hydrocarbon-saturated	
syringe and gas liquid chromato-	
graphed in conjunction with a flame- ionization detector.	ESTIMATED ERROR:
	temp. $\pm 1.5K$ solv. 33 g(1)/10 ⁶ g(2)
	(standard deviation of mean)
	REFERENCES

J/ II	3	7	1	1
-------	---	---	---	---

COMPONENTS:	EVALUATOR:
(1) Cyclopentane; C ₅ H ₁₀ ; [287-92-3] (2) Water; H ₂ O; [7732-18-5]	G.T. Hefter, School of Mathematical and Physical Sciences, Murdoch University, Perth, W.A., Australia September 1984

CRITICAL EVALUATION:

Quantitative solubility data for the system cyclopentane (1) and water (2) have been reported in the references listed in Table 1.

TABLE 1: Quantitative Solubility Studies of theCyclopentane (1) - Water (2) System

Reference	T/K	Solubility	Method
Guseva and Parnov (ref 1)	326-472	(1) in (2)	synthetic
Englin et al. (ref 2)	273-313	(2) in (1)	analytical
McAuliffe (ref 3)	298	(1) in (2)	GLC
Pierotti and Liabastre (ref 4)	278-318	(1) in (2)	GLC
Price (ref 5)	298-426	(1) in (2)	GLC

The original data in all of these publications, along with the datum of Krzyzanowska and Szeliga (ref 6) are compiled in the Data Sheets immediately following this Critical Evaluation. However, the latter have not been included in this Evaluation as they do not appear to be independent of those of Price (ref 5). For convenience, further discussion of this system will be divided into two parts.

1. THE SOLUBILITY OF CYCLOPENTANE (1) IN WATER (2)

The various solubility data for cyclopentane in water are listed in Table 2. Because of the large discrepancies amongst the data and the small data base it is not possible at this stage for the Evaluator to decide on "Tentative" solubility values. The data are further discussed on the next page.

TABLE 2: Solubility of Cyclopentane (1) in Water (2)^a

T/K	Reported solubilities, g(1)/100 g sln
278	0.0339 (ref 4)
288	0.0342 (ref 4)
298	0.0156 (ref 3), 0.0342 (ref 4), 0.0160 (ref 5)
303	0.0160 (ref 5)
313	0.035* (ref 4), 0.0163*(ref 5)
333	0.050* (ref 1), 0.0185*(ref 5)
353	0.075* (ref 1), 0.0230*(ref 5)
373	0.110* (ref 1), 0.029* (ref 5)
393	0.160* (ref 1), 0.040* (ref 5)
413	0.260* (ref 1), 0.062* (ref 5)
433	0.385* (ref 1)
453	0.67* (ref 1)
473	1.4* (ref 1)

a Values marked with an asterisk (*) have been obtained by the Evaluator by graphical interpolation of the original measurements in the Data Sheets. (continued next page)

COMPONENTS:	EVALUATOR:
(1) Cyclopentane; C ₅ H ₁₀ ; [287-92-3] (2) Water; H ₂ O; [7732-18-5]	G.T. Hefter, School of Mathematical and Physical Sciences, Murdoch University, Perth, W.A., Australia. September 1984.

CRITICAL EVALUATION: (continued)

The solubilities in Table 2 fall into two markedly differing groups with the data of Guseva and Parnov (ref 1) and Pierotti and Liabastre (ref 4) approximately twice as high as those of McAuliffe (ref 3) and Price (ref 5). Interestingly, in spite of the disagreement, the two data sets show a similar temperature dependence (Figure 1). Application of the van't Hoff equation to these data gives $\Delta H_{sln}^{\infty} = -2.5$ (ref 4) and -2.8 (ref 5) kJ mol⁻¹ which is typical for hydrocarbons in water (ref 7). However, the corresponding $\Delta C_{p,sln}^{\infty}$ values (~ -10 J K⁻¹ mol⁻¹) are too negative by about 300 J K⁻¹ mol⁻¹ (ref 7).

Pierotti and Liabastre (ref 4) have previously noted inconsistency between their solubilities and those of McAuliffe (ref 3) for a variety of hydrocarbons. They claimed that lower solubilities are obtained by using, as McAuliffe did, a pre-absorbing column on the GLC to remove water. However, Price's GLC values (ref 5) tend to support McAuliffe's data and it should be noted that Pierotti and Liabastre's results have been found to differ markedly from "Recommended" values in a number of well-characterised systems (e.g. the benzene-water system). On the other hand, the only non-GLC data available (ref 1) are in reasonable agreement with Pierotti and Liabastre's results. This system clearly requires thorough re-investigation to resolve existing anomalies.

COMPONENTS:	EVALUATOR:
(1) Cyclopentane; C ₅ H ₁₀ ; [287-92-3] (2) Water; H ₂ O; [7732-18-5]	G.T. Hefter, School of Mathematical and Physical Sciences, Murdoch University, Perth, W.A., Australia. September 1984.

CRITICAL EVALUATION: (continued)

2. THE SOLUBILITY OF WATER (2) IN CYCLOPENTANE

The solubility of water in cyclopentane has been reported in only one publication: Englin *et al.* (ref 2), and thus no Critical Evaluation can be made. The interested user is referred to the appropriate data sheet following this Critical Evaluation. However, it should be noted that in a number of well-characterised systems where comparison is possible (e.g. the benzene-water system) the data of Englin *et al.* are generally reliable at low temperatures but are usually much higher than "Recommended" values above 300 K.

REFERENCES

- 1. Guseva, A.N.; Parnov, E.I. Vestn. Mosk. Univ., Khim. 1964, 19, 77-8.
- Englin, B.A.; Plate, A.F.; Tugolikov, V.M.; Pryanishnikova, M.A. Khim. Tekhnol. Topl. Masel <u>1965</u>, 10, 42-6.
- 3. McAuliffe, C. J. Phys. Chem. 1966, 70, 1267-75.
- Pierotti, R.A.; Liabastre, A.A. Structure and properties of water solutions. U.S. Nat. Tech. Inform. Serv., PB Rep. <u>1972</u>, No.21163, 113 pp.
- 5. Price, L.C. Am. Assoc. Petrol. Geol. Bull. 1976, 60, 213-44.
- 6. Krzyzanowska, T.; Szeliga, J. Nafta Katowice 1978, 34, 413-7.
- 7. Gill, S.J.; Nichols, N.F.; Wadso, I. J. Chem. Thermodyn. <u>1976</u>, 8, 445-52.

ACKNOWLEDGEMENTS

The Evaluator thanks Dr Brian Clare for regression analyses and graphics and Dr Marie-Claire Haulait-Pirson for comments.

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Cyclopentane; C ₅ H ₁₀ ; [287-92-3]	Guseva, A.N.; Parnov, E.I.
(2) Water; H ₂ O; [7732-18-5]	Vestn. Mosk. Univ. Khim. <u>1964</u> , 19, 77 - 8.
VARIABLES:	PREPARED BY:
Temperature: 53-198.5°C	M.C. Haulait-Pirson
EXPERIMENTAL VALUES:	

Solubility of cyclopentane in water			
<i>t</i> /°C	g(l)/100 g(2)	g(l)/100 g sln (compiler)	$10^{4}x_{1}$ (compiler)
53	0.0427	0.0427	1.10
117	0.151	0.151	3.87
166	0.436	0.434	11.12
198.5	1.288	1.271	32.57

AUXILIARY INFORMATION					
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:				
Presumably the measurements were made in sealed glass tubes, as reported in ref 1. No more details were reported in the paper.	(1) not specified.				
	(2) not specified.				
	ESTIMATED ERROR:				
	not specified.				
	REFERENCES :				
	1. Guseva, A.N.; Parnov, E.I. Vestn. Mosk. Univ. Khim. <u>1963</u> , 18, 76.				
21 13	3	7		1	3
-------	---	---	--	---	---
-------	---	---	--	---	---

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Cyclopentane; C ₅ H ₁₀ ; [287-92-3] (2) Water; H ₂ O; [7732-18-5]	Englin, B.A.; Plate, A.F.; Tugolukov, V.M.; Pryanishnikova, M.A. Khim. Tekhnol. Topl. Masel <u>1965</u> , 10, 42-6.
VARIABLES: Temperature: 0-40°C	PREPARED BY: A. Maczynski and M.C. Haulait-Pirson

EXPERIMENTAL VALUES:

	Solubility of water in cyclopentane		
t/°C	g(2)/100 g sln	$\frac{10^4 x_2}{2}$	(compiler)
0	0.0046	1.79	
10	0.0086	3.35	
20	0.0142	5.53	
30	0.0249	9.69	
40	0.0398	15.48	

AUXILIARY INFORMATION		
METHOD /APPARATUS / PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
Component (1) was introduced into a thermostatted flask and saturated	(1) not specified.	
for 5 hours with (2). Next, cal- cium hydride was added and the evolving hydrogen volume measured and hence the concentration of (2) in (1) was evaluated.	(2) not specified.	
	ESTIMATED ERROR:	
	not specified.	
	REFERENCES :	

COMPONENTS:	ORIGINAL MEASUREMENTS:	
(1) Cyclopentane; C ₅ H ₁₀ ; [287-92-3]	McAuliffe, C.	
(2) Water; H ₂ O; [7732-18-5]	J. Phys. Chem. <u>1966</u> , 70, 1267 - 75.	
VARIABLES:	PREPARED BY:	
One temperature: 25°C	M.C. Haulait-Pirson	
EXPERIMENTAL VALUES:		
The solubility of cyclopentane in water at 25°C was reported to be 156 mg(1)/kg sln, (0.0156 g/100 g sln). The corresponding mole fraction, x_1 , calculated by the compiler, is 4.0 x 10 ⁻⁵ . The same value is also reported in refs·1 and 2.		
	INFORMATION	
In a 250 mL glass bottle, 10-20 mL of (1) was vigorously shaken for 1 hr or magnetically stirred for 1 day, with 200 mL of (2) at 25°C. In the case of shaking, the solution was allowed to stand for 2 days to permit separation of small (1) drop- lets. Absence of emulsion was checked microscopically. A 50 µL sample of the (1) saturated water was withdrawn with a Hamilton Syringe and injected into the frac- tionator of the gas chromatograph. A hydrogen-flame ionization detector was used. Many details are given in	<pre>(1) Phillips Petroleum Co.; 99+% purity, used as received. (2) distilled. ESTIMATED ERROR: temp. ± 1.5K soly. 9 mg (1)/kg sln (standard</pre>	
the paper.	<pre>deviation from mean) REFERENCES: 1. McAuliffe, C. Nature (London) <u>1963</u>, 200, 1092. 2. McAuliffe, C. Amer. Chem. Soc. Div. Petrol. Chem. <u>1964</u>, 9, 275.</pre>	

COMPONENTS:		ORIGINAL MEASU	REMENTS :
(1) Cyclopenta	ne; C ₅ H ₁₀ ; [287-92-3]	Pierotti, R	.A.; Liabastre, A.A.
(2) Water; H ₂ O; [7732-18-5]		"Structure and properties of water solutions" U.S. Nat. Tech. Inform. Serv., PB Rep., <u>1972</u> , No. 21163, 113 pp.	
VARIABLES: PREPARED BY:			
Temperature: 2	278.26-318.36 K	M.C. Haulait-Pirson	
EXPERIMENTAL VALUE	ES:		
	Solubility of cyclo	pentane in wa	ter
<i>ті</i> к	g(l)/100 g sln	10 ³ <i>x</i> 1	$10^4 x_1$ (corrected by compiler)
278.26	0.03386 ± 0.00087	0.8697	0.8697
288.36	0.03417 ± 0.00102	0.8777	0.8777
298.26	0.03419 ± 0.00067	0.8782	0.8782
308.36	0.03685 ± 0.00110	0.9465	0.9465
318.36	0.03415 ± 0.00100	0.8772 0.8772	
	AUXILIARY	INFORMATION	

AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: 10 mL of (2) were placed along with 4-10 drops of (1) in 10 mL serum bottles, which were then tightly capped, and placed in a rotating basket and rotated for 24 hours. The bottles were then hand shaken to remove (1) droplets from the stoppers and then replaced in the bath with the tops down for an additional 24 hours. The solute concentrations were determined by use of a flame-ionization gas chromatograph. Many details about equipment, operating conditions and calculation are given in the paper.	SOURCE AND PURITY OF MATERIALS: (1) Matheson, Coleman & Bell, 90.8%; used as received. (2) laboratory distilled water. ESTIMATED ERROR: soly.: standard deviation from at least 15 measurements are given above. REFERENCES:

COMPONENTS:	ORIGINAL MEASUREMENTS:	
(1) Cyclopentane; C ₅ H ₁₀ ; [287-92-3]	Price, L.C.	
(2) Water; H ₂ O; [7732-18-5]	Am. Assoc. Petrol. Geol. Bull. <u>1976</u> , 60, 213-44.	
WADTADLEC.		
VARIABLES:	PREPARED BY:	
Temperature: 25-153.1°C	F. Kapuku	
EXPERIMENTAL VALUES:		
Solubility of cyclopentane ir	water at system pressure	
t/°C mg(1)/kg(2)	g(l)/100 g sln 10 ⁵ x ₁ (compiler)(compiler)	
25.0 160 ± 2.0	0.0160 4.11	
40.1 163 ± 3.0	0.0163 4.19	
55.7 180 ± 7.0	0.0180 4.62	
99.1 296 ± 16.0	0.0296 7.61	
118.0 372 ± 15.0	0.0372 9.56	
137.3 611 ± 9.0	0.0611 15.70	
153.1 792 ± 74.0	0.0792 20.36	
AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
Room-temperature solubilities were determined by use of screw-cap test tubes. The (1) phase floated on top of (2) and ensured saturation (in 2 to 4 days) of the aqueous phase. High-temperature solubility work was carried out in the ovens of the gas chromatograph. The solutions were contained in 75 mL double ended stainless steel sample cylinders. Modified Micro Linear Valves sealed the bottom of the cylinder and al- lowed syringe access to the solution during sampling. The sample is then transferred to the gas chromatograph	 (1) Phillips Petroleum Company; 99+%. (2) distilled. ESTIMATED ERROR: temp. ± 1K solv range of values given above 	
equipped with dual flame ionization detectors. Many details are given in the paper.	REFERENCES:	

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Cyclopentane; C ₅ H ₁₀ ; [287-92-3]	Krzyzanowska, T.; Szeliga, J.
(2) Water; H ₂ O; [7732-18-5]	Nafta Katowice <u>1978</u> , 12, 413-7.
· ·	
VARIABLES:	PREPARED BY:
One temperature: 25°C	M.C. Haulait-Pirson
EXPERIMENTAL VALUES:	

The solubility of cyclopentane in water at 25°C was reported to be 160.0 mg(1)/kg(2). The corresponding mass percent and mole fraction, x_1 , calculated by compiler are 0.0160 g (1)/100 g sln and 4.11 x 10⁻⁵.

Editor's Note: Based on the results for this and other hydrocarbon-water systems, uncertainity exists about whether the datum compiled here is independent of that of Price for the same system (see previous page).

AUXILIARY INFORMATION			
METHOD/APPARATUS/PROCEDURE: Saturated solutions of (1) in (2) were prepared in two ways. First, 200 µL of (1) was injected into 20 mL of (2) and thermostatted at 25°C. Second, the mixture of (1) and (2) as above was thermostatted at 70°C and then cooled to 25°C. The time required to obtain equilibrium was three weeks. The solubility of (1) in (2) was mea- sured by glc. A Perkin-Elmer model F-11 gas chromatograph equipped with a 100-150-mesh Porasil column (70°C) and a flame ionization de- tector was used. Saturated solu- tions of heptane in (2) were used as standard solutions.	SOURCE AND PURITY OF MATERIALS: (1) not specified. (2) not specified. ESTIMATED ERROR: soly. 4.0 mg(1)/kg(2) (standard deviation from 7-9 determinations) REFERENCES:		

COMPONENTS:	EVALUATOR:	
<pre>(1) 2-Methyl-2-butene; C₅H₁₀; [513-35-9]</pre>	G.T. Hefter, School of Mathematical and Physical Sciences, Murdoch	
(2) Water; H ₂ O; [7732-18-5]	University, Perth, Australia.	
-	November 1984.	

CRITICAL EVALUATION:

Quantitative solubility data for the 2-methyl-2-butene (1) and water (2) system have been reported in the publications listed in Table 1.

TABLE 1: Quantitative Solubility Studies of the2-Methyl-2-butene (1) - Water (2) System

Reference	<i>т/</i> к	Solubility	Method
Englin <i>et al</i> . (ref l)	293	(2) in (1)	analytical
Pavlova <i>et al</i> . (ref 2)	293 - 333	mutual	GLC, Karl Fischer

As only one study of the solubility of (1) in (2) has been reported (ref 2), no Critical Evaluation of those data can be made. The interested user is referred to the relevant data sheet for the experimental values. Solubilities of 2-methyl-2-butene in various aqueous salt solutions have also been reported (ref 3) but will not be considered in this Evaluation.

The reported values for the solubility of (2) in (1) are listed in Table 2 and plotted in Figure 1. The agreement between the values at 293 K of Englin *et al.* (ref 1) and Pavlova *et al.* (ref 2) is reasonable and so the values in Table 2 may be considered "Tentative", subject to further studies.

TABLE	2:	Tent	ative	Values	of	the	Solubility	/ of
	Wate	er (2) in	2-Methy.	L-2-	-bute	ene (1)	

Т/К	Solubility values						
	Reported values	"Best" values (± σ _n)					
	g(2)/100g sln	g(2)/100g sln	10 ³ <i>x</i> 2				
293	0.0435 (ref 1), 0.0388 (ref 2)	0.041 ± 0.02^{a}	1.6				
313	0.0589 (ref 2)	0.059	2.3				
333	0.0906 (ref 2)	0.091	3.5				

a This "Best" value obtained by averaging; $\sigma_{\rm n}$ has no statistical significance.

(continued next page)

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) 2-Methyl-2-butene; C ₅ H ₁₀ ; [513-35-9]	Englin, B.A.; Plate, A.F.; Tugolukov, V.M.; Pryanishnikova, M.A.
(2) Water; H ₂ O; [7732-18-5]	Khim. Tekhnol. Topl. Masel <u>1965</u> , 10, 42-6.
VARIABLES:	PREPARED BY:
One temperature: 20°C	A. Maczynski and Z. Maczynska
EXPERIMENTAL VALUES:	
The solubility of water in 2-methyl-2 to be 0.0435 g(2)/100 g sln.	-butene at 20°C was reported
The corresponding mole fraction, x_2 , is 1.69 x 10 ⁻³ .	calculated by the compilers
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Component (1) was introduced into a thermostatted flask and saturated	(1) not specified.
hydride was added and the evolving	(2) not specified.
the concentration of (2) in (1) was evaluated.	
	ESTIMATED ERROR:
	Not specified.
	REFERENCES:

37_20	25
COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) 2-Methyl-2-butene; C ₅ H ₁₀ ; [513-35-9]	Pavlova, S.P.; Pavlov, S.Yu.; Serafimov, L.A.; Kofman, L.S.
(2) Water; H ₂ O; [7732-18-5]	Promyshlennost. Sinteticheskogo Kauchuka <u>1966</u> , 3, 18-20.
VARIABLES:	PREPARED BY:
Temperature: 20-60°C	A. Maczynski
EXPERIMENTAL VALUES:	
Solubility of 2-methy	yl-2-butene in water
$t/^{\circ}C$ $10^{5}x_{1}$	g(l)/100 g sln (compiler)
20 5.63	0.0215
40 6.06	0.0236
50 6.42	0.0250
60 6.87	0.0267
Solubility of water	in 2-methyl-2-butene
-10^{3}	-
<u> </u>	(compiler)
20 1.51	0.0388
40 2.29	0.0589
60 3.52	0.0906
AUXILIAR	Y INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The solubility of (1) in (2) was determined by glc.	<pre>(1) source not specified; better than 99.7 wt%.</pre>
determined by the Karl Fischer reagent method.	(2) doubly distilled.
	ESTIMATED ERROR:
	temp. ± 0.1 K
	REFERENCES:

26	37_21				
COMPONENTS :	ORIGINAL MEASUREMENTS:				
<pre>(1) 2-Methyl-2-butene; C₅H₁₀; [513-35-9] (2) Water; H₂0; [7732-18-5]</pre>	Natarajan, G.S.; Venkatachalam, K.A. J. Chem. Eng. Data <u>1972</u> , 17, 328-9				
VARIABLES:	PREPARED BY:				
Temperature: 15-25°C	M.C. Haulait-Pirson, G.T. Hefter				
EXPERIMENTAL VALUES:					
Solubility of 2-methyl-2-butene in 0.0	001 mol/L HNO ₃ solution.				
t/°C 10 ³ mol/L sln ^a	g(l)/l00 g sln ^b $10^5 x_1$ (compiler) (compiler)				
15 5.15 ± 0.21 20 4.88 ± 0.16 25 4.61 ± 0.20	0.037 9.3 0.035 8.8 0.033 8.3				
Assuming a solution density of 1.00 g mL ⁻ at all temperatures. <u>Compiler's note</u> : Although the data have not been measured in pure water the low concentration of the added acid is unlikely to cause the olefin solubility to differ markedly from that in pure water. Further solubility data are given in the paper for 0.05 and 0.1 mol L ⁻¹ HCl.					
AUXILIARY	INFORMATION				
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:				
15 mL of the aqueous medium was equilibrated with 1 mL of (1) by mechanical shaking in a thermostatted glass burette. After settling (judged visually), 5 mL of the aqueous layer was withdrawn and the olefin content determined by titration with bromine using standard procedures.	 Prepared by dehydration of t-amyl alcohol and then washed, dried and fractionated. Purity (no specification) was determined by chromatography. Not specified. 				
	ESTIMATED ERROR:				
	Temp. ± 0.05 K Soly. see table above.				
	REFERENCES :				

COMPONENTS:	ORIGINAL MEASUREMENTS:		
(1) 3-Methyl-1-butene; C ₅ H ₁₀ ; [563-45-1]	McAuliffe, C.		
(2) Water; H_00 ; [7732-18-5]	J. Phys. Chem. <u>1966</u> , 70, 1267 - 75.		
VARIABLES :	PREPARED BY:		
One temperature: 25°C	A. Maczynski, Z. Maczynska, and A. Szafranski		
EXPERIMENTAL VALUES:			
The solubility of 3-methyl-l-butene is to be 130 g(1)/10 ⁶ g(2). The corresponding mass percent and more by the compilers are 0.0130 g(1)/100	In water at 25°C was reported the fraction, x_1 , calculated g sln and 3.34 x 10 ⁻⁵ .		
AUXILIARY	INFORMATION		
METHOD /AP PARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:		
In a 250-mL bottle, 10-20 mL of (1) was vigorously shaken for 1 hr, or magnetically stirred for 1 day, with 200 mL of (2) at 25°C. The bottle was set aside for 2 days to allow droplets of undissolved (1) to separate. Absence of emulsion was checked microscopically. A sample of the hydrocarbon-saturated water was withdrawn with a Hamilton syringe and gas liquid chromato-	 (1) Phillips Petroleum or Columbia Chemical; used as received. (2) distilled. 		
ionization detector.	ESTIMATED ERROR: temp. ± 1.5 K		
	soly. 14 g(1)/10 ⁶ g(2) (standard deviation of mean)		
	REFERENCES :		

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) 1-Pentene; C ₅ H ₁₀ ; [109-67-1]	McAuliffe, C.
(2) Water; H ₂ O; [7732-18-5]	J. Phys. Chem. <u>1966</u> , 70, 1267-75.
-	
VARIABLES:	PREPARED BY:
One temperature: 25°C	A. Maczynski, Z. Maczynska, and A. Szafranski
EXPERIMENTAL VALUES:	
The solubility of 1-pentene in water to be 148 g(1)/10 ⁶ g(2). The corresponding mass percent and mo by the compilers are 0.0148 g(1)/100	at 25°C was reported ble fraction, x_1 , calculated g sln and 3.80 x 10 ⁻⁵ .
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
In a 250-mL bottle, 10-20 mL of (1) was vigorously shaken for 1 hr, or magnetically stirred for 1 day, with 200 mL of (2) at 25°C. The bottle was set aside for 2 days to allow droplets of undissolved (1) to separate. Absence of emulsion was checked microscopically. A sample of the hydrocarbon-saturated water was withdrawn with a Hamilton syringe and gas liquid chromato-	 (1) Phillips Petroleum or Columbia Chemical; used as received. (2) distilled.
graphed in conjunction with a flame- ionization detector.	ESTIMATED ERROR: temp. ± 1.5 K soly. 7 g(1)/10 ⁶ g(2) (standard deviation of mean)
	REFERENCES:

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) 2-Pentene; C ₅ H ₁₀ ; [109-68-2]	McAuliffe, C.
(2) Water; H ₂ O; [7732-18-5]	J. Phys. Chem. <u>1966</u> , 70, 1267-75.
_	
VARIABLES:	PREPARED BY:
One temperature: 25°C	A. Szafranski
EXPERIMENTAL VALUES:	
The solubility of 2-pentene in water to be 203 g(1)/10 ⁶ g(2). The corresponding mass percent and mo	at 25°C was reported ble fraction, x_1 , calculated
by the compilers are 0.0203 g(1)/100	g sln and 5.21×10^{-5} .
AUXILIARY	INFORMATION
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
In a 250-mL bottle, 10-20 mL of (1) was vigorously shaken for 1 hr, or magnetically stirred for 1 day, with 200 mL of (2) at 25°C. The	(1) Phillips Petroleum or Columbia Chemical; used as received.
bottle was set aside for 2 days to allow droplets of undissolved (1) to separate. Absence of emulsion was checked microscopically. A	(2) distilled.
sample of the hydrocarbon-saturated water was withdrawn with a Hamilton	
graphed in conjunction with a flame-	ESTIMATED ERROR:
TONIZATION detector.	temp. ± 1.5 K soly. 8 g(1)/10 ⁶ g(2) (standard deviation of mean)
	REFERENCES:

30	37_25
COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) 2,2-Dimethylpropane; C₅H₁₂; [463-82-1]</pre>	McAuliffe, C.
(2) Water; H ₂ O; [7732-18-5]	J. Phys. Chem. <u>1966</u> , 70, 1267-75.
VARIABLES:	PREPARED BY-
One temperature: 25°C	A. Maczynski, Z. Maczynska, and A. Szafranski
EXPERIMENTAL VALUES:	
The solubility of 2,2-dimethylpropane to be 33.2 g(1)/10 ⁶ g(2). The corresponding mass percent and mo by the compilers are 0.00332 g(1)/100	in water at 25°C was reported le fraction, x_1 , calculated g sln and 8.30 x 10^{-6} .
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
In a 250-mL bottle, 10-20 mL of (1) was vigorously shaken for 1 hr, or magnetically stirred for 1 day, with 200 mL of (2) at 25°C. The bottle was set aside for 2 days to	 Phillips Petroleum or Columbia Chemical; used as received. distilled
allow droplets of undissolved (1)	

ESTIMATED ERROR: temp. \pm 1.5 K soly. 10 g(1)/10⁶ g(2) (standard deviation of mean)

REFERENCES:

to separate. Absence of emulsion was checked microscopically. A sample of the hydrocarbon-saturated water was withdrawn with a Hamilton syringe and gas liquid chromato-graphed in conjunction with a flame-

ionization detector.

COMPONENTS:	EVALUATOR:
<pre>(1) 2-Methylbutane; C₅H₁₂; [78-78-4] (2) Water; H₂O; [7732-18-5]</pre>	G.T. Hefter, School of Mathematical and Physical Sciences, Murdoch University, Perth, W.A., Australia. July 1985

CRITICAL EVALUATION:

Quantitative solubility data for the 2-methylbutane (1) and water (2) system have been reported in the publications listed in Table 1.

TABLE	1: Q	uantit	ative	So]	Lubili	ty S	tudies	of
the 2	-Meth	ylbuta	ine (1)	-	Water	(2)	System	1

Reference	T/K	Solubility	Method
Black et al. (ref 1)	279-295	(2) in (1)	radiotracer
Englin et al. (ref 2)	273-293	(2) in (1)	analytical
McAuliffe (ref 3)	298	(l) in (2)	GLC
Pavlova et al. (ref 4)	293-333	mutual	GLC, Karl Fischer
Polak and Lu (ref 5)	273,298	mutual	GLC, Karl Fischer
Price (ref 6)	298	(l) in (2)	GLC
Krzyzanowska and Szeliga (ref 7)	298	(1) in (2)	GLC

The original data in all of these publications are compiled in the Data Sheets immediately following this Critical Evaluation.

In the Tables which follow, solubilities obtained by the Evaluator by graphical interpolation of original measurements in the Data Sheets are indicated by an asterisk (*). "Best" values have been obtained, where appropriate, by simple averaging. Uncertainty limits (σ_n) attached to these values do not have statistical significance and should be regarded only as a convenient representation of the spread of values rather than error limits.

For convenience, further discussion of this system will be divided into two parts.

1. THE SOLUBILITY OF 2-METHYLBUTANE (1) IN WATER (2)

The solubility data for 2-methylbutane in water are listed in Table 2 and are also plotted in Figure 1. The data of Krzyzanowska and Szeliga (ref 7) have been excluded from this Evaluation as they do not appear to be independent of those reported by Price (ref 6).

At 298K, where comparison amongst independent values is possible, agreement is excellent. This gives added confidence to the values at other temperatures. A possible exception may be the value of Polak and Lu (ref 5) at 273K which appears a little high (even though some increase in solubility of hydrocarbons in water is usually observed as the temperature approaches 273K, e.g. the benzene-water system). (continued next page)

COMPONENTS:	EVALUATOR:
(1) 2-Methylbutane; C ₅ H ₁₂ ; [78-78-4] (2) Water; H ₂ O; [7732-18-5]	G.T. Hefter, School of Mathematical and Physical Sciences, Murdoch University, Perth, W.A., Australia. July 1985

CRITICAL EVALUATION: (continued)

2. THE SOLUBILITY OF WATER (2) IN 2-METHYLBUTANE (1)

The solubility data for water in 2-methylbutane are listed in Table 3 and plotted in Figure 2. In general the reported values are in reasonable agreement. The only exception appears to be the data of Pavlova *et al*. (ref 4) which are higher than other values. Although there are insufficient independent data to justify outright rejection of the values of Pavlova *et al*. at this stage, nevertheless, their data have not been used in determining "best" values (Table 3) and should be regarded with caution.

TABLE 3: Tentative Values of the Solubility ofWater (2) in 2-Methylbutane (1)

T/K	Solubility values		
	Reported values	"Best" values (±	$(\sigma_n)^a$
	10 ³ g(2)/100g sln	10 ³ g(2)/100g sln	10 ⁴ x2
273	3.2 (ref 2), 2.8 (ref 5)	3.0 ± 0.2	1.2
278	4.3* (ref 1)	4.3	1.7
283	5.2* (ref 1), 5.9 (ref 2)	5.5 ± 0.4	2.2
288	6.5* (ref 1)	6.5	2.6
293	9.2* (ref l), ll.2 (ref 2), l6.0 (ref 4)	10 ± 1	4
298	18* (ref 4), 9.6 (ref 5)	10	4
303	20* (ref 4)		
313	25.7 (ref 4)		
323	40* (ref 4)		
333	58.5 (ref 4)		

^aData from ref 4 not included in calculation of "best" values, see text.

(continued next page)

37	2	7
----	---	---

COMPONENTS :	ORIGINAL MEASUREMENTS:	
<pre>(1) 2-Methylbutane; C₅H₁₂; [78-78-4]</pre> (2) Water; H ₂ O; [7732-18-5]	Black, C.; Joris, G.G.; Taylor, H.S. J. Chem. Phys. <u>1948</u> , 16, 537-43.	
VARIABLES: Temperature: 6-21.8°C	PREPARED BY: M.C. Haulait-Pirson	
EXPERIMENTAL VALUES: Solubility of water i at a total saturation	n 2-methylbutane pressure of 1 atm	
t/°C g(2)/100 g(1)	$g(2)/100 g sln 10^4 x_2$ (compiler) (compiler)	
15.3 0.0066*	0.0066 2.6	
21.3 0.0096*	0.0096 3.8	
21.8 0.0097*	0.0097 3.9	
6.0 0.00443	0.00443 1.78	
0.00433	0.00433 1.74	
0.00440	0.00440 1.76	
20.0 0.00940	0.00940 3.76	
0.00902	0.00902 3.61	
0.00942	0.00942 7.77	
*Determinations made in glass apparatus		
AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE: The method described in ref 1 in which tritium oxide acts as a tracer, was used. Air saturated with radioactive water vapor was bubbled through the (1) sample until saturation was attained. Dissolved water was separated from (1) by absorption on calcium oxide. The tritium was transferred in the counter through equilibration with ethanol vapor.	 SOURCE AND PURITY OF MATERIALS: (1) Ohio State University under an American Petroleum Institute project; purity not specified; used as received. (2) not specified. 	
	ESTIMATED ERROR:	
	soly. a few percent (type of error not specified).	
	REFERENCES: 1. Joris, G.G.; Taylor, H.S. <i>J. Chem. Phys.</i> <u>1948</u> , 16, 45.	

36	37_28
COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) 2-Methylbutane; C ₅ H ₁₂ ; [78-78-4]	Englin, B.A.; Plate, A.F.; Tugolukov, V.M.; Pryanishnikova, M.A.
(2) Water; H ₂ O; [7732-18-5]	Khim. Tekhnol. Topl. Masel <u>1965</u> , 10, 42-6.
VARIABLES:	PREPARED BY:
Temperature: 0-20°C	A. Maczynski and M.C. Haulait-Pirson
EXPERIMENTAL VALUES:	
Solubility of water i	n 2-methylbutane
t/°C g(2)/10	$\frac{10^4 x_2}{2} \text{ (compiler)}$
0 0.0	1.28
10 0.0	0059 2.37
20 0.0	4.49

AUXILIARY INFORMATION METHOD/APPARATUS/PROCEDURE: SOURCE AND PURITY OF MATERIALS: Component (1) was introduced into (1) not specified. a thermostatted flask and saturated for 5 hours with (2). Next, cal-cium hydride was added and the (2) not specified. evolving hydrogen volume measured and hence the concentration of (2) in (1) was evaluated. ESTIMATED ERROR: not specified. **REFERENCES:**

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) 2-Methylbutane: $C_{-H_{20}}$; [78-78-4]	McAuliffe, C.
(2) Water: H $_{0}$ (7732-18-51	J. Phys. Chem. 1966, 20, 1267-75.
VARIABLES :	PREPARED BY:
One temperature: 25°C	M.C. Haulait-Pirson
EXPERIMENTAL VALUES:	
The solubility of 2-methylbutane in w	ater at 25°C was reported to
be 47.8 mg (1)/kg sln, (0.0478 g(1)/1	00 g sln).
The corresponding mole fraction, x_1 ,	calculated by the compiler,
is 1.19×10^{-5} .	
The same value is also reported in re	rs I and 2.
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
In a 250 mL glass bottle, 10-20 mL of (1) was vigorously shaken for	(1) Phillips Petroleum Co.; 99+%
1 hr or magnetically stirred for	(2) distilled
In the case of shaking, the solution	
permit separation of small (1) drop-	
lets. Absence of emulsion was checked microscopically. A 50 uL	
sample of the (1) saturated water	
Syringe and injected into the frac-	ESTIMATED ERROR:
A hydrogen-flame ionization detector	temp. ± 1.5 K
was used. Many details are given in the paper.	deviation from mean)
	REFERENCES:
	 McAuliffe, C. Nature (London) <u>1963</u>, 200, 1092.
	 McAuliffe, C. Am. Chem. Soc. Div. Petrol. Chem. <u>1964</u>, 9, 275.

COMPONENTS:	ORIGINAL MEASUREMENTS:	
(1) 2-Methylbutane; C ₅ H ₁₂ ; [78-78-4 (2) Water; H ₂ O; [7732-18-5]] Pavlova, S.P.; Pavlov, S.Yu.; Serafimov, L.A.; Kofman, L.S. Promyshlennost. Sinteticheskogo Kauchuka <u>1966</u> , 3, 18-20.	
VARIABLES:	PDFPARED BY.	
Temperature: 20-60°C	A. Maczynski	
EXPERIMENTAL VALUES:		
Solubility of 2-met	hylbutane in water	
$\frac{t/^{\circ}C}{}$ $\frac{10^5 x_1}{}$	g(l)/l00 g sln (compiler)	
20 1.17	0.00469	
40 1.44	0.00577	
50 1.75	0.00701	
60 1.98	0.00793	
Solubility of water in 2-methylbutane		
t/°C 10 ³ x ₂	g(2)/100 g sln (compiler)	
	0.0160	
	0.0585	
The solubility of (1) in (2) was determined by glc. The solubility of (2) in (1) was determined by the Karl Fischer reagent method.	 (1) source not specified; better than 99.7 wt%. (2) doubly distilled. 	
	ESTIMATED ERROR:	
	temp. ± 0.1 K	
	REFERENCES:	

37_31

COMPONENTS:	ORIGINAL MEASUREMENTS.
(1) 2-Methylbutane; C _E H ₁₂ ; [78-78-4]	Polak, J.; Lu, B.C-Y.
(2) Water; H_2O ; [7732-18-5]	Can. J. Chem. 1973, 51, 4018-23.
2	
VARIABLES:	PREPARED BY:
Temperature: 0-25°C	M.C. Haulait-Pirson
EXPERIMENTAL VALUES:	
Solubility of 2-methy	lbutane in water
t/°C mg(1)/kg	sln <u>x₁ (compiler)</u>
0 ^a 72.4 ^c	1.81×10^{-5}
25 ^b 49.6 ^c	1.24×10^{-5}
Solubility of water i	n 2-methylbutane
$t/^{\circ}C$ mg(2)/kg	sln x ₂ (compiler)
	<u> </u>
28 [°]	1.12×10^{-4}
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The solubility of (1) in (2) was determined by gas chromatography. The solubility of (2) in (1) was determined by Karl Fischer titra- tion. 50 mL of (1) together with 50 mL of (2) were placed in a 125 mL Hypovial closed with a Teflon coated rubber septum and placed in a constant-temperature water bath. The system was stirred magnetical- ly for 24 hr or was kept in the bath without stirring for at least 7 days before samples were taken for analysis. Details of the	 (1) Phillips Petroleum Co.; pure grade reagent (99%+); shaken three times with distilled water. (2) distilled. ESTIMATED ERROR: temp. a) ± 0.02 K; b) ± 0.01 K
analysis are given in the paper.	soly. c) ± 1.7%; d) ± 4.7%; e) ± 3.1% (mean)
	REFERENCES :

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) 2-Methylbutane; C ₅ H ₁₂ ; [78-78-4]	Price, L.C.
(2) Water; H ₂ O; [7732-18-5]	Ат. Аввос. Petrol. Geol. Bull. <u>1976</u> , 60, 213-44.
VARIABLES:	PREPARED BY:
One temperature: 25°C	M.C. Haulait-Pirson
EXPERIMENTAL VALUES:	
The solubility of 2-methylbutane in w pressure was reported to be 48 mg(1)/ mass percent and mole fraction, x_1 , c are 0.0048 g(1)/100 g sln and 1.20 x	vater at 25°C and at system (kg(2). The corresponding calculated by the compiler 10 ⁻⁵ .
1	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The solubility was determined at laboratory temperatures by use of screw-cap test tubes. The (1) phase floated on top of the water and insured saturation of the (2) phase in 2 to 4 days. Analyses were carried out by GLC using a Hewlett-Packard model 5751 gas chromatograph with dual-flame ionization detectors. Many details are given in the paper.	 (1) Phillips Petroleum Company; Chemical Samples Company or or Aldrich Chemical Company; 99+%. (2) distilled.
	ESTIMATED ERROR:
	<pre>temp. ± 1 K soly. ± 1 mg(1)/kg(2)</pre>
	REFERENCES:

37 33

	- 4	
COMP ONENTS :	ORIGINAL MEASUREMENTS:	
(1) 2-Methylbutane; C ₅ H ₁₂ ; [78-78-4]	Krzyzanowska, T.; Szeliga, J.	
(2) Water; H ₂ O; [7732-18-5]	Nafta Katowice <u>1978</u> , 12, 413-7.	
VARIABLES:	PREPARED BY:	
One temperature: 25°C	M.C. Haulait-Pirson	
EXPERIMENTAL VALUES:		
The solubility of 2-methylbutane in w	vater at 25°C was reported	
to be 48 mg(1)/kg(2).	•	
The corresponding mass percent and mo	ble fraction, x_1 , calculated	
by compiler are 0.0048 g(l)/100 g slr	and 1.2×10^{-5} .	
Editor's Noto. Pagod on the results	for this and other hydrogarbon water	
systems, uncertainity exists about wh	ether the datum compiled here is	
independent of that of Price for the same system (see previous page).		
AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
Saturated solutions of (1) in (2) were prepared in two ways. First,	(1) not specified.	
200 μ L of (1) was injected into 20 mL of (2) and thermostatted at	(2) not specified.	
25°C. Second, the mixture of (1)		
and (2) as above was thermostatted at 70°C and then cooled to 25°C.		
The time required to obtain equilibrium was three weeks. The		
solubility of (1) in (2) was mea-		
F-11 gas chromatograph equipped	ESTIMATED EDDOD.	
with a 100-150 mesh Porasil column (70°C) and a flame ionization	soly. 1.44 mg(1)/kg(2) (standard	
detector was used. Saturated solu- tions of heptane in (2) were used	deviation from 7-9 determinations)	
as standard solutions.	DE BERENANA	
	ALF LALNULS :	

COMPONENTS:	EVALUATOR:
(1) Pentane; C ₅ H ₁₂ ; [109-66-0] (2) Water; H ₂ O; [7732-18-5]	G.T. Hefter, School of Mathematical and Physical Sciences, Murdoch University, Perth, W.A., Australia. October 1984.

CRITICAL EVALUATION:

Quantitative solubility data for the pentane (1) - water (2) system have been reported in the references listed in Table 1.

TABLE 1: Quantitative Solubility Studies of thePentane (1) - Water (2) System

Reference	T/K	Solu	ıbil	.ity	Method
Fühner (ref 1)	289	(1)	in	(2)	titration
Black et al. (ref 3)	279-298	(2)	in	(1)	radiotracer
Namiot and Beider (ref 4)	293 - 345 ^a	(1)	in	(2)	gas-liq. equilibrium
Wishnia (ref 5)	263-308	(1)	in	(2)	radiotracer
Barone et al. (ref 6)	298	(1)	in	(2)	GLC
Connolly (ref 7)	573-625 ^a	(1)	in	(2)	cloud point
McAuliffe (ref 8)	298	(1)	in	(2)	GLC
Nelson and DeLigny (ref 9)	277-303	(1)	in	(2)	GLC
Pierotti and Liabastre (ref 10)	278-308	(1)	in	(2)	GLC
Polak and Lu (ref 11)	273,298	m	utua	l	GLC, Karl Fischer
Price (ref 13)	298-423	(1)	in	(2)	GLC
Korenman and Aref'eva (ref 14)	293	(1)	in	(2)	titration
Krzyzanowska and Szeliga (ref 15)	298	(1)	in	(2)	GLC
Rudakov and Lutsyk (ref 16)	298	(1)	in	(2)	partition coefficient
Jonsson et al. (ref 17)	288-308	(1)	in	(2)	partition coefficient

^aPressure also varied.

Solubility data for pentane in water may also be calculated from the calorimetric data of Gill *et al.* (ref 12). Apart from the work of Scheffer (ref 2) and Roof (ref 18) which did not contain sufficient information to justify inclusion, and Wishnia (ref 5) who reported only graphical information, all the original measurements in the references listed in Table 1 are compiled in the Data Sheets immediately following this Critical Evaluation.

As indicated in the footnote to Table 1, quantitative solubility data for pentane in water at elevated pressures have been reported in the papers by Namiot and Beider (ref 4) and Connolly (ref 7). Since these studies were not carried out under comparable conditions no critical evaluation of their reliability can be made and the interested user is referred to the original measurements in the relevant Data Sheets. Connolly (ref 7) reports an upper critical solution temperature of 624K at 34 MPa whilst Roof (ref 18) reports a three phase critical equilibrium point at 464K and 658 psia (4.5 MPa).

COMPONENTS :	EVALUATOR:
(1) Pentane; C ₅ H ₁₂ ; [109-66-0] (2) Water; H ₂ O; [7732-18-5]	G.T. Hefter, School of Mathematical and Physical Sciences, Murdoch University, Perth, W.A., Australia. October 1984.

CRITICAL EVALUATION: (continued)

In the Tables which follow, solubilities obtained by the Evaluator by graphical interpolation of the original measurements in the Data Sheets are indicated by an asterisk (*). "Best" values have been obtained by simple averaging. The uncertainty limits (σ_n) attached to these values do not have statistical significance and should be regarded only as a convenient representation of the spread of values rather than as error limits.

For convenience, further discussion of the solubility data for this system will be divided into two parts.

1. THE SOLUBILITY OF PENTANE (1) IN WATER (2)

Only five studies (ref 9, 10, 11, 13, 17) report the solubility of pentane in water as a function of temperature. The data of Nelson and DeLigny (ref 9), Polak and Lu (ref 11), Price (ref 12) and Jonsson *et al.* (ref 17) are in good agreement with each other given the analytical difficulties at the low concentrations involved. However, the solubilities of Pierotti and Liabastre (ref 10) are approximately twice as high as the other studies (ref 9, 11, 13, 17). Since Pierotti and Liabastre's data are also markedly higher than all other values at 298K (ref 6, 8, 9, 11, 13, 16, 17) and are generally higher than "Recommended" values for well-characterized systems (e.g. benzene in water), their results are rejected.

The data of Fühner (ref 1) at 298K and Korenman and Aref'eva (ref 14) at 293K are also markedly higher than all other values and are therefore rejected. The data of Krzyzanowska and Szeliga (ref 15) do not appear to be independent of those of Price (ref 13) and have therefore been excluded from this Critical Evaluation. All other data are included in Table 2.

TABLE	2:	Recommend	led	(R)	and	Tent	tati	ive_	Val	ues	of	the
	S	olubility	of	Pent	tane	(1)	in	Wat	er	(2)		

T/K		Solub	ility values	
		Reported values 10 ³ g(1)/100g sln	"Best" values 10 ³ g(1)/100g sln	$(\pm \sigma_n)$ $10^5 x_1$
273	6.57	(ref 11)	6.6	1.7
283	4.29	(ref 9)	4.3	1.1
293	3.93	(ref 9), 4.14 (ref 17)	$4.0 \pm 0.1 (R)$	1.0(<i>R</i>)
298	4.97 4.05 3.95 4.06	<pre>(ref 6), 3.85 (ref 8), (ref 9), 4.76 (ref 11), (ref 13), 4.06 (ref 16), (ref 17)</pre>	4.2 ± 0.4	1.1
			(Table 2 continued next	nage)

44

14					
COMPONENTS:			EVALUATOR:		
(1) Pentane; C ₅ H ₁₂ ; [109-66-0]			G.T. Hefter, School of Mathematical		
(2) Water;	; H ₂ 0; [7732-18-5]	and Physical Sciences, Murdoch		
			October 1984.		
CRITICAL EV	ALUATION:	(continued)			
TABLE 2 (c	continue	ed)			
<i>т/</i> к		Sol	ubility values		
		Reported values	"Best" values	; (± σ _n)	
		10 ³ g(1)/100g sln	10 ³ g(1)/100g sln	$10^{5}x_{1}$	
303	4.05 4.03	(ref 9), 4.1 (ref 13), (ref 17)	4.1 ± 0.1 (R)	1.0 (<i>R</i>)	
313	3.98*	(ref 13)	4.0	1.0	
323	4.1*	(ref 13)	4.1	1.0	
333	4.3*	(ref 13)	4.3	1.1	
343	4.6*	(ref 13)	4.6	1.2	
353	5.0*	(ref 13)	5.0	1.3	
363	5.8*	(ref 13)	5.8	1.5	
383	15 0*	(rer 13)	8.0	2.2	
403	30.3*	(ref 13)	30	7.5	
studies ca other stud applicatio $\Delta H_{Sln}^{\infty} = -4$ the calori 400 ± 70 C values.	an only dies at on of th 4.72 kJ imetrica JK ⁻¹ mol Selected	be regarded as tentat 298K, as noted above, he van't Hoff equation mol ⁻¹ and $\Delta C_{p,sln}^{\infty} = 3$ ally determined values -1. Thus some confided data are plotted in	tive. However, the agreement is quite good and, further to the data listed in Tak $379 ext{ JK}^{-1} ext{ mol}^{-1}$ which agree to (ref 12) of -2.0 ± 0.2 kJ dence can be placed in the Figure 1.	ent with ermore, ole 2 gives well with f mol ⁻¹ and "best"	
	430		·····		
	S 380				
	U				
	1 2 350		-		
	בם	} /	-		
	d E				
I	[₩] 310		-		
	270	0 8	16 24 3	2	
		Solubility (10) ³ g(1)/100 g sln)		

FIGURE 1. Solubility of pentane in water: ref 13 (x); ref 9 (o); ref 11 (◊); ref 10 (∆, rejected data, see text). (cont'nued)

EVALUATOR: COMPONENTS: (1) Pentane; C₅H₁₂; [109-66-0] G.T. Hefter, School of Mathematical (2) Water; H₂O; [7732-18-5] and Physical Sciences, Murdoch University, Perth, W.A., Australia. October 1984. CRITICAL EVALUATION: (continued) REFERENCES 1. Fühner, H. Chem. Ber. <u>1924</u>, 57, 510-15. Scheffer, F.E.C. Proc. Roy. Acad. Amsterdam 1914, 17, 834. 2. з. Black, C.; Joris, G.G.; Taylor, H.S. J. Chem. Phys. 1948, 16, 537-43. 4. Namiot, A.Yu.; Beider, S.Ya. Khim. Tekhnol. Topl. Masel 1960, 7, 52-5. 5. Wishnia, A. J. Phys. Chem. 1963, 67, 2079. 6. Barone, G.; Crescenzi, V.; Pispisa, B.; Quadrifoglio, F. J. Macromol. Chem. <u>1966</u>, *1*, 761-71. 7. Connolly, J.F. J. Chem. Eng. Data 1966, 11, 13-6. 8. McAuliffe, C. J. Phys. Chem. 1966, 70, 1267-75. Nelson, H.D.; De Ligny, C.L. Rec. Trav. Chim. Pays-Bas 1968, 87, 528-44. 9. 10. Pierotti, R.A.; Liabastre, A.A. U.S. Nat. Tech. Inform. Serv., PB Rep. 1972, No.21163, 113 pp. 11. Polak, J.; Lu, B.C-Y. Can. J. Chem. 1973, 51, 4018-23. Gill, S.J.; Nichols, N.F.; Wadso, I. J. Chem. Thermodyn. 1976, 8, 12. 445-52. 13. Price, L.C. Am. Assoc. Petrol. Geol. Bull. 1976, 60, 213-44. Korenman, I.M.; Aref'eva, R.P. Patent USSR, 553 524, 1977.04.05.; 14. C.A. 87:87654. 15. Krzyzanowska, T.; Szeliga, J. Nafta (Katowice) 1978, 34, 413-7. Rudakov, E.S.; Lutsyk, A.I. Zh. Fiz. Khim. 1979, 53, 1298-1300. 16. 17. Jonsson, J.A.; Vejrosta, J.; Novak, J. Fluid Phase Equil. 1982, 9, 279-86. 18. Roof, J.G. J. Chem. Eng. Data 1970, 15, 301-3.

ACKNOWLEDGEMENTS

The evaluator thanks Dr Brian Clare for the regression analyses and Dr Marie-Claire Haulait-Pirson for comments.

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Pentane; C ₅ H ₁₂ ; [109-66-0]	Fühner, H.
(2) Water; H ₂ O; [7732-18-5]	Ber. Dtsch. Chem. Ges. <u>1924</u> , 57, 510-15.
VARIABLES:	PREPARED BY:
One temperature: 16°C	M.C. Haulait-Pirson
EXPERIMENTAL VALUES:	
The solubility of pentane in water at 0.060 mL (1)/100 mL sln or 0.036 g(1) The corresponding mole fraction, x_1 , is 9.0 x 10^{-5} .	16°C was reported to be /100 g sln. calculated by the compiler
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
In a stoppered measuring cylinder pipetted volumes or weighed amounts of (1) were added with shaking to 50, 100 or 1000 cm ³ of (2) until a completely clear solution was obtained at the experimental tem- perature.	 (1) source not specified; commer- cial grade; used as received. (2) not specified.
	ESTIMATED ERROR:
	not specified.
	REFERENCES :

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Pentane; C ₅ H ₁₂ ; [109-66-0]	Black, C.; Joris, G.G.; Taylor, H.S.
(2) Water; H ₂ O; [7732-18-5]	J. Chem. Phys. <u>1948</u> , 16, 537-43.
VARIABLES:	PREPARED BY:
Temperature: 5.5-24.8°C	M.C. Haulait-Pirson
EXPERIMENTAL VALUES:	

Solubility of water in pentane at a total saturation pressure of 1 atm

t/°C	g(2)/100 g(1)	g(2)/100 g sln (compiler)	$10^{4}x_{2}$ (compiler)
5.5	0.0036	0.0036	1.44
15.0	0.0061	0.0061	2.45
24.8	0.0119	0.0119	4.77
24.8	0.0120	0.0120	4.81

AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The method described in ref l in which tritium oxide acts as a tracer, was used. Air saturated with radioactive water vapor was bubbled through the (l) sample until saturation was attained. Dissolved water was separated from (l) by absorption on calcium oxide. The tritium was transferred in the counter through equilibration with ethanol vapor.	 (1) Ohio State University under an American Petroleum Institute project; purity not specified; used as received. (2) not specified. ESTIMATED ERROR:
	soly. a few percent (type of error not specified).
	REFERENCES:
	<pre>1. Joris, G.G.; Taylor, H.S. J. Chem. Phys. <u>1948</u>, 16, 45.</pre>

37_37	49
COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Pentane; C ₅ H ₁₂ ; [109-66-0]	Namiot, A. Yu; Bender, S. Ya.
(2) Water; H ₂ O; [7732-18-5]	Khim. Tekhnol. Topl. Masel <u>1960</u> , 7, 52 - 5.
VARIABLES:	PREPARED BY:
Temperature: 20-71.4°C	A. Maczynski
EXPERIMENTAL VALUES:	
The solubility of pentane	e in water at 32 atm.
$\frac{t/^{\circ}C}{} \qquad \qquad \frac{g(1)/10}{}$	$\frac{10^5 x_1}{10^5 x_1}$
20 0.0	2.7
37.8 0.0	3.9
71.4 0.0	026 6.4
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: The solubility of (1) in (2) was determined from gas-liquid equilibrium measurements in the ternary system pentane-water- methane at 32 atm. in an apparatus described in ref 1. No more details were reported in the paper.	SOURCE AND PURITY OF MATERIALS: (1) not specified. (2) not specified.
	ESTIMATED ERROR: not specified. REFERENCES:

 Rogov, B.A.; Namiot, A. Yu.; Bondareva, M.M. Tr. Vses. Neftegazov. Nauch. Issled. Inst. 1958, 15, 196.

50	37_38
COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Pentane; C₅H₁₂; [109-66-0] (2) Water; H₂O; [7732-18-5]</pre>	<pre>Barone, G.; Crescenzi, V.; Pispisa, B.; Quadrifoglio, F. J. Macromol. Chem. <u>1966</u>, 1, 761-71.</pre>
VARIABLES: One temperature: 25°C	PREPARED BY: M.C. Haulait-Pirson
EXPERIMENTAL VALUES:	
The authors report a value of 0.00103 bility of pentane in water at 25°C. one multiplied by 760/p where p is th (2). $p = 508$ mm Hg. The solubility by the compiler is 6.88 x 10 ⁻⁴ mol(1) mass percent and mole fraction, x_1 , a 1.24 x 10 ⁻⁵ (with the assumption of a	<pre>mol(1)/dm³(2) for the solu- This value is the experimental e partial pressure of (1) over at system pressure calculated /dm³(2) and the corresponding re 0.00497 g(1)/100 g sln and solution density of 1 g cm⁻³).</pre>
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The saturation was carried out by bubbling the vaporized (1) into the solution and letting an excess of the condensed (1) stand in contact with the aqueous phase for more than 12 hr at 25°C under gentle shaking. 0.20 mL samples of (2) saturated with (1) were taken with a calibrated syringe and injected into the chromatographic column packed with 15% of poly(propylene	 (1) RP product, C. Erba, Milan; chromatographically pure. (2) not specified.
wire katharometer as detector was employed. More details are given in the paper.	ESTIMATED ERROR: temp. ± 0.02 K soly. ± 4% (type of error not specified).
	REFERENCES :

37_39				51			
COMPONENTS:			ORIGINAL MEASUREMENTS:				
(1) Pentane; C ₅ H ₁₂ ; [109-66-0]			Connolly, J.F.				
(2) Wate	r; H ₂ 0; [7732-	18-5]	J. Chem. Eng. Data	<u>1966</u> , <i>11</i> , 13-6.			
VARIABLES:			PREPARED BY:				
Temperatu Pressure	ure: 300-325°C : 150-700 atm		M.C. Haulait-Pirson				
EXPERIMENTAL	L VALUES:						
	So	lubility of per	ntane in water				
t/°C	p/atm	p/MPa (compiler)	g(l)100 g sln 	x1 (compiler)			
300	150 185 350 600 700	15.2 18.7 35.4 60.7 70.9	1.3 1.7 1.7 1.6 1.5	0.0033 0.0043 0.0043 0.0040 0.0040 0.0038			
330	170 195 220 260 350 485 670	17.2 19.7 22.2 26.3 35.4 49.1 67.8	2.1 3.3 4.0 4.6 4.9 4.7 4.0	0.0053 0.0084 0.0103 0.0119 0.0127 0.0122 0.0103			
340	230 250 275 330 350 470 620	23.3 25.3 27.8 33.4 35.4 47.6 62.8	5.2 6.1 6.9 7.6 7.6 6.9 5.7	0.0135 0.0160 0.0182 0.0201 0.0201 0.0182 0.0149			
				(continued)			
		AUXILIARY	INFORMATION				
METHOD/APPA The cloud Measureme a 100 mL cell was brought started either a a second of the ce injected more (1) cedure wa	RATUS/PROCEDURE: d point method ents were carr stainless-ste loaded with 1 to temperature and (1) was in cloud or a sm phase appeare ell. Then mer to change the was injected as repeated.	was used. ied out in el cell. The 5 g (2) and . Mixing was jected, until all portion of d at the top cury was pressure, and the pro-	SOURCE AND PURITY OF MA (1) Phillips reage than 99.8%; us (2) distilled and ESTIMATED ERROR:	TERIALS: ent grade; better sed as received. d deaerated.			
			temp. ± 0.02 K press. ± 2 atm (ad	ccuracy)			

COMPONENTS:		OR	ORIGINAL MEASUREMENTS:	
(1) Pentane; C ₅ H ₁₂ ; [109-66-0] Co (2) Water; H ₂ O; [7732-18-5] J			onnolly, J.F. . Chem. Eng. Data <u>1966</u> , 11, 13-6.	
<i>t</i> /°C	p/atm	p/MPa (compiler)	g(l)100 g sln	xl (compiler)
350	240 225 265 280 300 325 350 395 445 510 590	24.31 25.83 26.84 28.36 30.39 32.92 35.46 40.01 45.08 51.66 59.77	7.8 9.0 10.3 12.1 13.9 15.5 15.5 13.9 12.0 10.3 9.0	0.0207 0.0241 0.0279 0.0332 0.0387 0.0438 0.0438 0.0438 0.0387 0.0329 0.0279 0.0241
352	280 280 280 400 390 385 380 375 375 375 375 375 375 375 375 375 375	28.36 28.36 28.36 40.52 39.51 39.00 38.49 37.99 37.99 37.99 37.99 38.49 39.51 42.55	15.8 18.4 21.0 23.3 40.7 38.7 36.5 34.0 31.4 28.5 25.4 23.3 21.0 18.4 15.7	0.0442 0.0533 0.0622 0.0705 0.1463 0.1362 0.1255 0.1140 0.1026 0.0905 0.0784 0.0705 0.0622 0.0533 0.0444

COMMENTS AND ADDITIONAL DATA:

Upper critical solution temperature: $351^{\circ}C$ at p = 340 atm.

The uncertainty in the CST is about 2°C and that of the corresponding pressure about 10 atm.
37 41

_	
COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Pentane; C ₅ H ₁₂ ; [109-66-0]	McAuliffe, C.
(2) Water; H ₂ O; [7732-18-5]	J. Phys. Chem. <u>1966</u> , 70, 1267-75.
-	
VARIABLES:	PREPARED BY:
One temperature: 25°C	M.C. Haulait-Pirson
_	
EXPERIMENTAL VALUES:	
The solubility of pentane in water at	25°C was reported to
be 38.5 mg (1)/kg sln, (0.0385 g/100	g sln).
The corresponding mole fraction, x_1 ,	calculated by the compiler,
The same value is also reported in re	ofs 1 and 2.
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
In a 250 mL glass bottle, 10-20 mL	(1) Phillips Petroleum Co.; 99+%
of (1) was vigorously shaken for 1 hr or magnetically stirred for	purity; used as received.
1 day, with 200 mL of (2) at 25°C.	(2) distilled.
was allowed to stand for 2 days to	
permit separation of small (1) drop- lets. Absence of emulsion was	
checked microscopically. A 50 µL	
sample of the (1) saturated water was withdrawn with a Hamilton	
Syringe and injected into the frac-	ECTIMATED EDDOD.
A hydrogen-flame ionization detector	temp. + 1.5 K
was used. Many details are given in the paper.	soly. 2 mg (1)/kg sln (standard deviation from mean)
	REFERENCES:
	1. McAuliffe, C. Nature (London) 1963, 200, 1092.
	2. McAuliffe, C. Am. Chem. Soc.
	Div. Petrol. Chem. <u>1964</u> , 9, 275.

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Pentane; C ₅ H ₁₂ ; [109-66-0]	Nelson, H.D.; De Ligny, C.L.
(2) Water; H ₂ O; [7732-18-5]	Rec. Trav. Chim. Pays-Bas <u>1968</u> , 87, 528-44.
VARIABLES:	PREPARED BY:
Temperature: 4-30°C	M.C. Haulait-Pirson
EXPERIMENTAL VALUES:	
Solubility of pen	tane in water
$t/^{\circ}C$ $10^{5}x_{1}$	mg(l)/kg sln (compiler)
4.0 1.02 ± 0	.20 40.9
10.0 1.07 ± 0	.15 42.9
20.0 0.98 ± 0	.19 39.3
25.0 1.01 ± 0	.12 40.5
30.0 1.01 ± 0	.17 40.5
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The saturation vessel is drawn in the original paper. (2) was satu- rated with (1) via the vapor phase: a few drops of (1) were put on the bottom of a tight-fitting flask containing a small flask filled with water. Complete saturation was reached by shaking overnight in an upright position. Samples were taken from the aqueous solution with a microsyringe through the septum and injoint of the gas characteristic	 Phillips pure grade. tap-water was refluxed for 8 hours in the presence of KMnO₄ and KOH and distilled. The whole process was repeated once more. ESTIMATED ERROR:
equipped with a flame ionization detector. The gas chromatographic conditions are described in the paper.	soly.: error given above (90% prob- ability interval)
	REFERENCES :

37 4	lЗ
------	----

57_45			
COMPONENTS :		ORIGINAL MEASURE	MENTS:
(1) Pentane; C ₅ H ₁₂ ; [109-66-0]		Pierotti, R.A	A.; Liabastre, A.A.
(2) Water; H ₂ O; [7732-18-5]		"Structure and properties of water solutions" U.S. Nat. Tech. Inform. Serv., PB Rep., <u>1972</u> , No. 21163, 113 pp.	
VARIABLES:		PREPARED BY:	
Temperature: 278.26-308.36 K		M.C. Haulait	-Pirson
EXPERIMENTAL VALUES:			
Solubility	y of pent	ane in water	
Т/ К g(l)/100 с	g sln	$\frac{10^{3}x_{1}}{2}$	g(l)/100 g sln (corrected by compiler)
278.26 0.001094 ± 0	0.000037	0.02732	0.01094
288.36 0.001180 ± 0	0.000034	0.02946	0.01180
298.26 0.001128 ± 0	0.000045	0.02816	0.01128
308.36 0.001089 ± 0	0.000051	0.02719	0.01089
	AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE:		SOURCE AND PURIT	Y OF MATERIALS:
10 mL of (2) were placed along with 4-10 drops of (1) in 10 mL serum bottles, which were then tightly capped, and placed in a rotating basket and rotated for 24 hours. The bottles were then hand shaken to remove (1) droplets from the stoppers and then replaced in the bath with the tops down for an additional 24 hours. The solute concentrations were determined by		 (1) Fisher So certified received (2) laborator 	cientific Co.; d grade; used as ry distilled water.
use of a flame-ionization gas chromatograph. Many details equipment, operating condition and calculation are given in paper.	about about ons the	ESTIMATED ERROR: soly.: standa least given	ard deviation from at 15 measurements are above.
		REFERENCES:	

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Pentane; C ₅ H ₁₂ ; [109-66-0]	Polak, J.; Lu, B.C-Y.
(2) Water; H ₂ O; [7732-18-5]	Can. J. Chem. <u>1973</u> , 51, 4018-23.
VARIABLES:	PREPARED BY:
Temperature: 0-25°C	M.C. Haulait-Pirson
EXPERIMENTAL VALUES:	
Solubility of pen	tane in water
<i>t/°C</i> mg(1)/kg	$\frac{1}{x_1}$ (compiler)
0 ^a 65.7 ^c	1.64×10^{-5}
25 ^D 47.6 ^C	1.19×10^{-5}
Solubility of wat	er in pentane
t/°C mg(2)/kg	sln x ₂ (compiler)
0 ^a 26 ^d	1.04×10^{-4}
25 ^b 101 ^e	4.04×10^{-4}
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The solubility of (1) in (2) was determined by gas chromatography. The solubility of (2) in (1) was determined by Karl Fischer titra- tion. 50 mL of (1) together with 50 mL of (2) were placed in a 125 mL Hypovial closed with a Teflon coated rubber septum and placed in a constant-temperature water bath. The system was stirred magnetical- ly for 24 hr or was kept in the bath without stirring for at least 7 days before samples were taken for analysis. Details of the analysis are given in the paper.	<pre>(1) Phillips Petroleum Co.; pure grade reagent (99%+); shaken three times with distilled water. (2) distilled. ESTIMATED ERROR: temp. a) ± 0.02 K; b) ± 0.01 K soly. c) ± 1.7%; d) ± 4.7%; e) ± 3.1% (mean) REFERENCES:</pre>

3	7	4	5
		_	

121.3

137.3

149.5

COMPONENTS:		OPICINAL MEASUREMENTS.	
		ORIGINAL PERSONERENTS:	
(1) Pentane; C5H	1 ₂ ; [109-66-0]	Price, L.C.	
		Am Assas Batnol	1007 Pu17
(2) water; H_20 ;	[//32-18-5]	1976, 60, 213-44.	eol. Bull.
1			
VARIABLES:		PREPARED BY:	
Temperature: 25-	149.5°C	F. Kapuku	
-			
EXPERIMENTAL VALUES:			
Solubi	lity of pentane in w	ater at system pressur	e
		-(1) (1001-	105
t/°C	mg(1)/kg(2)	g(l)/l00 g sin (compiler)	(compiler)
			<u>XIIIIIIII</u>
25.0	39.5 ± 0.6	0.00395	0.99
40.1	39.8 ± 0.9	0.00398	0.99
55.7	41.8 ± 1.3	0.00418	1.04
99.1	69.4 ± 1.1	0.00694	1.73

110.0 ± 10.0

201.0 ± 5.0

 298.0 ± 14.0

0.0110

0.0201

AUXILIARY INFORMATION			
METHOD/APPARATUS/PROCEDURE: Room-temperature solubilities were determined by use of screw-cap test tubes. The (1) phase floated on top of (2) and ensured saturation (in 2	SOURCE AND PURITY OF MATERIALS: (1) Phillips Petroleum Company; 99+%. (2) distilled.		
to 4 days) of the aqueous phase. High-temperature solubility work was carried out in the ovens of the gas chromatograph. The solutions were contained in 75 mL double ended stainless steel sample cylinders. Modified Micro Linear Valves sealed			
the bottom of the cylinder and al- lowed syringe access to the solution during sampling. The sample is then transferred to the gas chromatograph equipped with dual flame ionization	ESTIMATED ERROR: temp. ± 1 K soly. range of values given above		
detectors. Many details are given in the paper.	REFERENCES:		

57

2.74

5.01

7.43

(1) Pentane; C ₅ H ₁₂ ; [109-66-0]	ORIGINAL MEASUREMENTS: Korenman, I.M.; Aref'eva, R.P.
(2) Water; H ₂ O; [7732-18-5]	Patent USSR, 553 524, 1977.04.05 C.A. 87:87654
One temperature: 20°C	PREPARED BY: A. Maczynski
EXPERIMENTAL VALUES:	
The solubility of pentane in water at 0.7 g(l)dm ⁻³ (2).	20°C was reported to be
The corresponding mass percent and more by the compiler are $0.07 g(1)/100 g$	ble fraction, x_1 , calculated sin and 1.7 x 10 ⁻⁴ . The
assumption that $1 \text{ dm}^3 \text{ sln} = 1 \text{ kg sln}$	was used in the calculation.
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
About 100-500 mL(2) was placed in a glass cylinder and 10-50 mg of an	(1) not specified.
insoluble indicator was added and (1) was microburetted until the	(2) not specified.
indicator floated to form a colored thin layer on the cylinder wall 2-3	
cm above the liquid layer. After each drop of (1), the mixture was	
vigorously mixed for 0.5-1.5 min.	
	ESTIMATED ERRORA
	not specified.
	REFERENCES :

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Pentane; C ₅ H ₁₂ ; [109-66-0]	Krzyzanowska, T.; Szeliga, J.
(2) Water; H ₂ O; [7732-18-5]	Nafta Katowice <u>1978</u> , 12, 413-7.
VARIABLES:	PREPARED BY:
One temperature: 25°C	M.C. Haulait-Pirson
EXPERIMENTAL VALUES:	
The solubility of pentane in water at 25°C was reported to be 39 mg(1)/kg(2). The corresponding mass percent and mole fraction, x_1 , calculated by compiler are 0.0039 g(1)/100 g sln and 9.7 x 10 ⁻⁶ . Editor's Note: Based on the results for this and other hydrocarbon-water systems, uncertainity exists about whether the datum compiled here is independent of that of Price for the same system.	
METHOD/APPARATUS/PROCEDURE: Saturated solutions of (1) in (2) were prepared in two ways. First, 200 µL of (1) was injected into 20 mL of (2) and thermostatted at 25°C. Second, the mixture of (1) and (2) as above was thermostatted at 70°C and then cooled to 25°C. The time required to obtain equilibrium was three weeks. The solubility of (1) in (2) was mea- sured by glc. A Perkin-Elmer model F-11 gas chromatograph equipped with a 100-150 mesh Porasil column (70°C) and a flame ionization detector was used. Saturated solu- tions of heptane in (2) were used as standard solutions.	SOURCE AND PURITY OF MATERIALS: (1) not specified. (2) not specified. ESTIMATED ERROR: soly. 0.8 mg(1)/kg(2) (standard deviation from 7-9 determinations) REFERENCES:

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Pentane; C ₅ H ₁₂ ; [109-66-0]	Rudakov, E.S.; Lutsyk, A.I.
(2) Water; H ₂ O; [7732-18-5]	Zh. Fiz. Khim. <u>1979</u> , 53, 1298-1300.
VARIABLES:	PREPARED BY:
One temperature: 25°C	M.C. Haulait-Pirson

EXPERIMENTAL VALUES:

The authors reported the partition coefficient α of pentane between the gas and aqueous phase. $\alpha = 49 \pm 1$. $\alpha = C_g/C_s$ with C_s being the concentration of the compound in dilute aqueous solution at 25°C and C_g the concentration in the gas phase in equilibrium with the aqueous solution (both in moles per liter).

The compiler has assumed that when (1) and (2) are not very soluble in each other, C_s may be taken as the water solubility and C_g as the vapor pressure of (1). The value of p (where p is the vapor pressure in mm of Hg) is taken from ref 1. p = 512.5 mm of Hg and log $C_g = \log p - 4.269 = -1.56$ expressed in moles per liter. Therefore $C_s = 5.63 \times 10^{-4}$ moles per liter. With the assumption of a solution density of 1.00 g mL⁻¹, the corresponding mass percent is 0.0040 g(1)/100 g sln and the corresponding mole fraction, x_1 , is 1.0 $\times 10^{-5}$.

AUXILIARY INFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
The equilibrium distribution was attained after shaking for 10 min the thermostatted reactor contain- ing (2) and the (1) vapor. After being allowed to stand for 10 min, equal calibrated volumes of samples of the gas and solution were intro- duced by a syringe into a special cell for the removal of (1) by blowing, built into the gas line of the chromatograph and the par-	(1) not specified.(2) not specified.ESTIMATED ERROR:	
as the ratio of the areas of the peaks of the substrate arising from the two phases.	soly. ± 10% (estimated by the compiler)	
	REFERENCES: 1. Hine, J.; Mooker, P.K. J. Org. Chem. <u>1975</u> , 4, 292.	

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Pentane; C ₅ H ₁₂ ; [109-66-0] (2) Water; H ₂ O; [7732-18-5]	Jonsson, J.A.; Vejrosta, J.; Novak, J.
	Fluid Phase Equil. <u>1982</u> , 9, 279-86.
VARIABLES:	PREPARED BY:
Temperature: 15-35°C	G.T. Hefter
EXPERIMENTAL VALUES:	
Solubility of p	entane in water
t/°C mg(l)/kg sln	10 [°] g(1)/100g sln 10 [°] x ₁ (compiler) (compiler)
15 42.9	4.29 1.07
	4.06 1.01
30 40.3	4.03 1.01
35 40.6	4.06 1.01
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Air-water partition coefficients	(1) Fluka. > 99.8 %, used as
were measured by saturating a	received.
portion of water by a stream of nitrogen containing a known vapour concentration of (1). After equilibration, the dissolved (1) was adsorbed in a porous polymer trap and the entrapped (1) analysed by gas chromatography. The method and apparatus are described in detail in ref 1.	(2) Not specified.
	ESTIMATED ERROR:
	Not specified.
	REFERENCES :
	 Vejrosta, J.; Novak, J.; Jonsson, J.A. Fluid Phase Equil. <u>1982</u>, 8, 25-35.

,

COMPONENTS:	ORIGINAL MEASUREMENTS:
 Pentane; C₅H₁₂; [109-66-0] Sodium chloride; NaCl; [7647-14-5] Water; H₂O; [7732-18-5] 	Price, L.C. Am. Assoc. Petrol. Geol. Bull. <u>1976</u> , 60, 213-44.
	DDEDADEN BV.
VARIABLES:	PREPARED BI:
Solipiture: 25°C	M. Kleinschmidt and D. Shaw
EXPERIMENTAL VALUES:	
Solubility of Pent	ane in Aqueous NaCl
Salinity	10 ⁶ <i>x</i> ,
$q(2)/kg sln = 10^3 q(1)/100$	g sln (compilers)
1 002 2 69	0.10
10.000 3.45	8.67
34.472°° 2.76	7.05
125.100 1.09	2.95
199.900 0.591	1.67
358.700 0.201	0.614
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Details given in source. (1) was equilibrated with NaCl solution for one month. An aliquot was analyzed directly by gas chromatography.	(1) commercial, 99 + % pure
	ESTIMATED ERROR:
	Temperature + 1 K
	Solubility + 10 relative &
	REFERENCES:
	<pre>1. Lyman, J.; Fleming, R.H.; J. Mar. Res. <u>1940</u>, 3, 135.</pre>

3	7	5	1

COMPONENTS:	EVALUATOR:
(1) Benzene; C ₆ H ₆ ; [71-43-2] (2) Water; H ₂ O; [7732-18-5]	G.T. Hefter, School of Mathematical
	University, Perth, W.A., Australia.
	June 1986.

CRITICAL EVALUATION:

Quantitative solubility data for the system benzene (1) and water (2) have been reported in the references listed in Table 1.

TABLE 1: Quantitative Solubility Studies of theBenzene (1) - Water (2) System

Reference	Т/К	Solubility	Method
Herz (ref 1)	295	(1) in (2)	densimetric
Groschuff (ref 2)	278-350	(2) in (1)	titration
Clifford (ref 4)	284-328	(2) in (1)	analytical
Hill (ref 5)	273	(2) in (1)	cryoscopic
Hill (ref 6)	278-343	(1) in (2)	analytical
Jaeger (ref 7)	373-573	(1) in (2)	cloud-point
Milligan (ref 8)	298	(1) in (2)	analytical
Barbaudy (ref 9)	342	mutual	cloud-point
Uspenskii (ref 10)	283,295	mutual	titration, analytical
Rosenbaum and Walton (ref 11)	283-333	(2) in (1)	gasometric
Gross and Saylor (ref 12)	303	(1) in (2)	interferometric
Tarassenkow and Poloshinzewa (ref 13)	278-346	(2) in (1)	synthetic
Robertson (ref 14)	279	(2) in (1)	cryoscopic
Niini (ref 15)	293	mutual	refractometric, pycnometric
Saylor et al. (ref 16)	303-308	(1) in (2)	interferometric
Berkengeim (ref 18)	283-323	(2) in (1)	Karl Fischer
Staveley et al. (ref 19)	297-344	(2) in (1)	synthetic
Durand (ref 20,25)	289	(1) in (2)	synthetic
Stearns et al. (ref 21)	298	(1) in (2)	turbidimetric
Booth and Everson (ref 22,27)	298,333	(1) in (2)	residue volume
Joris <i>et al</i> . (ref 23,24)	283-299	(2) in (1)	radiotracer
Andrews and Keefer (ref 26)	298	(1) in (2)	spectrophotometric
Griswold et al. (ref 28)	298,323	mutual	cloud-point
Klevens (ref 29)	298	(1) in (2)	spectrophotometric
Bohon and Claussen (ref 30)	273-316	(1) in (2)	spectrophotometric
McBain and Lissant (ref 31)	298	(1) in (2)	synthetic
Staveley et al. (ref 32)	295-346	(2) in (1)	synthetic
Donahue and Bartell (ref 33)	298	mutual	interferometric
McDevit and Long (ref 34)	298	(1) in (2)	volumetric
Morrison and Billett (ref 35)	298	(l) in (2)	analytical
McCants <i>et al</i> . (ref 36)	311	mutual	titration
Hayashi and Sasaki (ref 37)	293,298	(1) in (2)	titration
		(Table l co	ntinued next page)

COMPONENTS :	EVALUATOR:		
(1) Benzene; C ₂ H ₂ ; [71-43-2]	G.T. Hefter, School of Mathematical		
		and Physical Sc	iences, Murdoch
(2) Water; H ₂ O; [7732-18-5]	1	University, Per	th, W.A., Australia.
		Tuno 1096	
		Julie 1980.	
CRITICAL EVALUATION: (continued)			
TABLE 1 (continued)			
Deferrer	m /12	Colubility	Nothod
Reference	175	Solubility	Me chods
Umano and Havano (ref 38)	459-554	(2) in (1)	volumetric
Wing and Johnston (ref 39)	298	(2) in (1)	radiotracer
Arnold et al. (ref 40)	273-342	(1) in (2)	spectrophotometric
Brady and Huff (ref 41)	298	(1) in (2)	vapor pressure
Pavia (ref 42)	282-388	(2) in (1)	Karl Fischer
Alexander (ref 43)	273-338	(1) in (2)	spectrophotometric
Rebert and Kay (ref 44)	556 - 580	a mutual	synthetic
Caddock and Davies (ref 45)	293	(2) in (1)	radiotracer
Kudchadker and McKetta (ref 46)	311-411	<i>a</i> (1) in (2)	not specified
Franks et al. (ref 48)	290-336	(l) in (2)	spectrophotometric
Guseva and Parnov (ref 49)	426-537	<i>a</i> (1) in (2)	cloud-point
Jones and Monk (ref 50)	298-308	(2) in (1)	radiotracer
McAuliffe (ref 51,60)	298	(1) in (2)	GLC
Schatzberg (ref 52)	293	(2) in (1)	Karl Fischer
Udovenko and Aleksandrova (ref 53)	293-353	(1) in (2),	not specified
Hoegfeldt and Bolander (ref 54)	298	(2) in (1)	Karl Fischer
Thompson and Snyder (ref 55)	311-477	a mutual	analytical
Englin <i>et al</i> . (ref 56)	273-323	(2) in (1)	analytical
Connolly (ref 57)	533-573	<i>a</i> (1) in (2)	cloud-point
Johnson et al. (ref 58)	298	(2) in (1)	Karl Fischer
Masterton and Gendrano (ref 59)	298	(2) in (1)	Karl Fischer
Moule and Thurston (ref 61)	282 - 323	(2) in (1)	radiotracer
Taha et al. (ref 62)	298	(1) in (2)	vapor pressure
Alwani and Schneider (ref 63)	523-636	a mutual	synthetic
Gregory et al. (ref 64)	308	(2) in (1)	Karl Fischer
O'Grady (ref 65)	561-566	" mutual	volumetric
Worley (ref 66)	298	(1) in (2)	spectrophotometric
Burd and Braun (ref 67)	359-473	a (2) in (1)	GLC
Roddy and Coleman (ref 68)	298	(2) in (1)	gravimetric
Corby and Elworthy (ref 71)	293	(l) in (2)	spectrophotometric
Pierotti and Liabastre (ref 72)	278 - 319	(l) in (2)	GLC
Ben-Naim <i>et al</i> . (ref 73)	283-323	(1) in (2)	spectrophotometric
Bradley et al. (ref 74)	298-328	<i>a</i> (1) in (2)	spectrophotometric
Filyas (ref 75)	568	(2) in (1)	not specified
Karlsson (ref 76)	287 - 308	(2) in (1)	Karl Fischer
Leinonen and Mackay (ref 77)	298	(l) in (2)	GLC
		(Table 1	continued next nage
		(IUNTE T	Jonernaca neve hade)

COMPONENTS :		EVALUATOR:				
(1) Benzene: C _c H _c : [71-43-2]		G T Hefter School of Mathematical		School of Mathematical		
		and Physical Sciences, Murdoch				
(2) water; H ₂ 0; [//32-18-5]		Univ	vers	sity	, Pe	erth, W.A., Australia.
		June	- 10	- 286		
		oune	с I.			
CRITICAL EVALUATION: (continued)						
TABLE 1 (continued)						
			_			
Reference	T/K	5	Solu	ıbil	ity	Method
Polak and Lu (ref 78)	273.29	8	mı	utua	1	GLC
Sultanov and Skripka	400 50	a				
(ref 79,89)	498-53	3	(2)	in	(1)	not specified
Brown and Wasik (ref 80)	278-29	3	(2)	in	(1)	GLC
Goldman (ref 81)	283-31	3	(2)	in	(1)	Karl Fischer
Krasnoshchekova and Gubergrits (ref 82)	298		(1)	in	(2)	GLC
Mackay and Shiu (ref 83)	298		(1)	in	(2)	GLC
Sada et al. (ref 84)	298		(1)	in	(2)	titration
Budantseva <i>et al</i> . (ref 85)	29 3		mι	itua	1	GLC
Kirchnerova and Cave (ref 87)	298		(2)	in	(1)	Karl Fischer
Price (ref 88)	298		(1)	in	(2)	GLC
Korenman and Aref'eva (ref 90,91)	293 , 29	8	(1)	in	(2)	titration
Krzyzanowska and Szeliga (ref 92)	298		(1)	in	(2)	GLC
May et al. (ref 93)	298		(1)	in	(2)	GLC
Singh and Sah (ref 94)	30 3		(2)	in	(1)	titration
Bittrich et al. (ref 95)	293 - 33	3	mı	itua	l	GLC
Banerjee <i>et al</i> . (ref 97)	298		(1)	in	(2)	radiotracer
Schwarz (ref 98)	297		(1)	in	(2)	chromatographic
Sanemasa <i>et al</i> . (ref 100)	288-31	8	(1)	in	(2)	spectrophotometric
Sanemasa <i>et al</i> . (ref 101)	278-31	8	(1)	in	(2)	spectrophotometric
Tsonopoulos and Wilson (ref 102)	313-47	3 ^a	mι	itua	1	GLC, Karl Fischer
Sanemasa <i>et al</i> . (ref 103)	298		(1)	in	(2)	spectrophotometric

a. Pressure also varied, see Table 4

l

Quantitative solubility data for the benzene-heavy water (D_2O) system are given in the papers by Ben-Naim *et al*. (ref 73), in terms of the Ostwald absorption coefficient, and Backx and Goldman (ref 99). However, these data have not been determined under comparable conditions and thus no Critical Evaluation is possible. The interested user is referred to the relevant Data Sheets for experimental values. Solubility data may also be calculated from the calorimetric data of Gill *et al*. (ref 86). Bröllos *et al*. (ref 69) have also reported data on a critical locus in the D_2O -benzene system (*cf.* Section 3 below). (continued next page)

COMPONENTS :	EVALUATOR:
(1) Benzene; C ₆ H ₆ ; [71-43-2] (2) Water; H ₂ O; [7732-18-5]	G.T. Hefter, School of Mathematical and Physical Sciences, Murdoch University, Perth, W.A., Australia.
	June 1986.

Critical phenomena in the benzene-water system have been reported by Alwani and Schneider (ref 63), Roof (ref 70) and Scheffer (ref 108). These data are discussed along with the solubility data at elevated pressures in Section 3 below.

The extensive information available for the solubility of benzene in brine solutions is considered in a separate Critical Evaluation immediately following the benzene-water Data Sheets.

Apart from the papers by Roof (ref 70) and Scheffer (ref 108) which did not contain sufficient information to justify their inclusion; and the work of Horiba (ref 3), Vermillion (ref 17), Thompson (ref 47) and Herz (ref 107) which were not available for inspection, the original data in all of the publications listed in Table 1 are compiled in the Data Sheets immediately following this Critical Evaluation. The data of Gorbachev *et al.* (ref 109, 110) are noted but arrived too late to be included in this Evaluation.

In the benzene-water system the mutual solubilities are sufficiently low at atmospheric pressures to enable data reported on w/v fractions (or equivalent) to be converted to mass percent solubilities with reasonable precision by assuming solution densities to be the same as the pure solvents. These conversions are given on the Data Sheets and data are included in this Evaluation. The data of Herz (ref 1), Jaeger (ref 7), Milligan (ref 8), Durand (ref 20,25), Booth and Everson (ref 22,27), Jones and Monk (ref 50) and Sada *et al.* (ref 84) given in v/v fractions have not been converted and so have been excluded.

For convenience, further discussion of this system will be divided into three parts: the solubility of benzene in water and of water in benzene at atmospheric pressure, and their mutual solubilities at higher temperatures and pressures.

In the Tables which follow, values obtained by the Evaluator by graphical interpolation of the original measurements compiled in the data sheets are indicated by an asterisk (*). The uncertainty limits (given as standard deviations, σ_n) attached to the mean "Best" values do not have statistical significance and should be regarded only as a convenient representation of the spread of values rather than as error limits. Where relevant, 95% confidence intervals have been calculated for the mass percentage solubilities, as error estimates using the *t*-distribution and are given along with the mean values. Error estimates have not been included for mole fraction

COMPONENTS:	EVALUATOR:
(1) Benzene; C ₆ H ₆ ; [71-43-2] (2) Water; H ₂ O; [7732-18-5]	G.T. Hefter, School of Mathematical and Physical Sciences, Murdoch University, Perth, W.A., Australia. June 1986.

solubilities because of space limitations but may be assumed to be the same (proportionately) as those given for the mass percentage solubilities. The letter (*R*) indicates "Recommended" data. Data are "Recommended" if σ_n is less than 5% (relative) of the average solubility. All other data are regarded as Tentative.

1. THE SOLUBILITY OF BENZENE (1) IN WATER (2) AT ATMOSPHERIC PRESSURE Table 1 shows a plethora of studies of the solubility of benzene in water: 29 independent values have been reported at 298K! Most of the data are in good agreement enabling solubilities to be "Recommended" over almost the entire liquid range at atmospheric pressure.

The data of Niini (ref 15), Stearns *et al.* (ref 21), McBain and Lissant (ref 31), Hayashi and Sasaki (ref 37), Kudchadker and McKetta (ref 46, atmospheric pressure data only), Udovenko and Aleksandrova (ref 53), Worley (ref 68), Pierotti and Liabastre (ref 72), Krasnoshchekova and Gubergrits (ref 82), Korenman and Aref'eva (ref 90,91), Schwarz (ref 98) and Sanemasa *et al.* (ref 100,101,103), reported mainly at 293 or 298K, disagree markedly with other studies and have therefore been rejected.

The approximate solubilities of Griswold $et \ al$. (ref 28), Taha $et \ al$. (ref 62) and Budantseva $et \ al$. (ref 85) have been excluded from consideration because of the abundance of more precise values.

All other data on the solubility of benzene in water are included in Table 2. Also included in Table 2 are the mean "Best" values and the 95% confidence intervals.

TABLE 2:	Recommended	(R) and	Tentative	Values of
the Se	olubility of	Benzene	(1) in Wa	ter (2)

Solubility values				
Т/К	Reported values ^a	"Best" values $\pm \sigma_n (C.I.)^b$		
	3(-//-003-0	y(2,7,200 y 22.1 10 10 11		
273 ⁰	0.153 (ref 5), 0.185 (ref 43), 0.168 (ref 78)	0.169 ± 0.013(0.032) ^c 3.90		
278	0.181* (ref 30), 0.172 (ref 40), 0.182* (ref 43), 0.185 (ref 80)	0.180 ± 0.005(0.005)(R) 4.15(R)		
283	0.175 (ref 10), 0.180 (ref 30), 0.173* (ref 40),0.179* (ref 43), 0.181* (ref 80)	0.178 ± 0.003(0.004)(R) 4.11(R)		
		(Table 2 continued next page)		

COMPONENTS:	EVALUATOR:		
(1) Benzene; C ₆ H ₆ ; [71-43-2]	G.T. Hefter, School of Mathematical and Physical Sciences, Murdoch		
(2) water; H ₂ U; [//32-10-5]	University, Perth, W.A., Australia.		
	June 1986.		
CRITICAL EVALUATION: (continued)			
TABLE 2 (continued)			
T/K Solubili	ty values		
Reported values"	"Best" values $\pm \sigma_n(C.I.)^-$		
g(1)/100g sln	$g(1)/100g \ sln \ 10^{-x}$		
288 0.178* (ref 30), 0.173 (ref 40), 0.178* (ref 43), 0.170* (ref 48) 0.179* (ref 80)	0.176 ± 0.003(0.004)(R) 4.06(R)		
293 0.178* (ref 30), 0.171 (ref 40), 0.178* (ref 43), 0.172* (ref 48) 0.177* (ref 80), 0.179 (ref 95).	0.176 ± 0.003(0.003)(R) 4.06(R)		
298 0.174 (ref 26), 0.186 (ref 29), 0.179 (ref 30), 0.182 (ref 33), 0.172 (ref 35), 0.180 (ref 37), 0.175* (ref 40), 0.176 (ref 41), 0.180* (ref 43), 0.173* (ref 48) 0.178 (ref 51,60), 0.170 (ref 71 0.177 (ref 77), 0.176 (ref 78), 0.178 (ref 83), 0.174 (ref 88), 0.174 (ref 92), 0.179 (ref 93), 0.175 (ref 97)	0.177 ± 0.004(0.002)(R) 4.09(R)		
<pre>303 0.185 (ref 12), 0.184 (ref 16), 0.184* (ref 30), 0.177 (ref 40), 0.182* (ref 43), 0.176* (ref 48)</pre>	0.181 ± 0.004(0.005)(R) 4.18(R)		
<pre>308 0.190 (ref 16), 0.189* (ref 30), 0.182 (ref 40), 0.187* (ref 43), 0.181* (ref 48)</pre>	0.186 ± 0.004(0.006)(R) 4.30(R)		
<pre>313 0.195* (ref 30), 0.188 (ref 40), 0.194* (ref 43), 0.188* (ref 48) 0.203 (ref 95), 0.192^d (ref 102)</pre>	0.193 ± 0.005(0.006)(R) 4.46(R)		
318 0.197 (ref 40), 0.203* (ref 43), 0.196* (ref 48), 0.201 ^d (ref 102	0.199 ± 0.003(0.006)(<i>R</i>) 4.60(<i>R</i>)		
<pre>323 0.205* (ref 40), 0.212* (ref 43) 0.205* (ref 48), 0.209^d (ref 102</pre>	, 0.208 ± 0.003(0.006)(R) 4.81(R)		
328 0.216* (ref 40), 0.223* (ref 43) 0.216* (ref 48), 0.220 ^d (ref 102	, 0.219 ± 0.003(0.006)(R) 5.06(R))		
<pre>333 0.227* (ref 40), 0.238* (ref 43) 0.228* (ref 48), 0.231^d (ref 102</pre>	, 0.231 ± 0.004(0.007)(R) 5.34(R)		
<pre>338 0.242* (ref 40), 0.236* (ref 43) 0.241* (ref 48), 0.245^d (ref 102</pre>	, 0.241 ± 0.003(0.006)(R) 5.57(R)		
<pre>343 0.281 (ref 9), 0.261* (ref 40), 0.259^d (ref 102)</pre>	0.267 ± 0.010(0.03) (R) 6.17		
a Values marked with an asterisk (*) have been graphically interpolated by			
the Evaluator from the authors' original data. b Obtained by averaging; figures in parentheses are the 95% confidence			
intervals $(t - \text{test})$. c Refers to supercooled liquid (1). d Calculated from original authors' fitting equation over the range of their			
experimental investigation.	(continued next page)		

COMPONENTS :	EVALUATOR:
<pre>(1) Benzene; C₆H₆; [71-43-2] (2) Water; H₂O; [7732-18-5]</pre>	G.T. Hefter, School of Mathematical and Physical Sciences, Murdoch University, Perth, W.A., Australia.
	June 1986.

Solubilities calculated from equation [2] are generally 2% (relative) lower than those obtained from equation [1], *i.e.* within the limits of precision of the Recommended values in Table 2.

Gill *et al*. (ref 86) present an alternative equation derived from calorimetric studies of the enthalpy and heat capacity of solution of benzene in water between 288 and 303 K.

```
 \ln\{x_1(T)/x_1(T^{\dagger})\} = (\Delta C_p^{\infty}, \sin/R) \{ \ln(T/T^{\dagger}) + (T^{\dagger}/T) - 1 \} 
 (\Delta C_p^{\infty}, \sin = 225 \text{ J K}^{-1} \text{ mol}^{-1}, T^{\dagger} = 289.0 \text{ K}, \ln x_1(T^{\dagger}) = -7.843 ) 
 (3)
```

where $\Delta C_{p,sln}^{\infty}$ is the infinite dilution heat capacity for benzene in water and T^{\dagger} the temperature of the solubility minimum. Solubilities calculated from this equation are in good agreement (typically lower by 2% relative) with equation [1] over the range 288-303 K. However, they show a systematically increasing deviation at higher temperatures rising to -5.3% at 333 K, *i.e.* slightly outside the precision limits of the recommended values although well within the 95% confidence interval.

Consistent with these findings, application of the van't Hoff equation to the recommended solubilities (Table 2) gives $\Delta R_{sln}^{\infty} = 2.07 \text{ kJ mol}^{-1}$ and $\Delta C_{p,sln}^{\infty} = 232 \text{ J K}^{-1} \text{ mol}^{-1}$ for the dissolution of benzene in water in good agreement with the experimental values of Gill *et al*. No evidence was found for any dependence of $\Delta C_{p,sln}^{\infty}$ on temperature.

Finally, it is worthwhile noting that Green and Frank (ref 96) have concluded from Henry's law measurements and other thermodynamic data that benzene dissolves in water in monomeric form. These authors also show that solubility determinations based on the measurement of benzene in the vapor-phase by UV spectrophotometry (e.g. ref 73) may be seriously in error.

```
2. THE SOLUBILITY OF WATER (2) IN BENZENE (1) AT ATMOSPHERIC PRESSURE
Despite the many studies of the solubility of water in benzene the reported
values are in only fair agreement. This is probably a reflection of the
difficulties of quantitating the relatively low water solubility. Thus,
the absolute uncertainty in the averaged solubility of (2) in (1) is virt-
ually independent of the magnitude of the solubility thereby increasing the
relative uncertainty at lower solubilities.
```

COMPONENTS :	EVALUATOR:
<pre>(1) Benzene; C₆H₆; [71-43-2] (2) Water; H₂O; [7732-18-5]</pre>	G.T. Hefter, School of Mathematical and Physical Sciences, Murdoch University, Perth, W.A., Australia.
	June 1986.

The wealth of publications reporting solubility as a function of temperature (ref 2, 5, 6, 13, 19, 32, 56, 61, 81) enables a particularly critical appraisal of all reported solubilities. Hence data which might be acceptable in less well investigated systems have been rejected if they deviate significantly from averaged values. This procedure has a small effect on the mean value but often results in a substantial decrease in the uncertainty (σ_n).

On this basis the data of Clifford (ref 4), Rosenbaum and Walton (ref 11; data below 303 K retained), Tarassenkow and Poloshinzewa (ref 13; data above 283 K retained), Berkengeim (ref 18), Joris *et al.* (ref 23, 24), Wing and Johnston (ref 39), Englin *et al.* (ref 56; data below 303 K retained), Budantseva *et al.* (ref 85) and Bittrich (ref 95) have been rejected. Most of these data are lower than the mean values. The approximate values of Griswold *et al.* (ref 28) and McCants *et al.* (ref 36) have also been excluded as more precise data are available. All other data are included in Table 3.

It is interesting to note that the average solubilities reported in the more recent studies (ref 58, 59, 61, 64, 68, 76, 78, 81, 87, 94, 102) tend to be somewhat higher than the overall average and with considerably smaller σ_n (see Table 3). The reasons for these differences are unclear but could be due to improved analytical or purification techniques. If only the more recent data are considered then the averaged values could be "Recommended" between 283 and 298 K. However, comparison of the earlier data (with ref 58 arbitrarily chosen as the cut off) with the more recent values by standard statistical procedures (*t*-test or *F*-test) indicates that these two data sets differ significantly (P < 0.05) only at 298 K and possibly 288 K. Further careful measurements are required to resolve this situation.

TABLE 3:Recommended (R) and Tentative Values of theSolubility of Water (2) in Benzene (1)

Т/К	Solubility	values
	Reported values ^a	"Best" values $\pm \sigma_n (C.I.)^b$
	g(2)/100g sln	$g(2)/100g sln 10^{3}x_{2}$
273	0.029* (ref 2), 0.0400 (ref 56), 0.0302 (ref 78)	0.033 ± 0.005(0.012) 1.4
278	0.032* (ref 2), 0.034* (ref 6), 0.035 (ref 14), 0.042* (ref 56)	0.036 ± 0.004(0.006) 1.6

(Table 3 continued next page)

COMPON	NENTS:	EVALUATOR:		
(1) Benzene; C _c H _c ; [71-43-2] G.T. Hefter, School o		G.T. Hefter, School of Mathematical		
(2) V	Water; H_0 ; [7732-18-5]	and Physical Sciences, Murdoch		
		University, Perth, W.A., Australia.		
		June 1986.		
CRITIC	CAL EVALUATION: (continued)			
TABLE	<u>3</u> (continued)			
<i>m</i> /v	Solubili	tu uzluoz		
	Reported values ^a	"Best" values $\pm \sigma_{m} (C.I.)^{b}$		
}	g(2)/100g sln	$g(2)/100g sln 10^3 x_2$		
283	0.038* (ref 2), 0.042* (ref 6),	0.044 ± 0.003(0,002) 1.9		
{	0.051 (ref 10), 0.0451 (ref 11), 0.040 (ref 18), 0.0425* (ref 42)	$[0.0445 \pm 0.0005]^{D}$ [1.93]		
ļ	0.0446 (ref 56), 0.045 (ref 61),			
200	0.0440 (lef 61)			
288	0.057* (ref 10), 0.050* (ref 11)	$(0.050 \pm 0.004(0.003))^2$ [2.29]		
	0.043* (ref 13), 0.046* (ref 18) 0.0510* (ref 42), 0.051* (ref 56	,),		
	0.0530 (ref 61), 0.0533 (ref 76) 0.0522 (ref 81)	,		
293	0.055* (ref 2) 0.064* (ref 6)	0 058 + 0 006 (0 003) 2.5		
295	0.064* (ref 10), 0.0573 (ref 11)	, $[0.062 \pm 0.002]^{b}$ [2.69]		
	0.053 (ref 13), 0.059 (ref 15), 0.053 (ref 18), 0.053* (ref 32),			
	0.0603* (ref 42), 0.052 (ref 45) 0.0532 (ref 52), 0.0582 (ref 56)	·		
	0.0635* (ref 61), 0.0631 (ref 76	j,		
200	0.0010 (ref 01), 0.0000 (ref 03)	$0.070 \pm 0.004(0.002)$ 3 ()		
290	0.065* (ref 11), 0.065* (ref 13)	$(0.0722 \pm 0.0016]^{b}$ [3.13]		
	0.069* (ref 19), 0.067* (ref 32) 0.072 (ref 33), 0.0710* (ref 42)	, , , , , , , , , , , , , , , , , , , ,		
	0.066* (ref 54), 0.065 (ref 56), 0.0719 (ref 58), 0.0715 (ref 59),			
	0.0740* (ref 61), 0.0747 (ref 68), 0.0725* (ref 75) 0.061 (ref 78)			
1	0.0725 (ref 81), 0.0719 (ref 87)	,,,		
303	0.080* (ref 2), 0.090* (ref 6),	0.083 ± 0.003 (0.002) (R) 3.60 (R)		
	0.077* (ref 13), 0.082* (ref 19) 0.083* (ref 32), 0.0828* (ref 42	, $[0.084 \pm 0.002]^{D}$ [3.64]		
	0.0860* (ref 61), 0.0854 (ref 76 0.082 (ref 81), 0.082 (ref 94)),		
308	0.095* (rof 2) 0.105* (rof 6)	$0.098 \pm 0.004 (0.003) (8) 4.23 (8)$		
508	0.089* (ref 13), 0.097* (ref 19)	$(0.099 \pm 0.002)^{b}$ [4.30]		
	0.097* (ref 32), 0.0970* (ref 42 0.102 (ref 61), 0.097 (ref 64),),		
	0.102 (ref 76), 0.0979 (ref 81)			
313	0.114 (ref 2), $0.122*$ (ref 6), 0.102 (ref 13) $0.114*$ (ref 19)	0.113 ± 0.005(0.004)(R) 4.87(R)		
	0.114* (ref 32), 0.112* (ref 42)	,		
.	0.118* (ref 61), 0.110 (ref 81), 0.112 (ref 102)			
318	0.134* (ref 2), 0.140* (ref 6),	0.134 ± 0.004(0.004)(R) 5.78(R)		
	0.126 (ref 13), 0.135* (ref 19), 0.135* (ref 32), 0.131* (ref 42)			
	0.138 (ref 61), 0.133° (ref 102)			
1		(Table 3 continued next page)		

EVALUATOR: COMPONENTS : (1) Benzene; C_6H_6 ; [71-43-2] G.T. Hefter, School of Mathematical and Physical Sciences, Murdoch (2) Water; H₂O; [7732-18-5] University, Perth, W.A., Australia. June 1986. CRITICAL EVALUATION: (continued) TABLE 3 (continued) /K Solubility values "Best" values $\pm \sigma_n (C.I.)^b$ Reported values^a $10^{3}x_{2}$ q(2)/100g sln g(2)/100g sln 0.158* (ref 2), 0.156* (ref 6), 0.156 ± 0.003(0.003)(R) 323 6.74(R) 0.150* (ref 13), 0.160* (ref 19), 0.156* (ref 32), 0.152* (ref 42), 0.160* (ref 61), 0.152° (ref 102) 0.184 (ref 2), 0.173* (ref 6), 0.175 (ref 13), 0.223 (ref 19), 328 $0.179 \pm 0.006 (0.006) (R)$ 7.76(R)0.210* (ref 32), 0.201* (ref 42), 0.203^c (ref 102) 0.213* (ref 2), 0.198* (ref 6), $0.207 \pm 0.008(0.008)(R)$ 8.96(R) 333 0.203* (ref 13), 0.223 (ref 19), 0.210* (ref 32), 0.201* (ref 42), 0.203° (ref 102) 0.246* (ref 2), 0.230* (ref 6), 0.234* (ref 13), 0.256* (ref 19), 0.242* (ref 32), 0.226* (ref 42), 338 $0.238 \pm 0.010(0.010)(R) = 10.0(R)$ 0.233^c (ref 102) 0.283* (ref 2), 0.270* (ref 6), 0.279* (ref 9), 0.272* (ref 13), 0.290* (ref 19), 0.280* (ref 32) 343 $0.277 \pm 0.008 (0.008) (R) 11.9 (R)$ 0.266^c (ref 102) Values marked with an asterisk (*) have been graphically interpolated by the Evaluator from the authors' original data. а Figures in round parentheses () are 95% confidence intervals (t-test). Ъ Values in square parentheses [] are averages $\pm \sigma_n$ of the most recent determinations (ref 58, 59, 61, 64, 68, 76, 78, 81, 87, 94, 102). Calculated from the original authors' fitting equation over the range of C their experimental data. Figure 2 plots the mean solubility values as a function of temperature. These values can be fitted to an equation of the form: $s(g(2)/100g \ sln) = -5.6667 + 6.3536 \ x 10^{-2} \ T - 2.4024 \ x 10^{-4} \ T^{2} + 3.0752 \ x 10^{-7} \ T^{3}$ (Range: T = 273 - 343 K, std. error of estimate = 0.001 g(2)/100g sln, correlation coefficient = 0.9998). A similar expression was obtained by Hill (ref 6) by fitting his own data: $s(g(2)/100g \ sln) = 0.03294 + 6.449 \ x 10^{-4} \ t + 3.728 \ x 10^{-5} \ t^2$ (Range: $t = 5 - 70^{\circ}$ C). Staveley et al. (ref 32) present an alternative equation, in terms of mole fraction, based on their data: (continued next page)

74

COMPONENTS: (1) Benzene; C ₆ H ₆ ; [71-43-2] (2) Water; H ₂ O; [7732-18-5]	EVALUATOR: G.T. Hefter, School of Mathematical and Physical Sciences, Murdoch University, Perth, W.A., Australia. C.L. Young, Department of Physical Chemistry, University of Melbourne, Vic., Australia.
	June 1986.

case, and eventually approaching high pressures. The other critical locus starts at the critical point of the other component and ends on a three phase (liquid-liquid-vapor) line at a critical end point. Type III phase behaviour is illustrated in Figure 3. It is important to note that the three phase line on a pressure-temperature projection corresponds to three lines on the pressure-temperature-composition diagram. In the region above the three phase line on the pressure-temperature projection, the pressure is greater than the vapor phase and a maximum of two liquid phases is possible. There may be one or two liquid phases depending on the overall composition. To the left of the critical line starting at the least volatile component it is also possible to have one or two phases present depending on the overall composition.

FIGURE 3. Pressure-temperature projection of the equilibrium pressure-temperature-composition surface for the benzene-water system.

Solubility data for the benzene-water system at elevated pressures have been reported in the publications listed in Table 4.

```
76
```

```
COMPONENTS:

(1) Benzene; C<sub>6</sub>H<sub>6</sub>; [71-43-2]

(2) Water; H<sub>2</sub>O; [7732-18-5]

(2) Water; H<sub>2</sub>O; [7732-18-5]

(3) Water; H<sub>2</sub>O; [7732-18-5]

(4) Water; H<sub>2</sub>O; [7732-18-5]

(5) Water; H<sub>2</sub>O; [7732-18-5]

(6) Water; H<sub>2</sub>O; [7732-18-5]

(7) Water; H<sub>2</sub>O; [7) Wa
```

TABLE 4:	Solubility	Studies	of the	Benzene-Water
	System at I	Elevated	Pressu	res

Reference	p/MPa	T/K	Solubility
Umano and Hayano (ref 38)	_ ^a	459-554	(2) in (1)
Rebert and Kay (ref 44)	12-16	560 - 579	mutual
Kudchadker and McKetta (ref 46)	0.1-6	311-411	(l) in (2)
Guseva and Parnov (ref 49)	_ ^b	426-527	(1) in (2)
Thompson and Snyder (ref 55)	7,36	311-477	mutual
Connolly (ref 57)	10-80	533-573	(1) in (2)
Alwani and Schneider (ref 63)	15-302	523 - 636	mutual
O'Grady (ref 65)	25	561,566	mutual
Burd and Braun (ref 67)	0.2-3	359-473	(2) in (1)
Bradley et al. (ref 74)	6	298-328	(1) in (2)
Filyas (ref 75)	1	568	(2) in (1)
Sultanov and Skripka (ref 79,89)	5-79	498-533	(2) in (1)
Tsonopoulos and Wilson (ref 102)	0-3 ^a	377-485	mutual

a Along three phase line.

b Unspecified but presumably at pressures along the three phase line.

As Table 4 shows, almost none of the solubility data collected at elevated pressures have been obtained under comparable conditions thus making evaluation of their reliability difficult. Although some of the data are in reasonable agreement (e.g. the value of 22 g(1)/100g sln at 574.85 K and 14.6 MPa (ref 44) and 22.8 g(1)/100g sln at 573.15 K and 14.7 MPa (ref 57), most are not. Thus the interpolated solubilities of ref 46 and ref 55 at 311K and 5 MPa are 0.336 and 0.187 g(1)/100g sln respectively and other broadly comparable data (e.g. ref 55 and ref 57) are only in fair agreement. It should also be noted that the atmospheric pressure data of Kudchadker and McKetta (ref 46) are in poor agreement with the "Recommended" values in Tables 2 and 3.

Table 5 summarizes solubilities of benzene and water as a function of temperature and pressure. All values were obtained by double graphical interpolation (temperature and pressure) to produce data at convenient intervals. The interested user is referred to the original measurements in the Data Sheets for more comprehensive values. For the reasons given above all the values in Table 3 should be regarded as very tentative, subject to further investigations.

COMPONENTS:		EVA	LUATOR:		
(1) Benzene; C ₆ H ₈ ; [71-43-2]		G.T and	G.T. Hefter, School of Mathematical and Physical Sciences, Murdoch		
(2) Water: H	-0: [7732-18-5]	Uni	versity, Perth	, W.A., Austral	ia.
(2) nacci, n	20, [,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Che	C.L. Young, Department of Phys Chemistry, University of Melbo		ne,
		Ju	ne 1986.		
CRITICAL EVALUA	TION: (continued)				
<u>T</u> 2	ABLE 5: Tentati	ve Values of	the Mutual Sol	ubilities	
	<u>of Benzene</u>	and Water at	High Pressure	<u>s</u> a	
<i>Т/</i> К		p	/MPa		
	1	10	20	30	
(a) Benze	ene (1) in water	(2), g(l)/10	Og sln		
313	0.26 ^b	0.20	0.22	0.23	
373	0.40	0.41	0.50	0.56	
423	1.0	1.1	1.1	1.3	
473	3.0	3.3	3.5	3.2	
523	6.5 [°]	6.6 [°]	6.9 [°]	6.5°	
(b) Water	c (2) in benzene	(l), g(2)/l0	Og sln		
313	0.10	0.10	0.09	0.09	
373	0.60	0.60	0.55	0.55	
423	1.7	1.7	1.6	1.6	
473	4.5	4.4	4.4	4.2	
523	-	13.2 ^{<i>d</i>}	11 . 5 ^{<i>a</i>}	10.2 ^d	
a Data from b Averaged v c Data from	ref 55 unless o value of ref 46, ref 57.	therwise india	cated.		
d Data from	ref 79, 89.				
					_
Figure 4 plot	ts the mutual so	lubilities of	benzene and w	ater at elevated	1
temperatures	and pressures.	The chief ef:	tect is to make	e the solution of	comp-
vich This	ie (projected) u	olubility of I	solution temp	erature more per	nzene• lor
dopondonao or	s because the so	the colubility	s of water in l	er snows a small	
ures near the		che solubilit	Y OI WALEI IN I	Senzene at tempe	erat-
ures neur the					

FIGURE 5. Solubility of benzene in water at three phase equilibrium pressures: ref 47 (o, data obtained graphically from ref 102); ref 49 (\odot); ref 102 (x).

The solubility of water in benzene along the three phase equilibrium locus has also been reported by three groups (ref 38, 47, 102). The data are summarized graphically in Figure 6 and are seen to be in reasonable agreement. Again it should be noted that the data from ref 47 are approximate only, having been obtained graphically from ref 102. The interested user is referred to the relevant Data Sheets (ref 38, 102) for experimental values.

COMPONENTS :	EVALUATOR:		
(1) Benzene; C ₆ H ₆ ; [71-43-2]	G.T. Hefter, School of Mathematical		
(2) Water; H ₂ O; [7732-18-5]	and Physical Sciences, Murdoch		
_	University, Perth, W.A., Australia.		
	June 1986.		
CRITICAL EVALUATION: (continued)			
REFERENCES			
1. Herz, W. Chem. Ber. <u>1898</u> , 81,	2669-72.		
2. Groschuff, E. von Z. Elektroch	em. <u>1911</u> , 17, 348-54.		
3. Horiba, S., Mem. Coll. Eng. Kyc in ref 80.	to Imp. Univ. <u>1914</u> , 1, 49; quoted		
4. Clifford, C.W. J. Ind. Eng. Ch	em. <u>1921</u> , 13, 628-31.		
5. Hill, A.E. J. Am. Chem. Soc.	<u>1922</u> , 44, 1163 - 93.		
6. Hill, A.E. J. Am. Chem. Soc.	<u>1923</u> , <i>45</i> , 1143-55.		
7. Jaeger, A. Brennst. Chem. 192	<u>3</u> , 4, 259.		
8. Milligan, L.H. J. Phys. Chem.	<u>1924</u> , 28, 494-7.		
9. Barbaudy, J. J. Chim. Phys. 1	926, 23, 289-91.		
10. Uspenskii, S.P. Neft. Khoz. <u>1</u>	<u>929</u> , <i>17</i> , 713-7.		
11. Rosenbaum, S.L.; Walton, J.H.	Rosenbaum, S.L.; Walton, J.H. J. Am. Chem. Soc. <u>1930</u> , 52, 3568-73.		
12. Gross, P.M.; Saylor, J.H. J. A	Gross, P.M.; Saylor, J.H. J. Am. Chem. Soc. <u>1931</u> , 53, 1744-51.		
13. Tarassenkow, D.N.; Poloshinzewa	Tarassenkow, D.N.; Poloshinzewa, E.N. Chem. Ber. <u>1932</u> , 65, 184-6.		
14. Robertson, J.B. South African	Robertson, J.B. South African J. Sci. <u>1933</u> , 30, 187-95.		
15. Niini, A. Suomen Kemistilehti	Niini, A. <i>Suomen Kemistilehti A</i> <u>1938</u> , 11, 19 - 20.		
<pre>16. Saylor, J.H.; Stuckey, J.M.; Gr 60, 373-6.</pre>	Saylor, J.H.; Stuckey, J.M.; Gross, P.M. <i>J. Am. Chem. Soc.</i> <u>1938</u> , 60, 373-6.		
17. Vermillion, H.E. Ph.D. Thesis, (U.S.A.); quoted in ref 80.	Vermillion, H.E. Ph.D. Thesis, <u>1939</u> , Duke University, Durham, N.C. (U.S.A.); quoted in ref 80.		
18. Berkengeim, T.I. Zavod. Lab.	<u>1941</u> , 10, 592-4.		
19. Staveley, L.A.K.; Jeffes, J.H.E <u>1943</u> , 39, 5-13.	.; Moy, J.A.E. Trans. Faraday Soc.		
20. Durand, R. C.R. Hebd. Séances	Acad. Sci. <u>1946</u> , 223, 898 - 900.		
21. Stearns, R.S.; Oppenheimer, H.; <i>Phys.</i> <u>1947</u> , <i>15</i> , 496-507.	Simon, E.; Harkins, L.D. J. Chem.		
22. Booth, H.S.; Everson, H.E. Ind	. Eng. Chem. <u>1948</u> , 40, 1491-3.		
23. Joris, G.G.; Taylor, H.S. J. C	hem. Phys. <u>1948</u> , 16, 45-51.		
24. Black, C.; Joris, G.G.; Taylor,	H.S. J. Chem. Phys. <u>1948</u> , 16,537-43.		
25. Durand, R. C.R. Hebd. Séances	Acad. Sci. <u>1948</u> , 226, 409-410.		
26. Andrews, L.J.; Keefer, R.M. J.	Am. Chem. Soc. <u>1949</u> , 71, 3644-77.		
27. Booth, H.S.; Everson, H.E. Ind	Booth, H.S.; Everson, H.E. Ind. Eng. Chem. <u>1949</u> , 41, 2627-8.		
28. Griswold, J.; Chew, J-N.; Kleck 1246-51.	Griswold, J.; Chew, J-N.; Klecka, M.E. Ind. Eng. Chem. <u>1950</u> , 42, 1246-51.		
l	(continued next page)		

```
COMPONENTS:
                                       EVALUATOR:
(1) Benzene; C<sub>6</sub>H<sub>6</sub>; [71-43-2]
                                       G.T. Hefter, School of Mathematical
                                       and Physical Sciences, Murdoch
(2) Water; H<sub>2</sub>O; [7732-18-5]
                                       University, Perth, W.A., Australia.
                                       June 1986.
CRITICAL EVALUATION: (continued)
REFERENCES (continued)
29.
      Klevens, H.B. J. Phys. Chem. 1950, 54, 283-98.
30.
      Bohon, R.L.; CLaussen, W.F. J. Am. Chem. Soc. 1951, 73, 1571-8.
31.
      McBain, J.W.; Lissant, K.J. J. Phys. Colloid Chem. 1951, 55, 655-62.
32.
      Staveley, L.A.K.; Johns, R.G.S.; Moore, B.C. J. Chem. Soc. 1951,
      2516-23.
33.
      Donahue, D.J.; Bartell, F.E. J. Phys. Chem.
                                                     1952, 56, 480-4.
34.
      McDevit, W.F.; Long, F.A. J. Am. Chem. Soc.
                                                     1952, 74, 1773-7.
35.
      Morrison, T.J.; Billett, F. J. Chem. Soc. 1952,
                                                          3819-22.
36.
      McCants, J.F.; Jones, J.H.; Hopson, W.H. Ind. Eng. Chem. 1953, 45,
      454-6.
37.
      Hayashi, M.; Sasaki, T. Bull. Chem. Soc. Japan 1956, 29, 857-9.
38.
      Umano, S.; Hayano, I. Kogyo Kagaku Zasshi 1956, 60, 1436-7.
39.
      Wing, J.; Johnston, W.H. J. Am. Chem. Soc. 1957, 79, 864-5.
40.
      Arnold, D.S.; Plank, C.A.; Erikson, E.E.; Pike, F.P. Chem. & Eng.
      Data Ser. 1958, 3, 253-6.
41.
      Brady, A.P.; Huff, H. J. Phys. Chem. 1958, 62, 644-9.
42.
      Pavia, R.A. M.S. Thesis, 1958, North Carolina State College (U.S.A.),
      quoted in ref 102.
43.
      Alexander, D.M. J. Phys. Chem.
                                       1959, 63, 1021-2.
44.
      Rebert, C.J.; Kay, W.B. A.I.Ch.E.J.
                                            1959, 5, 285-9.
45.
      Caddock, B.D.; Davies, P.L. J. Inst. Petrol. 1960, 46, 391-6.
      Kudchadker, A.P.; McKetta, J.J. Petrol Refiner 1962, 41, 191-2.
46.
47.
      Thompson, W.H. M.S. Thesis, 1962, Pennsylvannia State University
      (U.S.A.); quoted in ref 102.
48.
      Franks, F.; Gent, M.; Johnson, H.H. J. Chem. Soc. <u>1963</u>, 2716-23.
      Guseva, A.N.; Parnov, E.I. Vestn. Mosk. Khim. 1963, 18, 76-9.
49.
50.
      Jones, J.R.; Monk, C.B. J. Chem. Soc. 1963, 2633-5.
51.
      McAuliffe, C. Nature 1963, 200, 1092-3.
52.
      Schatzberg, P.J. J. Phys. Chem. 1963,
                                               67, 776-9.
53.
      Udovenko, V.V.; Aleksandrova, L.P. Zh. Fiz. Khim.
                                                           1963, 37, 52-6.
54.
      Hoegfeldt, E.; Bolander, B. Ark. Kemi
                                               1964, 21, 161-86.
55.
      Thompson, W.H.; Snyder, J.R. J. Chem. Eng. Data 1964, 9, 516-20.
56.
      Englin, B.A.; Plate, A.F.; Tugolukov, V.M.; Pyranishnikova, M.A.
      Khim. Tekhnol. Topl. Masel
                                  1965, 10, 42-6.
```

(continued next page)

COMPON	ENTS:	EVALUATOR:	
(1) B	Benzene; C ₆ H ₆ ; [71-43-2] G.T. Hefter, School of Mathemat		
(2) W	ater; H ₂ O; [7732-18-5]	and Physical Sciences, Murdoch	
	-	University, Perth, W.A., Australia.	
		June 1986.	
CRITIC	AL EVALUATION: (continued)		
REFER	ENCES (continued)		
57.	Connolly, J.F. J. Chem. Eng. Da	ta <u>1966</u> , <i>11</i> , 13-6.	
58.	Johnson, J.R.; Christian, S.D.; <u>1966</u> , 77-8.	Affsprung, H.E. J. Chem. Soc. A.	
59.	Masterton, W.L.; Gendrano, M.C.	J. Phys. Chem. <u>1966</u> , 70, 2895 - 8.	
60.	McAuliffe, C. J. Phys. Chem. 1	<u>.966</u> , 70, 1267-75.	
61.	Moule, D.C.; Thurston, W.M. Car	n. J. Chem. <u>1966</u> , 44, 1361 - 7.	
62.	Taha, A.A.; Grigsby, R.D.; Johns H.E. J. Chem. Educ. <u>1966</u> , 43,	on, J.R.; Christian, S.D.; Affsprung, 432-5.	
63.	Alwani, Z.; Schneider, G. Ber. Bunsenges. Phys. Chem. <u>1967</u> , 71,633-8.		
64.	Gregory, M.D.; Christian, S.D.; 71, 2283-9.	Affsprung, H.E. J. Phys. Chem. <u>1967</u> ,	
65.	O'Grady, T.M. J. Chem. Eng. Dat	a <u>1967</u> , 12, 9 - 12.	
66.	Worley, J.D. Can. J. Chem. 196	7, 45, 2465-7.	
67.	Burd, S.D. Jr.; Braun, W.G. Pro 1968, 48, 464-76.	c. Div. Refining Am. Petrol. Inst.	
68.	Roddy, J.W.; Coleman, C.F. Tala	unta <u>1968</u> , 15, 1281-6.	
69.	Bröllos, K.; Peter, K.; Schneide 1970, 74, 682-6.	er, G.M. Ber. Bunsenges. Phys. Chem.	
70.	Roof, J.G. J. Chem. Eng. Data	<u>1970</u> , <i>15</i> , 301-3.	
71.	Corby, T.C.; Elworthy, P.H. J. 39, S-48 S.	Pharm. Pharmacol. <u>1971</u> , 23, suppl.,	
72.	Pierotti, R.A.; Liabastre, A.A. <u>1972</u> , 21263, 113.	U.S. Nat. Tech. Inform. Ser., PB Rep.	
73.	Ben-Naim, A.; Wilf, J.; Yaacobi,	M. J. Phys. Chem. <u>1973</u> , 77, 95-102.	
74.	Bradley, R.S.; Dew, M.J.; Munro, 169-76.	D.C. High Temp. High Press. 1973 5,	
75.	Filyas, Yu.I. Sb. Nauch. Tr. Vs 1973, 45, 68-70.	es. Neftegazov. Nauch-Issled. Inst.	
76.	Karlsson, R. J. Chem. Eng. Data	<u>1973</u> , <i>18</i> , 290-2.	
77.	Leinonen, P.J.; Mackay, C. Can.	J. Chem. Eng. <u>1973</u> , 51, 230-3.	
78.	Polak, J.; Lu, B.C-Y. Can. J. C	hem. <u>1973</u> , 51, 4018-23.	
79.	Sultanov, R.G.; Skripka, V.G. 2 Deposited doc. 1970; VINITI 5347	h. Fiz. Khim. <u>1973</u> , 47, 1035; 1-73.	
80.	Brown, R.L.; Wasik, S.P. J. Res 453-60.	. Natl. Bur. Stds. A <u>1974</u> , 78,	

COMPON	IENTS:	EVALUATOR:
(l) E	Benzene; C ₆ H ₆ ; [71-43-2]	G.T. Hefter, School of Mathematical
(2) W	Nater; H ₂ O; [7732-18-5]	and Physical Sciences, Murdoch
		University, Pertn, w.A., Australia.
		June 1986.
CRITIC	CAL EVALUATION: (continued)	
REFEF	RENCES (continued)	
81.	Goldman, S. Can. J. Chem. <u>1974</u>	<i>52,</i> 1668-80.
82.	Krasnoshchekova, R.Ya.; Gubergri 170-3.	ts, M.Ya. Vodnye. Resursy. <u>1975</u> , 2,
83.	Mackay, D.; Shiu, W.Y. Can. J.	Chem. <u>1975</u> , 53, 239-41.
84.	Sada, E.; Kito, S.; Ito, Y. J.	Chem. Eng. Data <u>1975</u> , 20, 373-5.
85.	Budantseva, L.S.; Lesteva, T.M.; 50, 1344; Deposited doc. 1976, V	Nemstov, M.S. Zh. Fiz. Khim. <u>1976</u> , /INITI 438-76.
86.	Gill, S.J.; Nichols, N.F.; Wadso 445-52; and references cited the	o, I. J. Chem. Thermodyn. <u>1976</u> , 8, Brein.
87.	Kirchnerova, J.; Cave, G.C.B. C	Can. J. Chem. <u>1976</u> , 54, 3909-16.
88.	Price, L.C. Am. Assoc. Petrol.	Geol. Bull. <u>1976</u> , 60, 213-44.
89.	Skripka, V.G. <i>Tr. Vses. Neftega</i> 139-51.	zzov. Nauch-Issled. Inst. <u>1976</u> , 61,
90.	Korenman, I.M.; Aref'eva, R.P.	Patent USSR, 553524, <u>1977</u> .04.05.
91.	Korenman, I.M.; Aref'eva, R.P.	Zh. Prikl. Khim. <u>1978</u> , 51, 957-8.
92.	Krzyzanowska, T.; Szeliga, J. N	lafta (Katowice) <u>1978</u> , 34, 413-7.
93.	May, W.E.; Wasik, S.P.; Freeman,	D.H. Anal. Chem. <u>1978</u> , 50,997-1000.
94.	Singh, R.P.; Sah, R. Indian J.	Chem. <u>1978</u> , 16A, 692-4.
95.	Bittrich, H.J.; Gedan, H.; Feix, 260, 1009-13.	G. Z. Phys. Chem. Leipzig <u>1979</u> ,
96.	Green, W.J.; Frank, H.S. J. Sol	ution Chem. <u>1979</u> , 8, 187-96.
97.	Banerjee, S.; Yalkowsky, S.H.; W <u>1980</u> , <i>14</i> , 1227-9.	Valvani, S. Environ. Sci. Technol.
98.	Schwarz, F.P. Anal. Chem. 1980	, 52, 10-15.
99.	Backx, P.; Goldman, S. J. Phys.	Chem. <u>1981</u> , 85, 2975-9.
100.	Sanemasa, I.; Araki, M.; Deguchi 225-8.	, T.; Nagai, J. <i>Chem. Lett</i> . <u>1981</u> ,
101.	Sanemasa, I.; Araki, M.; Deguchi 1982, 55, 1054-62.	, T.; Nagai, H. Bull. Chem. Soc. Jpn.
102.	Tsonopoulos, C.; Wilson, G.M. A	.I.Ch.E.J. <u>1983</u> , 29, 990-9.
103.	Sanemasa, I.; Arakawa, S.; Araki Jpn. <u>1984</u> , 57, 1539-44.	, M.; Deguchi, T. Bull. Chem. Soc.
104.	Alwani, Z.; Schneider, G.M. Ber 294-301.	. Bunsenges. Phys. Chem. <u>1969</u> , 73,

84

(continued next page)

,

. 1

t

COMPONENTS:		EVALUATOR:
(1) Be (2) Wa	enzene; C ₆ H ₆ ; [71-43-2] ater; H ₂ O; [7732-18-5]	G.T. Hefter, School of Mathematical and Physical Sciences, Murdoch University, Perth, W.A., Australia.
	(continued)	June 1986.
CRITICAL EVALUATION: (CONTINUED) REFERENCES (continued)		
References added in Proof		
105.	. Scott, R.L.; van Konynenburg, P.H. Phil. Trans. Roy. Soc. London <u>1980</u> , A298, 495.	
106.	Hicks, C.P.; Young, C.L. Chem. Rev. <u>1975</u> , 75, 119.	
107.	. Herz, W. Boll. Chim. Pharm. <u>1915</u> , 54, 37.	
108.	Scheffer, F.E.C. Proc. Roy. Acad. Amsterdam <u>1913</u> , 16, 404-18.	
109.	. Gorbachev, S.V.; Kondrat'ev, V.P.; Belousov, A.I.; Kopylov, V.V. Tr. Mosk. Khim Tekhnol. Inst. <u>1972</u> , 71, 62-3.	
110.	Gorbachev, S.V.; Kondrat'ev, V.P Tekhnol. Inst. <u>1972</u> , 71, 64-5.	P.; Kopylov, V.V. Tr. Mosk. Khim
ACKNOWLEDGEMENTS		

The Evaluator thanks Dr Brian Clare for the non-linear regression analyses and graphics. Section 3 was written jointly with C. L. Young, Department of Physical Chemistry, University of Melbourne, Australia.

36	37_52
COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Benzene; C ₆ H ₆ ; [71-43-2]	Herz, W.
(2) Water; H ₂ O; [7732-18-5]	Ber. Dtsch. Chem. Ges. <u>1898</u> , 31, 2669-72.
VARIABLES:	PREPARED BY:
One temperature: 22°C	A. Maczynski, Z. Maczynska and A. Szafranski
EXPERIMENTAL VALUES:	
The solubility of benzene in water a 0.082 mL(1)/100 mL(2).	t 22°C was reported to be
AUXILIARY INFORMATION	
TEINULATIANAIUS/PROCEDURE:	(1) not specified
The composition of the saturated solution was evaluated by extrapola- tion of calibration density measure- ments (carried out on a series of synthetic solutions) to the measured density of the saturated solution. The maximum difference between the actual and the synthetic densities was a few units in the third decimal	(1) not specified. (2) d^{22} 0.9980 g/cm ³ .
place.	
	ESTIMATED ERROR:
	not specified.

REFERENCES:

١ i

37	53	

COMPONENTS:		ORIGINAL MEASUREMENTS:
(1) Benzene; C ₆	^H ₆ ; [71-43-2]	Groschuff, E. von
(2) Water; H ₂ O;	[7732-18-5]	Z. Elektrochem. <u>1911</u> , 17, 348-54.
_		
VARIABLES:		PREPARED BY:
Temperature: 3	3-77°C	A. Maczynski
LEXPERIMENTAL VALUES	:	
	•	
		ef weter in honzono
The solubility of		or water in benzene
1	<i>t/</i> °C g(2)/100 g	sln x ₂ (compiler)
	3 0.030	0.0013
	23 0.061 40 0.114	0.0026 0.0049
	55 0.184	0.0079
	00 0.255 77 0.337	0.0145
1		
1		
ļ		
1		
\		
	AUXILIA	RY INFORMATION
METHOD /APPARATUS / PROCEDURE :		SOURCE AND PURITY OF MATERIALS:
In 1 dm ³ long-necked flask (1) was		(1) Kahlbaum; stored over Na;
praced and (2)	was added dropwise.	alloy;
		m.p. 5.4°C,
		(2) not specified.
		ESTIMATED ERROR:
		temp. ± 1-2 K
		REFERENCES:

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Benzene; C ₆ H ₆ ; [71-43-2]	Clifford, C.W.
(2) Water; H ₂ O; [7732-18-5]	Ind. Eng. Chem. <u>1921</u> , 13, 631-2.
VARIABLES:	PREPARED BY:
Temperature: 21-55°C	A. Maczynski and Z. Maczynska

EXPERIMENTAL VALUES:

Solubility of water in benzene

t/°C	g(2)/100 g sln	x ₂ (compiler)
21.0	0.046	0.0020
26.6	0.055	0.0024
42.0	0.088	0.0038
55.0	0.113	0.0049

AUXILIARY INFORMATION	
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
A current of air predried by cal- cium chloride was passed through a sample. The moisture abstracted from the sample by this air was ab- sorbed in calcium chloride tubes. The amount of water was calculated from the weights of these tubes. This method is described in ref 1.	 source not specified; 100 percent benzene; dehy- drated with metallic sodium; purity not specified. not specified.
	ESTIMATED ERROR:
	Not specified.
	REFERENCES:
	<pre>1. Clifford, C.W.; Ind. Eng. Chem. <u>1921</u>, 13, 628.</pre>

·
COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Benzene; C ₆ H ₆ ; [71-43-2]	Hill, A.E.
(2) Water; H ₂ O; [7732-18-5]	J. Am. Chem. Soc. <u>1922</u> , 44, 1163-93.
VARIABLES:	PREPARED BY:
One temperature: 0°C	A. Maczynski
EXPERIMENTAL VALUES:	
The solubility of benzene in water at 0°C was reported to be 0.153 g(1)/100 g sln. The corresponding mole fraction, x_1 , calculated by compiler is 3.53 x 10 ⁻⁴ .	
AUXILIARY INFORMATION	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Three determinations of freezing point of (2) saturated with (1) gave 0.037°C as the average depression.	(1) not specified.(2) not specified.
	ESTIMATED ERROR:
	not specified.
	REFERENCES:

89

- -

90		
COMPONENTS:		ORIGINAL MEASUREMENTS:
(1) Benzene; C ₆ H ₆ ; [7	1-43-2]	Hill, A.E.
(2) Water; H ₂ O; [7732	-18-5]	J. Am. Chem. Soc. <u>1923</u> , 45, 1143-55.
VARIABLES:		PREPARED BY:
Temperature: 5.4-69.5°C		A. Maczynski and A. Maczynska
EXPERIMENTAL VALUES:		
_		
S	olubility of wat	ter in benzene
<i>t</i> / ° C	g(2)/100 g	g sln $10^{3}x_{2}$ (compiler)
5.4 a)	0.034	1.5
15.0	0.054	2.3
25.0	0.073	3.2
37.5	0.115	5.0
50.0	0.156	6.7
57.5	0.185	8.0
65.0	0.230	9.9
69.5 b)	0.265	11.4
S = 0.	03294 + 0.00064	49t + 0.00003728t ²
(S = g	(2)/100 g sln)	
a) quadruple poi	nt	stem
2, 2011ing point	er a require als	
	AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:		SOURCE AND PURITY OF MATERIALS:
A mixture of (1) and nically stirred at va	(2) was mecha- rious tempera-	(1) source not specified; puris by recrystallization; dried over calcium chloride and

А n t١ obtained, was transferred to small cylinders, treated with weighed amounts of silver perchlorate and the solubility of the salt in the mixed solvent determined at 25°C. After a correction for the amount of (1) present in the solid phase, the original (2) content of the saturated solution could be determined from the reference curve.

- d; purified on; dried ide and alcium finally over bright sodium wire; m.p. 54°C or higher.
- (2) not specified.

ESTIMATED ERROR:

not specified.

REFERENCES:

37	57

COMPONENTS:	ORIGINAL MEASUREMENTS :
(1) Benzene; C ₆ H ₆ ; [71-43-2]	Jaeger, A.
(2) Water; H ₂ O; [7732-18-5]	Brennst. Chem. <u>1923</u> , 4, 259.
VARIABLES:	PREPARED BY:
Temperature: 100-300°C	A. Maczynski
EXPERIMENTAL VALUES:	
Solubility	of benzene in water
t/ ^b C	mL(1)/100 mL(2)
<u> </u>	
100	0.2
150	0.6
200	2.1
250	10.6
300	14.6
l	
KUA	KILIARY INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The solubility of (1) in (2) was	as (1) not specified.
determined in sealed glass tube	(2) not specified.
	ESTIMATED ERROR:
	not specified.
	REFERENCES :
1	

	=
COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Benzene; C ₆ H ₆ ; [71-43-2]	Milligan, L.H.
(2) Water; H ₂ O; [7732-18-5]	J. Phys. Chem. <u>1924</u> , 28, 494-7.
-	
VARIABLES :	PREPARED BY:
One temperature: 25°C	G.T. Hefter
EXPERIMENTAL VALUES:	
The solubility of benzene in water at	25°C was reported to be 0.07 mL
(1)/100 mL (2).	
)
	Ì
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
20 cm ³ of benzene/air yapor were	(1) Not specified.
taining 120 cm ³ of air-saturated	(2) Distilled.
water bath. The apparatus was re-	1
moved from the bath and shaken for two minutes to bring about equili-	
brium. Benzene solubility in water	
vapor by combustion in a Haldane	
apparatus before and after equili- bration.	
	ESTIMATED ERROR:
	Not specified.
	REFERENCES:
	1

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Benzene; C ₆ H ₆ ; [71-43-2]	Barbaudy, J.
(2) Water; H ₂ O; [7732-18-5]	J. Chim. Phys. <u>1926</u> , 23, 289-91.
-	
VARIABLES:	PREPARED BY:
One temperature: 69.25°C	A. Maczynski
EXPERIMENTAL VALUES:	
The solubility of benzene in water at	69.25°C was reported to be
0.281 g(1)/100 g sln.	
The corresponding mole fraction, x_1 ,	calculated by compiler
is 6.49×10^{-4} .	
The solubility of water in benzene at	: 69.25°C was reported to be
0.279 g(2)/100 g sln.	
The corresponding mole fraction, x_2 ,	calculated by compiler
is 0.0120.	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Sealed glass tubes were heated in	(1) Poulenc, cryoscopic grade;
a paraffinic oil bath for a long	thiophene free; dried over
then cooled to turbidity.	not specified.
	(2) not specified.
	ESTIMATED ERROR:
	not specified.
	REFERENCES:

a to conside

			Ð	'_00
COMPONENTS:	OR	RIGINAL MEASUREME	NTS:	
(1) Benzene; C ₆ H ₆ ; [71-43-2]		Jspenskii, S.P	•	
(2) Water; H ₂ O; [7732-18-5]		Veft. Khoz. <u>1</u>	<u>929</u> , <i>11-12</i> , 713-7.	
-				
VARIABLES:	PF	REPARED BY:		
Temperature: 10 and 22°C	A	A. Maczynski a	nd Z. Maczynska	
-				
EXPERIMENTAL VALUES:				
Solubility	of benze	ene in water		
t/°C g(1	.)/100 g	sln	$10^4 x_1$ (compiler)	
10 0.1	75 ± 0.0	001	4.04	
22 0.1	.865 ± 0.	.0015	4.306	
Solubility	of water	r in benzene		
t/°C g(2	2)/100 σ	sln	$10^{3}x$. (compiler)	
<u> </u>				
10 0.0	51 ± 0.0	0011	2.2	
22 0.0	662 ± 0.	.0008	2.86	
AU	XILIARY IN	NFORMATION		
METHOD/APPARATUS/PROCEDURE:	s	OURCE AND PURITY	OF MATERIALS:	
The columbility of (1) in (2) we		(1) source not	sposified.	
determined by titration. The		b.p. 79.8°	C at 740 mm Hg,	
solubility of (2) in (1) was de mined by Clifford's (ref 1), me	eter-	d_{4}^{22} 0.8768	, d ¹⁰ 0.8887.	
Dried air was passed through th vessel with a saturated solution	ie on of (4 (2) not specif	ied.	
(2) in (1) and U-tubes with CaC	¹ 2	(2) NOU SPECII	1001	
weighed.	_			
	E	STIMATED ERROR:		
	5	soly. see expe	rimental values	
		above.		
		REFERENCES		
	1	 Clifford, C 1921, 13, 6 	.W. Ind. Eng. Chem 28.	•

37 6	1
------	---

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Benzene; C ₆ H ₆ ; [71-43-2]	Rosenbaum, C.K.; Walton, J.H.
(2) Water; H ₂ O; [7732-18-5]	J. Am. Chem. Soc. <u>1930</u> , 52, 3568-73.
VARIABLES:	PREPARED BY:
Temperature: 10-60°C	A. Maczynski and Z. Maczynska
EXPERIMENTAL VALUES:	
Solubility of wat	er in benzene
t/°C g(2)/100 g (1	$\frac{10^3 x_2}{2}$ (compiler)
10 0.0451	1.95
20 0.0573	2.48
30 0.0746	3 22
40 0.0050	J.22 A 10
40 0.0953	4.12
50 0.1271	5.48
60 0.1637	7.05
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The organic phase was first saturated by shaking with water in a flask at a high temperature and then allowing the flask to cool in a thermostat to the desired tem- perature, with the resulting separation of excess water. After one day or more the solution was allowed to react with added calcium hydride in dry solvent. Hydrogen was evolved and the gas volume was	 (1) source not specified; reagent grade; free from thiophene; b.p.79.6°C m.p. 5.4°C; used as received. (2) not specified.
read.	ESTIMATED ERROR:
	not specified.
	REFERENCES :

-

COMPONENTS:

(1) Benzene; C₆H₆; [71-43-2] Gross, P.M.; Saylor, J.H. (2) Water; H₂O; [7732-18-5] J. Am. Chem. Soc. <u>1931</u>, 53, 1744-51. VARIABLES: PREPARED BY: One temperature: '30°C A. Maczynski and Z. Maczynska **EXPERIMENTAL VALUES:** The solubility of benzene in water at 30°C was reported to be 1.85 g(1)/kg (2) and 0.0237 mol (1)/kg (2). The corresponding mass percent and mole fraction, x_1 , calculated by the compilers are 0.185 g(l)/100 g solution and 4.27×10^{-4} .

ORIGINAL MEASUREMENTS:

AUXILIARY INFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
Saturated solutions were prepared by shaking in a thermostat and were analyzed by means of an inter- ferometer. The instrument used was a combination liquid and gas interferometer made by Zeiss.	 (1) Eastman Kodak Co., best grade; distilled; m.p. 5.40°C, (2) distilled. 	
	ESTIMATED ERROR:	
	soly. 1.0% (from values of duplicate determinations)	
	REFERENCES :	

37	63

COMPONENTS: (1) Benzene; C ₆ H ₆ ; [71-43-2] (2) Water; H ₂ O; [7732-18-5]	ORIGINAL MEASUREMENTS: Tarassenkow, D.N.; Poloshinzewa, E.N. Ber. Dtsch. Chem. Ges. <u>1932</u> , 65B, 184-6.
VARIABLES:	PREPARED BY:
Temperature: 5-73°C	A. Maczynski and Z. Maczynska

EXPERIMENTAL VALUES:

Solubility of water in benzene

t/°C	g(2)/100 g sln	$\frac{10^3 x_2}{2}$ (compiler)
5	0.024	1.0
9.5	0.034	1.5
14.5	0.041	1.8
22.5	0.060	2.6
32	0.082	3.5
40	0.102	4.4
56	0.181	7.8
67.5	0.251	10.8
73	0.300	12.9

AUXILIARY INFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
Alexejew's method was used (ref 1). No additional details were reported in the paper.	(1) Kahlbaum, CP; dried over calcium chloride and distilled from sodium; purity not specified.	
	(2) not specified.	
	ESTIMATED ERROR:	
	soly. ± 0.01% (not specified).	
	REFERENCES :	
	1. Alexejew, W. Wied. Ann. Physik <u>1886</u> , 28, 35.	

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Benzene, $C H \cdot [7] - 43 - 2]$	Pohertson. J. B.
(1) Benzene, $C_{6}^{m}6$, $[, 1, 3, 5, 2]$	
(2) water; $H_20; [7732-10-5]$	187-95.
VARIABLES:	PREPARED BY:
One temperature: 5.4°C	G.T. Hefter
EXPERIMENTAL VALUES:	_
The solubility of water in benzene at	5.4°C was reported to be 0.035 per
cent, corresponding to 0.035 g(2)/100	g sln.
The corresponding mole fraction (x_{-}) .	calculated by the compiler, is
1.5×10^{-3} .	
]	
1	
AUXILIARY	INFORMATION
METHOD /APPARATIIS / PROCEDURE :	SOURCE AND DURITY OF MATERIALS.
Moist henzene-saturated air was al-	(1) Kahlbaum, "pro-analysi", used
lowed to bubble through moist benzene	without further purification,
stant freezing point was obtained. A	(2) Distilled, purity not specified.
few drops of distilled water were	
"for some time" and the freezing	
tent of the saturated sln was calcu-	
lated from the freezing point depression (relative to pure benzene)	
by assuming the water to be mono-	
molecular in solution.	ESTIMATED ERROR:
	Not specified.
	REFERENCES :

-		
COMPONENTS:	ORIGINAL MEASUREMENTS:	
(1) Benzene; C ₆ H ₆ ; [71-43-2]	Niini, A.	
(2) Water; H ₂ O; [7732-18-5]	Suomen Kemistilehti A <u>1938</u> , 11, 19-20.	
VARIABLES:	PREPARED BY:	
One temperature: 20°C	A. Maczynski	
_	-	
EXPERIMENTAL VALUES:		
The solubility of benzene in water at	t 20°C was reported to be	
0.085 g(l)/100 g sln.		
The corresponding mole fraction, x_1 , -4	calculated by compiler	
is 2.0 x 10 °.		
The solubility of water in benzene at	t 20°C was reported to be	
0.059 g(2)/100 g sln.		
The corresponding mole fraction, x_2 ,	calculated by compiler	
is 2.6 x 10 ⁻³ .		
AUXILIARY INFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
The weight concentration was deter- mined by combined refractometry and pycnometry.	(1) Kahlbaums; analytical grade; dried with P ₂ O ₅ and distilled; purity not specified.	
	(2) not specified.	
	LOIIMAILU LKKUK:	
	soly. ± 0.005 g(2)/100 g sln (type of error not specified).	
	REFERENCES:	

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Benzene; C ₆ H ₆ ; [71-43-2]	Saylor, J.H.; Stuckey, J.M.;
(2) Water; H ₂ O; [7732-18-5]	Gross, P.M.
-	J. Am. Chem. Soc. <u>1938</u> , 60, 373-6.
VARIABLES:	PREPARED BY:
Temperature: 30 and 35°C	A. Maczynski
EXPERIMENTAL VALUES:	
Solubility of ber	nzene in water
t/°C mol(1)/1000 g(2)	$(1)/100 \text{ g sln}$ $10^4 x_1$ (compiler) (compiler)
30 0.0236	0.184 4.25
35 0.0243	0.190 4.38
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS;
A large quantity of (1) was brought	(1) source not specified; purified;
tity of (2). Analyses were made by	
tions in a Zeiss combination inter-	(2) distilled.
ferometer with those of known standards made by dissolving weighed	
quantities of (1) in known weights of (2) as described in ref 1.	
	ESTIMATED ERROR:
	Presumably:
	temp. ± 0.01 K soly. ± 0.005 g(1)/100 g(2)
	REFERENCES:
	1. Gross, P.M.; Savlor, J.H.
	J. Am. Chem. Soc. <u>1931</u> , 53, 1747.

37	67
-	

COMPONENTS .		OPTCTNAL MEASUREMENTS.
(1) Benzene: $C_{-H_{-}}$ [71-43-2]		Berkengeim, T.I.
(1) Benzene, $C_{6}n_{6}$ [/1-43-2]		
(2) Water; H ₂ O; [7732-18-5]		Zavoa. Lab. <u>1941</u> , 10, 592-4.
VARIABLES:		PREPARED BY:
Temperature:	10-50°C	A. Maczynski and Z. Maczynska
EXPERIMENTAL VALUES	5 :	
	Solubility of wa	ter in benzene
t/°(c g(2)/100 g s	$10^3 x_2$ (compiler)
10	0.040	1.7
20 30	0.053 0.066	2.3 2.9
40	0.084	3.6
	AUXILIARY	INFORMATION
METHOD/APPARATUS/P	ROCEDURE :	SOURCE AND PURITY OF MATERIALS:
The solubility	/ of (2) in (1) was	(1) source not specified;
determined by	the Karl Fischer	CP reagent;
reagent method	4.	received.
		(2) not specified
		-
		ESTIMATED ERROR:
		not specified.
ļ		DEFEDENCIS.
		INF LAENCES ;
}		

102			37	_68
COMPONENTS	:		ORIGINAL MEASUREMENTS:	
(1) Benzene; C ₆ H ₆ ; [71-43-2]		Staveley, L.A.K.; Jeffes, J.H.E.; Mov, J.A.E.		
(2) Wat	er; H ₂ O; [7732-18-5]		Trans. Faraday Soc. 1943. 39. 5-	13.
			,,,	
VARIABLES:			PREPARED BY:	
Tempera	ture: 24-71°C		A. Maczynski and Z. Maczynska	
EXPERIMENT	AL VALUES:		•	
1	Solubilit	ty of wa	ater in benzene	
t/°C	g(2)/kg(1)	g(2)/ (co:	100 g sln $10^3 x_2$ (compiler) (compiler)	
24.7	0.685		0.0685 2.96	
41.4	1.213		0.1212 5.23	
44.0	1.296		0.1294 5.88	
50.4	1.619		0.1616 6.97	
58.2	2.073		0.2069 8.91	
58.5	2.190		0.2185 9.41	
71.0	2.976		0.2967 12.74	
		AUXILIARY	INFORMATION	
METHOD/APP	ARATUS/PROCEDURE:		SOURCE AND PURITY OF MATERIALS:	
About 50 cm ³ of (1) was introduced into a clean dry glass tube about 3.5 cm in diameter with a narrow inlet, a small amount of (2) was added from a weighted pipette, and the tube at once sealed off. It was then agitated at a sufficiently high temperature until all (2) had gone into solution, placed in a bath of water, and allowed to cool slowly. The temperature at which (1) was saturated with respect to (2) was taken to be that at which		 (1) source not specified; dried over sodium wire; distilled from sodium powder. (2) not specified. 		
		ESTIMATED ERROR:		
opalesc	ence appeared.		temp. ± 1.5 K	
			REFERENCES :	
l				
1				

37	69

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Benzene; C ₆ H ₆ ; [71-43-2]	<pre>Stearns, R.S.; Oppenheimer, H.; Simon, E.; Harkins, W.D.</pre>
(2) Water; H ₂ O; [7732-18-5]	J. Chem. Phys. <u>1947</u> , 15, 496-507.
VARIABLES:	PREPARED BY:
Temperature: 25°C	A. Maczynski and D. Shaw
EXPERIMENTAL VALUES:	
The solubility of benzene in water at	25°C was reported to be
0.086 and 0.085 g(l)/100 g sln.	
The corresponding mass percent and mo	ble fraction, x_1 , calculated
by the compiler are 0.085 g(1)/100 g	sin and 2.0 x 10 .
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Mixtures of (1) in (2) of known	(1) not specified.
composition were shaken for at least 48 hours. The turbidity	(2) not specified.
was then measured with a photo-	
meter. Turbidities of several mixture compositions were plotted	
and the sharp break point taken as	
the solubility.	
	ESTIMATED ERROR.
1	
	temp. ± 3 K
	REFERENCES:

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Benzene; C ₆ H ₆ ; [71-43-2]	Black, C.; Joris, G.G.; Taylor, H.S.
(2) Water: H ₂ O; [7732-18-5]	J. Chem. Phys. 1948, 16, 537-43.
	<u> </u>
VADIABI FS -	
Temperature: 10-26°C	A. Maczynski and Z. Maczynska
<u>-</u>	
EXPERIMENTAL VALUES:	
Solubility of	water in benzene
t/°C g(2)/100 g(I)	$g(2)/100 g sln = 10^3 x_2$ (compiler)
·	
	0.030 1.30
20 0.0425	0.0425 1.84
26 0.054	0.054 2.34
(at total saturation pressur	e of 1 atm)
The same data are reported i	n ref (1).
AUXIL	IARY INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Air saturated with radioactive was	ter (1) Ohio State University under
saturation was attained. Dissolv	ed Institute project, purity
water was separated from (1) by absorption on calcium oxide. The	not specified; used as received.
tritium was transferred into the	
counter by equilibration with ethanol vapor. The method is	(2) not specified.
described in ref (1).	
	ESTIMATED ERROR.
	soly. ± 1% (type of error not specified)
	REFERENCES:
	l. Joris, G.G.; Taylor, H.S.
	J. Chem. Phys. <u>1948</u> , 16, 45.

COMPONENTS: (1) Benzene; C_6H_6 ; [71-43-2]	ORIGINAL MEASUREMENTS: Booth, H.S.; Everson, H.E.	
(2) Water; H ₂ O; [7732-18-5]	Ind. Eng. Chem. <u>1948</u> , 40, 1491-3.	
VARIABLES:	PREPARED BY:	
One temperature: 25.0°C (298.2K)	G.T. Hefter	

EXPERIMENTAL VALUES:

The solubility of benzene in water at 25.0 °C was reported to be 0.16 mg (1)/100 mL (2). The solubility of (1) in 40.0 (w/w?) aqueous sodium xylenesulfonate was also reported to be 0.37 mL (1)/100 mL sulfonate sln.

AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
A known volume of water, typically 50 mL, was placed in a stoppered Babcock tube having a neck graduated from 0 to 1.6 mL in steps of 0.02 mL. An excess of solute was added and the mixture allowed to come to equilibrium in a constant temperature bath then centrifuged. The amount of solute dissolved was determined by subtracting the undissolved solute measured directly in the neck of the tube from the total added.	<pre>(1) "Highest grade commercial sample available"; no other details given. (2) Distilled. ESTIMATED ERROR: Not specified. REFERENCES:</pre>

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Benzene; C ₆ H ₆ ; [71-43-2]	Durand, R.
(2) Water; H ₂ O; [7732-18-5]	C.R. Hebd. Seances Acad. Sci. <u>1948</u> , 226, 409-10.
VARIABLES:	PREPARED BY:
One temperature: 16°C	M.C. Haulait-Pirson
EXPERIMENTAL VALUES:	
The solubility of benzene in water at 1.65 cm ³ (1)/dm ³ (2).	16°C was reported to be
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The titration method described in ref 1 was used. Addition of pipetted volumes of (1) to (2) followed by shaking is repeated till appearance of turbidity.	(1) not specified.(2) distilled.
	ESTIMATED ERROR:
	soly. $\pm 0.05 \text{ cm}^3(1)/\text{dm}^3(2)$
	REFERENCES:
	1. Durand, R. C.R. Hebd. Seances Acad. Sci. <u>1946</u> , 223, 898-900.

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Benzene; C ₆ H ₆ ; [71-43-2]	Andrews, L.J.; Keefer, R.M.
(2) Water; H ₂ O; [7732-18-5]	J. Am. Chem. Soc. <u>1949</u> , 71, 3644-77.
VARTARI FS -	
One temperature: 25°C	A. Maczynski and Z. Maczynska
EXPERIMENTAL VALUES: The solubility of benzene in water at 0.174 g(1)/100 g sln. The corresponding mole fraction, x_1 , 4.02 x 10 ⁻⁴ .	: 25°C was reported to be calculated by the compilers is
AUXILIARY	INFORMATION
A mixture of (1) and (2) was rotated for twenty hours in a constant temp- erature bath at 25°C. A sample (5- 20 mL) of the aqueous phase was with- drawn and extracted with a measured volume of hexane (10-50 mL) by shak- ing in a glass-stoppered Erlenmeyer flask. Next, the absorbance of the hexane phase was measured against a hexane blank on the Beckman spectrophotometer.	 (1) Eastman Kodak Co. best grade; washed successively with concentrated sulfuric acid, water, and dilute sodium hydroxide; dried, and distilled b.p. 80°C. (2) not specified.
	ESTIMATED ERROR:
	not specified.
	REFERENCES:

COMPONENTS:		ORIGINAL MEASUREMENTS:
(1) Benzene; C ₆ H ₆ ; [71-43-2]	Booth, H.S.; Everson, H.E.
(2) Water; H ₂ O; [773	32-18-5]	Ind. Eng. Chem. <u>1949</u> , 41, 2627-8.
-		
VARIABLES:		PREPARED BY:
Temperature: 25 and	1 60°C	A. Maczynski and Z. Maczynska
EXPERIMENTAL VALUES:		
	Solubility of ber	nzene in water
	t/°C ml	L(1)/100 mL(2)
	25	0.11
	60	0.19
	AUXILIARY INFORMATION	
METHOD/APPARATUS/PROCEDUR	E:	SOURCE AND PURITY OF MATERIALS:
graduated from 0 to	1.6 mL in steps	CP or highest commercial
of 0.02 mL were used volume of (2) (gene:	a. A known rally 50 mL) was	grade; used as received.
added to the tube in temperature water ba	n a constant- ath and weighed	(2) Distilled.
quantities of (1) we this solution. Ther	ere added to	
was separated by gen	ntle rotation.	
was determined direct	ctly.	
		ESTIMATED EDDOD.
		temp. ± 0.1 K at 25°C
		soly. ± 0.1 mL(1)/100 mL(2).
		REFERENCES:

37	73b
_	

COMPONENTS: ORIGINAL MEASUREMENTS: (1) Benzene; C₆H₆; [71-43-2] Griswold, J.; Chew, J.-N.; Klecka, M.E. (2) Water; H₂O; [7732-18-5] Ind. Eng. Chem. 1950, 42, 1246-51. VARIABLES: PREPARED BY: Temperature: 25 and 50°C A. Maczynski and Z. Maczynska **EXPERIMENTAL VALUES:** Solubility of benzene in water $10^4 x_1$ (compiler) t/°C g(l)/100 g sln 25 0.18 4.2 50 5.5 0.22 Solubility of water in benzene $10^3 x_2$ (compiler) t/°C g(2)/100 g sln 25 0.06 2.6 50 0.15 6.5 AUXILIARY INFORMATION METHOD / APPARATUS / PROCEDURE : SOURCE AND PURITY OF MATERIALS: Samples of (1) or (2) were placed in glass-stoppered flasks mounted on a Koppers Co., industrial pure grade; purified by azeotropic rotating shaft and immersed in a distillation with acetone and water bath. refractionated; purity 99.7%, Compositions were obtained by titrating a known sample, alter-(2) not specified. nately adding the major and minor components from microburets until the two-phase point was found accurately. The flask was reim-ESTIMATED ERROR: mersed in the bath after each titration to maintain thermal equitemp. ± 0.05 K librium. Finally, one drop of reagent would cause the second phase soly. ± 0.1% (not specified) to appear or to disappear. **REFERENCES:**

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Benzene; C ₆ H ₆ ; [71-43-2]	Klevens, H.B.
(2) Water; H ₂ O; [7732-18-5]	J. Phys. Chem. <u>1950</u> , 54, 283-98.
É	
VARIABLES:	PREPARED BY:
Temperature: 25°C	M.C. Haulait-Pirson
EXPERIMENTAL VALUES:	
The solubility of benzene in water at	25°C was reported to be
1.86 g(1) dm^{-3} sln and 0.0239 mol(1)	dm ⁻³ sln.
The corresponding mass percent and mo	le fraction, x_1 , calculated
by the compiler are 0.186 $g(1)/100 g$	sin and 4.31 x 10 ⁻ .
calculation.	to ky sin was used in this
1	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The solubility of (1) in (2) was determined by shaking small amounts	(1) not specified.
of (1) in 1 liter of (2) for as long as three months. Aliquots were	(2) not specified.
removed and concentrations deter-	
	ESTIMATED ERROR:
	not specified.
	-
	REFERENCES :

37	75	
_		

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Benzene; $C_{c}H_{c}$; [71-43-2]	Bohon, R.L.; Claussen, W.F.
(2) Water; H_00 ; $[7732-18-5]$	J. Am. Chem. Soc. 1951, 73, 1571-8.
	,
L VARIABLES:	DEEDADEN BY.
Temperature: 0.4-42.8°C	G.T. Hefter
EXPERIMENTAL VALUES:	
Solubility of h	penzene in water
+/°C g(1)/10	10^{4} 10^{4} 10^{4}
	piler) (compiler)
0.4 0.1	4.01
5.2 0.1	4.17
	4.15
21.0 0.1	4.13
	179 4.13 179 4.13
30.2 0.1	4.24
	4101
^a Solubilities of (1) in (2) were repor measurements. Solubilities were calc Beer-Lambert law, the stated cell pat "extinction coefficients" (absorptive densities. This gave a solubility of converted to g(1)/100g sln by assumin ^b Data refer to the solubility of solid	cted as "optical density" (absorbance) culated by the compiler using the th-length (1 cm) and the authors' ities) and corrected optical E g(1)/L sln which was then ng a solution density of 1.00 kg/L.
Given in the original paper as 1.799	1)/L sin.
METHOD / APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
A round-bottomed flask containing about 4 mL of (1) and 400 mL of (2) was evacuated, suspended in a thermostat, shaken for 24h and then allowed to settle for at least another 24h. Next, desired quantities of the water layer were syphoned into 6 glass-stoppered Erlenmeyer flasks. These 6 flasks had previously been tared, partially filled with a suitable amount of diluent water, and reweighed. Weighed portions of the samples were inserted into a quartz cuvette and measured in a Beckman DU spectrophotometer. Absorbances were corrected for adsorption of (1) onto the walls of the cuvette.	 (1) Baker and Adamson, purified by recrystallization from ethanol, washing, filtering through silica gel then distilling. Purity was determined by refractometry (no values given). (2) Air-free conductivity water, no other details given. (2) Air-free conductivity water, no other details given. ESTIMATED ERROR: Temp. ± 0.02°C Soly. ± 0.5% relative REFERENCES:

,

COMPONENTS:	ORIGINAL MEASUREMENTS:	
(1) Benzene; C ₆ H ₆ ; [71-43-2]	McBain, J.W.; Lissant, K.J.	
(2) Water; H ₂ O; [7732-18-5]	J. Phys. Colloid. Chem. <u>1951</u> , 55, 665-62.	
VARIABLES:	PREPARED BY:	
One temperature: 25°C	M.C. Haulait-Pirson and G.T. Hefter	
EXPERIMENTAL VALUES:		
The solubility of benzene in water at be 0.151 g(1)/100 mL sln.	25°C was reported to	
The corresponding mass percent and mole fraction solubilities, calculated by the compilers assuming a solution density of 1.00 kg dm ⁻³ , are 0.151 g(1)/100 g sln and $x_1 = 3.48 \times 10^{-4}$.		
AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
10 mL portions of (2) are pipetted	$(1) \subset \mathbb{R}$ grade	
into glass vials, following which, varying amounts of (1) were added to each bottle by direct weighing.	 (2) distilled and boiled to remove CO2. 	
The vials were shaken overnight. When two vials had been obtained, one clear and one with excess hydro- carbon and containing amounts dif-		
values were averaged and the mean		
caren as the amount solubilized.	ESTIMATED ERROR:	
	not specified.	
	REFERENCES :	

37	77	

51_11	
COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Benzene; C ₆ H ₆ ; [71-43-2]	Staveley, L.A.K; Johns, R.G.S.; Moore, B.C.
(2) Water; H ₂ O; [7732-18-5]	I Cham Son 1951 2516-23
	<i>1</i> , <i>2</i> , <i>1</i> , <i>1</i> , <i>2</i> , <i>1</i>
VARIABLES:	PREPARED BY:
Temperature: 22.7-73.2°C	A. Maczynski and Z. Maczynska
EXPERIMENTAL VALUES:	
Solubility of wat	er in benzene
$\frac{t/^{\circ}C}{10^{3}x_{2}}$	g(2)/100 g sln (compiler)
22.7 2.606	0.0602
30.5 3.674	0.0849
33.0 3.784	0.0875
40.6 5.041	0.1167
41.9 5.153	0.1193
45.9 6.064	0.1405
51.9 6.902	0.1600
52.2 7.078	0.1641
53.2 7.211	0.1672
54.7 7.521	0.1744
60.9 9.294	0.2158
65.3 10.50	0.2441
67.2 11.21	0.2607
73.2 13.02	0.3032
$\log x_2 = 2.237 - \frac{1427}{(t/^{\circ}C + 27)}$	/3.1)
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
A synthetic mixture of known	(1) source not specified;
amounts of (2) and (1) was heated	stored over phosphoric oxide.
and then the temperature of phase	(2) not specified.
splitting on cooling was deter-	
are described in ref 1.	
	ESTIMATED ERROR:
]	temp. \pm 0.1 K
	soly. ± 0.2% (type of error not specified)
	REFERENCES:

Staveley, Jeffes, and Moy Trans. Faraday Soc. <u>1943</u>, 39, 5.

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Benzene; C ₆ H ₆ ; [71-43-2]	Donahue, D.J.; Bartell, F.E.
(2) Water; H ₂ O; [7732-18-5]	J. Phys. Chem. <u>1952</u> , 56, 480-4.
VARIABLES:	PREPARED BY:
One temperature: 25°C	A. Maczynski
EVDEDTMENTAL VALUES.	
The solubility of benzene in water at $x_1 = 4.2 \times 10^{-4}$.	25°C was reported to be
The corresponding mass percent calcul	ated by compiler is
0.182 g(1)/100 g sin.	
The solubility of water in benzene at $x_2 = 0.0031$.	25°C was reported to be
The corresponding mass percent calcul	ated by compiler is
0.072 g(2)/100 g sln.	
ţ	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Samples of (1) with (2) were placed in glass stoppered flasks and were shaken intermittently for at least three days in a water-bath held at 25°C. The (1)-rich phases were analyzed for (2) content by the Karl Fischer method and the (2)-rich phases were analyzed interferometri- cally.	 source not specified; best reagent grade; purified by fractional distillation and treatment with silica gel; purity not specified. purified.
	ESTIMATED ERROR:
	temp. ± 0.1 K
1	REFERENCES :

01_17	
COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Benzene; C ₆ H ₆ ; [71-43-2]	McDevit, W.F.; Long, F.A.
(2) Water; H ₂ O; [7732-18-5]	J. Am. Chem. Soc. <u>1952</u> , 74, 1773-7.
VARIABLES:	PREPARED BY:
One temperature: 25°C	A. Maczynski
EXPERIMENTAL VALUES:	
The solubility of benzene in water at -3 at	t 25°C was reported to be
$\begin{array}{c} 1.775 \text{ mor}(1) \text{ and } \text{ sin.} \\ \hline \\ \text{Presumably this should be 1.775 } \sigma(1) \end{array}$	dm ⁻³ sln
The corresponding mass percent and m	ole fraction, x_1 , calculated
by the compiler assuming a solution	density of 1.000 g mL ^{-1} are
0.1775 g(1)/100 g sln and 4.091 x 10	-4.
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The solubility of (1) in (2) was determined by a variation of the Euler method in which a measured excess volume of (1) is added to (2), and after equilibration, the volume of undissolved (1) is deter-	 (1) source not specified, reagent grade; thiophene-free; distilled; purity not specified. (2) doubly distilled.
mined by measuring its length in a precision bore tube which leads from the top of the apparatus.	
	ESTIMATED ERROR:
	<pre>temp. ± 0.02 K soly. ± 0.5% (from duplicate deter- minations)</pre>
	REFERENCES:

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Benzene; C ₆ H ₆ ; [71-43-2]	Morrison, T.J.; Billett, F.
(2) Water; H ₂ O; [7732-18-5]	J. Chem. Soc. 1952, 3819-22.
VARIABLES:	PREPARED BY:
One temperature: 25°C	A. Maczynski
EXPERIMENTAL VALUES:	
mba salubilitu of banana in ustan a	b 25%g was menowed to be
0.0220 mol(1)/1000 g(2).	t 25 C was reported to be
The corresponding mass percent and mo	ole fraction, x_1 , calculated
by compilers are 0.172 g(l)/100 g slu	n and $x_1 = 3.96 \times 10^{-4}$.
	-
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS;
After an excess of (1) had been	(1) source not specified; purest
shaken with about 1 dm ³ of (2) for about a week, a known volume of	obtainable material; distilled; purity not specified.
saturated solution was made slightly	(2) not energified
passed through to drive off the (1).	(2) hot specified.
After passage through a silica tube packed with cupric oxide and heated	
to redness, the (2) was removed by concentrated sulfuric acid and	
calcium chloride and the carbon	
boda-asbestos. The precautions	ESTIMATED ERROR:
usual in organic combustions were	soly. ± 0.1 K (mean of large numbers
	of determinations)
	REFERENCES:

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Benzene; C₆H₆; [71-43-2] (2) Water; H₂O; [7732-18-5]</pre>	McCants, J.F.; Jones, J.H.; Hopson, W.H. Ind. Eng. Chem. <u>1953</u> , 45, 454-6.
VARIABLES:	PREPARED BY:
One temperature: 100°F (311 K)	G.T. Hefter

EXPERIMENTAL VALUES:

The solubility of benzene in water at 100°F (311 K) was reported to be 0.5 g(1)/100 g sln. The corresponding mole fraction, x_1 , calculated by the compiler, is 1.2 x 10^{-3} .

The solubility of water in benzene at $100^{\circ}F$ (311 K) was reported to be <0.3 g(2)/100 g sln. The corresponding mole fraction, x_2 , calculated by the compiler, is <1.3 x 10^{-2} .

AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: The method was essentially that of ref. 1 and involved titration of the second component to the cloud point, in a constant temperature bath.	SOURCE AND PURITY OF MATERIALS: (1) Baker; thiophene free; used without further purification; n ² 0 ⁰ 1.5004. (2) Distilled
	(2) Distilled.
	ESTIMATED ERROR: Not specified.
	REFERENCES: 1. Washburn, E.R.; Hnizda, V.; Vold, R.D. J. Am. Chem. Soc. <u>1931</u> , 53, 3232.

COMPONENTS: ORIGINAL MEASUREMENTS:	
(1) Benzene; C ₂ H ₂ ; [71-43-2] Hayashi, M.; Sasaki, T.	ļ
(2) Water; H_0 ; [7732-18-5] Bull. Chem. Soc. Japan 1956, 2	9,
857-9.	
VARIABLES: PREPARED BY:	į
Temperature: 20 and 25°C A. Maczynski	
EXFERIMENTAL VALUES:	
Solubility of benzene in water	
$t/^{\circ}C$ g(1)/100 g sln $10^{4}x_{1}$ (compiler)	
20 0.137 3.16	
25 0.180 4.16	
	Ì
	ļ
	ľ
AUXILIARY INFORMATION	ĺ
METHOD/APPARATUS/PROCEDURE: SOURCE AND PURITY OF MATERIALS:	
The superiment has been described (1) source not specified, shaken	
for the determination of the repeatedly with concentrated	
(1)-(2)-Tween 80.	
and distilled over Na metal.	
(2) not specified.	
ESTIMATED EKKUK:	
(type of error not specified).	eln '
	sln
I REFERENCES •	sln
REFERENCES :	sln
REFERENCES :	sln
REFERENCES :	sln

37_83			119	
COMPONENTS:		ORIGINAL MEASUREMENTS:		
<pre>(1) Benzene; C₆H₆; [71-43-2] (2) Sodium chloride; NaCl; [76-14-5] (3) Water; H₂O; [7732-18-5]</pre>		Umano, S.; Hayano, I. <i>Kogyo Kagaku Zasshi <u>1957</u>, 60,</i> 1436-7.		
VARIABLES:		PREPARED BY:		
Temperature: 20-284	1°C	H. Miyamoto and G.	T. Hefter	
Concentration of Na	aCl			
EXPERIMENTAL VALUES: Solubi	ility of water in be	enzene at system pre	ssure	
Concn. NaCl ^a	t/°C	g(3)/100 g sln	10 ² x ₃ (compilers)	
0.0	281.0	28.46	63.29	
	271.5	25.11	59.24	
	250.1	17.22	47.41	
	223.0	8.98	29.95	
	186.0	4.42	16.7	
9.939	78.0	0.240	0.103	
	66.0	0.189	0.814	
	40.0	0.0762	3.29	
	20.2	0.042	1.82	
10.0	284.0	27.44	62.11	
]	265.0	18.91	50.27	
	249.0 ^b	13.02	39.35	
	223.0 ^c	7.65	26.4	
	183.5	3.70	14.3	
			(continued)	
	AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCE	DURE:	SOURCE AND PURITY OF MA	ATERIALS:	
At higher temperatu aqueous brine were autoclave, describe paper, and equilibe After settling, the	ures: (1) and the placed in an ed in detail in the rated by stirring. a solubility of (3)	<pre>(1) : c.p. grade, s specified; pu fractional di (2) : not specified</pre>	ource not rified by single stillation.	

(3) : c.p. grade, source not specified; recrystallized.

flask at constant temperature. After equilibration, an aliquot of the ESTIMATED ERROR:

Not specified

The solubility of NaCl in benzene was determined to be negligible in these experiments ($8 \times 10^{-5} \text{ mol dm}^{-3}$ at 223°C and 54.23 atm.).

in (1) was determined volummetrically by withdrawing layers from the auto-clave into a burette.

At lower temperatures: (1) and the aqueous solution were refluxed in a

water rich layer was withdrawn and

analysed argentometrically and the solubility of (3) in (1) calculated.

REFERENCES :

```
    Benzene; C<sub>6</sub>H<sub>6</sub>; [71-43-2]
    Sodium chloride; NaCl; [76-14-5]
    Water; H<sub>2</sub>O; [7732-18-5]
```

(continued)

Concn. NaCl ^a	t/°C	g(3)/100 g sln	10 ² x ₃
			(compilers)
19.200	81.0	0.155	0.67
	63.0	0.079	0.34
	40.0	0.037	0.16
	21.0	0.024	0.10
20.0	280.0	17.93	48.6
	265.0	13.56	40.5
	245.0	7.96	27.3
	221.0	3.98	15.2
	178.0	1.52	6.3
20.0	277.5	15.17	43.7
	268.5	12.47	38.2
	245.5	6.69	23.7
	219.0	3.85	14.8
	178.0	1.58	6.5

a Stated as % in paper: presumably g(2)/100 g sln (compilers).

b Given as 294.0 in the original (corrected in personal communication by the authors to H. Miyamoto).

c p = 54.23 atm.

37_84	121
COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Benzene; C ₆ H ₆ ; [71-43-2]	Wing, J.; Johnston, W.H.
(2) Water; H ₂ O; [7732-18-5]	J. Am. Chem. Soc. <u>1957</u> , 79, 864 - 5.
VARIABLES :	PDEDADEN BV.
One temperature: 25°C	A. Maczynski and Z. Maczynska
EXPERIMENTAL VALUES:	
The solubility of water in benzene at 0.0554 mL(2)/100 mL sln and 0.0635 mL The corresponding mass percent and mo by the compilers are 0.114 g(2)/100 g assumption that 1 dm ³ sln = 874 g sln	25°C was reported to be (2)/100 g(1). le fraction, x_2 , calculated sln and 4.9 x 10 ⁻³ . The was used in the calculation.
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
A small amount of (2) was equi- librated with 20 mL of (1) using a Teflon stirrer in a 100 mL flask in a Sargent constant temperature bath. At the end of two hours, the mixture was poured into a test tube immersed in the bath and the organic phase separated from water by gra- vitation. The determination of THO in the organic phase was done by isotopic dilution with a large excess of H_2O . The tritium activ- ities in the tritiated water samples were determined by the acetylene method described in ref 1.	 (1) source not specified, chemical grade; redistilled in a column of 50 theoretical plates; purity not specified. (2) Tracerlab, Inc., tritiated water with an activity of approximately 1 μCi/mL. ESTIMATED ERROR: temp. ± 0.02 K soly. 0.9% (st. dev. from 6 determinations). REFERENCES:
	<pre>1. Wing, J; Johnson, W.H. Science 1955, 121, 674.</pre>

COMPONENTS:			ORIGINAL MEASUREMENTS:	
<pre>(1) Benzene; C₆H₆; [71-43-2] (2) Water; H₂O; [7732-18-5]</pre>		3-2] -5]	Arnold, D.S.; Plank, C.A.; Erickson, E.E.; Pike, F.P. Chem. Eng. Data Ser. 1958, 3,	
			253-6.	
WADTADI EC -				
VARIABLES :			PREPARED BY:	
	te: 0.4-69 C		A. Szafranski	
EXPERIMENTAL V	ALUES:			
	Solu	bility of b	enzene in water	
	Solid, gas	eous benzen	e plus water and air	
	t/°C	g(l)/100 g	$\frac{10^4 x_1}{(\text{compiler})}$	
	0.4 3.0	0.168 0.170	3.88 3.92	
l	3.9	0.176	4.06	
	Solid, liquid,	gaseous be	nzene plus water and air	
	$t/^{\circ}C$ $g(1)/100 g sln$ $10^{4}x_{1}$ (compiler)			
	4.9 0.172		3.97	
			(continued)	
		AUXILIARY	INFORMATION	
METHOD/APPARATI	JS/PROCEDURE:		SOURCE AND PURITY OF MATERIALS:	
In a thermostatted 3 L borosilicate glass flask (2) was saturated with (1), the water phase stirred very slowly, then the flask left qui- escent, and the saturated solution sampled repeatedly and analyzed on a Beckman model DU unit until a constant benzene concentration response was achieved on successive days. Many details are given in		orosilicate rated with rred very eft qui- d solution nalyzed it until ntration successive given in	 (1) the Barrett Division of Allied Chemical and Dye Corp., thiophene-free, 1°; water washed and distilled; for two determinations (a) thrice crystallized. (2) distilled; electrical conduct- ivity confirmed its high quality. 	
Fabor			ESTIMATED ERROR:	
			temp. ± 0.05 K	
			soly. 0.0028 g(1)/100 g sln (standard deviation).	
			REFERENCES:	

COMPONENTS :

(1)	Benzene;	с ₆ н	6 ;	[71-43-2]
(2)	Water; H	2 ^{0;}	[77	32-18-5]

Arnolo	d, D.S	S.; PI	Lank,	C.A.;	
Erio	ckson	, E.E.	; Pił	ke, F.P.	
Chem. 253	Eng. - 6.	Data	Ser.	<u>1958</u> ,	3,

Solubility of benzene in water

Liquid, gaseous benzene plus water and air

t/°C	g(1)/100 g sln	$10^4 x_1$ (compiler)
5.6	0.174	4.02
6.7	0.174	4.02
9.0	0.173	3,99
12.5	0.172	3.97
15.0	0.173	3,99
20.0	0.171	3 95
20.6	0.172	3 97
24.8	0.171	3 95
24.9	0.174	4 02
27.3	0.174	4.02
30.0	0 177	4.02
30.0	0.176	4.09
35 0	0 192	4.00
39.9	0.102	4.24
45 0	0.107	4.34
45.0	0.197	4.55
40.0	0.190	4.53
49.0	0.204	4./1
54.5	0.215	4.97
59.0	0.226	5.22
64.8	0.241	5.57
69.0	0.260	5.67

,

	3/_8/		
COMPONENTS :	ORIGINAL MEASUREMENTS:		
(1) Benzene; C ₆ H ₆ ; [71-43-2]	Brady, A.P.; Huff, H.		
(2) Water; H ₂ 0; [7732-18-5]	J. Phys. Chem. <u>1958</u> , 62, 644-9.		
VARIABLES :	PREPARED BY:		
One temperature: 25°C	A. Maczynski		
EXPERIMENTAL VALUES:			
The solubility of benzene in water a 1.76 g(l) dm ⁻³ sln.	t 25°C was reported to be		
The corresponding mass percent and mole fraction, x_1 , calculated			
by the compiler are 0.176 g(1)/100 g sin and 4.06 x 10 $^{-1}$			
The compiler's calculation assumes a solution density of 1.00 g mL ⁻ .			
AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:		
The solubility of (1) in (2) has	(1) not specified.		
been extrapolated from vapor- pressure measurements.	(2) not specified.		
The vapor pressure apparatus used			
the same principle as that of ref 1.			
	ESTIMATED ERROR:		
	soly: 0.03 (standard deviation)		
	REFERENCES:		
	1. McBain, J.W.; O'Connor, J.J. J. Am. Chem. Soc. <u>1936</u> , 58, 2610.		
COMPONENTS: (1) Benzene; C ₆ H ₆ ; [71-43-2] (2) Water; H ₂ O; [7732-18-5]	ORIGINAL MEASUREMENTS: Pavia, R.A. <i>"The Solubility of Water in Benzene"</i> , M.S. Thesis, <u>1958</u> , North Carolina State College, Raleigh, N.C., U.S.A.		
---	---		
VARIABLES:	PREPARED BY:		
Temperature: 9.3-65°C	C. Tsonopoulos and G.T. Hefter		

Solubility of water in benzene	Solubility	of	water	in	benzene
--------------------------------	------------	----	-------	----	---------

t/°C	p <mark>1</mark> /mm Hg	g(2)/100 g sln ^a	$10^3 x_2$ (compilers)
9.28	8.774	0.04117	1.783
20.00	17.535	0.05989	2.592
20.00	17.535	0.06076	2.629
30.17	32.136	0.08318	3.597
40.15	55.764	0.11216	4.845
49.97	92.37	0.15222	6.567
59.90	148.70	0.2010	8.657
65.00	187.54	0.2261	9.730

a Average of three separate analyses.

Results were represented with a "probable deviation of 0.8%" by the equation $\log_{10} (100 \ s) = 0.117135 + 0.5162095 \log_{10} p_1^s + 0.0127866 (\log_{10} p_1^s)^2$ where s is the solubility of water in benzene in g(2)/100 g sln and p_1^s is the equilibrium vapour pressure of the solution.

AUXILIARY	INFORMATION
METHOD / APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
Water and benzene were equilibrated in a 4-L pyrex vessel fitted with a stirrer. Equilibration typically required about 100 h of stirring. Care was taken to avoid condensation of water on the vessel lid and select- ive adsorption of water on the glass walls. Samples for analysis were withdrawn by air pressure. Water was determined by Karl Fischer titration.	 Distilled in a tinned Barnstead still (specific conductivity 5-20 x 10⁻⁷ Ω⁻¹). Allied Chemical: purified by triple fractional crystall-ization; purity 99.99 mol %; n₀²⁵ = 1.49806.
	ESTIMATED ERROR:
	<pre>temp. ± 0.01°C soly. ± 1% relative; type of error not stated</pre>
	REFERENCES :

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Benzene; C ₆ H ₆ ;[71-43-2]	Alexander, D.W.
(2) Water; H ₂ O; [7732-18-5]	J. Phys. Chem 1959, 63, 1021-2.
2	
VARIABLES:	PREPARED BY:
Temperature: 0.8 - 65.4°C	A. Maczynski and Z. Maczynska
EXPERIMENTAL VALUES:	
Solubility of	benzene in water
	00 g - 1 g - 1 o 4 g
	(compiler)
	84* 4.25 79 4.13
	77 4.09
	83 4.23
38.0 0.1	92 4.50
58.8 0.2	34 5.40
65.4 0.2	57 5.94
*supercooled lig	uid
AUX	ILIARY INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The method was based on that of	(1) Analar benzene; shaken with
Bohon and Claussen (1). Absorb	ance mercury and purified according odel to the method of Mair et al.
D.U. ultraviolet spectrophotome	ter. (2); purity not specified.
	(2) not specified.
	ESTIMATED ERROR:
	<pre>soly. ±0.5% (type of error not specified).</pre>
	REFERENCES:
	<pre>1. Bohon, R.L.; Claussen, W.F. J. Am. Chem. Soc. <u>1951</u>, 73, 1517.</pre>
	2. Mair, B.J.; Termini, D.J.;
	Willingham, C.B.; Rossini, F.D. J. Research Natl. Bur. Standard 1946, 37, 229.

37	90
51	ઝા

37_90				,	
COMPONENTS:		ORIGINAL MEASUREMENTS:			
(1) Benzene; C ₆ H ₆ ; [71-43-2]		Rebert, C.J.; Kay, W.B.			
(2) Water	; н ₂ 0; [7732-1	.8-5]	A. I. Ch. E. J.	<u>1959</u> , <i>5</i> , 285-9.	
	-				
VARIABLES:			PREPARED BY:		
Temperatu Pressure:	ire: 282.8-306. : 11.51-15.87 M	4°C IPa	A. Maczynski, Z. A. Szafranski	Maczynska and	
EXPERIMENTAL	L VALUES:				
	Sol	ubility of ber	nzene in water		
t/°C	p/psia	p/MPa (compiler)	g(l)/100 g sln	(compiler)	
287.5	1763	12.16	11.7	0.030	
301.7	2118	14.60	22	0.061	
306.4	2301	15.86	35.1	0.111	
306.4*	2302	15.87	41	0.138	
	Sol	ubility of wat	ter in benzene		
t/°C	p/psia	p/MPa (compiler)	g(2)/100 g sln	<pre>#2 (compiler)</pre>	
282.8	1670	11.51	29.9	0.649	
297.5	1992	13.73	31.6	0.667	
306	2302	15.87	50.9	0.818	
306.4*	2302	15.87	59	0.862	
*upper cr	ritical solutio	on temperature			
		AUXILIARY	INFORMATION		
METHOD/APPAR	RATUS/PROCEDURE:		SOURCE AND PURITY OF	MATERIALS:	
The appar	atus employed	was a	(1) source not sp	ecified, reagent	
modificat	tion of that de	scribed	grade; dried over P_2O_5 and distilled, purity not		
studies.	1 and 2 for P=1	-x	specified.	irity not	
A schematic diagram and construc- tion details amply reported.		(2) freshly prepa grade.	ared, conductivity		
			ESTIMATED ERDOR.		
			soly. ± 0.022 wt.	fraction	
			temp. ± 0.05 K pressure ± 1 1b/s	sq.in.	
			REFERENCES:	• • •	
			Longmans, Gree	en, New York, 1918.	
			p. 122.	Ena Cham	
			<u>1938</u> , <i>30</i> , 450.		

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Benzene; C ₆ H ₆ ; [71-43-2]	Caddock, B.D.; Davies, P.L.
(2) Water; H ₂ O; [7732-18-5]	J. Inst. Petrol. <u>1960</u> , 46, 391-6.
VARIABLES:	PREPARED BY:
One temperature: 20°C	A. Maczynski
EXPERIMENTAL VALUES:	
The solubility of water in benzene at 52 mg(2)/100 g(1). The corresponding mass percent and mo by the compiler are 0.052 g(2)/100 g	20°C was reported to be le fraction, x_2 , calculated sln and 0.0022.
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
A sample of (1) was equilibrated at 20°C with an air stream contain- ing a known amount of water vapor tagged with HTO. At equilibrium a sample of (1) was taken and its (2) content determined by liquid scintil- lation counting.	(1) not specified.(2) not specified.
	ESTIMATED ERROR:
	temp. ± 0.01 K
	REFERENCES :

37	92
----	----

COMPONENTS:	ORIGINAL MEASUREMENTS:		
(1) Benzene; C ₆ H ₆ ; [71-43-2]	Kudchadker, A.P.; McKetta, J.J.		
(2) Water: H ₂ O; [7732-18-5]	Petrol Refiner 1962, 41, 191-2.		
	<u> </u>		
VARIABLES:	PREPARED BY:		
Temperature: 37.8 - 137.8°C	A Maczunski		
EXPERIMENTAL VALUES:	A. Maczynski		
Solubility of be	nzene in water		
t/°F t/°C p/psia p/M	Pa $10^4 x$, g(1)/100 g sln		
(compiler) (comp	iler)		
100 37.8			
15.8 0. 20.2 0	109 1.24 0.0538		
37.9 0.1	261 1.57 0.0681		
49.2 0.	339 1.66 0.0720		
161.35 1.	112 2.61 0.113		
225.7 1.	556 3.28 0.142		
244.2 1.	684 3.43 0.149		
373.7 2.	577 4.84 0.201		
406.3 2.	801 4.98 0.216		
486.4 3.			
635.2 4.	380 6.84 0.296		
743.23 5.	124 7.87 0.340		
	672 8.5 0.38		
	(continued)		
AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:		
The experimental apparatus and	(1) Phillips Petroleum Co., purity		
analytical technique are described	99.0 mole percent; used as		
in ref 1. The equilibrium	received.		
apparatus consisted of a jacketed	(2) distilled and boiled to		
coil. The mixing of the contents	remove any dissolved gases.		
of the cell was achieved by a			
rocking mechanism.			
	ESTIMATED ERROR:		
	not specified.		
	REFERENCES :		
	1 Davie JE The Colubility of		
	Methane and Ethylene in Water,		
	M.S. Thesis, the University of		
	10,437 Auberny 10,7 1959.		

COMPONENTS:

```
    Benzene; C<sub>6</sub>H<sub>6</sub>; [71-43-2]
    Water; H<sub>2</sub>O; [7732-18-5]
```

Kudchadker, A.P.; McKetta, J.J.

Petrol Refiner <u>1962</u>, 41, 191**-**2.

t/°F	t/°C (compiler)	p/psia	<pre>p/MPa (compiler)</pre>	10 ⁴ <i>x</i> 1	렷(l)/100 중 sln (compiler)
160	71.1	19.8 17.7 23.8 27.5 37.6 74.0 209.8 260.2 314.3 390.6 449.1 509.8 607.2	0.137 0.122 0.164 0.190 0.259 0.510 1.447 1.794 2.167 2.693 3.096 3.536 4.186	1.75 1.91 1.88 2.01 2.24 2.81 4.80 5.71 6.39 7.69 8.58 10.00 12.23	0.0758 0.0828 0.0815 0.0871 0.0971 0.1218 0.2078 0.2471 0.2765 0.3327 0.3710 0.4326 0.5283
220	104.4	29.4 36.25 46.2 49.9 84.8 165.2 195.0 204.6 218.2 259.3 283.1 327.8 372.6 447.5 548.2	0.203 0.250 0.319 0.344 0.585 1.139 1.344 1.411 1.504 1.788 1.952 2.260 2.569 3.085 3.780	2.35 2.93 3.50 3.80 4.89 7.68 8.49 9.39 9.40 10.75 11.62 13.28 14.68 16.85 21.49	0.1018 0.1270 0.1516 0.1646 0.2127 0.332 0.367 0.406 0.406 0.465 0.502 0.573 0.633 0.727 0.925
280	137.8	61.3 76.2 78.5 103.7 112.0 114.9 137.5 170.0 195.2 265.1 316.2 325.1 356.2 402.6 462.5	0.423 0.525 0.541 0.715 0.772 0.792 0.948 1.172 1.346 1.766 2.180 2.241 2.456 2.776 3.189	3.92 5.84 6.10 7.78 8.11 8.28 9.0 10.55 11.59 14.28 16.22 16.98 18.39 20.20 23.0	0.170 0.253 0.264 0.337 0.351 0.358 0.389 0.456 0.501 0.616 0.700 0.732 0.793 0.870 0.990

Solubility of benzene in water

(continued)

OMPONENTS:			ORIGINAL MEASU	REMENTS:
(1) Benze	ene; C ₆ H ₆ ; [7	1-43-2]	Kudchadker,	A.P.; McKetta, J.J.
(2) Water	; H ₂ O; [7732	-18-5]	Petrol. Ref	iner <u>1962</u> , 41, 191-:
p/psia		Author's smooth $10^4 x_1$	thed values	
	100°F	160°F	220°F	280°F
14.7 20.0 40.0 60.0 80.0 100.0 150.0 200.0 250.0 300.0 350.0 400.0 450.0 550.0 600.0 650.0 700.0 750.0 800.0	1.18 1.33 1.58 1.75 1.92 2.10 2.58 3.03 3.50 3.98 4.41 4.85 5.30 5.77 6.21 6.68 7.13 7.54 7.94 8.35	1.56 1.80 2.22 2.58 2.89 3.17 3.89 4.60 5.52 6.24 7.20 8.15 9.05 10.00 11.06 12.01	1.01 3.16 4.16 4.88 5.61 7.18 8.61 10.61 12.32 14.03 15.80 17.61 19.56 21.54	3.52 6.20 7.53 9.71 11.82 13.74 15.80 17.84 20.00 22.38
	Author's	smoothed values	s calculated by	compiler
p/MPa		<u>g(l)/</u> 1	00 g sln	
	37.8°C	<u>71.1°C</u>	104.4°C	<u>137.8°C</u>
0.101 0.138 0.276 0.414 0.552 0.689 1.034 1.379 1.724 2.068 2.413 2.758 3.103 3.447 3.792 4.137 4.482 4.826 5.171	0.0512 0.0577 0.0685 0.0758 0.0832 0.0910 0.1118 0.1313 0.1516 0.1724 0.1910 0.210 0.229 0.250 0.269 0.289 0.289 0.308 0.326 0.343	0.0676 0.0780 0.0962 0.1109 0.1252 0.1373 0.1685 0.1992 0.2390 0.2701 0.3115 0.3525 0.3913 0.4323 0.4779 0.5188	0.0438 0.1369 0.1802 0.2113 0.2428 0.3107 0.3723 0.4585 0.5321 0.6057 0.6817 0.7593 0.8428 0.9275	- - - - - - - - - - - - - - - - - - -

COMPONENTS:			ORIGINAL MEASUREMENTS:
(l) Benzene; (2) Water; H	с ₆ н ₆ ; [71-4 ₂ 0; [7732-18	3-2] -5]	Franks, F.; Gent, M.; Johnson, H.H. J. Chem. Soc. <u>1963</u> , 2716-23.
VARIABLES:			PREPARED BY:
Temperature:	17 - 63°C		A. Maczynski and Z. Maczynska
EXPERIMENTAL VAL	UES:		
	Solu	bility of be	nzene in water
	T/K	$10^{4}x_{1}$	g(1)/100 g sln
			(compiler)
	290.2	3.95	0.171
	299.2	3.99	0.173
	302.2	4.02	0.174
	305.2	4.12	0.178
	313.7	4.39	0.190
	315.2	4.40	0.191
	319.2	4.43	0.198
	324.2	4.78	0.207
	329.2	5.03	0.218
	336.2	5.42	0.235
		AUXILIARY	INFORMATION
METHOD / APPARATUS	/PROCEDURE:		SOURCE AND PURITY OF MATERIALS:
The absorband tions of (2) directly at 2 500 spectroph	ce of satura in (1) were 254 nm on a notometer.	ted solu- measured Unicam S.P.	 (1) source not specified; thiophene- free; recrystallized twice from ethanol, washed, filtered through silica gel and distilled (2) deionized and doubly distilled from alkaline potassium permanganate and aqueous phosphoric acid.
			ESTIMATED ERROR:
			temp. ± 0.05 K absorbance ± 0.5%
			REFERENCES:
1			

37_95

COMPONENTS:		ORIGINAL MEASUREMENTS:
(1) Benzene; C	5 ^H 6; [71-43-2]	Guseva, A.N.; Parnov, E.I.
(2) Water; H ₂ 0;	; [7732-18-5]	Vestn. Mosk. Univ. Khim. <u>1963</u> , 18, 76-9.
VARIABLES:		PREPARED BY:
Temperature: 1	L53-254°C	A. Maczynski and Z. Maczynska
EXPERIMENTAL VALUES	5:	·
	Solubility o	f benzene in water
}	+ (% 0	
		$\frac{g \sin 10 x_1 (compiler)}{10 x_1 (compiler)}$
	153 1.283	2.978
	204 2.902	5.044 6.844
		9.000
	254 5.073	12.17
)		
	AUXILI	ARY INFORMATION
METHOD/APPARATUS/P	ROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The measurement	s were made in	(1) source not specified;
sealed glass tu	bes. No more de-	n_{20}^{20} 1.5011,
talls were repo	orted in the paper.	D (2) doubly distilled
-		(2) doubly distilled.
		ESTIMATED ERROR:
		Not specified.
		DEEEDENCUS.
		REFERENCES:

	57_70
COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Benzene; C ₆ H ₆ ; [71-43-2]	Jones, J.R.; Monk, C.B.
(2) Water; H ₂ O; [7732-18-5]	J. Chem. Soc. <u>1963</u> , 2633-5.
_	
VARIABLES:	PREPARED BY:
Temperature: 25-35°C	A. Maczynski, Z. Maczynska and A. Szafranski
EXPERIMENTAL VALUES:	
Solubility of wa	ter in benzene
t/°C	10 ⁴ mL(2)/mL(1)
	5.7
30	6.5
35	7.5
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
In a thermostattod glass_stonnord	(1) 'Analap' grade repurified by
flask 10-25 mL(1) was shaken for	conventional methods ref 1.
few mL of HTO equivalent to ca.	(2) not specified.
2 mCi/mL) and decanted. A 5-mL aliguot was reshaken for 4 hrs with	
5 mL H ₂ O in a 10-mL flask, sampled	
prises type 8301 liquid scintilla-	
tion counter. The two-stage process eliminates quenching effects (due to	
solvent) on the scintillator.	ESTIMATED ERROR: solv. 5% ± 1%
	(average deviation)
	REFERENCES:
	Chemistry', Longmans, Green
	and Co., London, 1956.

37 97

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Benzene; C ₆ H ₆ ; [71-43-2]	McAuliffe, C.
(2) Water; H ₂ O; [7732-18-5]	Nature (London) <u>1963</u> , 200, 1092-3. J. Phys. Chem. <u>1966</u> , 70, 1267-75.
VARIABLES:	PREPARED BY:
One temperature: 25°C	A. Maczynski and Z. Maczynska
EXPERIMENTAL VALUES:	
The solubility of benzene in water at to be 0.1780 g(1)/100 g sln. The corresponding mole fraction, x_1 , is 4.11 x 10 ⁻⁴ .	25°C was reported calculated by the compilers
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: The saturated solution of (1) in (2) was prepared by either shaking vigorously on a reciprocal shaker or stirring for several days with a magnetic stirrer. A 0.05 mL or 0.10 mL sample of the hydrocarbon-saturated water was injected directly into a gas liquid chromatograph.	SOURCE AND PURITY OF MATERIALS: (1) Phillips Petroleum Co.; 99+%; used as received. (2) distilled. ESTIMATED ERROR: temp. ± 1.5 K soly. 0.0045 (standard deviation of mean) REFERENCES:

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Benzene; C ₆ H ₆ ; [71-43-2]	Schatzberg, P.J.
(2) Water; H ₂ O; [7732-18-5]	J. Phys. Chem. <u>1963</u> , 67, 776-9.
-	
VARIABLES:	PREPARED BY:
One temperature: 20°C	A. Maczynski, Z. Maczynska and
	A. DZallanoki
EXPERIMENTAL VALUES:	
The solubility of water in benzene at	20°C was reported to be
532 mg(2)/kg(1).	
The corresponding mass percent and mo	le fraction calculated
by the compilers are 0.0532 g(2)/100	g sln and 2.30 x 10 \sim .
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
In a serum cap-sealed 4-oz. brown glass bottle immersed in a water	(1) Matheson, Coleman and Bell Chromatoguality reagent,
bath, (1) was saturated with (2)	99+ mole%; used as received.
sample was withdrawn with a silicone-	(2) distilled and deionized.
hydrophobized hypodermic syringe pushed about 2/3 of the way into the	
hydrocarbon liquid. Stabilized Karl	
of 1.0-1.3 mg(2)/mL was used to	
presence of methanol to a dead-stop	ESTIMATED ERROR:
matic titrimeter with a 5-mL micro-	temp. \pm 0.02 K soly. \pm 3 mg(2)/kg(1) (type of
buret.	error not specified).
	REFERENCES:

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Benzene; C ₆ H ₆ ; [71-43-2]	Udovenko, V.V.; Aleksandrova, L.P.
(2) Water; H ₂ O; [7732-18-5]	Zh. Fiz. Khim. <u>1963</u> , 37, 52-6.
VARIABLES:	PREPARED BY:
Temperature: 20-79.5°C	A. Maczynski and Z. Maczynska

I

EXPERIMENTAL VALUES:

	Solubility of benzene in	water
t/°C	g(1)/100 g sln	$\frac{10^4 x_1}{1}$ (compiler)
20.0	0.210	4.85
30.0	0.227	5.24
40.5	0.248	5.73
44.5	0.259	5.98
56.5	0.288	6.65
60.0	0.300	6.93
65.0	0.319	7.37
79.5	0.373	8.62

AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The polythermic method of Alekseev was used. No details were reported in the paper.	 source not specified; dried over metallic sodium, and distilled; n_D²⁰ 1.5013; d₄³⁰ 0.8661. not specified.
	ESTIMATED ERROR:
	not specified.
	REFERENCES :

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Benzene; C ₆ H ₆ ; [71-43-2]	Hoegfeldt, E.; Bolander, B.
(2) Water; H ₂ O; [7732-18-5]	Ark. Kemi <u>1964</u> , 21, 161-86.
-	
VARIABLES :	PREPARED BY:
One temperature: 25°C	A. Maczynski and Z. Maczynska
EXPERIMENTAL VALUES:	
The solubility of water in benzene w	as reported to be
$0.032 \text{ mol}(2) \text{ dm}^{-3} \text{ sln at } 25^{\circ}\text{C}.$	-
The corresponding mass percent and m	ol fraction, x., calculated
by the compilers are $0.066 q(2)/100$	$g \ sln \ and \ 2.9 \ x \ 10^{-3}.$
The assumption that $1 \text{ dm}^3 \text{ sin} = 874$	g sln was used in the calculation.
METHOD / AP PARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS
	SOURCE AND FURTH OF INTERIES.
The water determination was carried out according to	(1) source not specified, 0.04% of toluene; purity
Johansson's modification of the Karl Fischer titration	99.6%; used as received.
in ref 1, 2.	(2) not specified.
	ESTIMATED ERROR:
	soly. ± 0.001 mol(2) dm ⁻³ sln (type of error not specified)
1	REFERENCES:
	<pre>1. Hardy, C.J.; Greenfield, B.F.; Scargill, D.</pre>
	J. Chem. Soc. <u>1961</u> , 90. 2. Johansson, A.
	Sv. Papperstidn. <u>1947</u> , 11B, 124.

COMPONENTS	5:			ORIGINAL MEASUREMENTS:	
(1) Ber	nzene; C ₆ H	6; [71-43-2]	i i	Thompson, W.H.; Snyder	, J.R.
(2) Wat	er; H ₂ 0;	[7732-18-5]		J. Chem. Eng. Data 19	<u>964</u> , 9, 516-20.
VARIABLES	:			PREPARED BY:	
Tempera Pressur	ture: 37. e: 7 and	9-204.3°C 34.6 MPa		A. Maczynski, Z. Maczy A. Szafranski	ynska and
EXPERIMEN Mutual	TAL VALUES: Solubili	ty of benzer	ne and wat	er at 1000 psig (7 MPa	compiler)
t/°F (c	t/°C compiler)	$10^4 x_2$ (1)-rich phase	$10^{4}x_{1}$ (2)-ric phase	g(2)/100 g sln (compiler) (1)-rich_phase	g(l)/100 g sln (compiler) (2)-rich phase
99.9 99.9 100.1 100.3 101.0 101.5 160.3 218.0 219.0 280.0 280.0 280.3 281.0 339.3 340.0 340.3 341.0 396.3 397.3 398.0 399.0 399.7	37.7 37.8 37.9 38.3 38.6 71.2 103.3 103.8 137.8 137.9 138.3 170.7 170.7 171.1 171.3 171.7 202.4 202.9 203.3 203.9 204.3	41.6 41.8 46.6 48.7 42.1 43.3 124 274 558 - - - 1000 - - - 1770 - - -	4.33 4.61 4.54 4.34 4.60 6.63 9.84 8.56 14.3 18.6 41.6(a 42.7(a 44.2(a 46.5(a 36.0(a 85.3) 94.2(a 72.6 81.0	$\begin{array}{c} 0.0962\\ 0.0967\\ 0.1078\\ 0.1127\\ 0.0974\\ 0.1002\\ 0.289\\ -\\ 0.645\\ 1.344\\ -\\ -\\ -\\ 1) \\ -\\ 1) \\ 2.498\\ -\\ 1) \\ -\\ -\\ -\\ 1) \\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -$	0.187 0.200 0.197 0.188 0.199
(a) res	sults know	n to be high	h due to a	a high analytical blank	(continued)
			AUXILIARY	INFORMATION	
METHOD/AP	PARATUS/PRO	CEDURE :		SOURCE AND PURITY OF MATERI	ALS:
About were pl equilit install equipme gen, he with no then ro 3 hr to	70 mL each laced in a prium cell led in the eat, press eated and p agitatic ptated and p ensure of	n of (1) and high-press . The cell phase-conta surized with kept horizon on for min. 2 kept vertic complete phase	(2) ure was acting nitro- ntal 24 hr, cal for se sepa-	 (1) Phillips Petroleux grade, 99+ mole%; received. (2) distilled and red the absence of cas 	m Co.; pure used as istilled in rbon dioxide.
ration. (20 mL)	Each ph and the	ase was sam sample volu	pled me mea-		
sured under sured under sure sure sure sure sure sure sure su	under the 5. The (]	experimenta.	l con- e was	ESTIMATED ERROR:	
analyze method	ed for (2) and the	by the Kar (2)-rich pha	l Fischer se for	not specified.	
(l) via over Cu	a combusti 10, absorr	on at 1450- otion of CO ₂	1500°F and	DEFEDENCIS	
back-t	itration o	of NaOH.		NET ERENCED ;	

				ORIGINAL ILABOREILAID.	
(1) Be	nzene; C ₆ H	H ₆ ; [71-43-2]		Thompson, W.H.; Sn	yder, J.R.
(2) Wa	ter; H ₂ 0;	[7732-18-5]		J. Chem. Eng. Data 20.	<u>1964</u> , 9, 516-
Mutual	solubilit	cy of benzene	and water a	t 500 psig (34.6 M)	Pa compiler)
t/°F 	t/°C compiler)	$10^4 x_2$ (1)-rich phase	$10^4 x_1$ (2)-rich phase	g(2)/100 g sln (compiler) (1)-rich phase	g(l)/l00 g sln (compiler) (2)-rich phase
100.3	37.9	38.1	5.61	0.0881	0.243
159.7	70.9	-	8.95	- 0.25 <i>6</i>	0.387
160.3	/1.3 71 7	105	-	0.236	-
219.7	104.3	- 105	14.1	-	0.609
220.7	104.8	263	_	0.619	-
279.3	137.4	505	22.8	1.211	0.981
339.3	170.7	959	43.1	2.387	1.843
400.7	204.8	1530	98.3	3.998	4.13
459.7	237.6	4320	248	14.92	9.93
460.7					
460.7 Author	's smoothe	ed values of at	the mutual s 1000 psig (7	olubility of benzer MPa)	ne and water
460.7 Author t/°F	's smoothe t/°C	ed values of at $10^4 x_2$	the mutual s 1000 psig (7 $10^4 x_1$ (2)-rich	olubility of benzer MPa) g(2)/100 g sln	ne and water g(l)/l00 g sln
460.7 Author <i>t</i> /°F	's smoothe t/°C	ed values of at 10 ⁴ x2 (1)-rich phase	the mutual s 1000 psig (7 10 ⁴ x ₁ (2)-rich <u>phase</u>	olubility of benzer MPa) g(2)/100 g sln <u>(1)-rich phase</u>	ne and water g(l)/100 g sln <u>(2)-rich phase</u>
460.7 Author <i>t</i> /°F	's smoothe t/°C 38	ed values of at 10 ⁴ x ₂ (1)-rich phase 42.3	the mutual s 1000 psig (7 $10^4 x_1$ (2)-rich phase 4.46	olubility of benzer MPa) g(2)/100 g sln <u>(1)-rich phase</u> 0.0978	ne and water g(l)/l00 g sln <u>(2)-rich phase</u> 0.193
460.7 Author <i>t</i> /°F 100 160	's smoothe <i>t</i> /°C 38 71	ed values of at 10 ⁴ x ₂ (1)-rich phase 42.3 121	the mutual s 1000 psig (7 $10^4 x_1$ (2)-rich phase 4.46 6.65	olubility of benzer MPa) g(2)/100 g sln <u>(1)-rich phase</u> 0.0978 0.282	ne and water g(l)/100 g sln <u>(2)-rich phase</u> 0.193 0.288
460.7 Author <i>t</i> /°F 100 160 220	's smoothe <i>t</i> /°C 38 71 104	ed values of at $10^{4}x_{2}$ (1)-rich phase 42.3 121 274	the mutual s 1000 psig (7 $10^4 x_1$ (2)-rich phase 4.46 6.65 10.1	olubility of benzer MPa) g(2)/100 g sln <u>(1)-rich phase</u> 0.0978 0.282 0.645	ne and water g(l)/100 g sln <u>(2)-rich phase</u> 0.193 0.288 0.436
460.7 Author t/°F 100 160 220 280	's smoothe t/°C 38 71 104 138	ed values of at $10^{4}x_{2}$ (1)-rich phase 42.3 121 274 558	the mutual s 1000 psig (7 10 $^{4}x_{1}$ (2)-rich phase 4.46 6.65 10.1 18.6	olubility of benzer MPa) g(2)/100 g sln <u>(1)-rich phase</u> 0.0978 0.282 0.645 1.34	ne and water g(l)/100 g sln (2)-rich phase 0.193 0.288 0.436 0.801
460.7 Author t/°F 100 160 220 280 340 400	's smoothe t/°C 38 71 104 138 171 204	ed values of $10^{4}x_{2}$ (1) - rich <u>phase</u> 42.3 121 274 558 1000 1780	the mutual s 1000 psig (7 10 $^{4}x_{1}$ (2)-rich phase 4.46 6.65 10.1 18.6 36.0 82.0	olubility of benzer MPa) g(2)/100 g sln <u>(1)-rich phase</u> 0.0978 0.282 0.645 1.34 2.50 4.75	ne and water g(1)/100 g sln (2)-rich phase 0.193 0.288 0.436 0.801 1.54 3.46
460.7 Author t/°F 100 160 220 280 340 400 Author	's smoothe t/°C 38 71 104 138 171 204 's smoothe	ed values of at $10^{4}x_{2}$ (1)-rich phase 42.3 121 274 558 1000 1780	the mutual s 1000 psig (7 10 ⁴ x_1 (2)-rich phase 4.46 6.65 10.1 18.6 36.0 82.0 the mutual s	olubility of benzer MPa) g(2)/100 g sln <u>(1)-rich phase</u> 0.0978 0.282 0.645 1.34 2.50 4.75 olubility of benzer	ne and water g(1)/100 g sln (2)-rich phase 0.193 0.288 0.436 0.801 1.54 3.46 ne and water
460.7 Author t/°F 100 160 220 280 340 400 Author	's smoothe t/°C 38 71 104 138 171 204 's smoothe	ed values of at $10^{4}x_{2}$ (1)-rich phase 42.3 121 274 558 1000 1780 ed values of at	the mutual s 1000 psig (7 10 ⁴ x_1 (2)-rich phase 4.46 6.65 10.1 18.6 36.0 82.0 the mutual s 5000 psig (3	olubility of benzer MPa) g(2)/100 g sln (1)-rich phase 0.0978 0.282 0.645 1.34 2.50 4.75 olubility of benzer 4.6 MPa)	ne and water g(1)/100 g sln (2)-rich phase 0.193 0.288 0.436 0.801 1.54 3.46 ne and water
460.7 Author t/°F 100 160 220 280 340 400 Author t/°F	's smoothe t/°C 38 71 104 138 171 204 's smoothe t/°C	ed values of $10^{4}x_{2}$ (1)-rich <u>phase</u> 42.3 121 274 558 1000 1780 ed values of at $10^{4}x_{2}$ (1)-rich	the mutual s 1000 psig (7 10 ⁴ x_1 (2)-rich phase 4.46 6.65 10.1 18.6 36.0 82.0 the mutual s 5000 psig (3 10 ⁴ x_1 (2)-rich	olubility of benzer MPa) g(2)/100 g sln (1)-rich phase 0.0978 0.282 0.645 1.34 2.50 4.75 olubility of benzer 4.6 MPa) g(2)/100 g sln	he and water g(1)/100 g sln (2)-rich phase 0.193 0.288 0.436 0.801 1.54 3.46 he and water g(1)/100 g sln
460.7 Author t/°F 100 160 220 280 340 400 Author t/°F	's smoothe t/°C 38 71 104 138 171 204 's smoothe t/°C	ed values of at $10^{4}x_{2}$ (1)-rich phase 42.3 121 274 558 1000 1780 ed values of at $10^{4}x_{2}$ (1)-rich phase	the mutual s 1000 psig (7 10 ⁴ x_1 (2)-rich phase 4.46 6.65 10.1 18.6 36.0 82.0 the mutual s 5000 psig (3 10 ⁴ x_1 (2)-rich phase	olubility of benzer MPa) g(2)/100 g sln (1)-rich phase 0.0978 0.282 0.645 1.34 2.50 4.75 olubility of benzer 4.6 MPa) g(2)/100 g sln (1)-rich phase	he and water g(1)/100 g sln (2)-rich phase 0.193 0.288 0.436 0.801 1.54 3.46 he and water g(1)/100 g sln (2)-rich phase
460.7 Author t/°F 100 160 220 280 340 400 Author t/°F 100	's smoothe t/°C 38 71 104 138 171 204 's smoothe t/°C 38	ed values of at $10^{4}x_{2}$ (1)-rich <u>phase</u> 42.3 121 274 558 1000 1780 ed values of at $10^{4}x_{2}$ (1)-rich <u>phase</u> 38.1	the mutual s 1000 psig (7 10 ⁴ x_1 (2)-rich phase 4.46 6.65 10.1 18.6 36.0 82.0 the mutual s 5000 psig (3 10 ⁴ x_1 (2)-rich phase 5.61	olubility of benzer MPa) g(2)/100 g sln (1)-rich phase 0.0978 0.282 0.645 1.34 2.50 4.75 olubility of benzer 4.6 MPa) g(2)/100 g sln (1)-rich phase 0.0880	he and water g(1)/100 g sln (2)-rich phase 0.193 0.288 0.436 0.801 1.54 3.46 he and water g(1)/100 g sln (2)-rich phase 0.243
460.7 Author t/°F 100 160 220 280 340 400 Author t/°F 100 160	's smoothe t/°C 38 71 104 138 171 204 's smoothe t/°C 38 71	ed values of at $10^{4}x_{2}$ (1)-rich phase 42.3 121 274 558 1000 1780 ed values of at $10^{4}x_{2}$ (1)-rich phase 38.1 106	the mutual s 1000 psig (7 10 ⁴ x_1 (2)-rich phase 4.46 6.65 10.1 18.6 36.0 82.0 the mutual s 5000 psig (3 10 ⁴ x_1 (2)-rich phase 5.61 9.05	olubility of benzer MPa) g(2)/100 g sln (1)-rich phase 0.0978 0.282 0.645 1.34 2.50 4.75 olubility of benzer 4.6 MPa) g(2)/100 g sln (1)-rich phase 0.0880 0.246	he and water g(1)/100 g sln (2)-rich phase 0.193 0.288 0.436 0.801 1.54 3.46 he and water g(1)/100 g sln (2)-rich phase 0.243 0.392
460.7 Author t/°F 100 160 220 280 340 400 Author t/°F 100 160 220	's smoothe t/°C 38 71 104 138 171 204 's smoothe t/°C 38 71 104 138	ed values of at $10^{4}x_{2}$ (1)-rich <u>phase</u> 42.3 121 274 558 1000 1780 ed values of at $10^{4}x_{2}$ (1)-rich <u>phase</u> 38.1 106 245	the mutual s 1000 psig (7 10 ⁴ x_1 (2)-rich phase 4.46 6.65 10.1 18.6 36.0 82.0 the mutual s 5000 psig (3 10 ⁴ x_1 (2)-rich phase 5.61 9.05 14.1	olubility of benzer MPa) g(2)/100 g sln (1)-rich phase 0.0978 0.282 0.645 1.34 2.50 4.75 olubility of benzer 4.6 MPa) g(2)/100 g sln (1)-rich phase 0.0880 0.246 0.575	he and water g(1)/100 g sln (2)-rich phase 0.193 0.288 0.436 0.801 1.54 3.46 he and water g(1)/100 g sln (2)-rich phase 0.243 0.392 0.608
460.7 Author t/°F 100 160 220 280 340 400 Author t/°F 100 160 220 280 340	's smoothe t/°C 38 71 104 138 171 204 's smoothe t/°C 38 71 104 138 171 204	ed values of $10^{4}x_{2}$ (1)-rich <u>phase</u> 42.3 121 274 558 1000 1780 ed values of at $10^{4}x_{2}$ (1)-rich <u>phase</u> 38.1 106 245 500 905	the mutual s 1000 psig (7 10 ⁴ x_1 (2)-rich phase 4.46 6.65 10.1 18.6 36.0 82.0 the mutual s 5000 psig (3 10 ⁴ x_1 (2)-rich phase 5.61 9.05 14.1 22.8	olubility of benzer MPa) g(2)/100 g sln (1)-rich phase 0.0978 0.282 0.645 1.34 2.50 4.75 olubility of benzer 4.6 MPa) g(2)/100 g sln (1)-rich phase 0.0880 0.246 0.575 1.20 2.24	he and water g(1)/100 g sln (2)-rich phase 0.193 0.288 0.436 0.801 1.54 3.46 he and water g(1)/100 g sln (2)-rich phase 0.243 0.392 0.608 0.980 1.84
460.7 Author t/°F 100 160 220 280 340 400 Author t/°F 100 160 220 280 340 400	's smoothe t/°C 38 71 104 138 171 204 's smoothe t/°C 38 71 104 138 171 204	ed values of $10^{4}x_{2}$ (1) - rich <u>phase</u> 42.3 121 274 558 1000 1780 ed values of at $10^{4}x_{2}$ (1) - rich <u>phase</u> 38.1 106 245 500 905 1620	the mutual s 1000 psig (7 10 ⁴ x_1 (2)-rich phase 4.46 6.65 10.1 18.6 36.0 82.0 the mutual s 5000 psig (3 10 ⁴ x_1 (2)-rich phase 5.61 9.05 14.1 22.8 43.0 98.0	olubility of benzer MPa) g(2)/100 g sln (1)-rich phase 0.0978 0.282 0.645 1.34 2.50 4.75 olubility of benzer 4.6 MPa) g(2)/100 g sln (1)-rich phase 0.0880 0.246 0.575 1.20 2.24 4.45	ne and water g(1)/100 g sln (2)-rich phase 0.193 0.288 0.436 0.801 1.54 3.46 ne and water g(1)/100 g sln (2)-rich phase 0.243 0.392 0.608 0.980 1.84 4.11

COMPONENTS: (1) Benzene; C ₆ H ₆ ; [71-43-2] (2) Water; H ₂ O; [7732-18-5]	ORIGINAL MEASUREMENTS: Englin, B.A.; Plate, A.F.; Tugolukov, V.M.; Pryanishnikova, M.A. Khim. Tekhnol. Topl. Masel <u>1965</u> , 10, 42-6.
VARIABLES:	PREPARED BY:
Temperature: 0-50°C	A. Maczynski and Z. Maczynska

Solubility	of	water	in	benzene
------------	----	-------	----	---------

t/°C	g(2)/100 g sln	$10^{3}x_{2}$ (compiler)
0	0.03996	1.730
10	0.0446	1.93
20	0.0582	2.52
30	0.0749	3.24
40	0.0948	4.10
50	0.1177	5.09

,

AUXILIARY INFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
Component (1) was introduced into a thermostatted flask and saturated for 5 hr. with (2). Next, calcium hydride was added and the evolving hydrogen volume measured and hence the concentration of (2) in (1) was evaluated.	(1) not specified.(2) not specified.	
	ESTIMATED ERROR:	
	Not specified.	
	REFERENCES :	

COMPONENTS :			ORIGINAL MEASU	REMENTS :
(1) Benzene; C ₆ H ₆ ; [71-43-2]		Connolly, J	.F.	
(2) Water; H ₂ O; [7732-18-5]		J. Chem. En	g. Data <u>1966</u> , 11, 13-6.	
	-			
VARIABLES :			PREPARED BY:	
Temperature	260-30	00°C	A. Maczynsk	i and Z. Maczynska
Pressure:	100-800 a	itm		
EXPERIMENTAL V	ALUES:			
		Solubility of h	penzene in wate	r
t∕°C	p/atm	p/MPa	g(1)/100 g sln	<i>x</i> 1
}		(compiler)	-	(compiler)
260	100	10 1		0.0173
200	250	25.3	7.3	0.0178
	500	50.7	7.2	0.0176
201	800	81.1	6.6	0.0160
201	250	25.3	13.8	0.0355
	500	50.7	13.3	0.0342
207 5	600	60.8	12.7	0.0325
287.5	195	16./	17.2	0.0457
1	320	32.4	18.1	0.0485
	380	38.5	17.3	0.0460
295	735	74.5	13.9	0.0359
235	160	16.2	22.8	0.0488
}	185	18.7	27.0	0.0786
ļ	210	21.3	31.3	0.0951
	225	22.8	34.0	0.1062
	240	24.3	35.5	0.1126
	250	25.3	35.3	0.1117
	265	26.8	34.0	0.1062
1				(continued)
		AUXILIA	LEOURCE AND DUR	
MEINOD/AFFARAI	US/ PROCEDUR	(E :	SOURCE AND PUR	III OF MATERIALS:
Measurement	s were ca	rried out in	(1) Phillips	s reagent grade;
a 100 mL st	ainless-s	teel cell.	better	than 99.8%;
and brought	to tempe	rature. Mixing	useu as	received.
was started	was started and (1) was injected		(2) distille	ed and deaerated.
until either a cloud or a small				
at the top	at the top of the cell. Then mer-			
cury was in	jected to	change pres-		
sure, more	(1) was i	njected and the	2	
measurement	was repe	aleu.	ESTIMATED ERR	DR:
			temp. + 0.0	2 K
1			pressure ±	2 atm.
1			REFERENCES:	
1				
1				
1				

COMPONENTS :	ORIGINAL MEASUREMENTS:		
(1) Benzene; C ₆ H ₆ ; [71-43-2]	Connolly, J.F.		
(2) Water; H ₂ O; [7732-18-5]	J. Chem. Eng. Data <u>1966</u> , 11, 13-6.		

Solubility of benzene in water

t/°C	p/atm	p/MPa	g(l)/100 g sln	x1
		(compiler)		(compiler)
295	290	29.4	31.3	0.0951
	350	35.5	27.0	0.0786
	450	45.6	22.9	0.0641
	690	69.9	18.2	0.0488
300	145	14.7	22.8	0.0638
	155	15.7	27.3	0.0797
	160	16.2	30.9	0.0935
	160	16.2	34.3	0.1074
	165	16.7	37.5	0.1216
	165	16.7	40.0	0.1332
	160	16.2	43.0	0.1482
	160	16.2	46.1	0.1647
	490	49.6	56.0	0.2269
	480	48.6	52.5	0.2031
	470	47.6	49.5	0.1843
	470	47.6	46.1	0.1647
	470	47.6	43.0	0.1482
	470	47.6	40.0	0.1332
	480	48.6	37.5	0.1216
	490	49.6	34.3	0.1074
	505	51.2	31.0	0.0939
	555	56.2	27.3	0.0797
	665	67.4	22.9	0.0641

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Benzene; C ₆ H ₆ ; [71-43-2] (2) Water; H ₂ O; [7732-18-5]	Johnson, J.R.; Christian, S.D.; Affsprung, H.E. J. Chem. Soc. A. <u>1966</u> , 77-8.
VARIABLES: One temperature: 25°C	PREPARED BY: A. Maczynski and Z. Maczynska
EXPERIMENTAL VALUES: The solubility of water in benzene at 0.0349 mol(2)/dm ³ sln. The corresponding mass percent and multiply the compilers are 0.0719 g(2)/100 The compiler's calculation assumes a	t 25°C was reported to be ole fraction, x_2 , calculated g sln and 3.11 x 10 ⁻³ . solution density of 1.00 g mL ⁻¹ .
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: The apparatus described in ref 1 was used without modification. Samples were equilibrated in a constant-temperature water-bath maintained at 25 ± 0.1°C. Water solubilities were determined by using a Beckman Model KF-3 Aquameter.	 SOURCE AND PURITY OF MATERIALS: (1) source not specified; certified or reagent grade; distilled through a 30-plate Oldershaw column. (2) not specified.
	ESTIMATED ERROR: temp. ± 0.1 K soly. ± 0.0005 mol(2)dm ³ sln (type of error not specified) REFERENCES: 1. Christian, S.D.; Affsprung, H.E.; Johnson, J.R.; Worley, J.D. J. Chem. Educ. <u>1963</u> , 40, 419.

ORIGINAL MEASUREMENTS:
Masterton, W.L.; Gendrano, M.C.
J. Phys. Chem. <u>1966</u> , 70, 2895-8.
PREPARED BY:
A. Maczynski and Z. Maczynska
25°C was reported to be ple fraction, x_2 , calculated g sln and 3.09 x 10 ⁻³ . The n was used in the calculation.
INFORMATION
SOURCE AND PURITY OF MATERIALS:
 source not specified; free from thiophene; used as received. not specified.
ESTIMATED ERROR: temp. ± 0.05 K soly. 0.0002 mol(2) dm ⁻³ (mean deviation from duplicate <u>determinations</u>) REFERENCES:

COMPONENTS :			ORIGINAL MEASUREMENT	<u> </u>
(1) Benzene; C ₆ H ₆ ; [71-43-2]		Moule, D.C.; Thurston, W.M.		
(2) Water; H ₂ O; [7732-18-5]		Can. J. Chem.	<u>1966</u> , 44, 1361-7.	
	-			
VARIABLES:			PREPARED BY:	
Temperat	ure: 9.44-49.45°C		A. Maczynski	
EVDEDIMENTA				
EAF ENTREMIN				
	Solub	ility of wat	er in benzene	
<u>t/°C</u>	mg(2)/kg(1)	g(2)/100 g	sln (compiler)	$\frac{10^3 x_2}{2}$ (compiler)
9.44	442.5	0.0443		1.92
14.98	530.2	0.0530		2.30
20.10	639.2	0.0639		2.77
24.54	726.0	0.0726		3.14
29.52	848.0	0.0848		3.67
34.88	1017.1	0.102		4.40
40.06	1177.8	0.117		5.09
43.78	1333.7	0.133		5.76
49.45	1570.6	0.157		6.78
		AUXILIARY	INFORMATION	
METHOD/APPAR	RATUS/PROCEDURE:		SOURCE AND PURITY OF	
A method procedure volves th present i determine spectroso	based on an isoto was used. This he exchange of th in the sample wit ed by infrared di copy.	ope dilutior method in- e water h D ₂ O fference	 (1) Fischer Cert grade; disti dried over m (Linde No. 4) (2) from Ottawa (0.0146 mole distilled fr permanganate ESTIMATED ERROR: temp. ± 0.05 K soly. ± 0.8% (me determinat) REFERENCES: 	cified reagent illed twice and molecular sieve AA). River = % D ₂ O; com alkaline =). ean of three cions)

37_109	147
COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Benzene; C ₆ H ₆ ; [71-43-2] (2) Water; H ₂ O; [7732-18-5]	Taha, A.A.; Grigsby, R.D.; Johnson, J.R.; Christian, S.D.; Affsprung, H.E. J. Chem. Educ. <u>1966</u> , 43, 432-5.
One temperature: 25°C	G.T. Hefter
EXPERIMENTAL VALUES:	
The solubility of benzene in water at sln. The corresponding mass per cent calculated by the compiler are, assum L^{-1} , 0.16 g(l)/100 g sln and 4.0 x 10	25°C was reported as 0.022 mol/L and mole fraction solubility, x ₁ , uing a solution density of 1.00 kg -4 respectively.
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Solubility of (1) in (2) was deter- mined from vapor pressure measure- ments. 190 mL of pure water were placed in a glass manometric appara- tus of known vapor volume. The appa- ratus is described in detail in the paper. The apparatus was evacuated, benzene added (probably as a liquid), and the pressure measured.	 (1) Source and purity not specified. (2) Pure; purity not specified.
	LESTIMATED ERROR:
	Not specified.
	REFERENCES :

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Benzene; C ₆ H ₆ ; [71-43-2]	Alwani, Z.; Schneider, G.M.
(2) Water; H ₂ O; [7732-18-5]	Ber. Bunsenges. Phys. Chem. <u>1969</u> , 73, 294-301.
VARIABLES:	PREPARED BY:
Critical temperature and pressure	C.L. Young
EXPERIMENTAL VALUES:	
Values of Critical Tem	peratures and Pressures
т/°С т,	/K P/bar
339,5 613	2.7 2000
329,7 603	2.9 1600
320,2 59	3.4 1200
309,5 583	2.7 800
297,1 57	0.3 400
294,2 56	7.4 200
297,4 57	0.6 170
304,9 57	8.1 154
325,4 59	8.6 171
363,0 63	6.2 210
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Steel optical cell in large aluminum block furnace. Cell contents stirred by magnetically operated stirrer. Pressure measured using a movable piston and Boardon gauge. Temper- ature measured using a steel-sheathed thermocouple. Components charged into cell and one phase-two phase boundaries observed visually. Critical properties determined from boundary envelopes.	 (1) Analytical grade product fractionally distilled, purity 99.9 mole per cent. (2) Distilled and degassed.
	ESTIMATED ERROR:
	$\delta T/K = 0.4$ $\delta P/P = \pm 0.02$ (estimated by compiler)
	REFERENCES:

37_111

COMPONENTS	OPTCINAL MEASUREMENTS .
COMPONENTS:	ORIGINAL HEASUREHENIS:
(1) Benzene; C ₆ H ₆ ; [71-43-2]	Gregory, M.D.; Christian, S.D.; Affsprung, H.E.
(2) Water; H ₂ O; [7732-18-5]	
-	J. Phys. Chem. <u>1967</u> , 71, 2283-9.
I VADTABIES .	
One temperature: 35° C	rkeraked BI:
	A. Maczyński and Z. Maczyńska
EXPERIMENTAL VALUES:	
The solubility of water in benzene at	: 35°C was reported to be
$0.0465 \text{ mol}(2) \text{ dm}^{-3} \text{ sln}.$,
m 1	
The corresponding mass percent and mo	ole fraction, x_2 , calculated
by the compilers are 0.0970 g(2)/100	g sln and 4.19 x 10 °.
The assumption that $1 \text{ dm}^3 \text{ sln} = 863 \text{ c}$	sln was used in the calculation.
	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
A solution of (2) in (1) was ob-	(1) source not specified reagent
tained using solute isopiestic	grade; fractionally distilled
equilibrator described in ref 1.	using a 30-plate Oldershaw,
Water concentration was determined	
the Karl Fischer analysis.	(2) not specified.
	ESTIMATED ERROR:
	cemp. I 0.05 K
	DEFEDENCES .
	LEFERENCES:
	H.E.; Johnson, J.R.: Warley.
	J.D. J. Chem. Educ. 1963,
	40, 419.

COMPONENTS:			ORIGINAL	MEASUREMENTS:	
(1) Benzene;	C ₆ H ₆ ; [71-43-2]		0'Grad	ly, т.м.	
(2) Water; H	2 ^{0;} [7732-18-5]		J. Che	em. Eng. Data	<u>1967</u> , <i>12</i> , 9-12.
VARIABLES:			P REPARED) BY:	
Temperature: Pressure: 36	288 and 293°C 00 psig (24.9 MP	a)	A. Mac	zynski	
EXPERIMENTAL VAL	UES:				
	Solubili	ty of ben	zene in	water	
t/°F t/°	C p/psig	p/MPa (compil	er)	(1)/100 g sln	x1 (compiler)
550 28	8 3600	24.9		19.0	0.0513
560 29	3 3600	24.9		26.3	0.0751
}	Solubili	ty of wat	er in b	oenzene	
t/°F t/°	C p/psig	p/MPa (compil	er) g	(1)/100 g sln	x2 (compiler)
550 28	B 3600	24.9		32.6	0.677
560 29	3 3600	24.9		41.0	0.751
1		AUXILIARY	INFORMAT	ION	
METHOD/APPARATUS	/PROCEDURE:		SOURCE A	ND PURITY OF MAT	ERIALS:
Measured amo known compos the extracto 2 hours. Th to settle for the contents minute) disp sure with me collected in with 0.1 mL (1) - (2) con	unts of (1) and ition were pumper and mixed for phases were all r about 2 hours; were slowly (1. laced at constant rcury. The produce 2-5 mL cuts in b subdivisions. The position could	(2) of d into l or lowed then 5 mL per t pres- uct was burets he be read	(1) Ph le us (2) di	aillips researd ess than 0.2% ed as received stilled.	ch grade; impurities; 1.
directly.			ESTIMATE	ED ERROR:	
			temp. pressu soly.	± 0.1°F are ± 10 psi ± 0.02 mL(2)	
			REFERENC	CES:	

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Benzene; C ₆ H _c ; [71-43-2]	Worley, J.D.
(2) Water; H ₂ O; [7732-18-5]	Can. J. Chem. <u>1967</u> , 45, 2465-7.
VARIABLES:	PREPARED BY:
One temperature: 25°C	A. Maczynski
EXPERIMENTAL VALUES:	
The solubility of benzene in water at $2 17 \sigma(1) dm^{-3}$ alm	25°C was reported to be
2.17 g(1) am sin.	lo fraction m values
calculated by the compiler are 0.217	a(1)/100 g slp and 5 01 x 10 ⁻⁴ .
The compiler's calculation assumes a	solution density of 1.00 g mL^{-1} .
The compiler a calculation assumes a	solution density of 1.00 g min .
1	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The isotopic solute transfer tech- nique of Christian <i>et al.</i> (refs 1,	<pre>(1) source not specified; reagent grade; used as received.</pre>
This method consists of vapor phase	(2) distilled.
equilibrations of water with solu- tions of benzene-dinonvlphthalate	
in closed containers. The benzene	
with a Cary 14 spectrophotometer.	
	LESTIMATED ERROR
	temp. ± 0.2 K
	• • • • • • • •
	REFERENCES:
	Educ. 1963, 40, 419.
	2. Christian, S.D.; Affsprung, H.E.;
	<u>1963</u> , 1896.

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Benzene; C ₆ H ₆ ; [71-43-2] (2) Water; H ₂ O; [7732-18-5]	Burd, S.D.Jr.; Braun, W.G. Proc. Div. Refining., Am. Petrol. Inst. <u>1968</u> , 48, 464-76.
VARIABLES: Temperature: 359 - 473 K Pressure: 0.17 - 2.76 MPa	PREPARED BY: A. Maczynski

		Solubility o	f water in be	enzene	
p/psia	p/MPa (compiler)	t/°F	T/K (compiler)	g(2)/100 g sln	^x 2 (compiler)
25	0.17	187	359	0.33	0.014
50	0.34	233	385	0.63	0.027
100	0.69	283	413	1.08	0.045
150	1.03	321	434	1.54	0.064
200	1.38	337	443	1.75	0.072
250	1.72	356	453	2.08	0.084
300	2.07	371	461	2.25	0.091
350	2.41	385	469	2.60	0.104
400	2.76	392	473	2.80	0.111

AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The measurements were carried out in the autoclave for vapor-liquid equilibrium determination. The solubility points were obtained by incremental addition of (2) followed by stirring, settling, sampling and analysis. This procedure was con- tinued until addition of water resulted in no pressure increase, indicating three-phase conditions.	 (1) Phillips Petroleum Co.; 99.0% by glc; used as received. (2) distilled
The samples were analyzed by glc.	ESTIMATED ERROR:
	temp. ± 0.5°F.
	soly. ± 0.004 g(2)/100 g sln.
	REFERENCES:

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Benzene; C ₆ H ₆ ; [71-43-2]	Roddy, J.W.; Coleman, C.F.
(2) Water; H ₂ O; [7732-18-5]	Talanta <u>1968</u> , 15,1281-6.
VARIABLES:	PREPARED BY:
One temperature: 25°C	A. Maczynski and Z. Maczynska
The solubility of water in benzene at $x_2 = 3.23 \times 10^{-3}$ and 0.0363 mol(2) dm The corresponding mass percent value is 0.0747 g(2)/100 g sln.	25°C was reported to be - ³ sln. calculated by the compilers
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
A method for measuring the solu- bility of (2) in (1) was based on the use of tritium tracer to monitor the recovery of (2) in a conventional gravimetric method and to measure tritium distribu- tion between the aqueous and the organic phases.	 source not specified; thiophene free reagent; recrystallized three times. HTO at 5 Ci/mL, New England Corp.; diluted to about 1 mCi/mL.
	ESTIMATED ERROR:
	<pre>soly. better than 1% (type of error not specified).</pre>
	REFERENCES :

154

COMP ONENTS :	ORIGINAL MEASUREMENTS:
(1) Benzene; C ₆ H ₆ ; [71-43-2]	Corby, T.C.; Elworthy, P.H.
(2) Water; H ₂ O; [7732-18-5]	J. Pharm. Pharmacol. <u>1971</u> , 23 suppl. 39 S-48 S.
VARIABLES:	PREPARED BY:
One temperature: 20°C	A. Maczynski and Z. Maczynska
EXPERIMENTAL VALUES:	
The solubility of benzene in water at 0.0218 mol dm ⁻³ sln.	20°C was reported to be
The corresponding mass percent and mo	le fraction, <i>m</i> , calculated by
the compilers are $0.170 \text{ g}(1)/100 \text{ g sl}$	n and 3.9×10^{-4} .
The compiler's calculation assumes a	solution density of 1.00 g m^{-1}
The comprise is carculation assumes a	solution density of 1.00 g min .
	1
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
A small excess of (1) was equili-	(1) W. Jarvie Ltd., cyrstalizable;
until saturation was attained. The	n ¹⁸ 1 5028
saturated aqueous phase was analysed by ultraviolet spectrophotometry.	"D 1.5028.
	(2) distilled once from glass.
	ESTIMATED ERROR:
	Not specified
	REFERENCES :
}	

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Benzene; C ₆ H ₆ ; [71-43-2] (2) Water; H ₂ O; [7732-18-5]	<pre>Pierotti, R.A.; Liabastre, A.A. "Structure and properties of water solutions." U.S. Nat. Tech. Inform. Serv., PB Rep., <u>1972</u>, No. 21163, 113 p.</pre>
VARIABLES:	PREPARED BY:
Temperature: 278.26-318.36 K	M.C. Haulait-Pirson

Solubility	of	benzene	in	water
------------	----	---------	----	-------

T/K $g(1)/100 \ g \ sln$ $10^3 x_1$ 278.26 0.2071 ± 0.0052 0.4776 288.06 0.2078 ± 0.0055 0.4792 293.06 0.2085 ± 0.0040 0.4809 298.16 0.2088 ± 0.0038 0.4815 308.26 0.2102 ± 0.0046 0.4848 318.86 0.2300 ± 0.0054 0.5304		Solubility of benzene	in water
278.260.2071 ± 0.00520.4776288.060.2078 ± 0.00550.4792293.060.2085 ± 0.00400.4809298.160.2088 ± 0.00380.4815308.260.2102 ± 0.00460.4848318.860.2300 ± 0.00540.5304	<i>T</i> / K	g(l)/100 g sln	$\frac{10^3 x_1}{10^3 x_1}$
288.06 0.2078 ± 0.0055 0.4792 293.06 0.2085 ± 0.0040 0.4809 298.16 0.2088 ± 0.0038 0.4815 308.26 0.2102 ± 0.0046 0.4848 318.86 0.2300 ± 0.0054 0.5304	278.26	0.2071 ± 0.0052	0.4776
293.060.2085 ± 0.00400.4809298.160.2088 ± 0.00380.4815308.260.2102 ± 0.00460.4848318.860.2300 ± 0.00540.5304	288.06	0.2078 ± 0.0055	0.4792
298.16 0.2088 ± 0.0038 0.4815 308.26 0.2102 ± 0.0046 0.4848 318.86 0.2300 ± 0.0054 0.5304	293.06	0.2085 ± 0.0040	0.4809
308.260.2102 ± 0.00460.4848318.860.2300 ± 0.00540.5304	298.16	0.2088 ± 0.0038	0.4815
318.86 0.2300 ± 0.0054 0.5304	308.26	0.2102 ± 0.0046	0.4848
	318.86	0.2300 ± 0.0054	0.5304

AUXILIARY INFORMATION		
METHOD/APPARATUS/PROCEDURE: 10 mL of (2) were placed along with 4-10 drops of (1) in 10 ml serum bottles, which were then tightly capped, and placed in the rotating basket and rotated for 24 hours. The bottles were then hand shaken to remove (1) droplets from the stoppers and then replaced in the bath with the tops down for an additional 24 hours. The solute concentrations were determined by use of a flame-ionization gas chromatograph. Many details about equipment, operating conditions and calculation are given in the paper.	 SOURCE AND PURITY OF MATERIALS: (1) Matheson, Coleman & Bell; Chromatoquality; 99+mole%; used as received. (2) laboratory distilled water. 	
	soly.: standard deviation from at least 15 measurements are given above.	
	REFERENCES:	

	_
COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Benzene; C ₆ H ₆ ; [71-43-2]	Ben-Naim, A.; Wilf, J.; Yaacobi, M.
(2) Water; H ₂ O; [7732-18-5]	J. Phys. Chem. 1973, 77, 95-102.
VARIABLES:	PREPARED BY:
Temperature: 10-50°C	G.T. Hefter
EXPERIMENTAL VALUES:	
The solubility of benzene in water is	expressed in terms of the standard
free energy of solution; $\Delta \mu_{s}$, determin	ed as:
$\Delta \mu_{S}^{\circ} = \lim_{\rho_{s} \to 0} \left[-RT \ln(\rho_{S}^{\ell}/\rho_{S}^{g})\right]$	eď]
where (ρ^{ℓ}/ρ^{g}) is the Ostwald absorp	tion coefficient and o^{ℓ} and o^{g} are
respectively the molar concentrations	of the solute s in the liquid and
the gas phase at equilibrium.	
For the temperature range studied, $\Delta \mu_{S}^{o}$ was fitted to a second degree poly-	
nomial of the form:	
$\Delta \mu_{\rm S}^{\circ} = -9536.2 + 37.122 t - 0.02666 t^2$	
where t is in °C (10 < t < 50°C) and $\Delta \mu_{g}^{\circ}$ is in cal/mol (1 cal = 4.184 J).	
Values of the Ostwald absorption coefficient are also reported.	
AUXILIARY INFORMATION	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS :
Solubilities were determined spec- troscopically. Saturated solutions	(1) Fluka; puriss, 99.94%, used as received.
were prepared in two ways: (a) dir- ect mixing of benzene and water for	(2) Distilled water, further dis-
ca. 48 h, (b) dissolution of benzene	tilled from alk. KMnO4 and acid
of the solutions and their vapors	$R_2 C_2 C_7$, k, 0.8 x 10 - 5 cm
were measured directly at λ_{max} with a Model 450 Perkin-Elmer spectro-	
photometer with a thermostatted cell holder. Establishment of equilibrium	
was checked by use of a special three	ESTIMATED ERROR:
are given in the paper.	Temperature: ±0,05 K
	Solubility: std. dev. in Δμ [°] _S , 8.788 cal/mol
	REFERENCES :

37_	119
-----	-----

COMPONENTS :	ORIGINAL MEASUREMENTS:	
(1) Benzene; C ₆ H ₆ ; [71-43-2]	Bradley, R.S.; Dew, M.J.; Munro, D.C.	
(2) Water; H ₂ O; [7732-18-5]	High Temp. High Press. <u>1973</u> , 5 169-76.	
VARIABLES:	PREPARED BY:	
Temperature: 25-55°C Pressure: 1-1200 bar	G.T. Hefter	
EXPERIMENTAL VALUES:		
Solubility of h	penzene in water	
t/°C p/bar ⁰ mol/L sln	$ \underbrace{ \begin{array}{c} g(1)/100g \ \text{sln}^{a} & 10^{4}x_{1}^{a} \\ (\text{compiler}) & (\text{compiler}) \end{array} }_{(\text{compiler})} $	
25 1 0.0234	0.183 4.21	
45 I 0.0277	0.216 4.99	
45 625 0.0268	0.209 4.82	
55 625 0.0326	0.254 5.87	
^a Assuming a solution density of 1.00kg	g/L at all temperatures and pressures.	
^b 1 bar = 0.1 MPa exactly.		
Data at other pressures are presented	in graphical form Data are also	
presented for the solubility of (1) in	aqueous solutions of AgNO ₃ and KNO ₃	
at various temperatures and pressures.	,	
AUXILIARY INFORMATION		
METHOD / APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:	
The solubility of (1) in (2) at	(1) A.R. grade, thiophene-free,	
room temperature and pressure was determined in a stoppered lmm silica	no further details given.	
cuvette placed in a Unicam SP500	(2) Distilled, air-free	
spectrophotometer and stirred		
magnetically. Measurements were made until a constant concentration		
was reached. The value was cross-		
checked against a 2-L sample of		
equilibrated for some months.		
Solubilities at higher temperatures	ESTIMATED ERROR:	
and pressures were similarly	Not specified	
determined in a special cell fitted		
into the spectrophotometer. Many details of the apparatus are given		
in the paper.	REFERENCES :	

158

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Benzene; $C_{6}H_{6}$; [/1-43-2]	Filyas, Yu.I.
(2) Water; H ₂ O; [7732-18-5]	Sb. Nauch. Tr. Vses. Neftegazov. NauchIssled. Inst. <u>1973</u> , 45, 68-70.
VARIABLES :	PREPARED BY:
One temperature: 295°C One pressure: 10 atm	A. Maczynski
EXPERIMENTAL VALUES:	
The solubility of water in benzene at to be $0.318 g(2)/g(1)$.	295°C and 10 atm was reported
The corresponding mass percent and mo	ble fraction, x_2 , calculated by
the compiler are 24.1 g(2)/100 g sln	and 0.580 at 1.01 MPa.
{	
[
AUXILIARY	INFORMATION
METHOD / APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
Nothing is specified in the paper	(1) not exception
Nothing is specified in the paper	(i) Not specified.
	(2) not specified.
	ESTIMATED ERROR:
1	Not specified.
	REFERENCES:

37	121

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Benzene; C ₆ H ₆ ; [71-43-2] (2) Water; H ₂ O; [7732-18-5]	Karisson, R. J. Chem. Eng. Data <u>1973</u> , 18, 290-2.
VARIABLES:	PREPARED BY:
Temperature: 14-35°C	A. Maczynski, Z. Maczynska and A. Szafranski

Solubility of water in benzene			
t/°C	mg(2)/kg(1)	10 ² g(2)/100 g sln (c	ompiler) $10^3 x_2$ (compiler)
14.97	533.0	5.33	2.31
17.94	591.3	5.91	2.56
20.05	631.4	6.31	3.74
22.95	686.7	6.87	2.98
24.90	724.8	7.24	3.14
27.97	803.2	8.03	3.14
29.95	853.5	8.53	3.70
31.96	915.8	9.16	3.97
35.06	1021.1	10.21	4.43

AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The determination of the solubility of (2) in (1) was based on an accu- rate method for determining small amounts of water via coulometrically generated iodine at a controlled potential in a Karl Fischer reagent as described in ref(1,2). Two 100-mL Erlenmeyer flasks, each con- taining 10 mL of (2) and 40 mL of (1), were placed in a water bath. The temperatures were measured with a platinum resistance thermometer. When equilibrium was reached, samples were withdrawn from the benzene phase with a dried Agla microsyringe and immediately added through a membrane to the electrolysis cell.	 (1) Fisher Scientific Co., thiophene-free; twice recrystallized. (2) twice distilled.
	ESTIMATED ERROR: temp. ± 0.3 K soly. ± 0.3% (type of error not specified).
	REFERENCES:
	 Karisson, R. Talanta <u>1972</u>, 19, 1639.
	2. Karisson, R.; Karrman, K.J. <i>Talanta</i> <u>1951</u> , <i>18</i> , 459.

COMPONENTS :	ORIGINAL MEASUREMENTS:			
(1) Benzene; C ₆ H ₆ ; [71-43-2]	Leinonen, P.J.; Mackay, D.			
(2) Water; H ₂ O; [7732-18-5]	Can. J. Chem. Eng. <u>1973</u> , 51, 230-3.			
-				
VARIABLES:	PREPARED BY:			
One temperature: 25°C	A. Maczynski, Z. Maczynska, and A. Szafranski			
EXPERIMENTAL VALUES:				
The solubility of benzene in water at	25°C was reported to be			
$1765 \text{ mg}(1) \text{ dm}^{-3} \text{ sln.}$				
The corresponding mass percent and mo	ble fraction, x_1 , calculated			
by the compilers are 0.1765 g(1)/100	g sln and 4.07×10^{-4} .			
The compiler's calculation assumes a	solution density of 1.000 g mL ⁻¹ .			
AUXILIARY	INFORMATION			
METHOD / APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:			
	SOURCE AND TORITY OF INTERIALS.			
A mixture of (1) and (2) was equi-	(1) Phillips Petroleum Co.			
of 12 hrs in a 200-mL Teflon-	used as received.			
stoppered vessel (25 cm long and	(2) doubly distilled			
allowed to settle for 6 hrs and	(2) doubly distilled.			
tested for the absence of emulsion (Typdall effect). The aqueous and				
organic phases were analyzed by glc				
(with internal standardization) on a Hewlett-Packard Model 700 instru-				
ment equipped with a 15% SE-30 on	ESTIMATED ERROR:			
60/80 mesh acid-washed (CH3) ₂ Cl ₂ Si- treated Chromosorb P column (steel	temp. ± 0.1 K			
capillary 10 ft x 0.125 inch). The	deviations)			
(1) In the aqueous phase was extracted into 5 ml of heptane and				
the extract analyzed by glc.	REFERENCED :			
COMPONENTS:		ORIGINAL MEASUREMENTS:		
---	-------------	--	---	--------------------------
(1) Benzene; C ₆ H ₆ ; [71-43-2]		Polak, J.; Lu, B.CY.		
(2) Water; H ₂ O; [7732-18-5]		Can. J. Chem.	<u>1973</u> , <i>51</i> , 4018-23.	
-				
VARIABLES:			PREPARED BY:	
Temperature	: 0-25°C		A. Maczynski and Z. Maczynska	
EXPERIMENTAL V	ALUES:			
	Solubility	of ber	nzene in water	
t/°C	mg(l)/kg(2)	g (])/100 g sln (compiler)	$10^{4}x_{1}$ (compiler)
0†(a)	1678(c)		0.167	3.87
25 (b)	1755(c)		0.175	4.05
			on in honsons	
Solubility of wat			103	
±/°C	mg(2)/kg(1)	g (2	(compiler)	(compiler)
0‡(a)	302 (d)	0.030 1.31		1.31
25 (b)	692(e)	0.069 2.99		2.99
	AU	XILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE:		SOURCE AND PURITY	OF MATERIALS:	
Approximately 50 mL of (1) together with (2) were placed in a 125 mL Hypo-vial which was closed with a teflon coated rubber septum and placed in a constant-temperature water bath. The system was stirred magnetically for 24 hr and left in the bath for 3 days or was kept in the bath without stirring for 7 days, before samples were taken for analysis. The solubility of water in the organic layer was determined by Karl Fischer titration and the solubility of hydrocarbon in the water layer was determined by gas chromatography.		 (1) Phillips F pure grade shaken thr distilled (2) distilled. 	Petroleum Co.; e reagent (99+%); ree times with water.	
		ESTIMATED ERROR: temp. (a) ± 0.02 K, (b) ± 0.01 K soly. (c) ± 1.7%, (d) ± 4.7%, (e) ± 3.1% (from two or three determinations) REFERENCES:		

COMPONENTS:	ORIGINAL MEASUREMENTS:	
(1) Benzene; C ₆ H ₆ ; [71-43-2]	Brown, R.L.; Wasik, S.P.	
(2) Water; H ₂ O; [7732-18-5]	J. Res. Natl. Bur. Stds. A. <u>1974</u> , 78, 453-60.	
VARIABLES:	PREPARED BY:	
Temperature: 4.5-20.1°C	G.T. Hefter	
EXPERIMENTAL VALUES:		
Solubility of Be	nzene in Water	
<i>t/°C</i> g(1)/100 g sln	10 ⁴ x ₁ (compiler)	
4.5 0.184 0.0033	4.25	
6.3 0.185 0.0033	4.27	
7.1 0.181 0.0055	4.18	
9.0 0.181 0.0034	4.18	
11.8 0.177 0.0041	4.09	
12.1 0.177 0.0035	4.09	
15.1 0.179 0.0038	4.14	
	4.14	
AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
Solubilities were calculated from partition coefficient measurements for the hydrocarbon between an acueous solution and its vapor using	(1) 99,99 mole per cent purity; source and methods of purifis cation not specified.	
headspace chromatography.	(2) Distilled.	
The apparatus and the method of ob- taining the partition coefficients are described in detail in the paper. The hydrocarbon was introduced as a vapor (to avoid emulsification) into a glass equilibration cell contain-		
ing about 45 cm ³ of water. The vapor	ESTIMATED ERROR:	
was subsequently analysed by gas chromatography using He as the car-	remperature: ±0.01 K	
rier. Possible sources of error are discussed in detail although the	Solubility: see Table above	
source of vapor pressure data used to calculate solubilities are not given.	REFERENCES :	
	l	

37_125

COMPONENTS :	ORIGINAL MEASUREMENTS:	
(1) Benzene; C ₆ H ₆ ; [71-43-2]	Goldman, S.	
(2) Water; H ₂ O; [7732-18-5]	Can. J. Chem. <u>1974</u> , 52, 1668-80.	
VARIABLES:	PREPARED BY:	
Temperature: 10-40°C	A. Maczynski, Z. Maczynska and	
	A. Szallanski	
EXPERIMENTAL VALUES:		
Solubility of w	vater in benzene	
	$g(2)/100 g sln 10^3 x_2$	
$\frac{t/^{\circ}C}{mol(2) \text{ dm}^{-3} \text{ sln}}$	(compiler) (compiler)	
	0.0440 1.91	
20 0.03017	0.0618 2.67	
30 0.03950	0.0725 3.14 0.0820 3.55	
35 0.04690	0.0979 4.23	
AUXILIARY INFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
In a 175-mL milk-dilution bottle fitted with a bakelite screw cap and a Teflon insert and rotated end-over-end at 20 min ⁻¹ , (1) was equilibrated with an excess of (2) at 25 ± 0.02°C, sampled (5 mL ± 0.2%) with Hamilton syringes and titrated in an Aquatest II auto- matic Karl Fischer Titrator.	 (1) certified grade; washed successively with conc. H₂SO₄, H₂O, 1N NaOH, H₂O, dried with silica gel, and distilled; d₄²⁵ 0.87365, (2) distilled. 	
	ESTIMATED ERROR: temp. ± 0.02 K	
	soly. 0.00039 (st. dev.)	
	REFERENCES:	

COMPONENTS:	ORIGINAL MEASUREMENTS:	
(1) Benzene; C ₆ H ₆ ; [71-43-2]	Krasnoshchekova, R.Ya.; Gubergrits, M.Ya.	
(2) Water; H ₂ O; [7732-18-5]	Vodnye. Resursy. <u>1975</u> , 2, 170-3.	
VARIABLES:	PREPARED BY:	
One temperature: 25°C	A. Maczynski	
EXPERIMENTAL VALUES:		
The solubility of benzene in water at be 1.000 mg(1) cm ⁻³ sln. The corresponding mass percent and mo by the compiler are 0.1000 g (1)/100 The compiler's calculation assumes a	2 25°C was reported to the fraction, x_1 , calculated g sln and 2.305 x 10 ⁻⁴ . solution density of 1.000 g mL ⁻¹ .	
AUXILIARY INFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
The solubility of (1) in (2) was determined by glc. A Czech-made Chrom-2 chromatograph was used, equipped with a 5% Apiezon L/Chromosorb G column operated at 90-140°C.	(1) described in ref 1.(2) distilled.	
	ESTIMATED ERROR:	
	temp. ± 1 K	
	REFERENCES: 1. Kresnoshchekova, P.Ya.; Gubergrits, M.Ya. Neftekhimiya <u>1973</u> , 13, 885.	

COMPONENTS :	ORTGINAL MEASUREMENTS .	
(1) Benzene: $(H \cdot [7] - 43 - 2)$	Mackay, D. Shin, W.Y.	
(1) benzene, C_{6}^{-16} , [71-43-2]		
(2) Water; H_20 ; [7732-18-5]	239-41.	
L VARTABLES:	DDEDADEN BV.	
One temperature: 25°C	M.C. Haulait-Pirson	
EXPERIMENTAL VALUES:		
The solubility of benzene in water at 1.7795 g(1) dm ⁻³ .	: 25°C was reported to be	
The corresponding mass percent and mo	ble fraction, x_{i} , calculated	
by the compiler are $0.178 g(1)/100 g$	sln and 4.11 $\times 10^{-4}$.	
AUXILIARY INFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
Solubility of (1) in (2) was deter- mined by gas chromatography. The gas chromatograph was Hewlett- Packard Model 5750 equipped with a hydrogen flame ionization detector. Many details were given in the paper.	<pre>(1) Phillips Petroleum Co., research grade; 99.9+%; used as received.</pre>	
	(2) not specified.	
	ESTIMATED ERROR:	
	temp. \pm 0.1 K soly. \pm 0.0164 g(1) dm ³	
	REFERENCES :	
1		

37 129

COMPONENTS :	ORIGINAL MEASUREMENTS:		
(1) Benzene; C ₆ H ₆ ; [77-43-2]	Budantseva, L.S.; Lesteva, T.M.; Nemstov, M.S.		
(2) Water; H ₂ O; [7732-18-5]	Zh. Fiz. Khim. <u>1976</u> , 50, 1344. Deposited doc. <u>1976</u> , VINITI 438-76		
VARIABLES:	PREPARED BY:		
One temperature: 20°C	A. Maczynski		
EXPERIMENTAL VALUES:			
The solubility of benzene in water at 20°C was reported to be $x_1 = 4 \times 10^{-4}$. The corresponding mass percent calculated by the compiler is 0.17 g(1)/100 g sln.			
The solubility of water in benzene at 20°C was reported to be $m = 0.0026$			
2 The corresponding mass percent calcu 0.060 g(2)/100 g sln.	alated by the compiler is		
AUXILIARY INFORMATION			
I METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:		
The solubility of (1) in (2) was determined by glc. The solubility of (2) in (1) was determined by Karl Fischer reagent method.	 (1) source not specified; pure or analytical reagent grade; purity <99.9%. (2) not specified. 		
	ESTIMATED ERROR: not specified. REFERENCES:		

168	37_130
COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Benzene; C ₆ H ₆ ; [71-43-2]	Kirchnerova, J.; Cave, G.C.B.
(2) Water; H ₂ O; [7732-18-5]	Can. J. Chem. <u>1976</u> , 54, 3909-16.
VARIABLES:	PREPARED BY:
One temperature: 25°C	A. Maczynski and Z. Maczynska
EXPERIMENTAL VALUES:	
The solubility of water in benzene at -3 - -3	25°C was reported to be
0.0349 mol(2) dm - sin. The correspondence of the comparison of th	onding mass percent and mole
and 3.11 x 10^{-3} .	(1915 ale 0.0/13 g(2//100 g 310
The assumption that 1 dm ³ sln = 874 q	g sln was used in the calculation.
-	,
1	
I	
	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
placed in the equilibration vessel.	double crystallization;
A test tube containing 6 mL or (2) was then placed in the vessel so	d_4^{25} 0.87378.
that the rim of the test tube rested against the upper inside	(2) not specified.
wall of the vessel. The vessel was then stoppered, placed inside a	
plastic bag, and the jacketed	
neck in a water thermostat. Trials	
concentration of (1) in (2) became	ESTIMATED ERROR:
constant within 2 days. The stoichiometric concentration	temp. ± 0.1 K soly. 0.0002 mol(2) dm ⁻³ sln
of water was determined by a conventional Karl Fischer dead-	(standard deviation from 5 determinations).
stop back-titration.	REFERENCES :
1	

37_131

COMPONENTS:	ORIGINAL MEASUREMENTS:	
(1) Benzene; C ₆ H ₆ ; [71-43-2]	Price, L.C.	
(2) Water; H ₂ O; [7732-18-5]	Am. Assoc. Petrol. Geol. Bull. <u>1976</u> , 60, 213-44.	
VARIABLES:	DEEDADEN RV.	
One temperatures 25°C	M C Haulait-Dirgon	
one temperature: 25 C	M.C. Madiait-Filson	
EXPERIMENTAL VALUES:		
The solubility of benzene in water at was reported to be 1740 mg(l)/kg(2). and mole fraction, x_1 , calculated by 100 g sln and 4.01 x 10 ⁻⁴ .	: 25°C and at system pressure . The corresponding mass percent the compiler are 0.174 g(1)/	
AUXILIARY INFORMATION		
METHOD/APPARATUS/PROCEDURE: SOURCE AND PURITY OF MATERIALS:		
The solubility was determined at laboratory temperatures by use of screw-cap test tubes. The (1) phase floated on top of the water and insured saturation of the (2) phase in 2 to 4 days. Analyses were carried out by GSC using a Hewlett-Packard model 5751 gas chromatograph with dual-flame ionization detectors. Many de- tails are given in the paper.	<pre>(1) Phillips Petroleum Company; Chemical Samples Company or Aldrich Chemical Company; 99+%. (2) distilled. (2) distilled. ESTIMATED ERROR: temp. ± 1 K soly. ± 17 mg(1)/kg(2) REFERENCES:</pre>	

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Benzene; C ₆ H ₆ ; [71-43-2] (2) Water, H ₂ O; [7732-18-5]	<pre>Skripka, V.G. Tr. Vses. Neftegazov. Nauch. Issled. Inst. <u>1976</u>, 61, 139-51. Sultanov, R.G.; Skripka, V.G. Zh. Fiz. Khim. <u>1973</u>, 47, 1035.</pre>
VARIABLES:	PREPARED BY:
Temperature: 225-260°C Pressure: 4.7-78.5 MPa	A. Maczynski
EXPERIMENTAL VALUES:	
Solubility of water in benzene	

	Solubi	lity of water	in benzene	
t/°C	p/kg cm ⁻²	p/MPa (compiler	<u>)</u> <u><u></u> <u></u></u>	g(2)/100 g sln (compiler)
225	48 100 150 200 300 400 500 600 700 800	4.7 9.8 14.7 19.6 29.4 39.2 49.0 58.8 68.6 78.5	0.256 0.250 0.242 0.228 0.227 0.217 0.209 0.200 0.191 0.183	7.35 7.14 6.86 6.37 6.34 6.01 5.74 5.45 5.16 4.91
250	75 100 150 200 300 400 500 600 700 800	7.4 9.8 14.7 19.6 29.4 39.2 49.0 58.8 68.6 78.5	0.410 0.399 0.378 0.361 0.332 0.314 0.312 0.291 0.280 0.270	13.81 13.27 12.29 11.52 10.28 9.55 9.47 8.64 8.23 7.86 (continued)
		AUXILIARY IN	FORMATION	
METHOD/APPA	RATUS/PROCEDURE:	so	URCE AND PURITY OF	MATERIALS:

HEIROD/AFFARAIOS/FROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The experimental technique was described in ref l. No details reported in the paper.	 (1) source not specified, chemical reagent grade; purity not specified; used as received.
	(2) distilled.
	ESTIMATED ERROR:
	not specified.
	REFERENCES:
	1. Sultanov, R.G.; Skripka, V.G.; Namiot, A.Yu. Gazov. Prom. <u>1971</u> , 4, 6.

COMPONENTS:	
-------------	--

- (1) Benzene; C₆H₆; [71-43-2]
- (2) Water; H₂O; [7732-18-5]

Skripka, V.G. Tr. Vses. Neftegazov. Nauch. Issled. Inst. <u>1976</u>, 61, 139-51.

Sultanov, R.G.; Skripka, V.G. Zh. Fiz. Khim. <u>1973</u>, 47, 1035.

t/°C	p/kg cm ⁻²	p/MPa (compiler)	<i>x</i> ²	g(2)/100 g sln (compiler)
260	84.5	8.3	0.491	18.19 17.49
	150	14.7	0.442	15.44
	200	19.6	0.416	14.10
	300	29.4	0.381	12.43
	400	39.2	0.363	11.61
	500	49.0	0.352	11.13
	600	58.8	0.342	10.70
	700	68.6	0.332	10.28
	800	78.5	0.321	9.83

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Benzene; C ₆ H ₆ ; [71-43-2]	Korenman, I.M.; Aref'eva, R.P.
(2) Water; H ₂ O; [7732-18-5]	Zh. Prikl. Khim. <u>1978</u> , 51, 957-8.
-	
VARIABLES:	PREPARED BY:
	Negenerali and R. Magaunaka
Temperature: 25°C	A. Maczyński and Z. Maczyńska
EXPERIMENTAL VALUES:	
The solubility of benzene in water at $0.82 \text{ g(l)} \text{dm}^{-3}$ give	25°C was reported to be
The corresponding mass percent and mo	ble fraction, m., calculated
by the compiler are $0.084 \text{ g}(1)/100 \text{ g}$	sln and 1.94×10^{-4} .
The compiler's calculation assumes a	solution density of 1.00 g mL ⁻¹ .
AUXILIARY	INFORMATION
METHOD /APPARATIIS / PROCEDURE •	SOURCE AND DUDITY OF MATERIALS.
	SOURCE AND FURIT OF INTERIED;
About 200-500 mL(2) was placed in	(1) not specified.
20-50 mg of an insoluble indicator	(2) not specified.
(dithizon, phenolphthalein, etc).	
until the indicator floated to form	
a colored thin layer on the cylinder wall above the liquid layer.	
Blanks were made to determine the	
excess of (1).	
	ESTIMATED ERROR:
	soly. 0.01 g (1)dm sln (standard deviation from 6
	determinations).
	REFERENCES:

	ORIGINAL HEADOREHEARD.	
(1) Benzene; C ₆ H ₆ ; [71-43-2]	Krzyzanowska, T.; Szeliga, J.	
(2) Water; H ₂ O; [7732-18-5]	Nafta (Katowice), <u>1978</u> , 12, 413-7.	
VARIABLES:	PREPARED BY:	
One temperature: 25°C	M.C. Haulait-Pirson	
EXPERIMENTAL VALUES:		
The solubility of benzene in water at	25°C was reported	
to be 1740.0 mg(1)/kg(2).		
The corresponding mass percent and mo	le fraction, x_1 , calculated	
by compiler are 0.174 g(l)/100 g sln	and 4.02×10^{-4} .	
Editor's Note: Based on the results	for this and other hydrocarbon-water	
systems, uncertainity exists about whether the datum compiled here is		
independent of that of Price for the	same system	
independent of that of Price for the	ether the datum compiled here is same system.	
independent of that of Price for the	ether the datum compiled here is same system.	
independent of that of Price for the	Nether the datum compiled here is same system.	
AUXILIARY	SOURCE AND PURITY OF MATERIALS:	
AUXILIARY METHOD/APPARATUS/PROCEDURE: The saturated solutions of (1) in (2) wore propaged in two ways	Source AND PURITY OF MATERIALS: (1) not specified.	
METHOD/APPARATUS/PROCEDURE: The saturated solutions of (1) in (2) were prepared in two ways. First, 200 µL of (1) was injected	INFORMATION SOURCE AND PURITY OF MATERIALS: (1) not specified. (2) not specified.	
AUXILIARY METHOD/APPARATUS/PROCEDURE: The saturated solutions of (1) in (2) were prepared in two ways. First, 200 µL of (1) was injected into 20 mL of (2) and thermostatted at 25°C. Second, the mixture of (1)	INFORMATION SOURCE AND PURITY OF MATERIALS: (1) not specified. (2) not specified.	
AUXILIARY METHOD/APPARATUS/PROCEDURE: The saturated solutions of (1) in (2) were prepared in two ways. First, 200 µL of (1) was injected into 20 mL of (2) and thermostatted at 25°C. Second, the mixture of (1) and (2) as above was thermostatted at 70°C and then cooled to 25°C. The	Source AND PURITY OF MATERIALS: (1) not specified. (2) not specified.	
METHOD/APPARATUS/PROCEDURE: The saturated solutions of (1) in (2) were prepared in two ways. First, 200 µL of (1) was injected into 20 mL of (2) and thermostatted at 25°C. Second, the mixture of (1) and (2) as above was thermostatted at 70°C and then cooled to 25°C. The time required to obtain equilibrium was three weeks. The solubility of	Ather the datum compiled here is same system. INFORMATION SOURCE AND PURITY OF MATERIALS: (1) not specified. (2) not specified.	
AUXILIARY METHOD/APPARATUS/PROCEDURE: The saturated solutions of (1) in (2) were prepared in two ways. First, 200 µL of (1) was injected into 20 mL of (2) and thermostatted at 25°C. Second, the mixture of (1) and (2) as above was thermostatted at 70°C and then cooled to 25°C. The time required to obtain equilibrium was three weeks. The solubility of (1) in (2) was measured by glc. A Perkin-Elmer model F-11 gas chromat-	Ather the datum compiled here is same system. INFORMATION SOURCE AND PURITY OF MATERIALS: (1) not specified. (2) not specified.	
AUXILIARY METHOD/APPARATUS/PROCEDURE: The saturated solutions of (1) in (2) were prepared in two ways. First, 200 µL of (1) was injected into 20 mL of (2) and thermostatted at 25°C. Second, the mixture of (1) and (2) as above was thermostatted at 70°C and then cooled to 25°C. The time required to obtain equilibrium was three weeks. The solubility of (1) in (2) was measured by glc. A Perkin-Elmer model F-11 gas chromat- ograph equipped with a 100-150 mesh Decreil column (70°C) and a flame	aether the datum compiled here is same system. INFORMATION SOURCE AND PURITY OF MATERIALS: (1) not specified. (2) not specified. (2) not specified. ESTIMATED ERROR:	
AUXILIARY METHOD/APPARATUS/PROCEDURE: The saturated solutions of (1) in (2) were prepared in two ways. First, 200 µL of (1) was injected into 20 mL of (2) and thermostatted at 25°C. Second, the mixture of (1) and (2) as above was thermostatted at 70°C and then cooled to 25°C. The time required to obtain equilibrium was three weeks. The solubility of (1) in (2) was measured by glc. A Perkin-Elmer model F-11 gas chromat- ograph equipped with a 100-150 mesh Porasil column (70°C) and a flame ionization detector was used. Sat-	aether the datum compiled here is same system. INFORMATION SOURCE AND PURITY OF MATERIALS: (1) not specified. (2) not specified. (2) not specified. ESTIMATED ERROR:	
AUXILIARY METHOD/APPARATUS/PROCEDURE: The saturated solutions of (1) in (2) were prepared in two ways. First, 200 µL of (1) was injected into 20 mL of (2) and thermostatted at 25°C. Second, the mixture of (1) and (2) as above was thermostatted at 70°C and then cooled to 25°C. The time required to obtain equilibrium was three weeks. The solubility of (1) in (2) was measured by glc. A Perkin-Elmer model F-11 gas chromat- ograph equipped with a 100-150 mesh Porasil column (70°C) and a flame ionization detector was used. Sat- urated solutions of heptane in (2) were used as standard solutions.	<pre>hether the datum compiled here is same system. INFORMATION SOURCE AND PURITY OF MATERIALS: (1) not specified. (2) not specified. (2) not specified. ESTIMATED ERROR: soly. 35.0 mg(1)/kg(2) (standard deviation from 7-9 determinations).</pre>	
AUXILIARY METHOD/APPARATUS/PROCEDURE: The saturated solutions of (1) in (2) were prepared in two ways. First, 200 µL of (1) was injected into 20 mL of (2) and thermostatted at 25°C. Second, the mixture of (1) and (2) as above was thermostatted at 70°C and then cooled to 25°C. The time required to obtain equilibrium was three weeks. The solubility of (1) in (2) was measured by glc. A Perkin-Elmer model F-11 gas chromat- ograph equipped with a 100-150 mesh Porasil column (70°C) and a flame ionization detector was used. Sat- urated solutions of heptane in (2) were used as standard solutions.	<pre>hether the datum compiled here is same system. INFORMATION SOURCE AND PURITY OF MATERIALS: (1) not specified. (2) not specified. (2) not specified. ESTIMATED ERROR: soly. 35.0 mg(1)/kg(2) (standard deviation from 7-9 determinations). REFERENCES:</pre>	
AUXILIARY METHOD/APPARATUS/PROCEDURE: The saturated solutions of (1) in (2) were prepared in two ways. First, 200 µL of (1) was injected into 20 mL of (2) and thermostatted at 25°C. Second, the mixture of (1) and (2) as above was thermostatted at 70°C and then cooled to 25°C. The time required to obtain equilibrium was three weeks. The solubility of (1) in (2) was measured by glc. A Perkin-Elmer model F-11 gas chromat- ograph equipped with a 100-150 mesh Porasil column (70°C) and a flame ionization detector was used. Sat- urated solutions of heptane in (2) were used as standard solutions.	<pre>hether the datum compiled here is same system. INFORMATION SOURCE AND PURITY OF MATERIALS: (1) not specified. (2) not specified. (2) not specified. ESTIMATED ERROR: soly. 35.0 mg(1)/kg(2) (standard deviation from 7-9 determinations). REFERENCES:</pre>	
AUXILIARY AUXILIARY METHOD/APPARATUS/PROCEDURE: The saturated solutions of (1) in (2) were prepared in two ways. First, 200 µL of (1) was injected into 20 mL of (2) and thermostatted at 25°C. Second, the mixture of (1) and (2) as above was thermostatted at 70°C and then cooled to 25°C. The time required to obtain equilibrium was three weeks. The solubility of (1) in (2) was measured by glc. A Perkin-Elmer model F-11 gas chromat- ograph equipped with a 100-150 mesh Porasil column (70°C) and a flame ionization detector was used. Sat- urated solutions of heptane in (2) were used as standard solutions.	<pre>hether the datum compiled here is same system. INFORMATION SOURCE AND PURITY OF MATERIALS: (1) not specified. (2) not specified. (2) not specified. ESTIMATED ERROR: soly. 35.0 mg(1)/kg(2) (standard deviation from 7-9 determinations). REFERENCES:</pre>	
AUXILIARY AUXILIARY METHOD/APPARATUS/PROCEDURE: The saturated solutions of (1) in (2) were prepared in two ways. First, 200 µL of (1) was injected into 20 mL of (2) and thermostatted at 25°C. Second, the mixture of (1) and (2) as above was thermostatted at 70°C and then cooled to 25°C. The time required to obtain equilibrium was three weeks. The solubility of (1) in (2) was measured by glc. A Perkin-Elmer model F-11 gas chromat- ograph equipped with a 100-150 mesh Porasil column (70°C) and a flame ionization detector was used. Sat- urated solutions of heptane in (2) were used as standard solutions.	<pre>hether the datum compiled here is same system. INFORMATION SOURCE AND PURITY OF MATERIALS: (1) not specified. (2) not specified. (2) not specified. ESTIMATED ERROR: soly. 35.0 mg(1)/kg(2) (standard deviation from 7-9 determinations). REFERENCES: </pre>	

	57_150
COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Benzene; C ₆ H ₆ ; [71-43-2]	May, W.E.; Wasik, S.P.; Freeman, D.H.
(2) Water; H ₂ O; [7732-18-5]	Anal. Chem. <u>1978</u> , 50, 997-1000.
-	
VARIABLES:	PREPARED BY:
One temperature: 25°C	A. Maczynski
EXPERIMENTAL VALUES:	
The solubility of benzene in water at	: 25°C was reported to be
1791 mg(l)/kg(2).	
The corresponding mass percent and mo	ble fraction, $x_{1, 4}$ values calculated
by compiler are 0.1791 g(1)/100 g slr	and 4.130 x 10^{-4} .
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The dynamic coupled column liquid	(1) commercial product; less
chromatography (DCCLC) method was based on generating saturated solu-	than 3% impurities.
tions by pumping water through a column packed with glass beads that	(2) distilled over KMnO ₄ and NaOH and passed through a column
have been coated with the component	packed with XAD-2 (Rohm and
(1) (generator column). The con- centration of (1) in the effluent	Hass, Philadelphia, Pa).
of the generator column was mea- sured by a modification of the	
coupled column liquid chromato-	
scribed in ref 1.	ESTIMATED ERROR:
	soly. ± 10 mg(1)/100 kg(2)
	(standard deviation)
	REFERENCES: 1. May, W.: Chesler, S.: Cram, S.
	Gump, B.; Hertz, H.; Enagonio, D.;
	<u>1975</u> , 13, 535.

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Benzene; C ₆ H ₆ ; [71-43-2]	Singh, R.P.; Sah, R.
(2) Water; H ₂ O; [7732-18-5]	Indian J. Chem. <u>1978</u> , 16A, 692-4.
VARIABLES:	PREPARED BY:
One temperature: 303.15 K	A. Maczynski
	-
EXPERIMENTAL VALUES:	
The solubility of water in benzene at	303.15 K was reported to be
U.U64 g(2)/mol(1).	lo fraction - volvor
calculated by compiler are 0.082 q(2)	/100 g sln and 0.0035.
	, ,
	INFORMATION
	SOURCE AND PURITY OF MATERIALS:
The titrations were carried out in	(1) PDW anglar guality, purified.
well stoppered volumetric flasks in	purity not specified.
vaporization. Shaking after each	(2) conductivity water.
addition of water was done in an ultrasonic shaker for at least 30	
min. The contents were equilibrated in a thermostat. The final end	
point was determined when a second phase appeared and the volume of	
the water added was noted. Each	
three times to check the repro-	ESTIMATED ERROR:
ducibility of the results.	temp. ± 0.05 K
	REFERENCES :

ORIGINAL MEASUREMENTS:
Bittrich, H.J.; Gedan, H.; Feix, G.
Z. Phys. Chem., Leipzig <u>1979</u> , 260 1009-13.
PREPARED BY:
A. Maczynski and A. Szafranski
zene in water
$0 \text{ g sln } 10^4 x_1 \text{ (compiler)}$
1790 4.133 2025 4.676 2442 5.641
er in benzene
$\frac{10^{\circ}x_2}{2} \text{ (compiler)}$
0586 2.54 0712 3.08 0860 3.72
INFORMATION
SOURCE AND PURITY OF MATERIALS:
 (1) source not specified; distilled and crystallized; glc pure. (2) not specified.
ESTIMATED ERROR:
soly. ± 5% (type of error not specified).
REFERENCES:

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Benzene; C ₆ H ₆ ; [71-43-2] (2) Water; H ₂ O; [7732-18-5]	Banerjee, S.; Yalkowsky, S.H.; Valvani, S.C. <i>Environ. Sci. Technol.</i> 1980, <i>14</i> , 1227-9.
VARIABLES:	PREPARED BY:
One temperature: 25°C	G.T. Hefter
EXPERIMENTAL VALUES: The solubility of benzene in water wa sln. Assuming a solution density of per cent and mole fraction (x_1) solub are 0.175 g(1)/100 g sln and 4.05 x 1	s reported to be 2.24 x 10 ⁻² mol/L 1.00 kg/L the corresponding mass ilities, calculated by the compiler, 0 ⁻⁴ respectively.
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: Experiments were performed in sealed stainless steel centrifuge tubes. An excess of ¹⁴ C-labelled benzene was added to a tube containing distilled water, and the tube was sealed and allowed to equilibrate at 25 ± 0.2°C with constant or intermittent shaking. Equilibration was generally complete within 1 week. The mixture was then centrifuged at 10,000 rpm for 60 min in a head preequilibrated to 25 ± 0.3°C, following which aliquots of the solution were removed for analy- sis by liquid scintillation counting	SOURCE AND PURITY OF MATERIALS: (1) ¹⁴ C-labelled benzene: New England Nuclear, used without further purification. (2) Distilled. ESTIMATED ERROR:
sis by liquid scintillation counting. The entire procedure was carried out at least twice for each compound, and each analysis was also conducted in duplicate.	Temperature: ±0.2 K Solubility: ±0.7% rel. (represent- ing one std. dev.) REFERENCES:

(1) Benzene; C ₆ H ₆ ; [71-43-2] Schwarz, F. P. (2) Water; H ₂ O; [7732-18-5] Anal. Chem. 1980, 52, 10-15. VARIABLES: PREPARED BY: One temperature: 23.5°C M.C. Haulait-Pirson EXPERIMENTAL VALUES: Solubility of benzene in water at 23.5°C g(1)/100 g sin 10 ⁴ x ₁ (compiler) 0.188 ± 0.005*a 4.34 0.188 ± 0.007 c 4.20 0.193 ± 0.011 d 4.45 0.190 ± 0.007 e 4.38	COMPONENTS :	ORIGINAL MEASUREMENTS:	
(2) Water; H ₂ O; [7732-18-5] Amal. Cham. 1980, 52, 10-15. VARIABLES: PREPARED BY: One temperature: 23.5°C M.C. Haulait-Pirson EXPERIMENTAL VALUES: Solubility of benzene in water at 23.5°C g(1)/100 g sln 10 ⁴ x ₁ (compiler) 0.188 ± 0.005*a 4.34 0.188 ± 0.007 c 4.20 0.193 ± 0.011 d 4.45 0.190 ± 0.007 e 4.38	(1) Benzene; C ₆ H ₆ ; [71-43-2]	Schwarz, F. P.	
YARLABLES: PREPARED BY: One temperature: 23.5°C M.C. Haulait-Pirson EXPERIMENTAL VALUES: Solubility of benzene in water at 23.5°C g(1)/100 g sln 10 ⁴ x ₁ (compiler) 0.188 ± 0.005*a 4.34 0.188 ± 0.007 c 4.20 0.193 ± 0.011 d 4.45 0.190 ± 0.007 c 4.38 *values determined for different masses of (1) coated into the inert support. a: 0.014; b: 0.0154; c: 0.0124; d: 0.0464; e: 0.0526 g/cm KINDO/APPARATUS/PROCEDURE: An elution chromatography method was used where (1) was the stationary phase and (2) the mobile phase. A transparent column was packed with a ninert support (chromosor P) coated with a known mount of the liquid solute (1). This solute column was connected to a waters reservoir (connected to a water streemer for a compressed gas (cs. 14 KPa). As the total volume of water flowing differs, a in column of solute removed from the stationary phase, disting differs, a in column of solute removed from the stationary phase, diveloped and increased in length. The solubility is calculated from the stationary phase, diveloped and increased in length. The solubility is calculated from the stationary phase, diveloped and increased in length. The solubility is calculated from the stationary phase, diveloped and increased in length. The solubility is calculated from the stationary phase, diveloped and increased in length. The solubility is calculated from the stationary phase, diveloped and increased in length. The solubility is calculated from the stationary phase, diveloped and increased in length. The solubility is calculated from the statis about preparat	(2) Water; H ₂ O; [7732-18-5]	Anal. Chem. <u>1980</u> , 52, 10-15.	
VARIABLES: PREPARED BY: One temperature: 23.5°C M.C. Haulait-Pirson EXPERIMENTAL VALUES: Solubility of benzene in water at 23.5°C g(1)/100 g sin 10 ⁴ z ₁ (compiler) 0.188 ± 0.005*a 4.34 0.188 ± 0.007 c 4.20 0.193 ± 0.011 d 4.45 0.190 ± 0.007 c 4.38	2		
VARIABLES: PREFARED BY: One temperature: 23.5°C M.C. Haulait-Pirson EXPERIMENTAL VALUES: Solubility of benzene in water at 23.5°C g(1)/100 g sln 10 ⁴ z1 (compiler) 0.188 ± 0.005*a 4.34 0.188 ± 0.007 c 4.20 0.190 ± 0.007 c 4.34 0.190 ± 0.007 e 4.38 *values determined for different masses of (1) coated into the inert support. a: 0.014; b: 0.0154; c: 0.0124; d:0.0464; e: 0.0526 g/cm *Values determined for different masses of (1) coated into the inert support. a: 0.014; b: 0.0154; c: 0.0124; d:0.0464; e: 0.0526 g/cm AUXILLARY INFORMATION METHOD/AFPARATUS/PROCEDURE: An elution chromatoraphy method was used where (1) was the stationary phase and (2) the mobile phase. A transparent column was packed with an inert support (connoscor P) pocated with a known amount of the liquid solute (1). This solute column was connected to a water reservoir (connected to a corpressed gas (ca. 14 kPa). As the total volume of water flowing through the column, by the presure of the compressed gas (ca. 14 kPa). The solubility is calculated from the anount of solute removed from the stationary phase, data is about preparation of flowing through the column, by the presure store is used water reservoir (connected to a water reservoir (connected to a water reservoir (connect			
One temperature: 23.5°C M.C. Haulait-Pirson EXPERIMENTAL VALUES: Solubility of benzene in water at 23.5°C g(1)/100 g sln 10 ⁴ x ₁ (compiler) 0.188 ± 0.005 ta 4.34 0.182 ± 0.007 c 4.20 0.193 ± 0.011 d 4.45 0.190 ± 0.007 e 4.38 *values determined for different masses of (1) coated into the inert support. a: 0.014; b: 0.0154; c: 0.0124; d: 0.0464; e: 0.0526 g/cm AUXILIARY INFORMATION METHOD/APPARATUS/PROCEDURE: An elution chromatography method was used where (1) was the stationary phase and (2) the mobile phase. A transparent column was packed with an inert support (connected to a water reservoir (connected to a awater reservoir (connected to a compressed gras (ca. 14 kPa). As the total volume of water passed through the column, increased, a solute depleted zone, different in color from the stationary phase, developed and increased in length. The solubility is calculated from the column, i.e. length of the solute adpleted zone, and the volume of water passed through the column. Many details about preparation of KEFRENCES: KEFRENCES:	VARIABLES:	PREPARED BY:	
EXPERIMENTAL VALUES: Solubility of benzene in water at 23.5°C g(1)/100 g sln $0.188 \pm 0.005*a$ $0.188 \pm 0.005*a$ $0.188 \pm 0.009 b$ $0.182 \pm 0.007 c$ $0.193 \pm 0.011 d$ $0.190 \pm 0.007 c$ 1.38 *values determined for different masses of (1) coated into the inert support. a: 0.014; b: 0.0154; c: 0.0124; d: 0.0464; e: 0.0526 g/cm AUXILLARY INFORMATION METHOD/APPARATUS/PROCEDURE: An elution chromatography method was used where (1) was the stationary phase and (2) the mobile phase. A transparent column was packed with an inert support (connected to a water reservoir (connected to a compressed gas regulator). Water was forced through the column increased, a solute depleted zone, different in color from the stationary phase, developed and increased in length. The solubility is calculated from the column, i.e. length of the solute depleted zone, and the volume of water passed through the column. Many details about preparation of the column, i.e. length of the solute depleted zone, and the volume of water passed through the column. Many details about preparation of	One temperature: 23.5°C	M.C. Haulait-Pirson	
Solubility of benzene in water at 23.5°C $\frac{g(1)/100 \text{ g sln}}{0.188 \pm 0.005^{*a}} \frac{10^{4}x_{1} \text{ (compiler)}}{4.34}$ $0.188 \pm 0.009 \text{ b} 4.34$ $0.182 \pm 0.007 \text{ c} 4.20$ $0.193 \pm 0.011 \text{ d} 4.45$ $0.190 \pm 0.007 \text{ e} 4.38$ *values determined for different masses of (1) coated into the inert support. a: 0.014; b: 0.0154; c: 0.0124; d: 0.0464; e: 0.0526 g/cm AUXILIARY INFORMATION AUXILIARY INF	EXPERIMENTAL VALUES:		
g(1)/100 g sln 10 ⁴ x ₁ (compiler) 0.188 ± 0.005*a 4.34 0.188 ± 0.009 b 4.34 0.182 ± 0.007 c 4.20 0.193 ± 0.011 d 4.45 0.190 ± 0.007 e 4.38 *values determined for different masses of (1) coated into the inert support. a: 0.014; b: 0.0154; c: 0.0124; d:0.0464; e: 0.0526 g/cm AUXILIARY INFORMATION MUXILIARY INFORMATION Support (chromosorb P) <td< td=""><td>Solubility of benzene</td><td>in water at 23.5°C</td></td<>	Solubility of benzene	in water at 23.5°C	
0.188 ± 0.005*a 4.34 0.188 ± 0.009 b 4.34 0.182 ± 0.007 c 4.20 0.193 ± 0.011 d 4.45 0.190 ± 0.007 e 4.38 *values determined for different masses of (1) coated into the inert support. a: 0.014; b: 0.0154; c: 0.0124; d:0.0464; e: 0.0526 g/cm AUXILIARY INFORMATION METHOD/APPARATUS/PROCEDURE: AUXILIARY INFORMATION METHOD/APPARATUS/PROCEDURE: A UXILIARY INFORMATION <t< td=""><td>g(1)/100 g sln</td><td>10⁴x₁ (compiler)</td></t<>	g(1)/100 g sln	10 ⁴ x ₁ (compiler)	
0.188 ± 0.009 b 4.34 0.182 ± 0.007 c 4.20 0.193 ± 0.011 d 4.45 0.190 ± 0.007 e 4.38 *values determined for different masses of (1) coated into the inert support. a: 0.014; b: 0.0154; c: 0.0124; d:0.0464; e: 0.0526 g/cm METHOD/APPARATUS/PROCEDURE: AUXILIARY INFORMATION SOURCE AND FURITY OF MATERIALS; AUXILIARY INFORMATION <tr< td=""><td>0.188 + 0.005*a</td><td>4.34</td></tr<>	0.188 + 0.005*a	4.34	
0.182 ± 0.007 c 4.20 0.193 ± 0.011 d 4.45 0.190 ± 0.007 e 4.38 *values determined for different masses of (1) coated into the inert support. a: 0.014; b: 0.0154; c: 0.0124; d:0.0464; e: 0.0526 g/cm MULLIARY INFORMATION METHOD/APPARATUS/PROCEDURE: A a elution chromatography method was used where (1) was the stationary phase and (2) the mobile phase. A transparent column was packed with an inert support (chromosorb P) coated with a known amount of the liquid solute (1). This solute column was connected to a water reservoir (connected to a compressed gas regulator). Water was forced through the column jothe pressure of the compressed gas (ca. 14 kPa). As the total volume of water flowing through the column increased, a solute depleted zone, different in color from the stationary phase, developed and increased in length. The solubility is calculated from the amount of solute removed from the station removed from the amount of solute removed from the amount of solute removed from the amount of solute removed from the station removed from the amount of solute removed from the station removed from the station removed from the amount of solute removed from the solute removed from the solute removed from the amount of solute removed from the solute removed from the solute remo	$0.188 \pm 0.009 \text{ b}$	4.34	
0.193 ± 0.011 d 4.45 0.190 ± 0.007 e 4.38 *values determined for different masses of (1) coated into the inert support. a: 0.014; b: 0.0154; c: 0.0124; d:0.0464; e: 0.0526 g/cm AUXILIARY INFORMATION METHOD/APPARATUS/PROCEDURE: An elution chromatography method was used where (1) was the stationary phase and (2) the mobile phase. A transparent column was packed with an inert support (chromosorb P) coated with a known amount of the liquid solute (1). This solute column was connected to a water reservoir (connected to a compressed gas regulator). Water was forced through the column by the pressure of the compressed gas (ca. 14 kPa). As the total volume of water flowing the column increased, a solute depleted zone, and the volume of water passed through the column increased in length. The solubility is calculated from the amount of solute removed from the column, i.e. length of the solum depleted zone, and the volume of water passed through the column. Many details about preparation of the column. Many details about preparation of the column. EFTIMATED ERROR: KEFENCES:	$0.182 \pm 0.007 c$	4.20	
•.190 ± 0.007 e 4.38 *values determined for different masses of (1) coated into the inert support. a: 0.014; b: 0.0154; c: 0.0124; d:0.0464; e: 0.0526 g/cm AUXILIARY INFORMATION METHOD/AFPARATUS/PROCEDURE: An elution chromatography method was used where (1) was the stationary phase and (2) the mobile phase. A transparent column was packed with an inert support (chromosorb P) coated with a known amount of the liquid solute (1). This solute column was connected to a water reservoir (connected to a compressed gas regulator). Water was forced through the column juncreased, a solute depleted zone, different in color from the stationary phase, developed and increased in length. The solubility is calculated from the amount of solute removed from the column, i.e. length of the solute depleted zone, and the volume of water passed through the column. Many details about preparation of SURCE AND PURITY OF MATERIALS: (1) spectral grade used without further purification function (1) spectral grade used without function (2) distilled SURCE AND PURITY OF MATERIALS: (1) spectral grade used without function function (2) distilled SURCE AND PURITY OF MATERIALS: (1) spectral grade used without function (2) distilled Sumpto (1) move a specked with a specked	0.193 ± 0.011 d	4.45	
*values determined for different masses of (1) coated into the inert support. a: 0.014; b: 0.0154; c: 0.0124; d:0.0464; e: 0.0526 g/cm AUXILLARY INFORMATION METHOD/APPARATUS/PROCEDURE: An elution chromatography method was used where (1) was the stationary phase and (2) the mobile phase. A transparent column was packed with an inert support (chromosorb P) coated with a known amount of the liquid solute (1). This solute column was connected to a water reservoir (connected to a water reservoir (connected to a compressed gas regulator). Water was forced through the column by the pressure of the compressed gas (ca. 14 KPa). As the total volume of water flowing through the column increased, a solute depleted zone, different in color from the stationary phase, developed and increased in length. The solubility is calculated from the anount of solute removed from the column, i.e. length of the solute depleted zone, and the volume of water passed through the column. Many details about preparation of	0.190 ± 0.007 e	4.38	
<pre>*values determined for different masses of (1) coated into the inert support. a: 0.014; b: 0.0154; c: 0.0124; d:0.0464; e: 0.0526 g/cm AUXILLARY INFORMATION METHOD/APPARATUS/PROCEDURE: An elution chromatography method was used where (1) was the stationary phase and (2) the mobile phase. A transparent column was packed with an inert support (chromosorb P) coated with a known amount of the liquid solute (1). This solute column was connected to a water reservoir (connected to a water reservoir (connected to a compressed gas regulator). Water was forced through the column by the pressure of the column by the pressure of the total volume of water flowing through the column increased, a solute depleted zone, different in color from the stationary phase, developed and increased in length. The solubility is calculated from the anount of solute removed from the column, i.e. length of the solute depleted zone, and the volume of water passed through the column. May details about preparation of</pre>			
AUXILIARY INFORMATIONMETHOD/APPARATUS/PROCEDURE: An elution chromatography method was used where (1) was the stationary phase and (2) the mobile phase. A transparent column was packed with an inert support (chromosorb P) coated with a known amount of the liquid solute (1). This solute column was connected to a water reservoir (connected to a compressed gas regulator). Water was forced through the column by the pressure of the compressed gas (ca. 14 kPa). As the total volume of water flowing through the column increased, a solute depleted zone, different in color from the stationary phase, developed and increased in length. The solubility is calculated from the amount of solute removed from the column, i.e. length of the solute depleted zone, and the volume of water passed through the column. Many details about preparation ofSOURCE AND PURITY OF MATERIALS: (1) spectral grade used without further purification (2) distilledESTIMATED ENROR: temp. ± 1.5°C soly. 4% (average std. dev.)ESTIMATED ENROR: temp. ± 1.5°C soly. 4% (average std. dev.)	<pre>*values determined for different masses of (1) coated into the inert support. a: 0.014; b: 0.0154; c: 0.0124; d:0.0464; e: 0.0526 g/cm</pre>		
<pre>METHOD/APPARATUS/PROCEDURE: An elution chromatography method was used where (1) was the stationary phase and (2) the mobile phase. A transparent column was packed with an inert support (chromosorb P) coated with a known amount of the liquid solute (1). This solute column was connected to a water reservoir (connected to a compressed gas regulator). Water was forced through the column by the pressure of the compressed gas (ca. 14 kPa). As the total volume of water flowing through the column increased, a solute depleted zone, different in color from the stationary phase, developed and increased in length. The solubility is calculated from the amount of solute removed from the column, i.e. length of the solute depleted zone, and the volume of water passed through the column. Many details about preparation of</pre> SOURCE AND PURITY OF MATERIALS: (1) spectral grade used without further purification (2) distilled (2) distilled (3) the purify of MATERIALS: (1) spectral grade used without further purification (2) distilled (3) the purify of MATERIALS: (1) spectral grade used without further purification (2) distilled (3) the purify of MATERIALS: (1) spectral grade used without further purification (2) distilled (3) the presence (3) the presence (4) the presence (5) the column increased in length (5) the column increased the volume (6) water passed through the column. Many details about preparation of	AUXILIARY	INFORMATION	
the solute column and calculation are given in the paper.	METHOD/APPARATUS/PROCEDURE: An elution chromatography method was used where (1) was the stationary phase and (2) the mobile phase. A transparent column was packed with an inert support (chromosorb P) coated with a known amount of the liquid solute (1). This solute column was connected to a water reservoir (connected to a water reservoir (connected to a compressed gas regulator). Water was forced through the column by the pressure of the compressed gas (ca. 14 kPa). As the total volume of water flowing through the column increased, a solute depleted zone, different in color from the stationary phase, developed and increased in length. The solubility is calculated from the amount of solute removed from the column, i.e. length of the solute depleted zone, and the volume of water passed through the column. Many details about preparation of the solute column and calculation are given in the paper.	<pre>SOURCE AND PURITY OF MATERIALS: (1) spectral grade used without further purification (2) distilled ESTIMATED ERROR: temp. ± 1.5°C soly. 4% (average std. dev.) REFERENCES:</pre>	

37	_141

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Benzene; C ₆ H ₆ ; [71-43-2] (2) Water; H ₂ O; [7732-18-5]	Sanemasa, I.; Araki, M.; Deguchi, T.; Nagai, H. <i>Chem. Lett.</i> <u>1981</u> , 225-8.
VARIABLES:	PREPARED BY:
Temperature: 15-45°C	M.C. Haulait-Pirson and G.T. Hefter
EXPERIMENTAL VALUES:	
Solubility of 1	penzene in water
t/°C g(l)/L	$\underline{g(1)/100 \ g \ sln^a} \qquad \underline{10^4 x_1^a}$
15 1.54 ± 0.04	0.154 3.56
25 1.61 ± 0.09	0.161 3.72
35 1.76 ± 0.06	0.177 4.09
45 1.85 ± 0.11	0.187 4.32
AUXILIAN	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The apparatus used for attaining solubility equilibrium is described in detail in the paper. Liquid (1) and redistilled (2) were placed in a vessel and a thermostatted funnel respectively. The solute vapor, gen- erated by bubbling air through the liquid solute was introduced into the funnel and circulated by means of a pump. The circulation rate was 2 L/ min. Solubility equilibria were attained within 5 min. Then portions	 (1) analytical reagent grade used as purchased. (2) redistilled.
of 10 mL of the aqueous sln were	ESTIMATED ERROR:
Transferred into funnels to which 10 mL of chloroform had been added. Experimental procedures involved in spectrophotometric measuring the	soly. : given above
chloroform extracts were not reported The solubility runs were made such that the temperature of solute reser- voir was made to vary while that of solvent phase was held constant. The solubility obeys Henry's law at con- stant solvent temperature. Solubil- ity values were calculated from Henry's law constants.	 REFERENCES: 1. CRC Handbook of Chemistry and Physics, R.C. weast, Editor, CRC Press, Florida, 63rd edn., 1982, pF-11.

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Benzene; C ₂ H ₂ ; [71-43-2]	Sanemasa, I.; Araki, M.;
(2) Water; H ₂ O; [7732-18-5]	Deguchi, T.; Nagai, H.
	Bull. Chem. Soc. Jpn. <u>1982</u> , 55, 1054-62.
VARIABLES:	PREPARED BY:
Temperature: $5-45^{\circ}C$	G T Hefter
	G.I. Merter
EXPERIMENTAL VALUES:	
The solubility of	benzene in water
$+ (80 - 10^3 - 1)(1)(3 - 3)$	$(1)(100 - 10^{4})$
	$g(1)/100 g \sin 10 x_1$
	(compiler) (compiler)
5 20.7	0.162 3.73
15 20.2 ± 0.3	0.158 3.65
25 $20.7^{b} \pm 0.1$	0.162 3.74
35 21.8 ± 0.6	0.171 3.94
45 22.8 ± 0.5	0.180 4.15
AUXILIARY	INFORMATION
METHOD /APPARATUS/PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
The apparatus is similar to an earlier design (ref 2) and is described in detail in the paper. 100-200 cm ³ of (2) and 10-20 cm ³ of liquid (1) were placed in separate but connected thermostatted flasks. After thermal equilibrium was estab- lished a recirculating stream of air was used to vaporize liquid (1) and to transport the vapor to the flask containing (2). Five 10 cm ³ aliguots	 Analytical reagent grade (Wako Pure Chemical Ind. Ltd.), stated purity 99.5%, used without further purification. Redistilled; no further details given.
were withdrawn into separatory funnels. The concentration of (1) in (2) was then determined by extraction into chloroform followed by UV- spectrophotometry. Standards for the spectrophotometry were prepared by weight from pure liquid solutes.	ESTIMATED ERROR: soly. see table, type of error not specified. temp. ± 0.01°C. REFERENCES:
	 Kell, G.S. J. Chem. Eng. Data <u>1975</u>, 20, 97. Sanemasa, I.; Araki, M.; Deguchi, Y.; Nagai, H. Chem. Lett. <u>1981</u>, 225-8.

37_143

COMPONENTS:			ORIGINAL MEASU	ORIGINAL MEASUREMENTS:	
(1) Benzene: C ₂ H ₂ ; [71-43-2]			Tsonopoulos	Tsonopoulos, C.: Wilson, G.M.	
(2) Water; H_00 ; [7732-18-5]			A. J. Ch. E	. J. 1983, 29, 990-9.	
	2				
VADTARI	FC -				
Tempe	25: rature: 313-47	3 K	PREPARED BY:		
Press	ure: 0.03-3.0	MPa	G.T. Hefter		
EVDEDIN	ENTAL VALUES.				
LAPERIM	ENIAL VALUES:	The solubility of	of benzene in	water	
	<i>a</i> /12		10 ³ m	a(1) (100 a ala	
	27K	p /MPa	10 21	(compiler)	
	313.15	0.03054	0.4435	0.192	
	373.15	0.2758	0.949	0.412	
	423.15	1.0549	2.42	1.05	
	473.15	3.020	5.40	2.34	
		The solubility (of water in be	nzene	
	<i></i>		10 ² m	a(2) (100 a alm	
	77K	р /мРа	10 ^x 2	(compiler)	
	313.15	0.03054	0.471,0.501	0.112 ^b	
	373.15	0.2758	1.81,2.08	0.448 ^b	
	423.15	1.0549	7.13	1.64	
473.15 3.020 1		18.5	4.26		
a Ab	solute pressur	e			
b Av	erage value			(continued)	
		AUXILIA	RY INFORMATION		
METHOD	APPARATUS / PROCEDU	JRE :	SOURCE AND PUI	RITY OF MATERIALS:	
All e	xperimental de	tails are given	(1) No de	tails given	
in an	Appendix depo	sited in a			
in th	entation Centr e original pap	e rather than er. The solu-	(2) NO de	tails given	
bilit	y of (1) in $(2$) was measured			
of (2) in (1) was m	easured by Karl		Ì	
Fischer titration.					
		USTIMATED EPP	NOTIMATED EDDOD.		
			soly. ± 5%	soly. ± 5% relative; repeatability	
		of replicat	e analyses.		
		press. ± 1%	; type of error not stated.		
		REFERENCES :			
			1		

```
_____
```

```
(1) Benzene; C_{6}H_{6}; [71-43-2]

(2) Water; H_{2}O; [7732-18-5]

(continued)

The three phase critical point was reported to be 541.7K, 9.42 MPa and x_{1} = 2.528 \times 10^{-2} (10.1 g(1)/100 g sln, compiler).

The authors also report equations fitted to their own and literature data over the range 273-542K, viz.

\ln x_{1} = -170.04018 + 6922.912/T + 24.398795 \ln T

\ln x_{2} = -1.64055 - 2029.41/T + 0.00900544 T
```

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Benzene; C ₆ H ₆ ; [71-43-2] (2) Water; H ₂ O; [7732-18-5]	Sanemasa, I.; Arakawa, S.; Araki, M.; Deguchi, T. Bull. Chem. Soc. Jpn. <u>1984</u> , 57, 1539-44.
VARIABLES: One Temperature: 25°C	PREPARED BY: G.T. Hefter

EXPERIMENTAL VALUES:

The solubility of benzene in water at 25°C was reported to be 2.07 x 10^{-2} mol(1)/dm³ sln. Assuming a solution density of 1.00 kg/dm³ this corresponds to a solubility of 0.162 g(1)/100 g sln, $x_1 = 3.73 \times 10^{-4}$, calculated by the compiler.

AUXILIARY INFORMATION			
METHOD / APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:		
The apparatus used is described in detail in ref 1. The method involves the introduction of solute vapor(1) into liquid (2) by bubbling air	(1) Analytical reagent grade source and purity not stated, used without further purification.		
through liquid (1) using a recirculat- ing pump in a closed system. After solubility equilibrium was attained an aliquot of the saturated aqueous solution was withdrawn and analysed by solvent extraction - UV spectro- photometry.	(2) Deionized and redistilled; no further details given.		
	ESTIMATED ERROR:		
	Not specified.		
	REFERENCES :		
	 Sanemasa, I., Araki, M.; Deguchi, T.; Nagai, H. Bull. Chem. Soc. Jpn. <u>1982</u>, 55, 1054-62. 		

COMPONENTS:	ORIGINAL MEASUREMENTS:	
(1) Benzene; C ₆ H ₆ ; [71-43-2]	Brollos, K.; Peter, K.; Schneider, G. M.	
(2) Water-d ₂ ; D ₂ O; [7789-20-0]	Ber. Bunsenges. Phys. Chem. <u>1970</u> , 74, 682-6.	
VARIABLES:	PREPARED BY:	
phase-two phase boundary.	C. L. Young	
EXPERIMENTAL VALUES:		
Values of pressure and temperatur	e on the one phase-two phase boundary	
T/K p/bar	x1 g (1)/100 g soln	
220 1 2445	0.05 56 5	
337.5 2300	0.20 00.0	
333.4 2000		
328.0 1750		
323.9 1530		
308.4 840		
300.1 490		
295.6 220		
326.1 170		
	0 546 92 4	
355.2 2655	0.546 62.4	
348.2 2450		
342.4 2095		
337.9 1850		
324.9 1300		
319.6 1100		
311.8 790		
	(cont.)	
AUXILIAR	Y INFORMATION	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
Measurements were made in a steel	1. Merck sample, purity 99.9 mole	
optical cell within an aluminum bloc	k per cent.	
stirred magnetically. Pressure was	2. Isotopic purity 99.7 mole per	
measured using a movable piston and	cent.	
Bourdon gauge. Temperature was		
measured with a steel-sheathed thor-	·	
into the cell and the transition fro	m	
one phase to two phases was observed		
visually.		
	ESTIMATED ERROR:	
	$\delta T / K = \pm 0.1$	
1	$\delta P/P = \pm 0.01$	
1	(estimated by compiler)	
	REFERENCES:	
1		
1		
1		
1		

COMPONENTS:		ORIGINAL M	EASUREMENTS:	
(1) Benzene; C ₆ H ₆ ; [71-43-2]		Brollos, G. M.	Brollos, K.; Peter, K.; Schneider, G. M.	
(2) Water-d ₂ ; D ₂ O;	[7789-20-0]	Ber. Bun 74, 682 -	senges. Phys. Chem. <u>1970</u> , 6.	
Values of pressure	e and temperatur	e on the one	phase-two phase boundary	
T/K	p/bar	x1	g (1)/100 g soln	
303.4 297.0 296.2 300.2 312.2	521 300 250 181 166	0.546	82.4	
312.2 325.2 330.3 327.4 322.9 318.9 310.0 313.1 304.4 298.9 296.4 288.1 281.0 275.4	166 182 2750 2600 2300 1500 1700 1200 990 840 540 290 168	0.755	92.3	

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Penzene: $C H : [7] - 43 - 2]$	Ben-Naim, A • Wilf, J • Yaacobi, M
(1) Benzene, C_{6}^{-6} , [/1-43-2]	
(2) Deuterium oxide (heavy water); $D_{2}O;$ [7789-20-0]	J. Phys. Chem. <u>1973</u> , 77, 95-102.
2	
VARIABLES:	PREPARED BY:
Temperature: 10-50°C	G.T. Hefter
mba golubility of bongono in bonus up	ton is reported in terms of the
standard free energy of solution, s	, determined as:
$\Delta u = \lim \left[-RT \ln \left(e^{2} / e^{9} \right) \right]$	1
$\rho_{s} = \rho_{s} + \rho_{s}$	eq-
where (ρ_s/ρ_s) is the Ostwald absorp	tion coefficient and ρ_s and ρ_s are
the gas phase at equilibrium.	of the solute s in the right and
For the temperature range studied, $\Delta \mu$	$^{\circ}_{s}$ was fitted to a second degree
polynomial of the form:	-
$\Delta u^{\circ} = -10657.5 + 44.618$	$t - 0.03864 t^2$
s control control	
where t is in °C (10 < t < 50°C) and	$\Delta \mu_{s}^{\circ}$ is in cal/mol (l cal = 4.187 J).
Values of the Ostwald absorption coef	ficient are also reported.
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Solubilities were determined spectro-	(1) Fluka, puriss, 99.94%, used as
scopically. Saturated solutions were prepared in two ways: (a) direct	received.
mixing of benzene and water for ca . 48 h. (b) dissolution of benzene	(2) Fluka, 99.75%, used as received.
through the vapor phase. Absorbances	
were measured directly at λ_{max} with	
a Model 450 Perkin-Elmer spectro- photometer with a thermostatted cell	
holder. Establishment of equili-	
three compartment cell, details of	ESTIMATED ERROR:
which are given in the paper.	Temperature: 0.05°C
	Solubility: std. dev. in Δμ°, 15.103 cal/mol.
	REFERENCES :

37	148

J/_140	187	
COMPONENTS :	ORIGINAL MEASUREMENTS:	
(1) Benzene; C ₆ H ₆ ; [71-43-2]	Backx, P.; Goldman, S.	
<pre>(2) Deuterium oxide (heavy water); D₂0; [7789-20-0]</pre>	J. Phys. Chem. <u>1981</u> , 85, 2975-9.	
VARIABLES:	PREPARED BY:	
Temperature: 283-313 K	A. Maczynski	
EXPERIMENTAL VALUES:		
Solubility of deuteriu	um oxide in benzene	
$T/K = 10^3 x_2$ st	d. dev. 10 ³ g(2)/100 g sln (compiler)	
283 1.70	0.03 0.436	
288 1.91	0.03 0.490	
293 2.17	0.04 0.557	
298 2.68	0.06 0.689	
303 3.02	0.04 0.776	
308 3.56	0.04 0.915	
313 4.12	0.08 1.057	
AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
In a 175-ml milk-dilution bottle fitted with a Bakelite screw cap and a Teflon insert and rotated end-over-end, (1) was equilibrated with an excess of (2), sampled with Hamilton syringes and titrated in an Aquatest II automatic Karl Fischer Titrator.	 (1) certified grade; washed successfully with conc. H₂SO₄ H₂O, 1 N NaOH, again H₂O, dried with silica gel, and distilled; d²⁵ 0.87365. (2) obtained from the manufacturer; minimum isotopic purity of 99.7 atom % D. 	
	ESTIMATED ERROR:	
	Temp. ± 0.01 K Std. dev. of soly calcd from 25-36 determinations reported above.	
	REFERENCES :	

COMPONENTS :	EVALUATOR:
(1) Benzene; C ₆ H ₆ ; [71-43-2]	D.G. Shaw Institute of Marine Science
(2) Seawater	University of Alaska Fairbanks, Alaska USA
	December 1982

CRITICAL EVALUATION:

The solubility of benzene (1) in seawater (2) at 298 K has been reported by the following workers:

		Salinity	
Authors	Method	<u>g salts/kg sln</u>	<u>g(l)/100 g sln</u>
Mackay and Shiu (ref 2)	GLC	35	0.1340
Price (ref 3)	GLC	34.472	0.1391
May et al. (ref 4)	HPLC	35	0.1365

These three determinations made by two methods agree within their experimental error of 8 to 10%. Each group of workers has also determined the solubility of benzene in pure water and obtained results within the same error of the value recommended in this volume. Therefore, the mean of the reported values, 0.135 g(1)/100 g sln, is accepted as the recommended value at the indicated temperature and salinity. These studies measured solubility over a range of salinities. Mackay and Shiu and May *et al.* reported their data in terms of the Setschenow equation. Their values of K_S (0.1836 and 0.175 L/mol) indicate the same (within experimental error) dependence of solubility on salinity and may be used to interpolate solubilities at other salinities up to 200 g salts/kg sln.

Brown *et al.* (ref 1) determined the solubility of benzene in seawater at a salinity of 34.42 g salts/kg sln over the temperature range 273 to 293 K. Linear extrapolation by the evaluator of these results to 298 K gives a value of 0.127 g(1)/100 g sln. This suggests that the results of Brown *et al.* may be slightly low.

	SOLUBILITY	OF BENZENE (1) IN	SEAWATER (2)
		RECOMMENDED VALU	E
<u>T/K</u>		<u>g</u> salts/kg sln	<u>g(l)/100 g sln</u>
298		35	0.136

Since the solubility of seawater (1) and benzene (2) has been reported only by Umano and Hayano (ref 5), no critical evaluation is possible. The interested reader is referred to the relevant data sheet which is included with the preceeding benzene-water system.

REFERENCES

- 1. Brown, R.L.; Wasik, S.P.; J. Res. Natl. Bur. Stds. A. 1974, 78, 453-60.
- 2. Mackay, D.; Shiu, W.Y. Can. J. Chem. Eng. <u>1975</u>, 53, 239-42.
- 3. Price, L.C. Am. Assoc. Petrol. Geol. Bull. 1976, 60, 213-44.
- May, W.E.; Wasik, S.P.; Freeman, D.H. Anal. Chem. <u>1978</u>, 50, 997-1000.
- 5. Umano, S.; Hayano, I.; Kogyo Kagaku Zasshi <u>1957</u>, 60, 1436-7.

Components :	ORIGINAL MEASUREMENTS:		
(1) Benzene; C ₆ H ₆ ; [71-42-2]	Brown, R.L.; Wasik, S.P.		
(2) Artificial seawater	J. Res. Natl. Bur. Stds. A. <u>1974</u> , 78, 453-60.		
VARIABLES:	PREPARED BY:		
Temperature: 0-20°C	G.T. Hefter and D.G. Shaw		
Salinity: 34.42 g salts/kg sln			
EXPERIMENTAL VALUES:			
Solubility of benzene	in artificial seawater		
<u>t/°C</u> <u>g(1)/100 g s</u>	$\frac{\ln^a}{10^4 x_1}$ (compiler)		
0.19 0.1323 (0.00	17) 3.129		
5.32 0.1376 (0.00	22) 3.255		
10.05 0.1347 (0.00	23) 3.186		
14.96 0.1318 (0.00	25) 3.117		
20.04 0.1296 (0.00	22) 3.065		
AUXI LI ARY	INFORMATION		
L. METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:		
Solubilities were calculated from partition coefficient measurements for the hydrocarbon between an aqueous solution and its vapor using headspace chromatography. The apparatus and the method of ob- taining the partition coefficients are described in detail in the paper. The hydrocarbon was introduced as a vapor (to avoid emulsification) into a glass equilibration cell contain- ing about 45 cm ³ of water. The vapor was subsequently analysed by gas chromatography using He as the car- rier. Possible sources of error are discussed in detail although the source of vapor pressure data used to	 (1) 99.99 mole per cent purity; source and methods of purifi- cation not specified. (2) Prepared according to ref. 1. Purity not specified. ESTIMATED ERROR: Temperature: ±0.01 K Solubility: see Table above 		
calculate solubilities are not given.	REFERENCES: 1. Sverdrup, H.U.; Johnson, M.W.; Fleming, R.H.; The Oceans 1942, Prentice-Hall, Englewood Cliffs, New Jersey p186.		

190

	57_151			
COMPONENTS :	ORIGINAL MEASUREMENTS:			
<pre>(1) Benzene; C₆H₆; [71-43-2] (2) Sodium chloride; NaCl; [7647-14-5]</pre>	Mackay, D.; Shiu, W.Y. Can. J. Chem. Eng. <u>1975</u> , 53, 239-42.			
(3) Water; H ₂ O; [7732-18-5]				
VARIABLES: One temperature: 25°C Salinity: 0-200 g(2)/kg sln	PREPARED BY: M. Kleinschmidt and W. Shiu			
EXPERIMENTAL VALUES:				
The solubility of benzene in solutions of sodium chloride is reported in terms of the Setschenow equation: $log(S_o/S) = K_sC_s$				
where, S _o is the solubility of benzene in water (mg/L) S is the solubility of benzene in solution (mg/L) K _s is the Setschenow constant (L/mol) C _s is the concentration of sodium chloride (L/mol)				
evaluating the equation for S over the range of C $_{\rm S}$ 0-4 mol/L, K $_{\rm S}$ = 0.1836 ± 0.0072 (standard error) with S $_{\rm O}$ = 1779.5 ± 16.4.				
The corresponding mass percent and mo 35 g(2)/kg sln calculated by the comp sln and 3.227 x 10^{-4} assuming a solut	<pre>le fraction, x₁, at salinity = ilers are 0.1340 g(1)/100 g ion density of 1.025 kg/L.</pre>			
AUXILIARY	INFORMATION			
METHOD/APPARATUS/PROCEDURE: Solubility was determined by vapor phase extraction and gas chromato- graphic analysis. This method does not require the preparation of saturated solutions and thus avoids one of the major sources of error of other methods.	SOURCE AND PURITY OF MATERIALS: (1) research grade, 99.9+%, from Phillips Petroleum Co. (2) and (3) not specified ESTIMATED ERROR: temp. ± 0.1 K soly. 95% confidence limit is about 8% REFERENCES:			

37_152	191
COMPONENTS:	ORIGINAL MEASUREMENTS:
 Benzene; C₆H₆; [71-43-2] Sodium chloride; NaCl; [7647-14-5] Water; H₂O; [7732-18-5] 	Price, L.C. Am. Assoc. Petrol. Geol. Bull. <u>1976</u> , 60, 213-44.
VARIABLES:	PREPARED BY:
One temperature: 25°C	
Salinity: 1-360 g(2)/kg sln	M. Kleinschmidt and D. Shaw
EXPERIMENTAL VALUES:	
Solubility of Benz	ene in Aqueous NaCl
Salinity Mass Perce	nt Mole fraction
q(2)/kg sln q(1)/100 q	$10^4 x_1$ (compilers)
1 002 0 1718	2.06
10.000 0.1628	3.78
34.472 0.1391 50.030 0.1194	3.28 2.85
	1.48
279.800 0.0214	0.581
358.700 0.0134	0.378
"Artificial seawater, composition similar to ref 1.	not specified but probably
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Details given in source. (1) was equilibrated with NaCl solution for one month. An aliquot was analyzed directly by gas chromatography.	(l) commercial, 99 + % pure
	ESTIMATED ERROR:
	Temperature + 1 K
	Solubility ± 10 relative %
	REFERENCES:
	<pre>1. Lyman, J.; Fleming, R.H.; J. Mar. Res. <u>1940</u>, 3, 135.</pre>

37_153

COMPONENTS:	ORIGINAL MEASUREMENTS:	
(1) Benzene; C ₆ H ₆ ; [71-43-2]	May, W.E.; Wasik, S.P.; Freeman	
<pre>(2) Sodium Chloride; NaCl; [7647-14-5]</pre>	D.H. Anal. Chem. 1978, 50, 997-1000.	
(3) Water; H ₂ O; [7732-18-5]		
VADTABLES .	DEDADED NV.	
One temperature: 25°C	PREFARED DI:	
Salinity: 0-40 g(2)/kg sln	W.Y. Shiu and D. Mackay	
EXPERIMENTAL VALUES:		
The solubility of benzene in aqueous	sodium chloride is	
reported in terms of the Setschenow e	equation:	
log(S _o /S) = K _s C _s		
where;		
S_{O} is the solubility of	of (l) in water (mg/L)	
S is the solubility of	: (1) in saline solution (mg/L)	
K _s is the Setschenow of	constant (L/mol)	
s C _e in the concentration of sodium chloride (mol/L)		
evaluating the equation for S over the	ne range of C _s 0-0.7 mol/L,	
$K_{s} = 0.175$ with $S_{o} = 1791$.	5	
The corresponding mass percent and mo	ble fraction x_1 , at salinity =	
35 q(2)/kq sln calculated by the com	pilers are 0.1365 $q(1)/100 q sln$	
and 3.22×10^{-4} .	<u>5</u> ,,, <u>5</u>	
AUXILIARY INFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
A saturated solution of (1) was	(1) greater than 97% pure.	
through a "generation column" which	(2) reagent grade.	
was packed with glass beads coated with 1% by weight of (1). The	(3) distilled from potassium	
saturated solution was extracted	permanganate-sodium hydroxide	
with a superficially porous bonded	column.	
C ₁₈ stationary phase, then a water-		
through for extraction. The		
extract was introduced into a liquid chromatograph and the concen-	ESTIMATED ERROR.	
tration of (1) was measured with a	temp \pm 0.05 K	
	$S_{2} \pm 10$	

COMPONENTS :	EVALUATOR:
<pre>(1) 1,4-Cyclohexadiene; C₆H₈; [628-41-1]</pre>	G.T. Hefter, School of Mathematical and Physical Sciences, Murdoch
(2) Water; H ₂ O; [7732-18-5]	University, Perth, Western Australia. November 1984.

CRITICAL EVALUATION:

Quantitative data for the solubility of 1,4-cyclohexadiene (1) in water (2) have been reported in the publications listed in Table 1.

TABLE	1:	Quantitative	Sol	ubility	Stu	dies	of
1,	, 4-C	yclohexadiene	(1)	in Wate	er (2)	

Reference	T/K	Method
McAuliffe (ref l)	298	GLC
Pierotti and Liabastre (ref 2)	278-318	GLC

The original data in these publications are compiled in the Data Sheets immediately following this Critical Evaluation. No data appear to have been reported for the solubility of water in 1,4-cyclohexadiene.

The solubility values of (1) in (2) are listed in Table 2. The data are in poor agreement, with those of Pierotti and Liabastre (ref 2) being approximately 20% (relative) higher than those of McAuliffe (ref 1). This situation is typical for a large number of hydrocarbon-water systems investigated by these authors and is discussed in greater detail in the Critical Evaluation of the cyclopentane-water system. In general the values of McAuliffe are much closer to accepted values (in wellcharacterised systems) than those of Pierotti and Liabastre. However, in the absence of confirmatory studies, the data of Pierotti and Liabastre are not rejected although they should probably be regarded only as order-ofmagnitude values. The datum of McAuliffe may be considered as "Tentative".

TABLE 2: Solubility Values of 1,4-Cyclohexadiene (1) in Water (2)

	Reported values ^a	"Best" value	$(\pm \sigma_n)^b$
	g(l)/100g sln	g(l)/100g sln	$10^{4}x_{1}$
278	0.085* (ref 2)	0.09	1.9
288	0.094* (ref 2)	0.09	2.1
298	0.070 (ref 1), 0.093*(ref 2)	0.08 ± 0.01	2.1
308	0.09* (ref 2)	0.1	2.2
318	0.101 (ref 2)	0.1	2.3

(continued next page)

COMPONENTS :	EVALUATOR:
<pre>(1) 1,4-Cyclohexadiene; C₆H₈; [628-41-1]</pre>	G.T. Hefter, School of Mathematical and Physical Sciences, Murdoch
(2) Water; H ₂ O; [7732-18-5]	University, Perth, Western Australia.
	November 1984.

CRITICAL EVALUATION: (continued)

TABLE 2 (continued)

- *a* Values marked with asterisk (*) obtained by Evaluator by graphical interpolation of original measurements.
- b See comments in text regarding reliability of "Best" values; $\sigma_{\rm n}$ has no statistical significance.

REFERENCES

- 1. McAuliffe, C. J. Phys. Chem. <u>1966</u>, 70, 1267-75.
- Pierotti, R.A.; Liabastre, A.A. Structure and properties of water solutions. U.S. Nat. Tech. Inform. Serv., PB Rep. <u>1972</u>, No. 21163, 113 pp.

37 155

-	
COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) 1,4-Cyclohexadiene; C ₆ H ₈ ; [628-41-1]	McAuliffe, C.
(2) Water; H ₂ O; [7732-18-5]	J. Phys. Chem. <u>1966</u> , 70, 1267-75.
VARIABLES:	PREPARED BY:
One temperature: 25°C	A. Maczynski, Z. Maczynska, and A. Szafranski
EXPERIMENTAL VALUES:	•
The solubility of 1,4-cyclohexadiene to be 700 g(1)/10 ⁶ g(2). The corresponding mass percent and mo by the compilers are 0.0700 g(1)/100	in water at 25°C was reported ole fraction, x_1 , calculated g sln and 1.57 x 10 ⁻⁴ .
AUXILIARY INFORMATION	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
In a 250-mL bottle, 10-20 mL of (1) was vigorously shaken for 1 hr, or magnetically stirred for 1 day, with 200 mL of (2) at 25°C. The bottle was set aside for 2 days to allow droplets of undissolved (1) to separate. Absence of emulsion was checked microscopically. A sample of the hydrocarbon-saturated water was withdrawn with a Hamilton syringe and gas liquid chromato- graphed in conjunction with a flame- ionization detector.	 (1) Phillips Petroleum or Columbia Chemical; used as received. (2) distilled. ESTIMATED ERROR: temp. ± 1.5 K soly. 16 g(1)/10⁶ g(2) (standard deviation of mean) REFERENCES:

COMPONENTS :	ORIGINAL MEASUREMENTS:	
(1) 1,4-Cyclohexadiene; C ₆ H ₈ ; [628-41-]]	Pierotti, R.A.; Liabastre, A.A.	
(2) Water; H ₂ O; [7732-18-5]	"Structure and properties of water solutions." U.S. Nat. Tech. Inform. Serv., PB Rep., <u>1972</u> , No. 21163, 113 p.	
VARIABLES:	PREPARED BY:	
Temperature: 278.26-318.36 K	M.C. Haulait-Pirson	
EXPERIMENTAL VALUES:		
Solubility of 1,4-cyc	lohexadiene in water	
$\frac{T/K}{g(1)/1}$	$100 \text{ g sln} \qquad 10^3 x_1$	
278.26 0.08519	± 0.0019 0.1915	
288.36 0.09585	5 ± 0.0028 0.2155	
298.26 0.09362	2 ± 0.0023 0.2105	
308.36 0.09634	± 0.0023 0.2166	
318.36 0.10100	0 ± 0.0023 0.2271	
AUXILIARY	INFORMATION	
METHOD / APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:	
10 mL of (2) were placed along with 4-10 drops of (1) in 10 mL serum bottles, which were then tightly capped, and placed in the rotating basket and rotated for 24 hours. The bottles were then hand shaken to remove (1) droplets from the stoppers and then replaced in the bath with the tops down for an additional 24 hours. The solute concentrations were determined by	 (1) Columbia Organic Chemicals Co., Inc.; 99%; used as received. (2) laboratory distilled water. 	
use of a flame-ionization gas chromatograph. Many details about	ESTIMATED ERROR:	
equipment, operating conditions and calculation are given in the paper.	soly.: standard deviation from at least 15 measurements are given above.	
	REFERENCES:	
37 157		
--------	--	
--------	--	

COMPONENTS :	EVALUATOR:
(1) Cyclohexene; C ₆ H ₁₀ ; [110-83-8] (2) Water; H ₂ O; [7732-18-5]	G.T. Hefter, School of Mathematical and Physical Sciences, Murdoch University, Perth, Western Australia. November 1984.

CRITICAL EVALUATION:

Quantitative solubility data for the system cyclohexene (1) and water (2) have been reported in the publications listed in Table 1.

TABLE 1:	Quantitative	Solubility	Studies of
the Cy	clohexene (1)	- Water (2) System

Reference	T/K	Solubility	Method
McBain and Lissant (ref 1)	298	(1) in (2)	synthetic
Duque-Estrada <i>et al</i> . (ref 2)	298	(1) in (2)	GLC
Englin <i>et al</i> . (ref 3)	283-313	(2) in (1)	analytical
Farkas (ref 4)	298	(l) in (2)	GLC
McAuliffe (ref 5)	298	(1) in (2)	GLC
Pierotti and Liabastre (ref 6)	278-318	(1) in (2)	GLC
Budantseva et al. (ref 7)	293	mutual	GLC, Karl Fischer
Schwarz (ref 8)	297	(1) in (2)	chromatographic

The original data in all these publications are compiled in the Data Sheets immediately following this Critical Evaluation. Solubilities of cyclohexene in various aqueous salt solutions have also been reported (ref 9) but will not be considered in this Evaluation. For convenience, further discussion of this system will be divided into two parts.

1. THE SOLUBILITY OF CYCLOHEXENE (1) IN WATER (2)

The solubility data for cyclohexene in water are listed in Table 2. There are too few values to justify plotting them in a Figure.

At 298 K, the results of Pierotti and Liabastre (ref 6) appear to be much higher than all other values. This situation is typical of the large number of hydrocarbon-water systems investigated by these authors and is discussed in greater detail in the Critical Evaluation for the cyclopentanewater system. On the other hand, Pierotti and Liabastre's results at other temperatures are in reasonable agreement with the other available data (ref 7,8). This probably means that these data are also higher than "true" values. However, in the absence of confirmatory studies it is not possible to reject these data (ref 6,7,8). They are included in Table 2 but excluded in the determination of "Best" values.

COMPONENTS:	EVALUATOR:
(1) Cyclohexene; C ₆ H ₁₀ ; [110-83-8]	G.T. Hefter, School of Mathematical
(2) Water; H ₂ O; [7732-18-5]	and Physical Sciences, Murdoch
_	University, Perth, Western Australia.
	November 1984.
CRITICAL EVALUATION: (continued)	
TABLE 2. Tentative Val	ue of the Solubility of
Cyclohexene (1) in Water (2)
T/K Solubi	lity values
Reported values	"Best" value $(\pm \sigma_n)^{\mu}$
g(1)/100g Sin	$g(1)/100g \sin 10 x_1$
278 0.028 (ref 6)	
(288 0.029 (ref 6))	
298 0.013 (ref 1), 0.014 (ref	2), 0.016 ± 0.003 3.5
0.016 (ref 4), 0.0213 (ref 0.030 (ref 6), 0.028 ^b (ref	5),
308 0.030 (ref 6)	6,
318 0.031 (ref 6)	
 a Obtained by averaging reported valuand ref 8 (297K datum). σ_n values b 297 K datum. 	es excluding those of ref 6 (see text) do not have statistical significance.
2. THE SOLUBILITY OF WATER (2) IN CY	CLOHEXENE (1)
The solubility data for water in cyclo	hexene are listed in Table 3. The
results of Englin $et \ al$. (ref 6) and E	udantseva <i>et al</i> . (ref 7) at 293 K are
only in fair agreement.	
It should be noted that in a number of benzene-water) the data of Englin <i>et a</i> but are much higher than "Recommended" absence of confirmatory studies, all t very cautiously.	well-characterised systems (e.g. 1. are usually reliable when $T < 300$ K values when $T > 300$ K. Thus, in the the data in Table 3 should be regarded
	(continued next page)

	199	
COMPONENTS :	EVALUATOR:	
(1) Cyclohexene; C ₆ H ₁₀ ; [110-83-8]	G.T. Hefter, School of Mathematical	
(2) Water; H ₂ O; [7732-18-5]	and Physical Sciences, Murdoch	
2	University, Perth, Western Australia.	
	November 1984.	
CRITICAL EVALUATION: (continued)		
TABLE 3: Tentative So Water (2) in Cyc	lubility Values of lohexene (1)	
Solu	bility values	
Reported values	"Best" values $(\pm \sigma_n)^{\alpha}$	
10 ² g(2)/100g sln	$10^2 g(2) / 100 g sln 10^3 x_2$	
283 2.52 (ref 3)	2.5 1.2	
293 3.17 (ref 3), 4.2 (ref 7)	3.7 ± 0.5 1.7	
298 3.70 ^D (ref 3)	3.7 1.7	
303 4.24 (ref 3)	4.2 1.9	
313 5.62 (ref 3)	5.6 2.6	
b Interpolated graphically by the Ev REFERENCES	aluator.	
l. McBain, J.W.; Lissant, K.J. J.	Phys. Chem. <u>1951</u> , 55, 655-62.	
 Duque-Estrada, E.; Bayne, A.H.; Manakan, D.A. Instr. Lab. Rept., Dept. Chem. Eng. MIT, April 22, 1964. (cf. ref 4). 		
 Englin, B.A.; Plate, A.F.; Tugolukov, V.M.; Pryanishnikova, M.A. Khim. Tekhnol. Topl. Masel <u>1965</u>, 10, 42-6. 		
4. Farkas, E.J. Anal. Chem. <u>1965</u> ,	37, 1173-5.	
5. McAuliffe, C. J. Phys. Chem. <u>1</u>	<u>966</u> , 70, 1267-75.	
 Pierotti, R.A.; Liabastre, A.A. solutions. U.S. Nat. Tech. Info 113 pp. 	Structure and properties of water rm. Serv., PB Rep. 1972, No. 21163,	
 Budantseva, L.S.; Lesteva, T.M.; 50, 1344; Deposited Doc. 1976, V 	Nemstov, M.S. Zh. Fiz. Khim. 1976, INITI 438-76.	
8. Schwarz, F.P. Anal. Chem. <u>1980</u>	, 52, 10-15.	
9. Natarajan, G.S.; Venkatachalam, 328-9.	K.A. J. Chem. Eng. Data 1972, 17,	
1		

200	37_158	
COMPONENTS :	ORIGINAL MEASUREMENTS:	
(1) Cyclohexene; C ₆ H ₁₀ ; [110-83-8]	McBain, J.W.; Lissant, K.J.	
(2) Water; H ₂ O; [7732-18-5]	J. Phys. Colloid. Chem. <u>1951</u> , 55, 665-62.	
VARIABLES:	PREPARED BY:	
One temperature: 25°C	M.C. Haulait-Pirson and G.T. Hefter	
EXPERIMENTAL VALUES:		
The solubility of cyclohexene in water at 25°C was reported to be 0.013 g(l)/100 mL sln.		
The corresponding mass percent and mole fraction (x_1) , calculated by the compilers assuming solution density to be the same as pure water (1.00 g mL ⁻¹), are 0.013 g(1)/100 g sln and 2.9 x 10 ⁻⁵ .		
AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
10 mL portions of (2) was pipetted into glass vials, following which, varying amounts of (1) were added to each bottle by direct weighing. The vials were shaken overnight. When two vials had been obtained, one clear and one with excess hydro- carbon and containing amounts dif- fering by less than 1 mg, the two values were averaged and the mean	 (1) Eastman No. 1043. (2) distilled and boiled to remove CO₂. 	
	ESTIMATED ERROR:	
	not specified.	
	REFERENCES :	

37 159

COMPONENTS :	ORIGINAL MEASUREMENTS:	
(1) Cyclohexene; C ₆ H ₁₀ ; [110-83-8]	Duque-Estrada, E.; Bayne, A.H.; Manalan, D.A.	
(2) Water; H ₂ O; [7732-18-5]	Instr. Lab. Rept., Dept. Chem. Eng., MIT, April 22, 1964.	
VARIABLES :	PREPARED BY:	
One temperature: 25°C	A. Maczynski and Z. Maczynska	
EXPERIMENTAL VALUES:		
EXPERIMENTAL VALUES: The solubility of cyclohexene in water at 77°F was reported to be 0.000107 lb mol(1) ft ⁻³ sln. The corresponding temperature, mass percent, and mole fraction, x_1 , values calculated by compilers are 25°C, 0.014 g(1)/100 g sln, and 3.1 x 10 ⁻⁵ . The assumption 1 ft ³ sln = 28.32 kg sln was used in the calculation. The data are taken from ref 1.		
AUXILIARY INFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
The analytical (glc) method was used.	(1) not specified in ref 1.	
Nothing more was reported in ref 1.	(2) not specified in ref 1.	
	ESTIMATED ERROR:	
	not specified in ref 1.	
	REFERENCES:	
	1. Farkas, E.J. Anal. Chem. <u>1965</u> , 37, 1173.	

I

COMPONENTS :		ORIGINAL MEASUREMENTS:
(1) Cyclohexene; (2) Water; H ₂ O;	; C ₆ H ₁₀ ; [110-83-8] [7732-18-5]	Englin, B.A.; Plate, A.F.; Tugolukov, V.M.; Pryanishnikova, M.A. Khim. Tekhnol. Topl. Masel <u>1965</u> , 10, 42-6.
VARIABLES:		PREPARED BY:
Temperature: 10-	-40°C	A. Maczynski and Z. Maczynska
EXPERIMENTAL VALUES:		
	Solubility of wate	er in cyclohexene
	t/°C g(2)/10) g sln $10^3 x_2$ (compiler)
	10 0.0252 20 0.031	2 2 1.15 1.44
	30 0.0424 40 0.0562	1.93 2.56
	AUXILIAR	Y INFORMATION
Component (1) was introduced into a thermostatted flask and saturated for 5 hr. with (2). Next, calcium hydride was added and the evolving hydrogen volume measured and hence the concentration of (2) in (1) was evaluated.		<pre>(1) not specified. (2) not specified.</pre>
		ESTIMATED ERROR: Not specified.
		REFERENCES:

57_101		
COMPONENTS:	ORIGINAL MEASUREMENTS:	
(1) Cyclohexene; C ₆ H ₁₀ ; [110-83-8]	Farkas, E.J.	
(2) Water; H ₂ O; [7732-18-5]	Anal. Chem. <u>1965</u> , 37, 1173-5.	
VARIABLES:	PREPARED BY.	
One temperature: 25°C	A. Maczynski and A. Szafranski	
EXPERIMENTAL VALUES:		
The solubility of cyclohexene in water at 77° F was reported to be 0.000114, 0.000121, and 0.000128 lb mol(1) ft ⁻³ sln.		
The corresponding temperature, mass p	ercent, and mole fraction,	
x_1 , calculated by compilers at 25°C,	0.016 g(1)/100 g sln, and 3	
3.5×10^{-5} . The assumption that 1 ft	sln = 28.32 kg sln was used	
in the calculation.		
AUXILIARY INFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
The solubility of (1) in (2) has been evaluated from vapor pressure	(1) not specified.	
measurements in a specially con-	(2) not specified.	
paper. Theoretical basis is in-		
	ESTIMATED ERROR:	
	soly. ± 6%	
	(mean from three determinations) (compiler)	
	REFERENCES:	

I

	57_102	
COMPONENTS :	ORIGINAL MEASUREMENTS:	
(1) Cyclohexene; C ₆ H ₁₀ ; [110-83-8]	McAuliffe, C.	
(2) Water; H ₂ O; [7732-18-5]	J. Phys. Chem. <u>1966</u> , 70, 1267-75.	
VARIABLES :	PREPARED BY:	
One temperature: 25°C	A. Maczynski, Z. Maczynska, and A. Szafranski	
EXPERIMENTAL VALUES:		
The solubility of cyclohexene in wate to be 213 g(1)/10 ⁶ g(2). The corresponding mass percent and me by the compilers are 0.0213 g(1)/100	er at 25°C was reported ole fraction, x_1 , calculated g sln and 4.67 x 10 ⁻⁵ .	
AUXILIARY INFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
In a 250-mL bottle, 10-20 mL of (1) was vigorously shaken for 1 hr, or magnetically stirred for 1 day, with 200 mL of (2) at 25°C. The bottle was set aside for 2 days to allow droplets of undissolved (1) to separate. Absence of emulsion was checked microscopically. A sample of the hydrocarbon-saturated water was withdrawn with a Hamilton syringe and gas liquid chromato- graphed in conjunction with a flame- ionization detector.	 (1) Phillips Petroleum or Columbia Chemical; used as received. (2) distilled. 	
	ESTIMATED ERROR: temp. ± 1.5 K soly. 10 g(1)/10 ⁶ g(2) (standard deviation of mean)	
	REFERENCES :	

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Cyclobexene: $C_{2}H_{2}$; [110-83-8]	Natarajan, G.S.: Venkatachalam, K.A.
(1) cyclonexene, c_{6}^{-10} , [110 05 0]	J. Chem. Eng. Data 1972, 17, 328-9
(2) water; H_2^{0} ; [7/32-18-5]	
•	PREPARED BY:
One temperature 30°C	M.C. Haulait-Pirson, G.T. Hefter
EVDEDIMENTAL MAINES.	
EXFERIMENTAL VALUES:	
The solubility of cyclohexene in water	r was reported to be 4.950×10^{-3}
mol L ⁻¹ at 30°C. ^a Assuming a solution	n density of 1.00 g mL ⁻¹ the
corresponding mass percent and mole f	raction (x_1) solubilities calculated
by the compilers are respectively, 0.	$0406 g(1)/100 g sln and 8.91 x 10^{-}$.
	- function of termonotions in mariana
solubility data are also presented as	a function of temperature in various
Sait Solutions.	
a It should be noted that although the	e authors state that the solubility
refers to "water" the context in the	e paper is ambiguous and the data
were probably obtained in 0.001 mol	L ⁻¹ HNO ₂ solution.
	5
AUXILIARY INFORMATION	
METHOD /APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
15 mL of the aqueous medium was	(1) Prepared by dehydration of
equilibrated with 1 mL of (1) by	cyclohexanol and then washed,
mechanical shaking in a thermostatted	dried and fractionated. Purity
glass burette. After settling (judge	d (no specification) was determined
visually), 5 mL of the aqueous layer	by chromatography.
was withdrawn and the olefin content	(2) Not specified.
determined by titration with bromine	
using standard procedures.	POTTMATED EDDOD.
	ESTIMATED ERROR:
	Temp. ± 0.05 K
	Soly. not specified
	REFERENCES:

206	37_164
COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Cyclohexene; C ₆ H ₁₀ ; [110-83-8]	Pierotti, R.A.; Liabastre, A.A.
(2) Water; H ₂ O; [7732-18-5]	"Structure and properties of water solutions." U.S. Nat. Tech. Inform. Serv., PB Rep., <u>1972</u> , No. 21163, 113 p.
VARIABLES:	PREPARED BY:
Temperature: 278.26-318.36 K	M.C. Haulait-Pirson
EXPERIMENTAL VALUES:	
Solubility of cy	clohexene in water
<u>T/K</u> g(1)/10	$\frac{10^3 x_1}{10^3 x_1}$
278.26 0.02800	± 0.00069 0.06141
288.36 0.02985	± 0.00061 0.06546
298.26 0.02990	± 0.00082 0.06557
308.36 0.03025	± 0.00070 0.06634
318.36 0.03105	± 0.00093 0.06809

AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: 10 mL of (2) were placed along with 4-10 drops of (1) in 10 mL serum bottles, which were then tightly capped, and placed in the rotating basket and rotated for 24 hours. The bottles were then hand shaken to remove (1) droplets from the stoppers and then replaced in the bath with the tops down for an additional 24 hours. The solute concentrations were determined by use of a flame-ionization gas chromatograph. Many details about equipment, operating conditions and calculation are given in the paper.	 SOURCE AND PURITY OF MATERIALS: (1) Eastman Organic Chemicals, No. 1043; washed with water to remove stabilizing agent. (2) laboratory distilled water.
	soly.: standard deviation from at least 15 measurements are given above.
	REFERENCES:

_		
COMPONENTS :	ORIGINAL MEASUREMENTS:	
(1) Cyclohexene; C ₆ H ₁₀ ; [110-83-8] (2) Water; H ₂ O; [7732-18-5]	Budantseva, L.S.; Lesteva, T.M.; Nemstov, M.S.	
	Zh. Fiz. Khim. <u>1976</u> , 50, 1344. Deposited doc. <u>1976</u> , VINITI 438-76.	
VARIABLES:	PREPARED BY:	
One temperature: 20°C	A. Maczynski	
EXPERIMENTAL VALUES:		
The solubility of cyclohexene in water at 20°C was reported to be $x_{2} = 5 \times 10^{-5}$.		
The corresponding mass percent calcul	lated by the compiler is	
0.023 g(l)/100 g sln.		
-		
The solubility of water in cyclohexer $x_2 = 0.0019$.	ne at 20°C was reported to be	
The corresponding mass percent calcul 0.042 g(2)/100 g sln.	lated by the compiler is	
AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
The solubility of (1) in (2) was determined by glc. The solubility of (2) in (1) was determined by	(1) source not specified; pure or analytical reagent grade; purity <99.9%.	
Karl Fischer reagent method.	(2) not specified.	
	ESTIMATED ERROR:	
	not specified.	
	REFERENCES :	

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Cyclohexene; C ₆ H ₁₀ ; [110-83-8]	Schwarz, F.P.
(2) Water; H ₂ O; [7732-18-5]	Anal. Chem. <u>1980</u> , 52, 10-15.
VARIABLES :	PREPARED BY:
One temperature: 23.5°C	M.C. Haulait-Pirson
EXPERIMENTAL VALUES:	
Solubility of cyclohex	ene in water at 23.5°C
g(1)/100 g sln	$10^5 x_1$ (compiler)
0.0281 ± 0.0005	6.16
0.0286 ± 0.0013	6.27
An elution chromatography method was	(1) reagent grade used without
used where (1) was the stationary phase and (2) the mobile phase. A	further purification
transparent column was packed with an inert support (chromosorb P)	(2) distilled
coated with a known amount of the	
column was connected to a water	
gas regulator). Water was forced	
through the column by the pressure of the compressed gas (ca. 14 kPa).	
As the total volume of water flowing through the column increased, a	ESTIMATED ERROR:
solute depleted zone, different in color from the stationary phase.	temp. ± 1.5°C solv. 3% (average std. dev.)
developed and increased in length.	
the amount of solute removed from	REFERENCES :
solute depleted zone, and the volume	
or water passed through the column. Many details about preparation of	
the solute column and calculation are given in the paper.	[
	, í

-	
COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) 1,5-Hexadiene; C ₆ H ₁₀ ;	Black, C.; Joris, G.G.; Taylor, H.S.
[592-42-7]	J. Chem. Phys. <u>1948</u> , 16, 537-43.
(2) Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
Temperature: 13.5 and 20.2°C	A Maczunski and 7 Maczunska
	A. Maczynski ana z. Maczynska
EXPERIMENTAL VALUES:	
Solubility of water	in 1.5-bezadiene
t/°C q(2)/100 q(1) q(2)/10	$00 \text{ g sln } 10^3 x$ (compiler)
(comp	biler) 2 2 2
13.5 0.0618 0. 20.2 0.0969 0.	0618 2.81 0962 4.37
(at total saturation pressure of	l atm)
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Air saturated with radioactive water vapor was bubbled through	(1) Harvard University; purity not specified; used as
(1) until saturation was attained. Dissolved water was separated from	received.
(1) by absorption on calcium oxide.	(2) not specified.
the counter by equilibration with	
ethanol vapor. The method is described in ref (1).	
	ESTIMATED ERROR:
	soly. ± 1% (type of error not specified)
	REFERENCES:
	l. Joris, G.G.; Taylor, H.S.
	J. Chem. Phys. 1948, 16, 45.

COMPONENTS:	ORIGINAL MEASUREMENTS:	
<pre>(1) 1,5-Hexadiene; C₆H₁₀; [592-42-7] (2) Water; H₂0; [7732-18-5]</pre>	McAuliffe, C. J. Phys. Chem. <u>1966</u> , 70, 1267-75.	
VARIABLES: One temperature: 25°C	PREPARED BY: A. Maczynski, Z. Maczynska, and A. Szafranski	
EXPERIMENTAL VALUES:		
The solubility of 1,5-hexadiene in water at 25°C was reported to be 169 g(1)/10 ⁶ g(2). The corresponding mass percent and mole fraction, x_1 , calculated by the compilers are 0.0169 g(1)/100 g sln and 3.70 x 10 ⁻⁵ .		
AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
In a 250-mL bottle, 10-20 mL of (1) was vigorously shaken for 1 hr, or magnetically stirred for 1 day, with 200 mL of (2) at 25°C. The bottle was set aside for 2 days to allow droplets of undissolved (1) to separate. Absence of emulsion was checked microscopically. A sample of the hydrocarbon-saturated water was withdrawn with a Hamilton syringe and gas liquid chromato- graphed in conjunction with a flame- ionization detector.	 (1) Phillips Petroleum or Columbia Chemical; used as received. (2) distilled. ESTIMATED ERROR: temp. ± 1.5 K soly. 6 g(1)/10⁶ g(2) (standard deviation of mean) 	
	REFERENCES:	

37_169	211	
COMPONENTS:	ORIGINAL MEASUREMENTS:	
(1) 1-Hexyne; C ₆ H ₁₀ ; [693-02-7]	McAuliffe, C.	
(2) Water; H ₂ O; [7732-18-5]	J. Phys. Chem. <u>1966</u> , 70, 1267-75.	
VARIABLES:	PREPARED BY:	
One temperature: 25°C	A. Maczynski, Z. Maczynska, and A. Szafranski	
EXPERIMENTAL VALUES:		
The solubility of 1-hexyne in water a to be 360 g(1)/10 ⁶ g(2). The corresponding mass percent and map by the compilers are 0.0360 g(1)/100	at 25°C was reported ole fraction, x_1 , calculated	
by the compilers are 0.0500 g(1)/100		
,		
AUXILIARY INFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
In a 250-mL bottle, 10-20 mL of (1) was vigorously shaken for 1 hr, or	(1) Phillips Petroleum or Columbia Chemical; used	
magnetically stirred for 1 day, with 200 mL of (2) at 25°C. The	as received.	
bottle was set aside for 2 days to allow droplets of undissolved (1)	(2) distilled.	
to separate. Absence of emulsion was checked microscopically. A		
sample of the hydrocarbon-saturated		
syringe and gas liquid chromato-	ESTIMATED EDDOD.	
ionization detector.	temp. $+$ 1.5 K	
	soly. 17 g(1)/10 ⁶ g(2) (standard deviation of mean)	

REFERENCES:

COMPONENTS:	EVALUATOR:
<pre>(1) Methylcyclopentane; C₆H₁₂; [96-37-7]</pre>	M.C. Haulait-Pirson, Department of Chemistry, University of Leuven, Belgium.
(2) Water; H ₂ O; [7732-18-5]	G.T. Hefter, School of Mathematical and Physical Sciences, Murdoch University, Perth, W.A., Australia.
	November 1984

37 170

CRITICAL EVALUATION:

Quantitative solubility data for the system methylcyclopentane (1) - water (2) have been reported in the publications listed in Table 1.

TABLE 1: Quantitative Solubility Studies of theMethylcyclopentane (1) - Water (2) System

Reference	T/K	Solubility	Method
Guseva and Parnov (ref 1)	335-487	(1) in (2)	synthetic?
Englin et al. (ref 2)	283-303	(2) in (1)	analytical
McAuliffe (ref 3)	298	(l) in (2)	GLC
Price (ref 4)	298	(l) in (2)	GLC
Krzyzanowska and Szeliga (ref 5)	298	(1) in (2)	GLC
Rudakov and Lutsyk (ref 6)	298	(l) in (2)	partition coefficient

The original data in all of these publications are compiled in the Data Sheets immediately following this Critical Evaluation. For convenience, further discussion of this system will be divided into two parts.

1. THE SOLUBILITY OF METHYLCYCLOPENTANE (1) IN WATER (2)

The solubility data for methylcyclopentane in water at 298K are listed in Table 2. The datum of Krzyzanowska and Szeliga (ref 5) has been excluded from consideration as it does not appear to be independent of that of Price (ref 4). The high temperature data of Guseva and Parnov (ref 1) presumably made in sealed tubes are rejected because of inadequate specification of system conditions (especially pressure). All other data are given in Table 2.

TABLE 2: Recommended Value of the Solubilityof Methylcyclopentane (1) in Water (2)

T/K	Solubility values		
	Reported values 10 ³ g(1)/100g sln	"Best" values $(\pm \sigma_n)^a$ 10 ³ g(1)/100g sln 10 ⁶ x ₁	
298	4.2 (ref 3), 4.18 (ref 4), 4.5 (ref 6)	4.3 ± 0.1 9.2	

 a Obtained by averaging, σ_n has no statistical significance. (continued next page)

COMPONENTS:	EVALUATOR:
<pre>(1) Methylcyclopentane; C₆H₁₂; [96-37-7]</pre>	M.C. Haulait-Pirson, Department of Chemistry, University of Leuven, Belgium.
(2) Water; H ₂ O; [7732-18-5]	G.T. Hefter, School of Mathematical and Physical Sciences, Murdoch University, Perth, W.A., Australia.
	November 1984

2. THE SOLUBILITY OF WATER (2) IN METHYLCYCLOPENTANE (1)

The solubility of water in methylcyclopentane has been reported in only one publication: Englin *et al.* (ref 2), and thus no Critical Evaluation can be given. However, it should be noted that in well characterized systems (e.g. benzene-water), the data of Englin *et al.* are generally reliable at lower temperatures but are higher than "Recommended" values when T > 300K. The interested user is referred to the appropriate data sheet for the original values.

REFERENCES

- 1. Guseva, A.N.; Parnov, E.I. Vestn. Mosk. Univ. Khim. <u>1964</u>, 19, 77-8.
- Englin, B.A.; Plate, A.F.; Tugolukov, V.M.; Pryanishnikova, M.A. Khim. Tekhnol. Topl. Masel 1965, 10, 42-6.
- 3. McAuliffe, C. J. Phys. Chem. <u>1966</u>, 70, 1967-75.
- 4. Price, L.C. Am. Assoc. Petrol. Geol. Bull. 1976, 60, 213-44.
- 5. Krzyzanowska, T.; Szeliga, J. Nafta Katowice 1978, 34, 413-7.
- 6. Rudakov, E.S.; Lutsyk, A.I. Zh. Fiz. Khim. 1979, 53, 1298-1300.

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Methylcyclopentane; C ₆ H ₁₂ ;	Guseva, A.N.; Parnov, E.I.
[96-37-7]	Vestn. Mosk. Univ. Khim. <u>1964</u> ,
(2) Water; H ₂ O; [7732-18-5]	19, 77-8.
VARIABLES:	PREPARED BY:
Temperature: 61.5-214°C	M.C. Haulait-Pirson
EXPERIMENTAL VALUES:	
Solubility of methylcyd	clopentane in water
t/°C g(1)/100 g(2)	$g(1)/100 g sln 10^4 x_1$ (compiler) (compiler)
61.5 0.0229	0.0229 0.490
146 0.155	0.155 3.31
184 0.457	0.457 9.76
214 1.479	1.457 31.20
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Presumably the measurements were	(1) not specified.
made in sealed glass tubes, as	
were reported in the paper.	(2) not specified.
	ESTIMATED ERROR:
	not specified.
	•
	REFERENCES:
	1. Guseva, A.N.; Parnov, E.I.
	Vestn. Mosk. Univ. Khim. <u>1963</u> , 18. 76
	10, 70.

37_172	215	
COMPONENTS:	ORIGINAL MEASUREMENTS:	
<pre>(1) Methylcyclopentane; C₆H₁₂; [96-37-7]</pre>	Englin, B.A.; Plate, A.F.; Tugolukov, V.M.; Pryanishnikova, M.A.	
(2) Water; H ₂ O; [7732-18-5]	Khim. Tekhnol. Topl. Masel <u>1965</u> , 10, 42-6.	
VARIABLES:	PREPARED BY:	
Temperature: 10-30°C	A. Maczynski and M.C. Haulait-Pirson	
EXPERIMENTAL VALUES:	.1	
Solubility of water in	methylcyclopentane	
t/°C g(2)/1	$10^{4} g sln$ $10^{4} x_{2}$ (compiler)	
10 0.	073 3.4	
20 0.	0131 6.12	
30 0.	0205 9.58	
AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
Component (1) was introduced into	(1) not specified.	
a thermostatted flask and saturated for 5 hours with (2). Next, cal- cium hydride was added and the evolving hydrogen volume measured and hence the concentration of (2) in (1) was evaluated.	(2) not specified.	
	ESTIMATED ERROR.	
	not specified.	

REFERENCES:

COMPONENTS:	ORIGINAL MEASUREMENTS:		
(1) Methylcyclopentane; C ₆ H ₁₂ ;	McAuliffe, C.		
[96-37-7]	J. Phys. Chem. <u>1966</u> , 70, 1267-75.		
(2) Water; H ₂ O; [7732-18-5]			
VARIABLES:	PREPARED BY:		
One temperature: 25°C	M.C. Haulait-Pirson		
EXPERIMENTAL VALUES:			
The solubility of methylcyclopentane in water at 25°C was reported to			
be 42 mg (1)/kg sln.			
The corresponding mole fraction, x_1 ,	calculated by the compiler,		
The same value is also reported in re	ofs 1 and 2		
The same value is also reported in re			
AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:		
In a 250 mL glass bottle, 10-20 mL	(1) Phillips Petroleum Co.; 99+%		
l hr or magnetically stirred for	purity; used as received.		
1 day, with 200 mL of (2) at 25°C. In the case of shaking, the solution	(2) distilled.		
was allowed to stand for 2 days to			
lets. Absence of emulsion was			
checked microscopically. A 50 μ L sample of the (1) saturated water			
was withdrawn with a Hamilton			
tionator of the gas chromatograph.	ESTIMATED ERROR:		
A hydrogen-flame ionization detector	temp. ± 1.5 K		
the paper.	deviation from mean)		
	DEFEDENCYS.		
	1. McAuliffe, C. Nature (London)		
	<u>1963</u> , 200, 1092.		
	2. McAuliffe, C. Am. Chem. Soc. Div. Petrol. Chem. 1964. 9.		
	275.		

Σ1,
ORIGINAL MEASUREMENTS:
Price, L.C.
Ат. Аввос. Petrol. Geol. Bull. <u>1976</u> , 60, 213-44.
PREPARED BY:
M.C. Haulait-Pirson
in water at 25°C and at system .)/kg(2). The corresponding . :alculated by the compiler : 10 ⁻⁶ .
<pre>SOURCE AND PURITY OF MATERIALS: (1) Phillips Petroleum Company; Chemical Samples Company or or Aldrich Chemical Company; 99+%. (2) distilled. (2) distilled. ESTIMATED ERROR: temp. ± 1 K soly. ± 1 mg(1)/kg(2) REFERENCES:</pre>

	ORIGINAL MEASUREMENTS:		
(1) Methylcyclopentane; C ₆ H ₁₂ ;	Krzyzanowska, T.; Szeliga, J.		
(2) Water: H 0 [7732=18=5]	Nafta (Katowice) <u>1978</u> , 12, 413-7.		
(2) water; n_20 ; $[7/32-10-5]$			
VARIABLES:	PREPARED BY:		
One temperature: 25°C	M.C. Haulait-Pirson		
EXPERIMENTAL VALUES:			
	· · · · · · · · · · · · · · · · · · ·		
The solubility of methylcyclopentane in water at 25°C was reported			
to be 41.8 mg(1)/kg(2).	lo fraction a coloulated		
The corresponding mass percent and more by compiler are $0.00418 g(1)/100 g s$	$n \text{ and } 8.95 \text{ x} 10^{-6}$		
by complice are 0.00418 g(1)/100 g si			
Editor's Note: Based on the results	for this and other hydrocarbon-water		
systems, uncertainity exists about whether the datum compiled here is			
independent of that of Price for the same system (see previous page).			
AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDURE:			
	SOURCE AND FURITI OF MATERIALS:		
Saturated solutions of (1) in (2) were prepared in two ways. First,			
were freferen en eve walte erret,	(1) not specified.		
200 μ L of (1) was injected into	(1) not specified.(2) not specified.		
200 μ L of (1) was injected into 20 mL of (2) and thermostatted at 25°C. Second, the mixture of (1)	(1) not specified.(2) not specified.		
200 μ L of (1) was injected into 20 mL of (2) and thermostatted at 25°C. Second, the mixture of (1) and (2) as above was thermostatted	(1) not specified.(2) not specified.		
200 μ L of (1) was injected into 20 mL of (2) and thermostatted at 25°C. Second, the mixture of (1) and (2) as above was thermostatted at 70°C and then cooled to 25°C. The time required to obtain	(1) not specified.(2) not specified.		
200 μ L of (1) was injected into 20 mL of (2) and thermostatted at 25°C. Second, the mixture of (1) and (2) as above was thermostatted at 70°C and then cooled to 25°C. The time required to obtain equilibrium was three weeks. The	(1) not specified.(2) not specified.		
200 μ L of (1) was injected into 20 mL of (2) and thermostatted at 25°C. Second, the mixture of (1) and (2) as above was thermostatted at 70°C and then cooled to 25°C. The time required to obtain equilibrium was three weeks. The solubility of (1) in (2) was mea- sured by glc. A Perkin-Elmer model	(1) not specified.(2) not specified.		
200 μ L of (1) was injected into 20 mL of (2) and thermostatted at 25°C. Second, the mixture of (1) and (2) as above was thermostatted at 70°C and then cooled to 25°C. The time required to obtain equilibrium was three weeks. The solubility of (1) in (2) was mea- sured by glc. A Perkin-Elmer model F-11 gas chromatograph equipped with a 100-150 mech Porasil column	<pre>(1) not specified. (2) not specified. ESTIMATED ERROR:</pre>		
200 μ L of (1) was injected into 20 mL of (2) and thermostatted at 25°C. Second, the mixture of (1) and (2) as above was thermostatted at 70°C and then cooled to 25°C. The time required to obtain equilibrium was three weeks. The solubility of (1) in (2) was mea- sured by glc. A Perkin-Elmer model F-11 gas chromatograph equipped with a 100-150 mesh Porasil column (70°C) and a flame ionization	<pre>(1) not specified. (2) not specified. ESTIMATED ERROR: soly. 1.05 mg(1)/kg(2) (standard</pre>		
200 μ L of (1) was injected into 20 mL of (2) and thermostatted at 25°C. Second, the mixture of (1) and (2) as above was thermostatted at 70°C and then cooled to 25°C. The time required to obtain equilibrium was three weeks. The solubility of (1) in (2) was mea- sured by glc. A Perkin-Elmer model F-11 gas chromatograph equipped with a 100-150 mesh Porasil column (70°C) and a flame ionization detector was used. Saturated solu- tions of heptane in (2) were used	<pre>(1) not specified. (2) not specified. ESTIMATED ERROR: soly. 1.05 mg(1)/kg(2) (standard deviation from 7-9 determinations)</pre>		
200 μ L of (1) was injected into 20 mL of (2) and thermostatted at 25°C. Second, the mixture of (1) and (2) as above was thermostatted at 70°C and then cooled to 25°C. The time required to obtain equilibrium was three weeks. The solubility of (1) in (2) was mea- sured by glc. A Perkin-Elmer model F-11 gas chromatograph equipped with a 100-150 mesh Porasil column (70°C) and a flame ionization detector was used. Saturated solu- tions of heptane in (2) were used as standard solutions.	<pre>(1) not specified. (2) not specified. ESTIMATED ERROR: soly. 1.05 mg(1)/kg(2) (standard deviation from 7-9 determinations)</pre>		
200 μ L of (1) was injected into 20 mL of (2) and thermostatted at 25°C. Second, the mixture of (1) and (2) as above was thermostatted at 70°C and then cooled to 25°C. The time required to obtain equilibrium was three weeks. The solubility of (1) in (2) was mea- sured by glc. A Perkin-Elmer model F-11 gas chromatograph equipped with a 100-150 mesh Porasil column (70°C) and a flame ionization detector was used. Saturated solu- tions of heptane in (2) were used as standard solutions.	<pre>(1) not specified. (2) not specified. ESTIMATED ERROR: soly. 1.05 mg(1)/kg(2) (standard deviation from 7-9 determinations) REFERENCES:</pre>		
200 µL of (1) was injected into 20 mL of (2) and thermostatted at 25°C. Second, the mixture of (1) and (2) as above was thermostatted at 70°C and then cooled to 25°C. The time required to obtain equilibrium was three weeks. The solubility of (1) in (2) was mea- sured by glc. A Perkin-Elmer model F-11 gas chromatograph equipped with a 100-150 mesh Porasil column (70°C) and a flame ionization detector was used. Saturated solu- tions of heptane in (2) were used as standard solutions.	<pre>(1) not specified. (2) not specified. ESTIMATED ERROR: soly. 1.05 mg(1)/kg(2) (standard deviation from 7-9 determinations) REFERENCES:</pre>		
200 μ L of (1) was injected into 20 mL of (2) and thermostatted at 25°C. Second, the mixture of (1) and (2) as above was thermostatted at 70°C and then cooled to 25°C. The time required to obtain equilibrium was three weeks. The solubility of (1) in (2) was mea- sured by glc. A Perkin-Elmer model F-11 gas chromatograph equipped with a 100-150 mesh Porasil column (70°C) and a flame ionization detector was used. Saturated solu- tions of heptane in (2) were used as standard solutions.	<pre>(1) not specified. (2) not specified. ESTIMATED ERROR: soly. 1.05 mg(1)/kg(2) (standard deviation from 7-9 determinations) REFERENCES:</pre>		
200 µL of (1) was injected into 20 mL of (2) and thermostatted at 25°C. Second, the mixture of (1) and (2) as above was thermostatted at 70°C and then cooled to 25°C. The time required to obtain equilibrium was three weeks. The solubility of (1) in (2) was mea- sured by glc. A Perkin-Elmer model F-11 gas chromatograph equipped with a 100-150 mesh Porasil column (70°C) and a flame ionization detector was used. Saturated solu- tions of heptane in (2) were used as standard solutions.	<pre>(1) not specified. (2) not specified. ESTIMATED ERROR: soly. 1.05 mg(1)/kg(2) (standard deviation from 7-9 determinations) REFERENCES:</pre>		
200 µL of (1) was injected into 20 mL of (2) and thermostatted at 25°C. Second, the mixture of (1) and (2) as above was thermostatted at 70°C and then cooled to 25°C. The time required to obtain equilibrium was three weeks. The solubility of (1) in (2) was mea- sured by glc. A Perkin-Elmer model F-11 gas chromatograph equipped with a 100-150 mesh Porasil column (70°C) and a flame ionization detector was used. Saturated solu- tions of heptane in (2) were used as standard solutions.	<pre>(1) not specified. (2) not specified. ESTIMATED ERROR: soly. 1.05 mg(1)/kg(2) (standard deviation from 7-9 determinations) REFERENCES:</pre>		

J/ 1/0

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Methylcyclopentane; C₆H₁₂; [96-37-7] (2) Water; H₂O; [7732-18-5]</pre>	Rudakov, E.S.; Lutsyk, A.I. Zh. Fiz. Khim. <u>1979</u> , 53, 1298-1300.
VARIABLES:	PREPARED BY:
One temperature: 25°C	M.C. Haulait-Pirson

EXPERIMENTAL VALUES:

The authors reported the partition coefficient α of methylcyclopentane between the gas and aqueous phase. $\alpha = 14 \pm 1$. $\alpha = C_g/C_s$ with C_s being the concentration of the compound in dilute aqueous solution at 25°C and C_g the concentration in the gas phase in equilibrium with the aqueous solution (both in moles per liter).

The compiler has assumed that when (1) and (2) are not very soluble in each other, C_s may be taken as the water solubility and C_g as the vapor pressure of (1). The value of p (where p is the vapor pressure in mm of Hg) is taken from ref 1. p = 137.5 mm of Hg and log $C_g = \log p - 4.269 = -2.13$ expressed in moles per liter. Therefore $C_s = 5.29 \times 10^{-4}$ moles per liter. With the assumption of a solution density of 1.00 g mL⁻¹, the corresponding mass percent is 0.0045 g(1)/100 g sln and the corresponding mole fraction, x_1 , is 9.6 x 10^{-6} .

AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The equilibrium distribution was attained after shaking for 10 min the thermostatted reactor contain- ing (2) and the (1) vapor. After being allowed to stand for 10 min, equal calibrated volumes of samples of the gas and solution were intro- duced by a syringe into a special cell for the removal of (1) by blowing, built into the gas line of the chromatograph and the par- tition coefficient α was determined as the ratio of the areas of the peaks of the substrate arising from the two phases.	<pre>(1) not specified. (2) not specified. ESTIMATED ERROR:</pre>
	<pre>soly. ± 10% (estimated by the</pre>
	<pre>1. Hine, J.; Mooker, P.K. J. Org. Chem. <u>1975</u>, 4, 292.</pre>

COMPONENTS :		ORIGINAL MEASUREMENTS:	
<pre>(1) Methylcyclopentane; C [96-37-7]</pre>	6 ^H 12 '	Price, L.C.	
<pre>(2) Sodium chloride; NaCl [7647-14-5]</pre>	;	Am. Assoc. Petrol. Geol. Bull. <u>1976</u> , 60, 213-44.	
(3) Water; H ₂ O; [7732-18-	5]		
VARIABLES:		PREPARED BY:	
One temperature: 25°C		M. Kleinschmidt and D. Shaw	
Salinity: 1-360 g(2)/kg	sln	A Alember and Di Dhaw	
EXPERIMENTAL VALUES:			
Solubility o	f Methylcycl	lopentane in Aqueous NaCl	
Salinity	Mass Perce	ent Mole fraction	
q(2)/kg sln	q(1)/100 q	$sln = 10^6 x_1 \text{ (compilers)}$	
<u><u><u>y</u>,<u></u><u>y</u>,<u></u><u>y</u>,<u>y</u>,<u>y</u>,<u>y</u>,<u>y</u>,<u>y</u>,<u>y</u></u></u>			
1.002	0.00380	8.14 7.82	
34.472 ^a	0.00292	6.40	
	0.00270	5.98	
199.900	0.00057	1.38	
279.800	0.00033	0.847	
358.700 0.00018		9 0.495	
	AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE:		SQURCE AND PURITY OF MATERIALS:	
Details given in source. equilibrated with NaCl so one month. An aliquot wa directly by gas chromatog	(1) was lution for s analyzed raphy.	(1) commercial, 99 + % pure	
		ESTIMATED ERROR:	
		Temperature ± 1 K	
		Solubility ± 10 relative *	
		REFERENCES:	
		<pre>1. Lyman, J.; Fleming, R.H.; J. Mar. Res. <u>1940</u>, 3, 135.</pre>	

(1) Cyclohexane; C ₆ H ₁₂ ; [11	0-82-7]	G.T. Hefter, Scl	hool of Mathematical
(2) Water; H ₂ O; [7732-18-5]		and Physical Sc:	iences, Murdoch
-		University, Per	th, W.A., Australia.
		September 1986.	
CRITICAL EVALUATION:		Deptember 1900.	
Quantitative solubility dat	a for the s	ystem cyclohexan	e (1) and water (2)
have been reported in the r	eferences 1	isted in Table 1.	
TABLE 1: Qu Cyclo	antitatuve hexane(1) -	Water (2) System	<u>es of the</u> n
			-
Reference	T/K	Solubility	Method
Bennett and Philip (ref 1)	290	(1) in (2)	volumetric
Tarassenkow and Poloshinzewa (ref 2)	287-326	(2) in (1)	synthetic
Berkengeim (ref 3)	293-323	(2) in (1)	Karl Fischer
Black et al. (ref 4)	293	(2) in (1)	radiotracer
Durand (ref 5)	289	(1) in (2)	cloud point
McBain and Lissant (ref 6)	298	(1) in (2)	cloud point
Kudchadker and McKetta (ref 7)	311 - 411 ^{<i>a</i>}	(l) in (2)	not specified
Guseva and Parnov (ref 9,10)	298-494	(1) in (2)	synthetic
Englin et al. (ref ll)	289-323	(2) in (1)	analytical
Zel'venskii <i>et al</i> . (ref 12)	293	(2) in (1)	radiotracer
Johnson et al. (ref 13)	298	(2) in (1)	Karl Fischer
McAuliffe (ref 14)	298	(1) in (2)	GLC
Gregory <i>et al</i> . (ref 15)	298	(2) in (1)	Karl Fischer
Rebert and Hayworth (ref 8,16)	403-643 ^a	mutual	synthetic
Burd and Braun (ref 17)	368 - 478 ^a	(2) in (1)	GLC
Bröllos <i>et al</i> . (ref 18)	275 - 421 ^a	mutual	synthetic
Roddy and Coleman (ref 19)	298	(2) in (1)	radiotracer
Roof (ref 20)	530	mutual	synthetic
Plenkina <i>et al</i> . (ref 21)	403-523	(2) in (1)	synthetic
Glasoe and Schultz (ref 22)	288-303	(2) in (1)	Karl Fischer
Pierotti and Liabastre (ref 23)	278-318	(l) in (2)	GLC
Leinonen and Mackay (ref 24)	298	(l) in (2)	GLC
Sultanov and Skripka (ref 25,32)	473 - 523 ^a	(2) in (1)	not specified
Goldman (ref 26)	283-313	(2) in (1)	Karl Fischer
Mackay et al. (ref 27,28)	298	(1) in (2)	GLC
Budantseva <i>et al</i> . (ref 29)	293	mutual	GLC, Karl Fischer
Kirchnerova and Cave (ref 30)	298	(2) in (1)	Karl Fischer
Price (ref 31)	298	(1) in (2)	GLC
		(Table 1 co	ntinued next page)

EVALUATOR:

COMPONENTS :

COMPONENTS: (1) Cyclohexane; C ₆ H ₁₂ : [2 (2) Water; H ₂ O; [7732-18-9	110-82-7] 5]	EVALUATOR: G.T. Hefter, Sc and Physical Sc University, Per September 1986.	hool of Mathematical iences, Murdoch th, W.A. Australia.
CRITICAL EVALUATION:			
TABLE 1 (continued)			
Reference	T/K	Solubility	Method
Korenman and Aref'eva (ref 33)	293,298	(1) in (2)	titration
Krzyzanowska and Szeliga (ref 35)	298	(1) in (2)	GLC
Rudakov and Lutsyk (ref 36)	298	(1) in (2)	partition coefficient
Schwarz (ref 37)	297	(1) in (2)	chromatographic
Tsonopoulos and Wilson (ref 39)	313 - 482 ^a	mutual	GLC, Karl Fischer

^aPressure also varied, see Table 4

222

Solubility data for cyclohexane in water may also be calculated from the calorimetric data of Gill *et al*. (ref 40) and quantitative solubility data for the cyclohexane-heavy water (D_2O) system are given in the publications of Guseva and Parnov (ref 9) and Backx and Goldman (ref 38).

Apart from the paper by Roof (ref 20), which did not contain sufficient information to justify compilation, the original data in all the publications listed in Table 1 are compiled in the Data Sheets immediately following this Critical Evaluation. The datum of Krzyzanowska and Szeliga (ref 35) does not appear to be indendent of that of Price (ref 31) and so has been excluded from this Evaluation.

Despite the large number of investigations of this system (Table 1), the mutual solubilities are poorly characterised and warrant thorough reinvestigation over the entire liquid range. No data have been "Recommended".

In the Tables which follow values which have been obtained by the Evaluator by graphical interpolation of the original data are indicated by an asterisk (*). "Best" values were obtained by simple averaging. The uncertainty limits (σ_n) attached to these values do not have statistical significance and should be regarded only as convenient representation of the spread of reported values rather than error limits.

For convenience, further discussion of this system will be divided into three sections.

COMPONENTS :	EVALUATOR:
(1) Cyclohexane; C ₆ H ₁₂ ; [110-82-7] (2) Water; H ₂ O; [7732-18-5]	G.T. Hefter, School of Mathematical and Physical Sciences, Murdoch University, Perth, W.A., Australia. September 1986.

1. THE SOLUBILITY OF CYCLOHEXANE (1) IN WATER (2) Most of the available data for the solubility of cyclohexane in water are summarized in Table 2 below.

In preparing Table 2 below the data of Mackay *et al.* (ref 27) were excluded as the temperature was not specified; anyway, these data are probably superceded by later measurements from the same laboratory (ref 28). The various data reported at high temperature have also been excluded as they are discussed in detail in section 3 below. The datum of Schwarz (ref 37) at 296.7K, although in reasonable agreement with other values, has been excluded for representational convenience.

At 298K, the only temperature where sufficient data have been obtained to enable meaningful evaluation to be made, the approximate values of Guseva and Parnov (ref 9,10) and Korenman and Aref'eva are rejected as is the datum of Pierotti and Liabastre (ref 23) which is markedly higher than all other values. All other data are included in Table 2.

At other temperatures the data are much too scattered to enable a satisfactory evaluation to be made. This can be clearly seen from Figure 1 which plots all the available data. Thus no "Best" values have been calculated in Table 2 other than at 298K. Clearly, this system requires a thorough reinvestigation over the whole temperature range.

TABLE 2: Solubility of Cyclohexane (1) in Water (2)

Solubility values			
Т/К	Reported values 10 ³ g(1)/100 g sln	"Best" value (± ơ _n) ^α 10 ³ g(1)/100 g sln	10 ⁵ x ₁
278	8.19 (ref 23)		
288	6.2 ^b (ref 5), 8.87 (ref 23)		
293	7.0 (ref 29) 10 (ref 33)		
298	5.5 (ref 14), 5.67 (ref 24), 5.75 (ref 28), 6.65 (ref 31), 5.5 (ref 36)	5.8 ± 0.4	1.2
308	4.54 [°] (ref 7), 8.88 (ref 23)		
318	9.13 (ref 23), 7.14 [*] (ref 39)		
323	7.55 (ref 39)		
329	17 (ref 9,10)		
343	10.1 (ref 39)		
344	2.7 (ref 7)		
G Post values not calculated events at 200 K (see text)			
a best values not calculated except at 290 K (see text)			
Creters to 200%			
o kerer	S TO JINK		ient page/

224

COMPONENTS :	EVALUATOR:		
(1) Cyclohexane; C ₆ H ₁₂ ; [110-82-7]	G.T. Hefter, School of Mathematical		
(2) Water; H ₂ O; [7732-18-5]	and Physical Sciences, Murdoch		
-	University, Perth, W.A., Australia.		
	September 1986.		
CRITICAL EVALUATION: (continued)			
TABLE 3: Solubility of Wat	ter (2) in Cyclohexane (1)		
<i>Т/</i> К So:	lubility values		
Reported values	"Best" values (± σ_n)		
10 ³ g(2)/100g sln	10^{3} g(2)/100g sln $10^{4}x_{2}$		
283 4* (ref 2), 6.7 (ref 11), 3.4 (ref 2)	5 ± 1 2.3		
293 9* (ref 2), 8.7 (ref 3), 10 (ref 4), 12.2 (ref 11), 9.8 (ref 12), 5.9 (ref 26), 10.1 (ref 29)	9 ± 2 4.2		
298 13* (ref 2), 5.6 (ref 13), 6.9 (ref 15), 8.0 (ref 19) 7.4 (ref 22), 7.0 (ref 26) 7.0 (ref 30)	8 ± 2 3.7		
303 17* (ref 2), 19.4 (ref 11) 8.7 (ref 22), 9.6 (ref 26)	, 14 ± 5 6.5		
313 31* (ref 2), 31.7 (ref 11) 13.1 (ref 26), 13.3 (ref 35	, 24 ± 8 12 9)		
323 46* (ref 2), 15 (ref 3), 49 (ref 11), 19.4* (ref 39)	32 ± 15 17		
The data in Table 3 are also plotted : temperature dependence of the solubil:	In Figure 2. This plot shows that the		
Glasoe and Schultz (ref 22) is much le	ess than that of ref 2 and ref 11.		
320 -			
<u>ç</u>			
310	· · ·		
× *	1		
ŭ 300 - A	4		
⊢ 290 - , , , , , , , , , , , , , , , , , ,	4		
]		
280			
0 10 20	30 40 50		

FIGURE 2. Solubility of water in cyclohexane: ref 2 (\bullet); ref 11 (\diamond); ref 22 (\circ); ref 26 (x); other data (Δ). Full lines not drawn through data Points because of poor agreement (see text). (continued)

```
COMPONENTS:

(1) Cyclohexane; C<sub>6</sub>H<sub>12</sub>; [110-82-7]

(2) Water; H<sub>2</sub>O; [7732-18-5]

(2) Water; H<sub>2</sub>O; [7732-18-5]

(3) Component of Physical Sciences, Murdoch

University, Perth, W.A., Australia.

C.L. Young, Department of Physical

Chemistry, University of Melbourne,

Vic., Australia.

September 1986.
```

TABLE 4:

3. THE MUTUAL SOLUBILITIES OF CYCLOHEXANE (1) AND WATER (2) AT ELEVATED PRESSURES

To clarify the relationship between the phases in equilibrium it is convenient to consider the pressure-temperature projection of the pressuretemperature-composition diagram. Cyclohexane + water exhibits type III phase behaviour (ref 41,42) and the projection is topographically similar to that of benzene + water.

Solubilities in the cyclohexane-water system have been studied at higher than atmospheric pressures in the publications listed in Table 4.

System at Elevated Pressures

Solubility Studies of the Cyclohexane-Water

Reference	p/MPa	T/K	Solubility
Kudchadker and McKetta (ref 7)	0.1-3	311-411	(1) in (2)
Guseva and Parnov (ref 9,10)	_ ^a	298-493	(l) in (2)
Rebert and Hayworth (ref 8,16)	0.6-22.1	403-643	mutual
Burd and Braun (ref 17)	0.2-3	368-478	(2) in (1)
Bröllos <i>et al</i> . (ref 18) Roof (ref 20)	19-174 _ ^b	275-421 _ ^b	mutual _ ^b
Plenkina <i>et al</i> . (ref 21)	_ ^a	403-523	(2) in (1)
Sultanov and Skripka (ref 25,32)	3-79	473-523	(2) in (1)
Tsonopoulos and Wilson (ref 39)	0.3-3	313-482	mutual

a Along three phase line

b Critical point at unspecified composition

In view of the limited amount of data at high pressures and the differing conditions employed, no Critical Evaluation is possible at present. However, the solubilities of water in cyclohexane at $p \simeq 3$ MPa, $T \approx 473$ K reported by Burd and Braun (ref 17) and Sultanov and Skripka (ref 25,32) are in reasonable agreement (approximately 3.0 and 3.8 g(2)/100 g sln respectively) but differ significantly from that reported by Tsonopoulos and Wilson (ref 39), (1.7 g(2)/100 g sln). Similarly, the atmospheric pressure data of Kudchadker and McKetta (ref 7) are only in fair agreement with comparable data (Table 3). Their conclusion that the solubility of cyclohexane in water increases linearly with pressure at a given temperature is inconsistent with the results for numerous hydrocarbon-water systems as noted by Guseva and Parnov (ref 9,10).

226

COMPONENTS :	EVALUATOR:	
(1) Cyclohexane; C ₆ H ₁₂ ; [110-82-7] (2) Water; H ₂ O; [7732-18-5]	G.T. Hefter, School of Mathematical and Physical Sciences, Murdoch University, Perth, W.A., Australia. C.L. Young, Department of Physical Chemistry, University of Melbourne, Vic., Australia.	
	September 1900.	

The temperature and pressure of the critical end point have been determined by Rebert and Hayworth (ref 8,16) and by Roof (ref 20). The values are in good agreement.

Reference	T/K	p/MPa
Rebert and Hayworth (ref 8,16)	528.9	8.019
Roof (ref 20)	529.9	8.039

Bröllos *et al*. (ref 18) have reported detailed measurements in the high pressure region between the critical temperatures of the pure components. These data are for the two phase-one phase boundary and at most pressures and temperatures studied the phases are at liquid-like densities. These data are probably reliable as they were determined using a reliable, welltested experimental method. However, in the absence of confirmatory studies no Critical Evaluation is possible.

The interested user is referred to the original measurements compiled in the data sheets following this Critical Evaluation for experimental values.

REFERENCES

- 1. Bennett, G.M.; Philip, W.G. J. Chem. Soc. 1928, 1937-42.
- 2. Tarassenkow, D.N.; Poloshinzewa, E.N. Chem. Ber. 1932, 65, 184-6.
- 3. Berkengeim, T.I. Zavod. Lab. 1941, 10, 592-4.
- 4. Black, C.; Joris, G.G.; Taylor, H.S. J. Chem. Phys. <u>1948</u>, 16, 537-43.
- 5. Durand, R. C.R. Hebd. Seances Acad. Sci. 1948, 226 409-10.

6. McBain, J.W.; Lissant, K.J. J. Phys. Chem. <u>1951</u>, 55, 655-62.

- 7. Kudchadker, A.P.; McKetta, J.J. A.I.Ch.E.J. 1961, 7, 707.
- Hayworth, K.E.; M.S. Thesis, <u>1962</u>, Univ. Southern California, Los Angeles (U.S.A.), quoted in ref 16.
- 9. Guseva, A.N.; Parnov, E.I. Radiokhimiya 1963, 5, 507-9.
- 10. Guseva, A.N.; Parnov, E.I. Zh. Fiz. Khim. <u>1963</u>, 37, 2763.
- 11. Englin, B.A.; Plate, A.F.; Tugolukov, V.M.; Pyranishnikova, M.A. Khim. Tekhnol. Topl. Masel <u>1965</u>, 10, 42-6.
- 12. Zel'venskii, Ya.D.; Egremov, A.A.; Larin, G.M. Khim. Tekhnol. Topl. Masel <u>1965</u> 10, 3-7.
- 13. Johnson, J.R.; Christian, S.D.; Affsprung, H.E. J. Chem. Soc. A <u>1966</u>, 77-8.
- 14. McAuliffe, C. J. Phys. Chem. 1966, 70, 1267-75.

COMPO	DNENTS:	EVALUATOR:		
(1)	Cyclohexane; C ₆ H ₁₂ ; [1100-82-7]	G.T. Hefter, School of Mathematical		
(2)	Water; H ₂ O; [7732-18-5]	and Physical Sciences, Murdoch		
	2	University, Perth, W.A., Australia.		
		September 1986.		
CRITI	CAL EVALUATION: (continued)			
REFE	RENCES (continued)			
15.	L5. Gregory, M.D.; Christian, S.D.; Affsprung, H.E. J. Phys. Chem. <u>1967</u> , 71, 2283-9.			
16.	Rebert, C.J.; Hayworth, K.E. A.	I.Ch.E.J. <u>1967</u> , 13, 118-21.		
17.	Burd, Jr., S.D.; Braun, W.G. Pro 1968, 48, 464-76.	oc. Div. Refining, Amer. Petrol. Inst.		
18.	Bröllos, K.; Peter, K.; Schneider <u>1970</u> , 74, 682-6.	:, G.M. Ber. Bunsenges. Phys. Chem.		
19.	Roddy, J.W.; Coleman, C.F. Tala	<i>ita</i> <u>1968</u> , <i>15</i> , 1281-6.		
20.	Roof, J.G. J. Chem. Eng. Data	<u>1970</u> , <i>15</i> , 301-3.		
21.	Plenkina, R.M.; Pryanikova, R.O., VINITI 3028-71; 2h. Fiz. Khim.	; Efremova, G.D.; Deposited Doc. 1971, 45, 2389.		
22.	Glasoe, P.K.; Schultz, S.D. J. (Chem. Eng. Data <u>1972</u> , 17, 66-8.		
23.	Pierotti, R.A.; Liabastre, A.A.; U.S. Nat. Tech. Inform. Serv., PB rep. 1972, Mo.21163, 113 pp.			
24.	Leinonen, P.J.; Mackay, D. Can.	J. Chem. Eng. <u>1973</u> , 51, 230-3.		
25.	Sultanov, R.G.; Skripka, V.G.; Deposited Doc. VINITI 5347-72; Zh. Fiz. Khim. <u>1973</u> , 40, 1035.			
26.	Goldman, S. Can. J. Chem. <u>1974</u> ,	<i>52,</i> 1668-80.		
27.	Mackay, D.; Shiu, W.Y.; Wolkoff, ASTM STP 573, <u>1975</u> , 251.	A.W. Water Quality Parameters,		
28.	Mackay, D.; Shiu, W.Y. Can. J. (Chem. Eng. <u>1975</u> , 53, 239 - 41.		
29.	Budantseva, L.S.; Lesteva, T.M.; 438-76; Zh. Fiz. Khim. <u>1976</u> , 50,	Nemstov, M.S. Deposited Doc. VINITI, 1343.		
30.	Kirchnerova, J.; Cave, G.C.B. Co	ın. J. Chem. <u>1975</u> , 54, 3909-16.		
31.	Price, L.C. Am. Assoc. Petrol. (Geol. Bull. <u>1976</u> , 60, 213-44.		
32.	Skripka, V.A. <i>Tr. Vses. Neftega:</i> 139-51.	20v. Nauch Issled. Inst. <u>1976</u> , 61,		
33.	Korenman, I.M.; Aref'eva, R.P.; H C.A. 87:87654.	Patent USSR, 553 524, <u>1977</u> , 04.05.		
34.	Korenman, I.M.; Aref'eva, R.P.	2h. Prikl. Khim. <u>1978</u> , 51, 957-8.		
35.	Krzyzanowska, T.; Szeliga, J. Na	ıfta (Katowice) <u>1978</u> , 34, 413-7.		
36.	Rudakov, E.S.; Lutsyk, A.I. 2h.	Fiz. Khim. <u>1979</u> , 53, 1298-1300.		
37.	Schwarz, F.P. Anal. Chem. 1980,	, 52, 10-15.		
38 -	Backx, P.; Goldman, S. J. Phus.	Chem. 1981, 85. 2975-9.		

(continued next page)

COMPONENTS :	EVALUATOR:
(1) Cyclohexane; C ₆ H ₁₂ ; [110-82-7] (2) Water; H ₂ O; [7732-18-5]	G.T. Hefter, School of Mathematical and Physical Sciences, Murdoch University, Perth, W.A., Australia. September 1986.

REFERENCES (continued)

39. Tsonopoulos, C.; Wilson, G.M. A.I.Ch.E.J. <u>1983</u>, 29, 990-9.

- 40. Gill, S.J.; Nichols, N.F.; Wadso, I. J. Chem. Thermodyn. <u>1976</u>, 8, 445-52; and references cited therein.
- 41. Scott, R.L.; van Konynburg, P.H. Phil. Trans. Roy. Soc., London <u>1980</u>, A298, 495.
- 42. Hicks, C.P.; Young, C.L. Chem. Rev. 1975, 75, 119.

ACKNOWLEDGEMENTS

The Evaluator thanks Dr Brian Clare for the regression analyses and graphics and Dr Marie-Claire Haulait-Pirson for comments and a preliminary draft of the reference list. Section 3 was written jointly with C. L. Young, Department of Physical Chemistry, University of Melbourne, Australia.

	-
COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Cyclohexane; C ₆ H ₁₂ ; [110-82-7]	Tarassenkow, D.N.; Poloshinzewa, E.N.
(2) Water; H ₂ O; [7732-18-5]	Ber. Dtsch. Chem. Ges. <u>1932</u> , 65B, 184-6.
VARIABLES:	PREPARED BY:
Temperature: 14-53°C	M.C. Haulait-Pirson
EXPERIMENTAL VALUES:	
Solubility of water	in cyclohexane
+/°C ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	10^4 m
	<u>(compiler)</u>
14 0.	005 2.3
19 0.	010 4.7
28.5 0.	015 7.0
32.5 0.	9.3
38 0.	031 14.5
53 0.	050 23.3
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
No details were reported in the paper.	(1) Kahlbaum; dried over calcium chloride and twice distilled over Na-K.
	(2) not specified.
	ESTIMATED ERROR:
	soly. ± 0.01%
	REFERENCES:

COMPONENTS :			ORIGINAL MEASUREMENTS:
(1) Cyclohexane; C ₆ H ₁₂ ; [110-82-7]		[110-82-7]	Berkengeim, T.I.
(2) Water; H ₂ O; [7732-18-5]		8-5]	Zavod. Lab. <u>1941</u> , 41, 592-4.
	-		
VARIABLES:			PREPARED BY:
Temperatu	re: 20 and 50	°C	A. Maczynski
EXPERIMENTAL	VALUES:		
	Solub	ility of Wate	er in Cyclohexane
	t/°C	g(2)/100 gs	$\frac{10^4 x_2}{2}$ (compiler)
	20	0.0087	7 4.1
	50	0.015	7.0
		AUXILIARY	INFORMATION
METHOD/APPAR	ATUS/PROCEDURE:		SOURCE AND PURITY OF MATERIALS:
The solub determine reagent m	bility of (2) i ed by the Karl method.	n (l) was Fischer	<pre>(1) source not specified; CP reagent; b.p. 80°C; used as received.</pre>
			(2) not specified.
			ESTIMATED ERROR:
			not specified.
			REFERENCES:

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Cyclohexane; C ₆ H ₁₂ ; [110-82-7]	Black, C.; Joris, G.G.; Taylor, H.S.
(2) Water; H ₂ O; [7732-18-5]	J. Chem. Phys. <u>1948</u> , 16, 537-43.
2	
VARIABLES:	PREPARED BY:
One temperature: 20°C	M.C. Haulait-Pirson
EVDEDTWENTAT VALUES.	
The solubility of water in cyclonexamics saturation pressure of 1 atm was reported	he at 20°C and at a total prted to be $0.010 g(2)/100 g(1)$.
The corresponding mass percent and mo	ble fraction, x_2 , calculated
by the compiler are 0.010 g(2)/100 g	$\sin and 4.7 \times 10^{-4}$.
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The method described in ref 1 in	(1) Ohio State University under an
was used.	project; purity not specified;
Air saturated with radioactive water vapor was bubbled through the (1)	used as received.
sample until saturation was attained. Dissolved water was separated from	(2) not specified.
(1) by absorption on calcium oxide.	
counter through equilibration with	
etnanol vapor.	ESTIMATED ERROR:
	soly. a few percent (type of error
	not specified).
	REFERENCES:
	1. Joris, G.G.; Taylor, H.S.
	J. Chem. Phys. <u>1948</u> , 16, 45.
1	
37_182	233
--	---
COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Cyclohexane; C ₆ H ₁₂ ; [110-82-7]	Durand, R.
(2) Water; H ₂ O; [7734-18-5]	C.R. Hebd. Seances Acad. Sci. <u>1948</u> , 226, 409-10.
1/ADTARIFC.	DEDADED BV.
One temperature: 16°C	M.C. Haulait-Firson
EXPERIMENTAL VALUES:	
The solubility of cyclohexane in wat be $0.08 \text{ cm}^3(1)/\text{dm}^3(2)$.	er at 16°C was reported to
With the assumption of a solution devalue of 0.782 g cm ⁻³ for cyclohexar mass percent is 0.0062 g(1)/100 g sl fraction, x_1 , is 1.3 x 10 ⁻⁵ (compile	ensity of 1.00 g cm ⁻³ and a density he at 16°C (ref 2), the corresponding .n and the corresponding mole er).
AUXILIAR	Y INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The thermostatic method described	(1) not specified
in ref 1 was used.	(2) distilled
Addition of pipetted volumes of	
(1) to (2) followed by shaking is	
repeated till appearance of	
turbidity.	
	POTIMATED DEDAD.
	ESTIMATED ERROR:

soly. \pm 0.005 cm³(1)/dm³(2)

REFERENCES:

- 1. Durand, R. C.R. Hebd. Seances Acad. Sci. <u>1946</u>, 223, 898.
- 2. Timmermans, J. Physico-chemical constants of pure organic compounds, Elsevier. 1950.

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Cyclohexane; C ₆ H ₁₂ ; [110-82-7]	McBain, J.W.; Lissant, K.J.
(2) Water; H ₂ O; [7732-18-5]	J. Phys. Colloid. Chem. <u>1951</u> , 55, 655 - 62.
VARIABLES:	PREPARED BY:
One temperature: 25°C	M.C. Haulait-Pirson
EXPERIMENTAL VALUES:	
The solubility of cyclohexane in wate	r at 25°C was reported to be
With the accumption of a colution don	sity of 1 00 s cm^{-3} the corre-
with the assumption of a solution den sponding mass percent is $0.008 g(1)/1$	on g sin and the corresponding
mole fraction. x_{1} , is 1.7 x 10 ⁻⁵ (com	piler).
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
10 mL of (2) was pipetted into glass	(1) C.P. grade.
vials, following which, varying amounts of (1) were added to each	(2) distilled and boiled to remove
bottle by direct weighing. The vials	co ₂ .
vials had been obtained, one clear	
and one with excess hydrocarbon and	
than 1 mg, the two values were	
averaged and the mean taken as the	
	ESTIMATED ERROR:
	not specified.

37 184 COMPONENTS: ORIGINAL MEASUREMENTS: Kudchadker, A.P.; McKetta, J.J. (1) Cyclohexane; C₆H₁₂; [110-82-7] (2) Water; H₂O; [7732-18-5] A.I.Ch.E.J. 1961, 7, 707. VARIABLES: PREPARED BY: Temperature: 100-280°F M.C. Haulait-Pirson Pressure: 14.7-450 psia **EXPERIMENTAL VALUES:** Solubility of cyclohexane in water. Smoothed data $t = 160^{\circ} F (344.26 K)$ $t = 100^{\circ} F$ (310.93 K) 10⁵x1 10⁵x₁ g(l)/100 g sln p/MPa g(l)/100 g sln p/psia (compiler) (compiler) (compiler) 0.58 0.00271 14.7 0.101 0.97 0.00454 0.00468 20.0 0.138 1.34 0.00626 1.00 0.00949 0.00748 1.60 30.0 0.207 2.03 40.0 0.276 2.72 0.01272 2.20 0.01029 0.01594 0.01323 2.93 50.0 0.345 3.41 0.01917 3.45 0.01613 60.0 0.414 4.10 0.552 5.48 0.02562 4.71 0.02202 80.0 5.92 0.02767 6.85 0.03202 100.0 0.689 8.22 9.60 120.0 0.827 0.03842 7.18 0.03356 0.03940 8.43 140.0 0.965 0.04487 11.03 12.04 13.8 17.08 160.0 1.103 0.05155 9.71 0.04538 180.0 1.241 0.05627 10.92 0.05104 0.06449 12.28 0.05739 200.0 1.379 0.07981 15.41 0.07201 250.0 1.724 17.08 0.08522 18.24 300.0 2.068 20.2 0.09438 350.0 0.10796 21.0 0.09811 2.413 23.11 0.11029 2.758 25.84 0.12070 23.61 400.0 25.98 0.12135 450.0 3.103 28.35 0.13241 (continued) AUXILIARY INFORMATION METHOD/APPARATUS/PROCEDURE: SOURCE AND PURITY OF MATERIALS: The experimental technique and the (1) pure grade stock; purity of analytical procedure are described about 99.6% (gas chromatoin detail in ref 1. graphy) No more details are given in the (2) distilled; boiled to remove paper. any dissolved gases. ESTIMATED ERROR: not specified. **REFERENCES:** 1. Davis, J.E. M.S. Thesis, The University of Texas, Austin,

1959.

235

COMPONENTS:

ORIGINAL MEASUREMENTS:

```
(1) Cyclohexane; C<sub>6</sub>H<sub>12</sub>; [110-82-7] Kudchadker, A.P.; McKetta, J.J.
(2) Water; H<sub>2</sub>O; [7732-18-5] A.I.Ch.E.J. <u>1961</u>, 7, 707.
```

Solubility of cyclohexane in water. Smoothed data

		t = 22	0°F (377.59 K)	t = 28	0°F (410.93 K)
p/psia	p/MPa (compiler)	10 ⁵ <i>x</i> 1	g(l)/100 g sln (compiler)	10 ⁵ <i>x</i> 1	g(l)/100 g sln (compiler)
14.7	0.101				
20.0	0.138				
30.0	0.207	0.72	0.00337		
40.0	0.276	1.32	0.00617		
50.0	0.345	1.92	0.00898		
60.0	0.414	2.51	0.01173	0.70	0.00327
80.0	0.552	3.70	0.01730	1.91	0.00893
100.0	0.689	4.89	0.02286	3.13	0.01463
120.0	0.827	6.05	0.02828	4.40	0.02057
140.0	0.965	7.27	0.03398	5.62	0.02627
160.0	1.103	8.48	0.03964	6.82	0.03188
180.0	1.241	9.69	0.04529	7.95	0.03716
200.0	1.379	10.8	0.05048	9.08	0.04244
250.0	1.724	13.92	0.06505	12.1	0.05655
300.0	2.068	16.68	0.07794	14.6	0.06823
350.0	2.413	19.2	0.08971		
400.0	2.758	21.52	0.10054		
450.0	3.103	23.46	0.10959		

37_186

COMPONENTS:

(1) Cyclohexane; C₆H₁₂; [110-82-7]

(2) Water; H₂O; [7732-18-5] Zh. Fiz. Khim. 1963, 37, 2763. VARIABLES: PREPARED BY: Temperature: 25-220.5°C A. Maczynski EXPERIMENTAL VALUES: Solubility of cyclohexane in water $10^4 x_1$ (compiler) t∕°C g(1)/100 g(2) g(l)/100 g sln 25 0.008 0.008 0.17 56 0.017 0.017 0.36 94 0.028 0.028 0.60 127 0.0517 0.0517 1.11 162 0.146 3.13 0.146 220.5 1.785 1.784 38.72 The same data are reported in ref 1. AUXILIARY INFORMATION METHOD/APPARATUS/PROCEDURE: SOURCE AND PURITY OF MATERIALS: The solubility of (1) in (2) was (1) not specified. determined in sealed glass ampules at pressures less than 17 kg/cm². (2) not specified. No more details were reported in the paper. ESTIMATED ERROR: Not specified. **REFERENCES:** Guseva, A.N.; Parnov, E.I. Radiokhimiya <u>1963</u>, 5, 507-9.

ORIGINAL MEASUREMENTS:

Guseva, A.N.; Parnov, E.I.

238				37 187
COMPONENTS: (1) Cyclohexane; C ₆ H (2) Water; H ₂ O; [773	₁₂ ; [110-82-7] 2-18-5]	ORIGINAL MEASUREMENT: Englin, B.A.; Pl V.M.; Pryanish Khim. Tekhnol. T 10, 42-6.	S: ate, A.F. nikova, M dopl. Mase	; Tugolukov, .A. 2 <u>1965</u> ,
VARIABLES:		PREPARED BY:		
Temperature: 10-50°C		A. Maczynski and	M.C. Hau	lait-Pirson
EXPERIMENTAL VALUES:				
So	lubility of water	in cyclohexane		
t/°C	g(2)/10	0 g sln	10 ⁴ x ₂	(compiler)
10	0.0	067	3.1	
20	0.0	122	5.70	
30	0.0	194	9.06	i
40	0.0	317	14.8	
50	0.0	490	22.9	
	AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDUR	E:	SOURCE AND PURITY OF	MATERIALS:	

Component (1) was introduced into a thermostatted flask and saturated for 5 hours with (2). Next, cal- cium hydride was added and the evolving hydrogen volume measured and hence the concentration of (2) in (1) was evaluated.	(1) not specified.(2) not specified.
	ESTIMATED ERROR:
	not specified.
	REFERENCES:

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Cyclohexane; C ₆ H ₁₂ ; [110-82-7]	Zel'venskii, Ya.D; Efremov, A.A.; Larin, G.M.
(2) Water, H ₂ O; [7732-18-5]	Khim. Tekhnol. Topl. Masel <u>1965</u> , 10, 3-7.
VARIABLES:	PREPARED BY:
One temperature: 20°C	A. Maczynski
EXPERIMENTAL VALUES:	
The solubility of water in cyclohexan 0.0098 g(2)/100 g sln. The corresponding mole fraction, x_2 , is 4.6 x 10 ⁻⁴ .	e at 20°C was reported to be calculated by the compiler
AUXILIARY	INFORMATION
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
Saturated solutions of tritium labeled (2) in (1) were prepared in two ways. In the first, nitrogen was passed through the vessel with (2) and next through the vessel with (1) and frozen. In the second, about 500 mL of (1) and 1 mL (2) were stirred. The concentration of (2) in (1) was calculated from scintillation measurements.	 (1) source not specified; pure grade; shaken with conc. H₂SO₄ + HNO₃; washed with water, dried over sodium, and distilled; purity not specified. b.p. 80.82°C. (2) source not specified; commercial; l Ci/mL HTO used as received. ESTIMATED ERROR: not specified.
	REFERENCES :

COMPONENTS:	OPICINAL MEASUPEMENTS .
(1) Cyclohexane; C ₆ H ₁₂ ; [110-82-7] (2) Water; H ₂ O; [7732-18-5]	Johnson, J.R.; Christian, S.D.; Affsprung, H.E. J. Chem. Soc. A <u>1966</u> , 77-8.
VARIABLES:	PREPARED BY:
One temperature: 25°C	M.C. Haulait-Pirson
EXPERIMENTAL VALUES:	
The solubility of water in cyclohexam 0.0024 mol(2) dm ⁻³ sln. With the assumption of a solution der value of pure cyclohexane reported in percent is 0.0056 g(2)/100 g sln and x_2 , is 2.6 x 10 ⁻⁴ (compiler).	he at 25°C was reported to be hsity of 0.7739 g cm ⁻³ (density h ref 2), the corresponding mass the corresponding mole fraction,
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The solute isopiestic apparatus described in ref 1 was used. Samples were equilibrated in con- stant-temperature water-baths. Water solubilities were determined using the Beckman Model KF-3 Aqua- meter.	 (1) source not specified; certified or reagent grade; distilled through a 30-plate oldershaw column. (2) not specified.
	ESTIMATED ERROR:
	<pre>temp. ± 0.1 K soly. ± 0.0003 mol(2) dm⁻³ sln (type of error not specified)</pre>
	<pre>REFERENCES: 1. Christian, S.D.; Affsprung, H.E.; Johnson, J.R.; Worley, J.D. J. Chem. Educ. 1963, 40, 419. 2. Goldman, S. Can. J. Chem. 1974, 52, 1668.</pre>

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Cyclohexane; C ₆ H ₁₂ ; [110-82-7]	McAuliffe, C.
(2) Water; H ₂ O; [7732-18-5]	J. Phys. Chem. <u>1966</u> , 70, 1267-75.
VARIABLES:	PREPARED BY.
One temperature: 25°C	M.C. Haulait-Pirson
EXPERIMENTAL VALUES:	
The solubility of cyclohexane in wate be 55 mg (1)/kg sln. The corresponding mole fraction, x_1 , is 1.18 x 10 ⁻⁵ . The same value is also reported in re	r at 25°C was reported to calculated by the compiler, fs 1 and 2.
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
In a 250 mL glass bottle, $10-20$ mL of (1) was vigorously shaken for 1 hr or magnetically stirred for 1 day, with 200 mL of (2) at 25°C. In the case of shaking, the solution was allowed to stand for 2 days to permit separation of small (1) drop- lets. Absence of emulsion was checked microscopically. A 50 µL sample of the (1) saturated water was withdrawn with a Hamilton Syringe and injected into the frac-	 (1) Phillips Petroleum Co.; 99+% purity; used as received. (2) distilled.
A hydrogen-flame ionization detector was used. Many details are given in the paper.	temp. ± 1.5 K soly. 2.3 mg (1)/kg sln (standard deviation from mean)
	 McAuliffe, C. Nature (London) <u>1963</u>, 200, 1092. McAuliffe, C. Am. Chem. Soc. Div. Petrol. Chem. <u>1964</u>, 9, 275.

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Cyclohexane; C ₆ H ₁₂ ; [110-82-7]	Gregory, M.D.; Christian, S.D.;
(2) Water; H ₂ O; [7732-18-5]	J. Phys. Chem. 1967, 71, 2283-9.
VARIABLES :	PREPARED BY:
One temperature: 25°C	M.C. Haulait-Pirson
EXPERIMENTAL VALUES:	
The solubility of water in cyclohexan	e at 25°C was reported to be
U.UU297 mol(2)dm sin.	where $a = 0.7720$ m cm^{-3} (density)
value of pure cyclohexane reported in	ref 2), the corresponding mass
percent is $0.0069 \text{ g}(2)/100 \text{ g} \sin \text{ and}$	the corresponding mole fraction,
x_2 , is 3.2 x 10 ⁻⁴ (compiler).	
[
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Solubility of (2) in (1) was ob-	(1) source not specified; reagent
method described in ref 1. The	grade; fractionally distilled using a 30-plate oldershaw
samples were titrated by the Karl	column.
aquameter. The Karl Fisher reagent	(2) not specified.
was standardized alternatively by titrating weighed amounts of sodium	
tartrate dihydrate or by titrating	
tion.	
	ESTIMATED ERROR:
	temp. ± 0.1 K
	REFERENCES :
	Johnson, J.R.; Worley, J.D.
	J. Chem. Educ. <u>1963</u> , 40, 419. 2. Goldman, S. Can. J. Chem. 1974
	52, 1668.

_	_						
COMPONENTS:				ORIGINAL MEASUREMENTS:			
1. Cyclohexane; C ₆ H ₁₂ ; [110-82-7]		Rebert, C. J.; Hayworth, K. E.					
2. Water: H ₂ O: [7732-]8-5]		Am. Inst. Chem. Engange J					
ľ		, [,,52 10 5]		1967 13	. 118-121		
				<u>1707</u> , 15	,		
[:	
I	VARIABLES:			PREPARED BY:			
l	Pressure and	temperature a	long		C. L. Young		
	one phase-two	o phase bounda:	ry.				
ſ	EXPERIMENTAL VALU	ES:					
			Smoothed	data			
ŀ	T/K	T/°C	<i>P/</i> MPa	p/psi	g (1)/100 g	*C6H12	
					(soln.)	, 00112	
ľ	502	320	11 / 2	1657	2 7	0.0059	
l	595 603	330	13.06	1894	2. 1	0.0009	
l	613	340	14.92	2164			
l	623	350	16.86	2445			
1	633	360	19.21	2785			
I	643	370 270 C	21.83	3165			
	643.8	3/U.b 320	22.14	3210 3100			
	633	360	20.07	2910			
	623	350	18.25	2646			
I	613	340	16.65	2414			
ļ	603	330	15.23	2209			
l	593	320	14.17	2054			
	583	31U 307	13.39	1942 1920			
۱	577	304	13.21	1916			
l	575	302	13.28	1925			
l	573	300	13.69	1985			
ļ	568	295	15.88	2303			
l	565	292	17.52	2540			
l	563 603	290 330	13.46	2702			
I	613	340	15.44	2239	9.0	0.021	
l	623	350	17.70	2566		()	
I						(cont.)	
			AUXI LI ARY	INFORMATION			
Ī	METHOD APPARATUS/	PROCEDURE:		SOURCE AND I	PURI Y OF MATERIALS:		
	Samples of mi	xtures of know	n compo-				
	cition confi-	od over merene		1 20 -	taile given		
	SICION CONTIN	eu over mercur	у •	L NO de	calls given.		
I	Samples heated	d in a vapor b	ath and				
I	the pressure-	temperature ph	ase				
I	boundaries de	termined by di	rect				
	observation of	f appearance o	r dis-				
		a phago and					
	appearance of	a phase. Ap	paratus				
	similar to the	at described i	n rei. (1).	ESTIMATED F	RROR		
I				δπ/κ = +	0.05		
I							
ļ				op/psi =	II.		
				REFERENCES :			
I				1 Peber	+ C. J • Kav W	в.	
					and Ohem 7	ي. ب	
I				Am. 17	nst. Unem. Engnrs.	J .	
I				<u>1959</u> ,	5, 285.		
١							
1				1			

244

```
COMPONENTS:

1. Cyclohexane; C<sub>6</sub>H<sub>12</sub>; [110-82-7]

2. Water; H<sub>2</sub>O; [7732-18-5]

EXPERIMENTAL VALUES:

ORIGINAL MEASUREMENTS:

ORIGINAL MEASUREMENTS:

Rebert, C. J. ; Hayworth, K. E.

Am. Inst. Chem. Engnrs. J.

<u>1967</u>, 13, 118-121.
```

		Smoothed d	lata		
Т/К	T/°C	P/MPa	p/psi	g (1)/100 g (soln.)	^x C ₆ H ₁₂
633 635 635 635 632 632 632 631 629 627 625 623 621 619 507 517 527 537 547 557 567 573	360 362 363.3 362 359.4 359 358 356 354 352 350 348 346 235 245 255 265 275 285 295 300	20.61 21.38 21.94 22.32 22.45 22.49 22.51 22.54 22.62 22.71 22.81 22.96 23.16 23.48 3.68 4.36 5.18 6.10 7.12 8.25 9.57 10.30	2989 3100 3182 3236 3255 3261 3264 3269 3280 3294 3308 3294 3308 3329 3358 3405 533 632 751 885 1032 1196 1388 1494	9.0 33.3	0.021
573 578 583 593 598 603 608 613 493 503 513 523	300 305 310 315 320 325 330 335 340 220 230 240 250	10.30 11.07 11.96 12.87 13.79 14.96 16.13 17.50 19.07 3.68 4.47 5.35 6.30 7.45	1494 1605 1734 1866 2000 2169 2339 2538 2765 533 648 776 914	60.0	0.0243
543 553 563 573 583 493 503 513 523 535 537 539 542.1 541 541 540.4 540.4 536 534 533 533 533 528 523 518 516.4 ^b	200 270 280 290 300 310 220 230 240 250 260 262 264 266 268.9 268 267.2 267 263 267 263 261 260 255 250 245 243.2	$\begin{array}{c} 7.438\\ 8.78\\ 10.29\\ 12.17\\ 14.32\\ 17.79\\ 2.42\\ 2.88\\ 3.42\\ 4.09\\ 4.86\\ 5.06\\ 5.28\\ 5.54\\ 6.25\\ 6.60\\ 6.73\\ 6.76\\ 7.06\\ 7.06\\ 7.06\\ 6.93\\ 6.76\\ 6.56\\ 6.48 \end{array}$	1273 1492 1764 2076 2580 351 417 496 593 705 734 765 803 906 957 976 980 1024 1027 1024 1025 980 951 939	54.0	
					(cont.)

COMPONENTS:		ORIGINAL MEASUREMENTS:			
<pre>1. Cyclohexane; C₆H₁₂; [110-82-7] 2. Water; H₂O; [7732-18-5]</pre>		Rebert, C. J.; Hayworth, K. E. Am. Inst. Chem. Engnrs. J. 1967. 13. 118-121.			
			<u> 1907</u> , 101	,	
EXPERIMENTAL	VALUES:				
		Smoothed d	lata		
ጥ/к	ጥ/° ር	P/MPa		σ (1)/100 σ	~
- /	1, 0	1 / MI U	<i>p</i> , p , r	(soln.)	°C ₆ H ₁₂
	Three phase	e equilibri	um locus		
403	130	0.66	95		
413	140	0.86	124		
423	150	1.08	156		•
433	160	1.32	192		
445	180	2.01	291		
463	190	2.46	357		
473	200	2.99	433		
483	210	3.58	519		
493	220	4.32	627		
503	230	5.18	751		
508 513	235	5.64	800 818		
518	240	6 68	968		
523	250	7.28	1055		
528	255	7.92	1148		
528.9	255.7	8.01	1162		
	^a Critical po ^b Three-phase	int. point.			

	07_171		
COMPONENTS :	ORIGINAL MEASUREMENTS:		
(1) Cyclohexane; C ₆ H ₁₂ ; [110-82-7]	Burd, S.D.; Braun, W.G.		
(2) Water; H ₂ O; [7732-18-5]	Proc. Div. Refining, Am. Petrol. Inst. <u>1968</u> , 48, 464-76.		
VARTABLES ·			
morpowsture and programs	PREPARED BY:		
iemperature and pressure	M.C. Madiait filbon		
EXPERIMENTAL VALUES:			
Hydrocarbon-rich liquid phase composi	tion for the three-phase conditions.		
p/psia p/MPa t/°F T/K (compiler) (compil	g(2)/100 g sln		
25 0.345 241 389.2 100 0.689 284 413.1 150 1.034 312 428.7 200 1.379 333 440.3 250 1.724 350 449.8 300 2.068 364 457.6 350 2.413 377 464.8 400 2.758 388 470.9 24 0.165 200 366.4 59 0.407 250 394.2 127 0.876 300 422.0 250 1.724 350 450.8 450 3.103 400 477.6	6 0.46 0.0211 5 0.82 0.0372 0 1.20 0.0537 7 1.58 0.0698 1 1.93 0.0842 0 2.25 0.0971 2 2.60 0.1109 3 3.00 0.1262 8 0.22 0.0102 6 0.49 0.0225 4 1.03 0.0464 2 1.90 0.0830 0 3.70 0.1520		
AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:		
The vapor and liquid phase composi- tions have been determined for the (1)-(2) system in the two-phase hydrocarbon-rich liquid region. Equilibrium points were obtained by incremental addition of water followed by stirring, settling, sampling and chromatographic analy- sis. This procedure was continued until addition of water resulted in no pressure increase, indicating	 (1) Phillips Petroleum Company; 99.5% purity. (2) laboratory distilled. 		
three-phase conditions. Many de- tails are given in the paper.	ESTIMATED ERROR: soly. ± 0.004 weight fraction of the (2) present.		
	REFERENCES :		

	COMPONENTS: (1) Cyclohexane; C ₆ H ₁₂ ; [110-82-7]	ORIGINAL MEASUREMENTS: Brollos, K.; Petcr, K.; Schneider,
	(2) Water; H ₂ O; [7732-18-5]	G. M.
		Ber. Bunsenges. Phys. Chem. <u>1970</u> , 74, 682-6.
İ	VARIABLES:	PREPARED BY:
	Pressure and temperature on one phase-two phase boundary.	C. L. Young
ĺ	EXPERIMENTAL VALUES:	

Values of pressure and temperature on the one phase-two phase boundary

Т/К	p/bar	^x ı	g (1)/100 g soln
379.8	1742	0.100	34.1
$\begin{array}{c} 369.0\\ 363.0\\ 360.1\\ 351.5\\ 343.5\\ 333.7\\ 329.2\\ 330.0\\ 333.0\\ 334.2\\ 338.0\\ 392.2\\ 384.0\\ 376.5\\ 369.2\\ 361.2\\ 351.0\\ 346.5\\ 340.0\\ 338.0\\ 339.0\\ \end{array}$	1403 1200 1000 798 595 328 293 271 245 217 1600 1400 1202 1000 800 600 500 394 347 299	0.150	45.2 (cont.)
	AUXILIARY		
METHOD/APPARATUS/PROCEDURE: Measurements were made optical cell within an furnace. The cell con stirred magnetically. measured using a movab Bourdon gauge. Temper measured with a steel- mocouple. Components into the cell and the one phase to two phase visually.	in a steel aluminum block tents were Pressure was le piston and ature was sheathed ther were charged transition from s was observed	SOURCE AND PU 1. Merck sa per cent 2. Twice di	RITY OF MATERIALS: ample purity 99.9 mole t. istilled.
		ESTIMATED ERR $\delta T/K = \pm 0.1$ $\delta P/P = \pm 0.0$ (estimated REFERENCES:	ROR: 1 D1 by compiler)

CON	PONENIS:		ORIGINAL MEASUREM	INIS:	
()) Cyclohexane; C ₆ H ₁₂ ;	[110-82-7]	Brollos, K.; F G. M.	eter, K.; Schneider,	
(2) Water; H ₂ O; [7732-1	8-5]	Ber. Bunsenges 74, 682-6.	3. Phys. Chem. <u>1970</u> ,	
	Values of pressure and	temperature	on the one pha	se-two phase boundary	
_	Т/К	p/bar	<i>x</i> 1	g (1)/100 g soln	
	340.5	250	0.150	45.2	
	403.5 393.9	1610 1408	0.200	53.9	
	387.0 378.7	1204 1002			
	369.0 359.5	800 600			
	352.2 347.0 343.0	500 416 328			
	342.0 345.0	298 246			
	355.0 412.4	223 1600	0.298	66.5	
	404.7 396.2	1400 1200			
	30/.1 375.3 363.8	800 600			
	360.4 349.2	550 398			
	346.2 346.5	339 237			
	349.5 352.7	224 214 1600	0 400	75 7	
	414.9 406.5 399.2	1398 1200	0.400	13.1	
l	390.1 378.0	995 800			
	364.3 355.6	600 465			
	347.6 345.0	352 295 230			
	335.0 421.5	195 1718	0.500	82.4	
	419.0 416.5	1645 1584			
	408.0 399.0	1406 1195			
	388.9 376.0 364.0	1004 789 600			
	350.0 340.1	460 375			
	343.0 338.5	330 250			
	330.0 413.0	200 1603	0.600	87.5	
	402.4 395.8 386.4	1405 1200 1000			
	375.3 362.0	800 595			
	345.7 336.2	395 319			
[333.4	290		(cont.)	

PONENTS:		ORIGINAL MEAS	UREMENTS:
1) Cyclohexane; $C_6 H_{12}$; [110-82-7]	Brollos, I G. M.	K.; Peter, K.; Schneider,
2) Water, 120, [//32	-10-3]	Ber. Bunse 74, 682-6.	enges. Phys. Chem. <u>1970</u> ,
Values of pressure an	d temperature	on the one p	hase-two phase boundary
T/K	p/bar	<i>*</i> 1	g (1)/100 g soln
329.4 326.5 323.1	261 243 220	0.600	87.5
318.5 406.7 399.0 389.1	205 1600 1405 1200	0.700	91.6
380.5 367.2 351.1	1000 800 588		
332.5 325.0 314.0 300.5	400 342 299 250		
395.4 387.1 377.6	1605 1403 1200	0.800	96.9
353.9 337.5 316.5	800 600 400		
305.0 295.1 275.2	295 244 200		

50	37_197
COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Cyclohexane; C ₆ H ₁₂ ; [110-82-7]	Roddy, J.W.; Coleman, C.F.
(2) Water; H ₂ O; [7732-18-5]	Talanta <u>1968</u> , 15, 1281-6.
NADIADIEC.	
One temperature: 25°C	M.C. Haulait-Pirson
one temperature. 25 c	
EXPERIMENTAL VALUES:	
The solubility of water in cyclohexan 0.00345 mol(2) dm ⁻³ sln corresponding 3.75 x 10^{-4} . The corresponding mass the compiler is 0.0080 g(2)/100 g sln The compiler's calculation assumes a (density of cyclohexane reported in r	e at 25°C was reported to be to a mole fraction, x_2 , of percent value calculated by solution density of 0.7739 g mL ⁻¹ ef 1).
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
A method of gravimetric absorption monitored by tritium tracer was used. (1) was equilibrated with a slight excess of tritiated water by shaking over a period of at least 8 hr in a thermostat. The phases were allowed to separate for at least 16 hr and then were sampled for tritium analysis. Most of the (1) phase was weighed into a boiling flask of a closed distil- lation system and then distilled	 source not specified; spectral- grade reagent. tritiated water at 5 Ci/mL; New England Nuclear Corp.; diluted to about 1 mCi/mL.
through a magnesium perchlorate weighing tube. The magnesium per- chlorate was then dissolved for measurement of its tritium content by liquid scintillation counting	ESTIMATED ERROR: soly. better than 1% (type of error not specified)
with a Packard Tri-Carb Scintilla- tion Spectrometer.	REFERENCES:
	<pre>1. Goldman, S. Can. J. Chem., <u>1974</u>, 52, 1968.</pre>

57_170		L.
Components:		ORIGINAL MEASUREMENTS:
(1) Cyclohexane; C ₆ H ₁₂	; [110-82-7]	Plenkina, R.M.; Pryanikova, R.O.; Efremova, G.D.
(2) Water; H ₂ O; [7732-	18-5]	Zh. Fiz. Khim. <u>1971</u> , 45, 2389 <u>Deposited doc.</u> 1971, VINITI 3028-71.
VARIABLES:		PREPARED BY:
Temperature: 130-250°C		A. Maczynski
EXPERIMENTAL VALUES:		
Solu	bility of water	in cyclohexane
t/°C	<i>x</i> ²	g(2)/100 g sln (compiler)
130	0.036	0.79
163.0	0.093	2.15
188.0	0.130	3.10
200.9	0.154	3.75
213.5	0.193	4.87
219.0	0.216	5.52
232.0	0.265	7.16
244.0	0.322	9.23
250.0	0.350	10.33
	AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:		SOURCE AND PURITY OF MATERIALS:
The solubility of (2) determined in sealed g	in (l) was lass tubes.	(1) source not specified; CP reagent; crystallized several times; m.p. 6.50°C.
		(2) distilled.
		ESTIMATED ERROR:
		temp. ± 0.5 K
		REFERENCES:

	57_177
COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Cyclohexane; C ₆ H ₁₂ ; [110-82-7]	Glasoe, P.K.; Schultz, S.D.
(2) Water; H ₂ O; [7732-18-5]	J. Chem. Eng. Data <u>1972</u> , 17, 66-8.
2	
VARIABLES:	PREPARED BY:
Temperature: 15-30°C	M.C. Haulait-Pirson
EXPERIMENTAL VALUES:	
Solubility of water	: in cyclohexane
t/°C mol(2)dm ⁻³ sln	$\begin{array}{ccc} g(2)/100 \ g \ sln & 10^4 x_2 \\ (compiler) & (compiler) \end{array}$
15 0.0026 ± 0.0001	0.0060 ^a 2.8
25 0.0032 ± 0.0002	0.0074 ^a 3.5
30 0.0037 ± 0.0002	0.0087 ^a 4.1
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
(1) was saturated with (2) by allow- ing it to stand in contact with (2) in a closed pyrex storage bottle protected from atmospheric moisture and placed in a constant temperature water bath. The concentration of (2) in (1) was determined by the Karl Fischer method using a conven- tional "dead-stop" end-point appa- ratus. The Karl Fischer reagent was standardized using standard sodium tartrate	 (1) source not specified; reagent grade; purified by distillation and dried over molecular sieve. (2) distilled in a pyrex system.
boaram tartrate.	ESTIMATED ERROR:
	soly.: see above (type of error not specified.
	-

COMPONENTS:		ORIGINAL MEASURE	MENTS :
(1) Cyclohexane; C	6 ^H 12; [110-82-7]	Pierotti, R.2	A.; Liabastre, A.A.
(2) Water; H ₂ O; [7	732-18-5]	"Structure an solutions" Serv., PB 1 113 pp.	nd properties of water U.S. Nat. Tech. Inform Rep., <u>1972</u> , No. 21163,
VARIABLES:		PREPARED BY:	
Temperature: 278.2	6-318.36 К	M.C. Haulait	-Pirson
EXPERIMENTAL VALUES:			
٤	Solubility of cyclor	nexane in wate:	r
<u>т/ к</u>	g(l)/100	g sln	$\frac{10^{3}x_{1}}{10^{3}x_{1}}$
278.26	0.008193 ±	0.00017	0.01837
288.36	0.008870 ±	0.00025	0.01991
298.26	0.008884 ±	0.00024	0.01998
308.36	0.008884 ±	0.00025	0.02004
318.36	0.009132 ±	0.00025	0.02068

AUXILIARY INFORMATION METHOD/APPARATUS/PROCEDURE: SOURCE AND PURITY OF MATERIALS: 10 mL of (2) were placed along with 4-10 drops of (1) in 10 mL serum (1) Fisher Scientific Co.; certified grade; used as bottles, which were then tightly received. capped, and placed in a rotating basket and rotated for 24 hours. (2) laboratory distilled water. The bottles were then hand shaken to remove (1) droplets from the stoppers and then replaced in the bath with the tops down for an additional 24 hours. The solute concentrations were determined by use of a flame-ionization gas chromatograph. Many details about ESTIMATED ERROR: soly.: standard deviation from at least 15 measurements are equipment, operating conditions and calculation are given in the given above. paper. **REFERENCES:**

ORIGINAL MEASUREMENTS:
Leinonen, P.J.; Mackay, D. Can. J. Chem. Eng. <u>1973</u> , 51, 230-3.
PREPARED BY: M.C. Haulait-Pirson
er at 25°C was reported to be nsity of 1.00 g cm ⁻³ , the corre- /100 g sln and the corresponding ompiler).
<pre>(1) Phillips Petroleum Co.; research grade; purity 99%+; used without further purifi- cation. (2) doubly distilled. ESTIMATED ERROR: temp. ± 0.1 K soly. ± 1 mg(1) dm⁻³ sln REFERENCES:</pre>

an Unen 15 :		ORIGINAL MEASUREMENTS:	
(l) Cyclohexar	ne; C ₆ H ₁₂ ; [110-82-7]	Goldman, S.	
(2) Water; H ₂ C	D; [7732-18-5]	Can. J. Chem. <u>1974</u>	, 52, 1668-80.
ADTABLES.			
RIADELJ.	_	PREPARED BI:	
Temperature:]	10-40°C	M.C. Haulait-Pirson	
XPERIMENTAL VALUI	ES:		
xperimental valui t/°C	ES: Solubility of way mol(2)dm ⁻³ sln	ter in cyclohexane g(2)/100 g sln (compiler)	$10^{\dot{4}}x_2$ (compiler)
xperimental valui t/°C 10	ES: Solubility of way mol(2)dm ⁻³ sln 0.00147	ter in cyclohexane g(2)/100 g sln <u>(compiler)</u> 0.0034 ^a	10 ⁴ x2 (compiler) 1.6
xperimental valui <u>t/°C</u> 10 15	ES: Solubility of way mol(2)dm ⁻³ sln 0.00147 0.00185	ter in cyclohexane g(2)/100 g sln (compiler) 0.0034 ^a 0.0043 ^a	10 ⁴ x2 (compiler) 1.6 2.0
XPERIMENTAL VALUI	ES: Solubility of way mol(2)dm ⁻³ sln 0.00147 0.00185 0.00255	ter in cyclohexane g(2)/100 g sln (compiler) 0.0034 ^a 0.0043 ^a 0.0059 ^a	10 ⁴ x2 (compiler) 1.6 2.0 2.8
20 25	ES: Solubility of way mol(2)dm ⁻³ sln 0.00147 0.00185 0.00255 0.00301	ter in cyclohexane g(2)/100 g sln (compiler) 0.0034 ^a 0.0043 ^a 0.0059 ^a 0.0070 ^a	10 ⁴ x ₂ (compiler) 1.6 2.0 2.8 3.3
25 30	ES: Solubility of way mol(2)dm ⁻³ sln 0.00147 0.00185 0.00255 0.00301 0.00410	ter in cyclohexane g(2)/100 g sln (compiler) 0.0034 ^a 0.0043 ^a 0.0059 ^a 0.0070 ^a 0.0096 ^a	10 ⁴ x ₂ (compiler) 1.6 2.0 2.8 3.3 4.5
20 25 30 35	ES: Solubility of way mol(2)dm ⁻³ sln 0.00147 0.00185 0.00255 0.00301 0.00410 0.00485	ter in cyclohexane g(2)/100 g sln (compiler) 0.0034 ^a 0.0043 ^a 0.0059 ^a 0.0070 ^a 0.0096 ^a 0.0114 ^a	10 ⁴ x2 (compiler) 1.6 2.0 2.8 3.3 4.5 5.3

respectively 10, 15, 20, 25, 30, 35 and 45°C; these values are the density values of pure cyclohexane at these temperatures (ref 1).

AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: (1) was equilibrated with an excess of (2) in 175 mL bottles fitted with Bakelite screw caps. The bottles immersed in a water-bath were given end-over-end rotation at 20 r.p.m. After equilibration, aliquots (5 mL ± 0.2%) were taken with cali- brated Hamilton syringes and injected into the titration vessel. Analyses were performed with an Aquatest II automatic Karl Fischer Titrator.	<pre>SOURCE AND PURITY OF MATERIALS: (1) certified grade; washed with water, dried with silica gel, and distilled. d²⁵₄ 0.77390 ± 0.00002 (2) distilled.</pre>
	ESTIMATED ERROR: temp. ± 0.02 K soly. ± 0.00024 (mean of std. dev.) REFERENCES: 1. Timmermans, J. Physico-chemical constants of pure organic com- pounds Elsevier, 1950.

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Cyclohexane; C ₆ H ₁₂ ; [110-82-7]	Mackay, D.; Shiu, W.J.; Wolkoff, A.W.
(2) Water; H ₂ O; [7732-18-5]	"Water Quality Parameters" Symp. 1973, ASTM Spec. Tech. Publ. <u>1975</u> , <i>573</i> , 251-8.
VARTABLES :	DEDADED BY.
	FREFARED DI:
not specified	M.C. Haulait-Pirson
EXPERIMENTAL VALUES:	
The authors reported three different	values for the solubility of
cyclohexane in water: 55.8, 50.2 and	61.7 mg(l)dm ⁻³ sln. Using
the mean value and assuming a solutio	n density of 1.00 g mL ⁻¹ , the
corresponding mass percent, calculate	d by the compiler, is
0.0056 g(1)/100 g sln and the corresp	onding mole fraction, x_1 , is
1.2×10^{-5} .	
AUXILIARY	INFORMATION
METUOD ADDADATIIS (DOCEDIDE.	
reirod/arrakaius/reoceduke;	SOURCE AND PURITY OF MATERIALS:
(1) is partially partitioned into the vapor phase by equilibration of	(1) not specified.
the aqueous sample with helium in a	(2) not specified.
transferred to a gas sampling valve	
and then to the column of a gas	
ionization detector. By injecting	
gas samples from repeated equili-	
the amount of (1) in the original	
sample.	ESTIMATED ERKOR:
	soly. ± 10% (compiler)
	REFERENCES :

37 204 257 **COMPONENTS:** ORIGINAL MEASUREMENTS: (1) Cyclohexane; C₆H₁₂; [110-82-7] Mackay, D.; Shiu, W.Y. (2) Water; H₂O; [7732-18-5] Can. J. Chem. Eng. <u>1975</u>, 53, 239-41. VARIABLES: PREPARED BY: One temperature: 25°C M.C. Haulait-Pirson EXPERIMENTAL VALUES: The solubility of cyclohexane in water at 25°C was reported to be $0.0575 \text{ g(1)} \text{dm}^{-3} \text{ sln.}$ With the assumption of a solution density of 1.00 g $\rm cm^{-3}$, the corresponding mass percent is 0.00575 g(l)/100 g sln and the corresponding mole fraction, x_1 , is 1.23 x 10⁻⁵ (compiler). AUXILIARY INFORMATION METHOD/APPARATUS/PROCEDURE: SOURCE AND PURITY OF MATERIALS: The solubility of (1) in (2) was (1) Phillips Petroleum Co.; research grade (>99.9%); determined using a vapor phase used as received. extraction technique followed by gas chromatographic analysis. Equilibration apparatus and proce-(2) distilled. dure are given in detail in the paper. The gas chromatograph was a Hewlett-Packard Model equipped with a hydrogen flame-ionization detector. ESTIMATED ERROR:

temp. ± 0.1 K soly. ± 0.0073 g(1)dm⁻³ sln

REFERENCES:

COMPONENTS:	ORIGINAL MEASUREMENTS:	
(1) Cyclohexane; C ₆ H ₁₂ ; [110-82-7]	Budantseva, L.S.; Lesteva, T.M.; Nemstov, M.S.	
(2) Water; H ₂ O; [7732-18-5]	Zh. Fiz. Khim. <u>1976</u> , 50, 1344. <u>Deposited doc.</u> 1976, VINITI 438-76.	
VARIABLES:	PREPARED BY:	
One temperature: 20°C	A. Maczynski	
EXPERIMENTAL VALUES:		
The solubility of cyclohexane in water at 20°C was reported to be $x_1 = 1.5 \times 10^{-5}$. The corresponding mass percent calculated by the compiler is 0.0070 g(1)/100 g sln. The solubility of water in cyclohexane at 20°C was reported to be $x_2 = 4.7 \times 10^{-4}$. The corresponding mass percent calculated by the compiler is 0.0101 g(2)/100 g sln.		
AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
The solubility of (1) in (2) was determined by glc. The solubility of (2) in (1) was determined by Karl Fischer reagent method.	 (1) source not specified; pure or analytical reagent grade; purity <99.9%. (2) not specified. 	
	not specified.	
	REFERENCES :	

37_206	259
COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Cyclohexane; C ₆ H ₁₂ ; [110-82-7]	Kirchnerova, J.; Cave, G.C.B.
(2) Water; H ₂ O; [7732-18-5]	Can. J. Chem. <u>1976</u> , 54, 3909 - 16.
VARIABLES:	PREPARED BY:
One temperature: 25°C	M.C. Haulait-Pirson
EXPERIMENTAL VALUES:	a at 25°C was reported to be
0.0030 mol $(2)/dm^3$ sln.	le at 25 C was reported to be
With the assumption of a solution der	nsity of 0.7739 g cm ⁻³ (density
value of pure cyclohexane reported in	n ref 1, the corresponding mass
percent is $0.0070 \text{ g}(2)/100 \text{ g} \sin$ and x_{a} , is 3.3×10^{-4} (compiler).	the corresponding mole fraction,
2,	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The Karl Fischer dead-stop back- titration method was used. 50 mL of (1) was placed in the equilibra- tion vessel. A test tube containing 6 mL of (2) was then placed in the	<pre>(1) Fisher C-555; purified by double crystallization; purity 99.6% (gas chromatographic analysis); d²⁵₄ 0.7734 ± 0.0001</pre>
rested against the upper inside wall	(2) distilled and de-ionized
stoppered, placed inside a plastic	
mostat. Trials had shown that the	
constant within 2 days. 10 mL of	ESTIMATED ERROR:
(1) saturated with (2) were trans- ferred to the titration vessel for water determination. Apparatus is	<pre>temp. ± 0.1 K soly. ± 0.0002 mol(2)/dm³ sln (std.</pre>
described in the paper.	REFERENCES:
	52, 1668.

are given in the paper.

260	37_207
COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Cyclohexane; C ₆ H ₁₂ ; [110-82-7]	Price, L.C.
(2) Water; H ₂ O; [7732-18-5]	Am. Assoc. Petrol. Geol. Bull. <u>1976</u> , 60, 213-44.
VARIABLES:	PREPARED BY:
One temperature: 25°C	M.C. Haulait-Pirson
EXPERIMENTAL VALUES:	
pressure was reported to be 66.5 mg(1 mass percent and mole fraction, x_1 , c are 0.00665 g(1)/100 g sln and 1.423)/kg(2). The corresponding malculated by the compiler x 10 ⁻⁵ .
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The solubility was determined at laboratory temperatures by use of screw-cap test tubes. The (1) phase floated on top of the water and insured saturation of the (2) phase in 2 to 4 days. Analyses were carried out by GLC using a Hewlett-Packard model 5751 gas chromatograph with dual-flame ionization detectors. Many details	 Phillips Petroleum Company; Chemical Samples Company or Aldrich Chemical Company; 99+%. distilled.

ESTIMATED ERROR:

temp. ± 1 K
soly. ± 0.8 mg(1)/kg(2)

REFERENCES:

COMPONENTS:			ORIGI	NAL MEASUREMENTS:	
COMPONENTS: (1) Cyclohexane; C ₆ H ₁₂ [110-82-7] (2) Water; H ₂ O; [7732-18-5]		ORIGINAL MEASUREMENTS: Skripka, V.G. Tr. Vses. Neftegazov. Nauch. Issled. Inst. <u>1976</u> , 61, 139-51. Sultanov, R.G.; Skripka, V.G. Zh. Fiz. Khim. <u>1973</u> , 47, 1035.			
1					
VARIABLES: Temperatur Pressure:	e: 200-250°C 2.8-78.5 MPa		PREPARED BY: A. Maczynski		
EXPERIMENTAL	VALUES:				
	Solubility	of water	in cy	clohexane	
t/°C	p/kg cm ⁻²	p/MPa (compil	er)	<i>x</i> ²	g(2)/100 g sln (compiler)
200	29 50 100 150 200 300 400 500 600 700 800	2.8 4.9 9.8 14.7 19.6 29.4 39.2 49.0 58.8 68.6 78.5		0.156 0.091 0.052 0.046 0.043 0.042 0.042 0.042 0.042 0.042 0.042 0.042	3.81 2.10 1.16 1.02 0.95 0.93 0.93 0.93 0.93 0.93 0.93 0.91
225	46.2 50 100 150 200 300 400 500 600 700 800	4.5 4.9 9.8 14.7 19.6 29.4 39.2 49.0 58.8 68.6 78.5		0.230 0.209 0.128 0.100 0.087 0.084 0.080 0.076 0.072 0.068 0.055	6.01 5.35 3.05 2.32 2.00 1.92 1.83 1.73 1.63 1.54 1.23 (continued)
AUXILIARY INFORMATION					
			Icour		
METHOD/APPARA The experin described reported i	TUS/PROCEDURE: mental technique in ref 1. No det n the paper.	was cails	(1)	source not sp reagent grade specified; us distilled.	MATERIALS: ecified, chemical ; purity not ed as received.
			ESTI	ATED ERROR:	
			not	specified.	
				DENCIO	
			REFE 1. 8 1	RENCES: Sultanov, R.G. Jamiot, A.Yu. <u>1971</u> , 4, 6.	; Skripka, V.G.; Gazov. Prom.

COMPONENTS	:	ORIGINAL	MEASUREMENTS :	
(1) Cyclo (2) Water	ohexane; C ₆ H ₁₂ ; [11 ; H ₂ O; [7732-18-5]	Skripka 0-82-7] Tr. Vse Inst. Sultand Zh. Fiz	A, V.G. 28. Neftegaz 1967, 61, 200, R.G.; Sk 3. Khim. <u>19</u>	ov. Nauch. Issled. 139-51. ripka, V.G. 73, 47, 1035.
t/°C	p/kg cm ⁻²	p/MPa (compiler)	<i>x</i> ²	g(2)/100 g sln (compiler)
250	70 100 150 200 300 400 500 600 700 800	6.9 9.8 14.7 19.6 29.4 39.2 49.0 58.8 68.6 78.5	0.345 0.232 0.182 0.165 0.145 0.131 0.122 0.114 0.106 0.100	10.13 6.07 4.55 4.06 3.50 3.13 2.89 2.68 2.47 2.32

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Cyclohexane; C ₆ H ₁₂ ; [110-82-7]	Korenman, I.M.; Aref'eva, R.P.
(2) Water; H ₂ O; [7732-18-5]	Patent USSR, 553 524, 1977.04.05 C.A. <i>87</i> :87654
VARIABLES:	PREPARED BY:
One temperature: 20°C	A. Maczynski
EXPERIMENTAL VALUES:	
The solubility of cyclohexane in wate be 0.10 g(1)mL(2). The corresponding mass percent and me by the compiler are 0.010 g(1)/100 g The compiler's calculations assume a	er at 20°C was reported to x_1 , calculated sln and 2.1 x 10 ⁻⁵ . solution density of 1.00 g mL ⁻¹ .
About 100-500 mL(2) was placed in a glass cylinder and 10-50 mg of an insoluble indicator was added and (1) was microburetted until the indicator floated to form a colored thin layer on the cylinder wall 2-3 cm above the liquid layer. After each drop of (1), the mixture was vigorously mixed for 0.5-1.5 min.	<pre>(1) not specified. (2) not specified. ESTIMATED ERROR:</pre>
	not specified.
	REFERENCES :

	37_211
COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Cyclohexane; C ₆ H ₁₂ ; [110-82-7]	Korenman, I.M.; Aref'eva, R.P.
(2) Water; H ₂ O; [7732-18-5]	Zh. Prikl. Khim. <u>1978</u> , 51, 957-8.
-	
VARIABLES:	PREPARED BY:
Temperature: 25°C	A. Maczynski and Z. Maczynska
EXPERIMENTAL VALUES:	
The solubility of cyclohexane in water be 0.12 g(1)dm ⁻³ sln. The corresponding mass percent and mo by the compiler are 0.012 g(1)/100 g The compilers calculations assume a s	er at 25°C was reported to ole fraction, x_1 , calculated sln and 2.6 x 10 ⁻⁵ . solution density of 1.00 g mL ⁻¹ .
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
About 200-500 mL(2) was placed in a	(1) not specified.
ground-joint glass cylinder and 20-50 mg of an insoluble indicator (dithizon, phenolphthalein, etc.) was added, and (1) was microburetted until the indicator floated to form a colored thin layer on the cylinder wall above the liquid layer. Blanks were made to determine the excess of (1).	(2) not specified.
	ESTIMATED ERROR:
	soly. \pm 0.01 g(l)dm ⁻³ sln (standard deviation from 6 determinations).
	REFERENCES :

37_212	265	
COMPONENTS :	ORIGINAL MEASUREMENTS:	
(1) Cyclohexane; C ₆ H ₁₂ ; [110-82-7]	Krzyzanowska, T.; Szeliga, J.	
(2) Water; H ₂ O; [7732-18-5]	Nafta (Katowice) <u>1978</u> , 12, 413-7.	
VARIABLES:	PREPARED BY:	
One temperature: 25°C	M.C. Haulait-Pirson	
EXPERIMENTAL VALUES:		
The solubility of cyclohexane in water at 25°C was reported to be 66.5 mg(1)/kg(2). The corresponding mass percent and mole fraction, x_1 , calculated by compiler are 0.00665 g(1)/100 g sln and 1.423 x 10 ⁻⁵ . Editor's Note: Based on the results for this and other hydrocarbon-water systems, uncertainity exists about whether the datum compiled here is		
	-	
AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
Saturated solutions of (1) in (2) were prepared in two ways. First, 200 μ L of (1) was injected into 20 mL of (2) and thermostatted at 25°C. Second, the mixture of (1) and (2) as above was thermostatted at 70°C and then cooled at 25°C. The time required to obtain equilibrium was three weeks. The solubility of (1) in (2) was mea- sured by glc. A Perkin-Elmer model	(1) not specified.(2) not specified.	
with a 100-150 mesh Porasil column (70°C) and a flame ionization detector was used. Saturated solu- tions of heptane in (2) were used as standard solutions.	ESTIMATED ERROR: soly. 1.3 mg(1)/kg(2) (standard deviation from 7-9 determinations) REFERENCES:	

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Cyclohexane; C₆H₁₂; [110-82-7] (2) Water; H₂O; [7732-18-5]</pre>	Rudakov, E.S.; Lutsyk, A.I. Zh. Fiz. Khim. <u>1979</u> , 53, 1298-1300.
VARIABLES:	PREPARED BY:
One temperature: 25°C	M.C. Haulait-Pirson

EXPERIMENTAL VALUES:

The authors reported the partition coefficient α of cyclohexane between the gas and aqueous phase. $\alpha = 8.0 \pm 02$. $\alpha = C_g/C_s$ with C_s being the concentration of the compound in dilute aqueous solution at 25°C and C_g the concentration in the gas phase in equilibrium with the aqueous solution (both in moles per liter).

The compiler has assumed that when (1) and (2) are not very soluble in each other, C_s may be taken as the water solubility and C_g as the vapor pressure of (1). The value of p (where p is the vapor pressure in mm of Hg) is taken from ref 1. p = 97.58 mm of Hg and log $C_g = \log p - 4.269 = -2.28$ expressed in moles per liter. Therefore $C_s = 6.56 \times 10^{-4}$ moles per liter. With the assumption of a solution density of 1.00 g mL⁻¹, the corresponding mass percent is 0.0055 g(1)/100 g sln and the corresponding mole fraction, x_1 , is 1.2 x 10^{-5} .

AUXILIARY INFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
The equilibrium distribution was attained after shaking for 10 min the thermostatted reactor contain- ing (2) and the (1) vapor. After being allowed to stand for 10 min, equal calibrated volumes of samples of the gas and solution were intro- duced by a syringe into a special cell for the removal of (1) by blowing, built into the gas line of the chromatograph and the par- tition coefficient α was determined as the ratio of the areas of the peaks of the substrate arising from the two phases.	(1) not specified.	
	(2) not specified.	
	ESTIMATED ERROR:	
	soly. ± 10% (estimated by the compiler)	
	REFERENCES:	
	<pre>1. Hine, J.; Mooker, P.K. J. Org. Chem. <u>1975</u>, 4, 292.</pre>	

37_214

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Cyclohexane; C ₆ H ₁₂ ; [110-82-7]	Schwarz, F.P.
(2) Water; H ₂ O; [7732-18-5]	Anal. Chem., <u>1980</u> , 52, 10-15.
VARIABLES:	PREPARED BY:
One temperature: 23.5°C	M.C. Haulait-Pirson
EXPERIMENTAL VALUES:	
Solubility of cyclohexane in water at 23.5°C was reported to be . 0.0052 \pm 0.0002 g(1)/100 g sln. The corresponding mole fraction, x_1 was calculated by the compiler to be 1.1 x 10 ⁻⁵ .	
AUXILIARY INFORMATION	
METHOD/APPARATUS/PROCEDURE:	
An elution chromatography method was used where (1) was the stationary phase and (2) the mobile phase. A transparent column was packed with an inert support (chromosorb P) coated with a known amount of the liquid solute (1). This solute column was connected to a water reservoir (connected to a water reservoir (connected to a compressed gas regulator). Water was forced through the column by the pressure of the compressed gas (ca. 14 kPa). As the total volume of water flowing through the column increased, a solute depleted zone, different in color from the stationary phase, developed and increased in length. The solubility is calculated from the amount of solute removed from the column, i.e. length of the solute depleted zone, and the volume of water passed through the column. Many details about preparation of the solute column and calculation are given in the paper.	 (1) 99.9% purity used without further purification (2) distilled
	ESTIMATED ERROR: temp. ± 1.5°C soly. 4% (average std. dev.) REFERENCES:

J

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Cyclohexane: C.H. : [110-82-7]	Tsonopoulos, C.: Wilson, G.M.
(2) Water; H_2O ; [7732-18-5]	A. I. Ch. E. J. 1983, 29, 990-9.
2	
VARIABLES: Temperature: 313-482 K	PREPARED BY:
Pressure: 0.03-3.0 MPa	G.I. MEILEI
The solubility of cyclohexane in water	
<i>т/к р / МРа 1</i>	$10^4 $ m. $10^2 $ g(1)/100 g sln
	(compiler)
	<u> </u>
313.15 0.03151 0	0.728
373.15 0.2723	1.379
422.04 - "	4.81
423.15 1.0032	6.07
	1.92 18.3
482.21 - 4	23.0
	(continued)
METHOD / APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS;
All experimental details are given in an Appendix deposited in a	(1) No details given
Documentation Centre rather than	(2) No details given
In the original paper. The solu- bility of (1) in (2) was measured by gas chromatography, whilst that of (2) in (1) was measured by Karl Fischer titration.	
	ESTIMATED ERROR: soly. ± 5% relative; repeatability of replicate analyses. temp. not stated. press. ± 1%; type of error not stated. REFERENCES:
```
(1) Cyclohexane; C<sub>6</sub>H<sub>12</sub>; [110-82-7]
(2) Water; H<sub>2</sub>O; [7732-18-5]
```

(continued)

The solubility of water in cyclohexane

Т/К	p ^a /MPa	10 ³ x ₂	g(2)/100 g sln (compiler)
	<u></u>		•
313.15	0.03151	0.887,0.924,1.13	0.021 ^{<i>a</i>}
373.15	0.2723	4.35, 5.12	0.10 ^{<i>a</i>}
423.15	1.0082	20.4,24.0	0.47 ^{<i>a</i>}
473.15	2.965	79.3	1.81

a Average value.

The three phase critical point was reported to be 529.4 K, 8.025 MPa and $x_1 = 1.748 \times 10^{-3}$ (0.82 g(1)/100 g sln, compiler).

The authors also report equations fitted to their own and literature data over the range 273-529 K, viz.

 $\ln x_1 = -209.11689 + 8325.49/T + 29.8231 \ln T$ $\ln x_2 = -62.7645 - 654.027/T + 9.99967 \ln T$

COMPONENTS:	ORIGINAL MEASUREMENTS:		
(1) Cyclohexane; C ₆ H ₁₂ ; [110-82-7]	Guseva, A.N.; Parnov, E.I.		
<pre>(2) Deuterium oxide; (heavy water); D₂O; [7789-20-0]</pre>	Radiokhimiya <u>1963</u> , 5, 507-9.		
VARIABLES:	PREPARED BY:		
Temperature: 71-179.5°C	A. Maczynski		
EXPERIMENTAL VALUES:			
Solubility of cyclohexa	ne in deuterium oxide		
$t/^{\circ}C$ $10^{4}x_{1}$	g(l)/100 g sln (compiler)		
71 0.331	0.0139		
143 1.48	0.0622		
168 3.2	0.134		
179.5 4.47	0.188		
AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:		
The solubility of (1) in (2) was	(1) not specified.		
	(2) distilled.		
	ESTIMATED ERROR:		
	not specified.		
	REFERENCES:		

37 217

COMPONENTS:	ORIGINAL MEASUREMENTS:	
(1) Cyclohexane; C ₆ H ₁₂ ; [110-82-7]	Backx, P.; Goldman, S.	
(2) Deuterium oxide (heavy water); D ₂ O; [7789-20-0]	J. Phys. Chem. <u>1981</u> , 85, 2975-9.	
VARTARLES :	DEEDADEN BY.	
	PREFARED BI:	
Temperature: 283-313 K	A. Maczynski	
EXPERIMENTAL VALUES:		
Solubility of deuteriu	m oxide in cyclohexane	
T/K $10^4 x_2$ st	d. dev. 10 ⁴ g(2)/100 g sln (compiler)	
283 1.57	0.08 0.374	
288 1.81	0.10 0.431	
293 2.42	0.10 0.576	
298 2.80	0.11 0.666	
303 3.61	0.24 0.859	
308 4.64	0.56 1.104	
313 5.35	0.24 1.274	
AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
In a 175-ml milk-dilution bottle fitted with a Bakelite screw cap and a Teflon insert and rotated end-over-end, (1) was equilibrated with an excess of (2), sampled with Hamilton syringes and titrated in an Aquatest II automatic Karl Fischer Titrator.	 (1) certified grade; washed with water, dried with silica gel, and distilled; d²⁵ 0.77390. (2) obtained from the manufacturer; minimum isotopic purity of 99.7 atom % D. 	
	ESTIMATED ERROR:	
	Temp. ± 0.01 K Std. dev. of soly calcd from 18-32 determinations reported above.	
	REFERENCES :	

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) 2,3-Dimethyl-l-butene; C₆H₁₂; [563-78-0]</pre>	Englin, B.A.; Plate, A.F.; Tugolukov, V.M.; Pryanishnikova, M.A.
(2) Water; H ₂ O; [7732-18-5]	Khim. Tekhnol. Topl. Masel <u>1965</u> , 10, 42-6.
VARIABLES:	PREPARED BY:
One temperature: 30°C	A. Maczynski and Z. Maczynska
LAFERIMENIAL VALUES:	
mbo polubility of untry is 0.0 direct	
reported to be 0.0459 g(2)/100 g alm	y1-1-Dutene at 30°C Was
The corresponding the fraction	coloulated by the correlate
The corresponding whole fraction, x_2 is 2.14 x 10 ⁻³ .	calculated by the compilers
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Component (1) was introduced into a	(1) not specified
thermostatted flask and saturated for	(1) not specified.
dride was added and the evolving hy-	(2) not specified.
drogen volume measured and hence the concentration of (2) in (1) was	
evaluated.	
	ESTIMATED ERROR:
	Not specified.
	REFERENCES:

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) 2-Methyl-1-pentene; C₆H₁₂; [763-29-1] (2) Water; H₂O; [7732-18-5]</pre>	McAuliffe, C. J. Phys. Chem. <u>1966</u> , 70, 1267-75.
VARIABLES: One temperature: 25°C	PREPARED BY: A. Maczynski, Z. Maczynska, and A. Szafranski
EXPERIMENTAL VALUES:	
The solubility of 2-methyl-1-pentene to be 78 g(1)/10 ⁶ g(2). The corresponding mass percent and mo by the compilers are 0.0078 g(1)/100	in water at 25°C was reported ble fraction, x_1 , calculated g sln and 1.7 x 10^{-5} .
AUXILIARI	
METHOD/APPARATUS/PROCEDURE: In a 250-mL bottle, 10-20 mL of (1) was vigorously shaken for 1 hr, or magnetically stirred for 1 day, with 200 mL of (2) at 25°C. The bottle was set aside for 2 days to allow droplets of undissolved (1) to separate. Absence of emulsion was checked microscopically. A sample of the hydrocarbon-saturated water was withdrawn with a Hamilton syringe and gas liquid chromato- graphed in conjunction with a flame- ionization detector.	SOURCE AND PURITY OF MATERIALS: (1) Phillips Petroleum or Columbia Chemical; used as received. (2) distilled. ESTIMATED ERROR: temp. ± 1.5 K soly. 3.2 g(1)/10 ⁶ g(2) (standard deviation of mean) REFERENCES:

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) 4-Methyl-1-pentene; C₆H₁₂; [691-37-2]</pre> (2) Water: H_0: [7732-18-5]	McAuliffe, C. J. Phys. Chem. <u>1966</u> , 70, 1267-75.
VARIABLES: One temperature: 25°C	PREPARED BY: A. Maczynski, Z. Maczynska, and A. Szafranski
EXPERIMENTAL VALUES: The solubility of 4-methyl-1-pentene to be 48 g(1)/10 ⁶ g(2). The corresponding mass percent and mo by the compilers are 0.0048 g(1)/100	in water at 25°C was reported le fraction, x_1 , calculated g sln and 1.0 x 10 ⁻⁵ .
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
In a 250-mL bottle, 10-20 mL of (1) was vigorously shaken for 1 hr, or magnetically stirred for 1 day, with 200 mL of (2) at 25°C. The bottle was set aside for 2 days to allow droplets of undissolved (1) to separate. Absence of emulsion was checked microscopically. A sample of the hydrocarbon-saturated water was withdrawn with a Hamilton syringe and gas liquid chromato- graphed in conjunction with a flame- ionization detector.	 (1) Phillips Petroleum or Columbia Chemical; used as received. (2) distilled. ESTIMATED ERROR: temp. ± 1.5 K
	soly. 2.6 g(1)/10 ^b g(2) (standard deviation of mean) REFERENCES:

COMPONENTS: (1) 1-Hexene: C.H: [592-41-6]	EVALUATOR: A. Maczynski, Institute of Physical Chemistry, Polish Academy of Sciences Warszawa, Poland.			
(2) Water: H_0 : $[7732-18-5]$				
	and Physical Sciences, Murdoch University, Perth, W.A., Australia.			
	November 1984			
CRITICAL EVALUATION:				
Quantitative solubility data for the s	system 1-hexene (1) and Water (2)			
have been reported in the publications	; listed in Table 1.			
TABLE 1: Quantitative	e Solubility Studies of			
the 1-Hexene (1) -	Water (2) System			
Reference T/K	Solubility Method			
Englin et al. (ref 1) 303	(2) in (1) analytical			
McAuliffe (ref 2) 298	(1) in (2) GLC			
Leinonen and Mackay (ref 3) 298	(1) in (2) GLC			
Budantseva et al. (ref 4) 293	mutual GLC, Karl Fischer			
Solubilities of 1-hexene in dilute aqu	eous HNO ₃ solutions have also been			
reported (ref 5) but will not be consi	dered in this Evaluation.			
The original data in all of these publ	.ications (ref 1-5) are compiled in			
convenience, further discussion of thi	is system will be divided into two			
parts.				
•				
1. THE SOLUBILITY OF 1-HEXENE (1) IN	WATER (2)			
The solubility data for 1-hexene in water are given in Table 2.				
TABLE 2: Recommende	ed (R) and Tentative			
Values of the Solubility of	l-Hexene (1) in Water (2)			
T/K Solubility Values				
Reported values	"Best" values $(\pm \sigma_n)^{\alpha}$			
10^{3} g(1)/100g sln	$10^{3} g(1) / 100 g sln = 10^{5} x_{1}$			
293 = 5 (ref 4)	I = I			
298 5.0 (Tel 2), 5.54 (Tel 3)	5.5 1 0.5 (A) 1.14 (A)			
a				
"Best" values obtained by averaging v	there possible; on has no statistical			
significance.				

(continued next page)

COMPONENTS	EVALUATOR:
(1) 1-Hexene; C ₆ H ₁₂ ; [592-41-6]	A. Maczynski, Institute of Physical Chemistry, Polish Academy of Sciences Warszawa, Poland.
(2) Water; H ₂ O; [7732-18-5]	G.T. Hefter, School of Mathematical and Physical Sciences, Murdoch University, Perth, W.A., Australia
	November 1984

CRITICAL EVALUATION: (continued)

2. THE SOLUBILITY OF WATER (2) IN 1-HEXENE (1)

The solubility data for water in 1-hexene are listed in Table 3. As data have not been obtained under comparable conditions they must be classified as "Tentative". However, it can be noted that in (other) well characterised systems the data of Englin *et al.* (ref 1) at T < 300K are usually close to "Recommended" values. The data of Budantseva *et al.* (ref 4) on the other hand an often high.

TABLE	3:	Tentat	ive	va]	lues	of	the	Solubility
	of	Water	(2)	in	l-He	exer	ne (I	1)

T/K	Solubilit g(2)/100g sln	y values 10 ³ x2
293	0.029 (ref 4)	1.4

REFERENCES

- Englin, B.A.; Plate, A.F.; Tugolukov, V.M.; Pryanishnikova, M.A. Khim. Tekhnol. Topl. Masel <u>1965</u>, 10, 42-6
- 2. McAuliffe, C. J. Phys. Chem. <u>1966</u>, 70, 1267-75.
- 3. Leinonen, P.J.; Mackay, D. Can. J. Chem. Eng. <u>1973</u>, 51, 230-3.
- Budantseva, L.S.; Lesteva, T.M.; Nemstov, M.S. Zh. Fiz. Khim. <u>1976</u>, 50, 1344; Deposited doc., VINITI 438-76.
- 5. Natarajan, G.S.; Venkatachalam, K.A. *J. Chem. Eng. Data* <u>1972</u>, *17*, 328-9.

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) 1-Hexene; C ₆ H ₁₂ ; [592-41-6] (2) Water; H ₂ O; [7732-18-5]	Englin, B.A.; Plate, A.F.; Tugolukov, V.M.; Pryanishnikova, M.A. Khim. Tekhnol. Topl. Masel 10, 42-6.
VARIABLES :	PREPARED BY: 1965,
One temperature: 30°C	A. Maczynski and Z. Maczynska
EXPERIMENTAL VALUES:	
The solubility of water in 1-hexene a 0.0477 g(2)/100 g sln. The corresponding mole fraction, x_2 ,	t 30°C was reported to be calculated by the compilers
AUXILIARY INFORMATION	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Component (1) was introduced into a	(1) not specified.
thermostatted flask and saturated for 5 hr. with (2). Next, calcium hy- dride was added and the evolving	(2) not specified.
the concentration of (2) in (1) was evaluated.	
	ESTIMATED ERROR:
	Not specified.
	REFERENCES:

278	37_223
COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) 1-Hexene; C ₆ H ₁₂ ; [592-41-6]	McAuliffe, C.
(2) Water; H ₂ O; [7732-18-5]	J. Phys. Chem. <u>1966</u> , 70, 1267-75.
VARIABLES:	PREPARED BY:
One temperature: 25°C	A. Maczynski, Z. Maczynska, and A. Szafranski
EXPERIMENTAL VALUES: The solubility of 1-hexene in water a to be 50 g(1)/10 ⁶ g(2). The corresponding mass percent and mo by the compilers are 0.0050 g(1)/100	at 25°C was reported ble fraction, x_1 , calculated g sln and 9.2 x 10^{-6} .

AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: In a 250-mL bottle, 10-20 mL of (1) was vigorously shaken for 1 hr, or magnetically stirred for 1 day, with 200 mL of (2) at 25°C. The bottle was set aside for 2 days to allow droplets of undissolved (1) to separate. Absence of emulsion was checked microscopically. A sample of the hydrocarbon-saturated water was withdrawn with a Hamilton syringe and gas liquid chromato- graphed in conjunction with a flame- ionization detector.	 SOURCE AND PURITY OF MATERIALS: (1) Phillips Petroleum or Columbia Chemical; used as received. (2) distilled.
	ESTIMATED ERROR: temp. ± 1.5 K soly. 1.2 g(1)/10 ⁶ g(2) (standard deviation of mean)
	REFERENCES:

COMPONENTS :	ORIGINAL MEASUREMENTS:		
(1) 1-Hexene: C H : [592-41-6]	Natarajan, G.S., Venkatachalam, K.A.		
(1) (1)	J. Chem. Eng. Data 1972, 17, 328-9.		
(2) water; H_20 ; $[7/32-18-5]$	·		
VARIABLES :	PREPARED BY:		
One temperature: 25°C	M.C. Haulait-Pirson, G.T. Hefter		
EVDEDIMENTAL VALUES.			
EXPERIMENTAL VALUES:			
The solubility of 1-hexene in water wa	s reported to be 7.781 \times 10 ⁻⁴ mol L ⁻¹		
at 25°C. ^a Assuming a solution density	of 1.00 g mL ⁻¹ the corresponding		
mass percent and mole fraction (x_1) so	lubilities calculated by the compilers		
are respectively, 0.00654 g(1)/100 g s	ln and 1.40 x 10^{-5} .		
	- Cumphian of Language language		
solubility data are also presented as	a function of temperature in various		
salt solutions.			
^a It should be noted that although the	authors state that the solubility		
refers to "water" the context in the	paper is ambiguous and the data		
were probably obtained in 0.001 mol	L ⁻¹ HN0 ₃ solution		
AUXILIARY	INFORMATION		
METHOD /APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:		
15 mL of the aqueous medium was	(1) Matheson, Coleman and Bell;		
equilibrated with 1 mL of (1) by	99%		
mechanical shaking in a thermostatted	(2) Not specified		
glass burette. After settling			
(judged visually), 5 mL of the			
aqueous layer was withdrawn and the			
olefin content determined by			
titration with bromine using standard			
procedures.	ESTIMATED ERROR:		
	Temp. ± 0.05 K		
	Soly. not specified.		
	REFERENCES:		

280	37 225
COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) 1-Hexene; C ₆ H ₁₂ ; [592-41-6]	Leinonen, P.J.; Mackay, D.
(2) Water; H ₂ O; [7732-18-5]	Can. J. Chem. Eng. <u>1973</u> , 51, 230-3.
VARIABLES:	PREPARED BY:
One temperature: 25°C	A. Maczynski, Z. Maczynska, and A. Szafranski
EXPERIMENTAL VALUES:	
The solubility of 1-hexene in water a 55.4 mg(1) dm ⁻³ sln. The corresponding mass percent and mc by the compilers are 0.00554 g(1)/100 The compiler's calculation assumes a	The fraction, x_1 , calculated by g sln and 1.18 x 10 ⁻⁵ . solution density of 1.00 g mL ⁻¹ .
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
A mixture of (1) and (2) was equi- librated at $25 \pm 0.1^{\circ}$ C for a minimum of 12 hrs in a 200-mL Teflon- stoppered vessel (25 cm long and 3.5 cm across) with gentle shaking, allowed to settle for 6 hrs and tested for the absence of emulsion (Tyndall effect). The aqueous and organic phases were analyzed by glc (with internal standardization) on a Hewlett-Packard Model 700 instru- ment equipped with a 15% SE-30 on 60/80 mesh acid-washed (CH3) ₂ Cl ₂ Si- treated Chromosorb P column (steel capillary 10 ft x 0.125 inch). The (1) in the aqueous phase was extracted into 5 mL of heptane and the extract analyzed by glc.	<pre>(1) Phillips Petroleum Co. research grade, 99+ mole%; used as received. (2) doubly distilled. (2) doubly distilled. ESTIMATED ERROR: temp. ± 0.1 K soly. 30 mg(1) dm⁻³ (two standard deviations) REFERENCES:</pre>

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) 1-Hexene; C ₆ H ₁₂ ; [592-41-6]	Budantseva, L.S.; Lesteva, T.M.; Nemstov, M.S.
(2) Water; H ₂ O; [7732-18-5]	Zh. Fiz. Khim. 1976, 50, 1344.
	Deposited doc. 1976,
	VINITI 438-76.
VARIABLES:	PREPARED BY:
One temperature: 20°C	A. Maczynski
EXPERIMENTAL VALUES:	
The solubility of 1-beyone in water a	t 20°C was reported to
be $x_1 = 1 \times 10^{-5}$.	
The corresponding mass percent calcul	ated by the compiler is
0.005 g(l)/100 g sln.	
The solubility of water in 1-hexene a be $x_2 = 0.0016$.	at 20°C was reported to
mbo componenting mass powerst calcul	stad by the compiler is
0.029 g(2)/100 g sln.	ated by the compiler is
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The solubility of (1) in (2) was do-	(1) source not specified, pure
termined by glc. The solubility of	or analytical reagent grade;
(2) in (1) was determined by Karl	purity <99.9%.
Fischer reagent method.	(2) not specified.
	ESTIMATED ERROR:
	Not specified.
	REFERENCES:

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) 2-Hexene; C ₆ H ₁₂ ; [592-43-8] (2) Water; H ₂ O; [7732-18-5]	Natarajan, G.S.; Venkatachalam, K.A. <i>J. Chem. Eng. Data</i> <u>1972</u> , <i>17</i> , 328-9.
VARIABLES:	PREPARED BY:
Temperature: 20-30°C	M.C. Haulait-Pirson, G.T. Hefter

EXPERIMENTAL VALUES:

Solubility of 2-hexene in 0.001 mol/L HNO3 solution.

t/°C	10^4 mol/L sln^a	l0 ³ g(l)/l00 g sln ^b (compiler)	10 ⁵ ¤ ₁ (compiler)
20	8.75 ± 0.21	7.4	1.6
25	7.99 ± 0.23	6.7	1.4
30	6.60 ± 0.26	5.5	1.2

a Uncertainties stated to be "standard deviations from means".

b Assuming a solution density of 1.00 g mL⁻¹ at all temperatures.

<u>Compiler's note</u>: Although the data have not been measured in pure water the low concentration of the added acid is unlikely to cause the olefin solubility to differ markedly from that in pure water. Further solubility data are given in the paper for 0.05 and 0.1 mol L^{-1} HCl.

AUXILIARY INFORMATION			
METHOD / APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:		
15 mL of the aqueous medium was equilibrated with 1 mL of (1) by mechanical shaking in a thermostatted glass burette. After settling (judged visually), 5 mL of the aqueous layer was withdrawn and the olefin content determined by titration with bromine using standard procedures.	 Prepared by dehydration of 2-hexanol and then washed, dried and fractionated. Purity (no specification) was determined by chromatography. Not specified. 		
	ESTIMATED ERROR:		
	Temp. ± 0.05 K Soly. see table above.		
	REFERENCES :		

COMPONENTS :	EVALUATOR:	
 (1) 2,2-Dimethylbutane; C₆H₁₄; [75-83-2] (2) Water; H₂O; [7732-18-5] 	M.C. Haulait-Pirson, Department of Chemistry, University of Leuven, Belgium. G.T. Hefter, School of Mathematical and Physical Sciences, Murdoch University, Perth, W.A., Australia. November 1984	

CRITICAL EVALUATION:

37 228

Quantitative solubility data for the system 2,2-dimethylbutane (1) and water (2) have been reported in the publications listed in Table 1.

TABLE 1: Q	uantitative	Solub	oility	Stud	lies	of	the
2,2-Dime	thylbutane	(1) -	Water	(2)	Syst	.em	

T/K	Solubility	Method
298	(1) in (2)	GLC
273,298	mutual	GLC, Karl Fischer
298	(1) in (2)	GLC
298	(1) in (2)	GLC
	Т/К 298 273,298 298 298	T/K Solubility 298 (1) in (2) 273,298 mutual 298 (1) in (2) 298 (1) in (2)

The original data in all of these publications are compiled in the Data Sheets immediately following this Critical Evaluation. For convenience, further discussion of this system will be divided into two parts.

1. THE SOLUBILITY OF 2,2-DIMETHYLBUTANE (1) IN WATER (2)

The solubility data for 2,2-dimethylbutane in water are listed in Table 2. The datum of Krzyzanowska and Szeliga (ref 4) has been excluded from this evaluation as it does not appear to be independent of that of Price (ref 3). The agreement between the other reported values at 298K (ref 1, 2, 3) is only fair (± 10% relative) and the average "best" value can only be regarded as tentative at this stage. It should also be noted that the increase in solubility as the temperature goes from 298K to 273K reported by Polak and Lu (ref 2) is larger than typically observed in hydrocarbon-water systems (e.g. benzene in water).

TABLE 2: Tentative Values of the Solubilityof 2,2-Dimethylbutane (1) in Water (2)

T/K		Solubi	lity values	
		Reported values 10 ³ g(1)/100g sln	"Best" values (± 10 ³ g(1)/100g sln	^o n) ^a 10 ⁶ x ₁
273	3.94	(ref 2)	3.9	8.2
298	1.84 2.11	(ref 1), 2.38 (ref 2), (ref 3)	2.1 ± 0.2	4.4

^aObtained by averaging where appropriate; σ_n has no statistical significance (continued next page)

COMPONENTS:	EVALUATOR:
<pre>(1) 2,2-Dimethylbutane; C₆H₁₄; [75-83-2]</pre>	M.C. Haulait-Pirson, Department of Chemistry, University of Leuven, Belgium.
(2) Water; H ₂ O; [7732-18-5]	G.T. Hefter, School of Mathematical and Physical Sciences, Murdoch University, Perth, W.A., Australia. November 1984

CRITICAL EVALUATION: (continued)

2. THE SOLUBILITY OF WATER (2) IN 2,2-DIMETHYLBUTANE (1)

The solubility of water in 2,2-dimethylbutane has been reported in only one publication (ref 2), and thus no Critical Evaluation can be made. However, the data of Polak and Lu are generally in good agreement with "Recommended" values in well characterized systems. The interested user is referred to the appropriate data sheet for solubility values.

REFERENCES

- 1. McAuliffe, C. J. Phys. Chem. <u>1966</u>, 70, 1267-75.
- 2. Polak, J.; Lu, B.C-Y. Can. J. Chem. 1973, 51, 4018-23.
- 3. Price, L.C. Am. Assoc. Petrol. Geol. Bull. 1976, 60, 213-44.
- 4. Krzyzanowska, T.; Szeliga, J. Nafta (Katowice) 1978, 34, 413-7.

COMPONENTS: ORIGINAL MEASUREMENTS: McAuliffe, C. 2,2-Dimethylbutane; C₆H₁₄; [75-83-5] J. Phys. Chem. 1966, 70, 1267-75. (2) Water; H₂O; [7732-18-5] VARIABLES: PREPARED BY: One temperature: 25°C M.C. Haulait-Pirson **EXPERIMENTAL VALUES:** The solubility of 2,2-dimethylbutane in water at 25°C was reported to be 18.4 mg (1)/kg sln (0.00184 g(1)/100 g sln). The corresponding mole fraction, x_1 , calculated by the compiler, is 3.85×10^{-6} . The same value is also reported in refs 1 and 2. AUXILIARY INFORMATION SOURCE AND PURITY OF MATERIALS: METHOD/APPARATUS/PROCEDURE: (1) Phillips Petroleum Co.; 99+% In a 250 mL glass bottle, 10-20 mL of (1) was vigorously shaken for purity; used as received. 1 hr or magnetically stirred for 1 day, with 200 mL of (2) at 25°C (2) distilled. In the case of shaking, the solution was allowed to stand for 2 days to permit separation of small (1) droplets. Absence of emulsion was checked microscopically. A 50 μL sample of the (1) saturated water was withdrawn with a Hamilton Syringe and injected into the frac-ESTIMATED ERROR: tionator of the gas chromatograph. A hydrogen-flame ionization detector temp. ± 1.5 K was used. Many details are given in soly. 1.3 mg (1)/kg sln (standard the paper. deviation from mean) **REFERENCES:** 1. McAuliffe, C. Nature (London) 1963, 200, 1092. 2. McAuliffe, C. Am. Chem. Soc. Div. Petrol. Chem. 1964, 9, 275.

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) 2,2-Dimethylbutane; C₆H₁₄; [75-83-2] (2) Water; H₂O; [7732-18-5]</pre>	Polak, J.; Lu, B.C-Y. Can. J. Chem. <u>1973</u> , 51, 4018-23.
VARIABLES:	PREPARED BY:
Temperature: 0-25°C	M.C. Haulait-Pirson
EXPERIMENTAL VALUES:	
Solubility of 2,2-dime	thylbutane in water
t/°C mg(l)/kg	$sln x_1$ (compiler)
	8 23 x 10 ⁻⁶
25 ^b 23.8 ^c	4.97×10^{-6}
25 2000	
Solubility of water in	2,2-dimethylbutane
t/°C mg(2)/kg	sln x_2 (compiler)
	1.52 10 ⁻⁴
25 ^b 84 ^e	4.02×10^{-4}
AUXILIARY	INFORMATION
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
The solubility of (1) in (2) was determined by gas chromatography. The solubility of (2) in (1) was determined by Karl Fischer titra- tion. 50 mL of (1) together with 50 mL of (2) were placed in a 125 mL Hypovial closed with a Teflon coated rubber septum and placed in a constant-temperature water bath. The system was stirred magnetical- ly for 24 hr or was kept in the bath without stirring for at least 7 days before samples were taken for analysis. Details of the analysis are given in the paper.	<pre>(1) Phillips Petroleum Co.; pure grade reagent (99%+); shaken three times with distilled water. (2) distilled. ESTIMATED ERROR: temp. a) ± 0.02 K; b) ± 0.01 K soly. c) ± 1.7%; d) ± 4.7%; e) ± 3.1% (mean) REFERENCES:</pre>

37 231

57_231	207
COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) 2,2-Dimethylbutane; C₆H₁₄; [75-83-2]</pre>	Price, L.C.
(2) Water, H ₂ O; [7732-18-5]	Am. Assoc. Petrol. Geol. Bull <u>1976</u> , 60, 213-44.
VARIABLES:	PREPARED BY:
One temperature: 25°C	M.C. Haulait-Pirson
EXPERIMENTAL VALUES:	
The solubility of 2,2-dimethylbutane pressure was reported to be 21.1 mg(1) mass percent and mole fraction, x_1 , or are 0.00212 g(1)/100 g sln and 4.43 y	in water at 25°C and at system L)/kg(2). The corresponding calculated by the compiler < 10 ⁻⁶ .
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The solubility was determined at laboratory temperatures by use of screw-cap test tubes. The (1) phase floated on top of the water and insured saturation of the (2) phase in 2 to 4 days. Analyses were carried out by GLC using a Hewlett-Packard model 5751 gas chromatograph with dual-flame ionization detectors. Many details are given in the paper.	 Phillips Petroleum Company; Chemical Samples Company or or Aldrich Chemical Company; 99+%. distilled.
	ESTIMATED ERROR:
	temp. ± 1 K soly. ± 0.3 mg(1)/kg(2)
	REFERENCES :

	J
COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) 2,2-Dimethylbutane; C₆^H₁₄; [75-83-2]</pre>	Krzyzanowska, T.; Szeliga, J.
(2) Water; H ₂ O; [7732-18-5]	Nafta (Katowice) <u>1978</u> , 12, 413-7.
-	
VARIABLES:	PREPARED BY.
One temperature: 25° C	M.C. Haulait-Pirson
one temperature. 25 c	
EXPERIMENTAL VALUES:	
mbo colubility of 2 2-dimethylbutone	in water at 25%C was reported
to be 21 20 mg(1) /kg(2)	In water at 25°C was reported
to be 21.20 mg(1)/kg(2).	
The corresponding mass percent and mo	ble fraction, x_1 , calculated
by compiler are 0.00212 g(1)/100 g si	n and 4.43 x 10 .
Editor's Note: Based on the results	for this and other hydrocarbon-water
systems, uncertainity exists about w	hether the datum compiled here is
independent of that of Price for the	same system (see previous page).
AUXILIARY	INFORMATION
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
Saturated solutions of (1) in (2)	(1) not specified.
were prepared in two ways. First,	
200 µL of (1) was injected into 20 mL of (2) and thermostatted at	(2) not specified.
25°C. Second, the mixture of (1)	
and (2) as above was thermostatted at 70°C and then cooled to 25°C.	
The time required to obtain	
equilibrium was three weeks. The solubility of (1) in (2) was mea-	
sured by glc. A Perkin-Elmer model	
F-11 gas chromatograph equipped with a 100-150 mesh Porasil column	ESTIMATED ERROR:
(70°C) and a flame ionization	soly. 1.2 mg(1)/kg(2) (standard
detector was used. Saturated solu- tions of heptane in (2) were used	deviation from 7-9 determinations)
as standard solutions.	
	REFERENCES:

37	233
•	

COMPONENTS:	EVALUATOR:
 (1) 2,3-Dimethylbutane; C₆H₁₄; [79-29-8] (2) Water; H₂O; [7732-18-5] 	M.C. Haulait-Pirson, Department of Chemistry, University of Leuven, Belgium. G.T. Hefter, School of Mathematical and Physical Sciences, Murdoch University, Perth, W.A., Australia. November 1984

CRITICAL EVALUATION:

Quantitative solubility data for the system 2,3-dimethylbutane (1) and water (2) have been reported in the publications listed in Table 1.

TABLE 1: Quantitative Solubility Studies of the 2,3-Dimethylbutane (1) - Water (2) System

Reference	<i>Т</i> /К	Solubility	Method
Englin <i>et al</i> . (ref l)	273-323	(2) in (1)	analytical
Polak and Lu (ref 2)	273,298	mutual	GLC, Karl Fischer
Price (ref 3)	298-423	(l) in (2)	GLC
Krzyzanowska and Szeliga (ref 4)	298	(1) in (2)	GLC

The original data in all of these publications are compiled in the Data Sheets immediately following this critical Evaluation. For convenience, further discussion of this system will be divided into two parts.

1. THE SOLUBILITY OF 2,3-DIMETHYLBUTANE (1) IN WATER (2)

The solubility data for 2,3-dimethylbutane in water (ref 2, 3) are listed in Table 2 and plotted in Figure 1. The datum of Krzyzanowska and Szeliga (ref 4) has been excluded from this Evaluation as it does not appear to be independent of that of Price (ref 3).

At 298K, where comparison is possible, agreement between the reported values is only fair. At other temperatures only the values of Price (ref 3) are available. Thus all values are classified as Tentative. It should be noted firstly that the increase in solubility at lower temperatures reported by Polak and Lu (ref 2) is larger than is usually observed in hydrocarbon-water systems (e.g. benzene in water), and secondly the values of Price (ref 3) are usually reliable over the entire temperature range studied.

COMPONENTS:	EVALUATOR				
<pre>(1) 2,3-Dimethylbutane; C₆H₁₄; [79-29-8]</pre>	M.C. Hau Chemistr Belgium G.T. Hei	lait-Pirson, De y, University o ter, School of	partment of f Leuven, Mathematical		
(2) Water; H ₂ O; [7732-18-5]	and Phys Univers November	sical Sciences, 1 ity, Perth, W.A. 1984	Murdoch , Australia.		
CRITICAL EVALUATION: (continued)					
2. THE SOLUBILITY OF WATER (2)	2. THE SOLUBILITY OF WATER (2) IN 2,3-DIMETHYLBUTANE (1)				
The reported solubility data for water in 2,3-dimethylbutane (ref 1, 2) are listed in Table 3. There are insufficient data to warrant plotting.					
Agreement between the values at 3	73K is excelle	ent but at 298K	the datum of		
Englin <i>et al</i> . (ref 1) is about 50)% (relative) h	nigher than that	of Polak and		
Lu (ref 2). In well characterize	d systems (e.c	J. water in benz	ene) the data		
of Englin <i>et al</i> . are generally sa	tisfactory at	T < 300K but ar	e markedly		
higher than "Recommended" values	at higher temp	peratures. The	value of		
Polak and Lu (ref 2) is therefore	preferred at	298K and at high	her		
temperatures the data of Englin a	t al. should i	be regarded only	as order of		
magnitude values.					
TABLE 3: Recommended the Solubility of Wate	ed (R) and Tent r (2) in 2,3-1	ative Values of Dimethylbutane (<u>1)</u>		
T/K	Solubility va	lues			
Reported values		"Best" values	s _		
10 ³ g(2)/100g slr	10^{3}	;(2)/100g sln	$10^{4}x_{2}$		
273 2.9 (ref 1), 3.0 (ref	ef 2)	3.0 (<i>R</i>)	1.43 (<i>R</i>)		
283 5.8 (ref 1)		5.8	2.8		
293 11.0 (ref 1)		11	5		
298 15 ^a (ref 1), 9.0 (ret	2)	9	4		
303 19.2 (ref 1)		20 ^b	10 ^b		
313 32.3 (ref 1)		30 ^b	14 ^b		
323 51.6 (ref 1)		50 ^b	24 ^b		
^a Graphically interpolated by the Evaluator; datum of Polak and Lu (ref 2) preferred, see text.					
^b Order-of-magnitude values only, see text.					
REFERENCES					
 Englin, B.A.; Plate, A.F.; Tugolukov, V.M.; Pryanishnikova, M.A. Khim. Tekhnol. Topl. Masel 1965, 10, 42-6. 					
2. Polak, J.; Lu, B.C-Y. Can.	J. Chem. <u>1973</u>	3, 51, 4018-23.			
3. Price, L.C. Am. Assoc. Petr	ol. Geol. Bull	<u>1976</u> , <i>60</i> , 21	3-44.		
4. Krzyzanowska, T.; Szeliga, J. <i>Nafta (Katowice)</i> <u>1978</u> , <i>34</i> , 413-7.					
ACKNOWLEDGEMENT					
The Evaluators thank Dr Brian Clare for the graphics.					

292		37 234
COMPONENTS:	ORIGINAL MEASUREMENTS:	
(1) 2,3-Dimethylbutane; C ₆ H ₁₄ ; [79-29-8]	Englin, B.A.; Plate, A.F V.M.; Pryanishnikova, J	.; Tugolukov, 1.A.
(2) Water; H ₂ O; [7732-18-5]	Кhim. Tekhnol. Topl. Мав 10, 42-6.	el <u>1965</u> ,
VARIABLES:	PREPARED BY:	
Temperature: 0-50°C	A. Maczynski and M.C. Ha	ulait-Pirson
EXPERIMENTAL VALUES:		
Solubility of water in	2,3-dimethylbutane	
t/°C g(2)/10	$\frac{10^4 x_2}{10^4 x_2}$	(compiler)
0 0.0	1.4	
10 0.0	2.8	
20 0.0	5.26	
30 0.0	9.18	
40 0.0	1323 15.4	
50 0.0	24.6	
AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS	:
Component (1) was introduced into a thermostatted flask and saturated for 5 hours with (2). Next, cal-	(1) not specified.(2) not specified.	
cium hydride was added and the evolving hydrogen volume measured and hence the concentration of (2) in (1) was evaluated.		
	ESTIMATED ERROR:	
	not specified.	
	REFERENCES:	

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) 2,3-Dimethylbutane; C ₆ H ₁₄ ; [79-29-8]	Polak, J.; Lu, B.C-Y.
(2) Water; H ₂ O; [7732-18-5]	Can. J. Chem. <u>1973</u> , 51, 4018-23.
VARIABLES:	PREPARED BY:
Temperature: 0-25°C	M.C. Haulait-Pirson
EXPERIMENTAL VALUES:	
Solubility of 2,3-dimet	hylbutane in water
t/°C mg(1)/kg	sln x _l (compiler)
0 ^a 32.9 ^c	6.87 x 10 ⁻⁶
25 ^b 22.5 ^c	4.70×10^{-6}
Solubility of water in	2,3-dimethylbutane
t/°C mg(2)/kg	sln x ₂ (compiler)
0 ^a 30 ^d	1.43×10^{-4}
25 ^b 90 ^e	4.30×10^{-4}
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The solubility of (1) in (2) was determined by gas chromatography. The solubility of (2) in (1) was determined by Karl Fischer titra- tion. 50 mL of (1) together with 50 mL of (2) were placed in a 125 mL Hypovial closed with a Teflon coated rubber septum and placed in a constant-temperature water bath. The system was stirred magnetical- ly for 24 hr or was kept in the	 Phillips Petroleum Co.; pure grade reagent (99%+); shaken three times with distilled water. distilled.
7 days before samples were taken	ESTIMATED ERROR:
analysis are given in the paper.	soly. c) ± 1.7%; d) ± 4.7%; e) ± 3.1% (mean)
	REFERENCES :
1	

An Onlard .		ORIGINAL MEASUREMENTS:	
(1) 2,3-Dimethyl	lbutane; C ₆ H ₁₄ ;	Price, L.C.	
(2) Water; H ₂ O;	[7732-18-5]	Ат. Аввос. Petrol. G <u>1976</u> , 60, 213 - 44.	eol. Bull.
ARIABLES :		PREPARED BY:	
Cemperature: 25-	-149.5°C	F. Kapuku	
XPERIMENTAL VALUES	1		
Solubility	of 2,3-dimethylbuta	ne in water at system p	pressure
t/°C	mg(l)/kg(2)	g(l)/100 g sln (compiler)	$10\frac{6}{x_1}$ (compiler)
25.0	19.1 ± 0.2	0.00191	3.99
40.1	19.2 ± 0.5	0.00192	4.01
55.1	23.7 ± 1.1	0.00237	4.95
99.1	40.1 ± 1.2	0.00401	8.38
121.3	56.8 ± 3.5	0.00568	11.87
137.3	97.9 ± 2.3	0.00979	20.46
149.5	171.0 ± 5.0	0.01710	35.75

AUXILIARY	INFORMATION
MUXILIARY METHOD/APPARATUS/PROCEDURE: Room-temperature solubilities were determined by use of screw-cap test tubes. The (1) phase floated on top of (2) and insured saturation (in 2 to 4 days) of the aqueous phase. High-temperature solubility work was carried out in the ovens of the gas chromatograph. The solutions were contained in 75 mL double ended stainless steel sample cylinders. Modified Micro Linear Valves sealed the bottom of the cylinder and al- lowed syringe access to the solution during sampling. The sample is then transferred to the gas chromatograph equipped with dual flame ionization detectors. Many details are given in the paper.	INFORMATION SOURCE AND PURITY OF MATERIALS: (1) Phillips Petroleum Company; 99+%. (2) distilled. ESTIMATED ERROR: temp. ± 1 K soly. range of values given above REFERENCES:

•

COMPONENTS:	ORIGINAL MEASUREMENTS:		
(1) 2,3-Dimethylbutane; C ₆ H ₁₄ ; [79-29-8]	Krzyzanowska, T.; Szeliga, J.		
(2) Water; H ₂ O; [7732-18-5]	Nafta (Katowice) <u>1978</u> , 12, 413-7.		
VARIABLES:	DEDADED BY.		
One temperature: 25°C	M.C. Haulait-Pirson		
EXPERIMENTAL VALUES:			
The solubility of 2,3-dimetylbutane in water at 25°C was reported to be 19.10 mg(1)/kg(2). The corresponding mass percent and mole fraction, x_1 , calculated by compiler are 0.00191 g(1)/100 g sln and 3.99 x 10 ⁻⁶ .			
Editor's Note: Based on the results for this and other hydrocarbon-water systems, uncertainity exists about whether the datum compiled here is independent of that of Price for the same system (see previous page).			
AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:		
Saturated solutions of (1) in (2) were prepared in two ways. First, 200 µL of (1) was injected into 20 mL of (2) and thermostatted at 25°C. Second, the mixture of (1) and (2) as above was thermostatted at 70°C and then cooled to 25°C. The time required to obtain equilibrium was three weeks. The solubility of (1) in (2) was mea- sured by glc. A Perkin-Elmer model F-11 gas chromatograph equipped with a 100-150 mesh Porasil column (70°C) and a flame ionization detector was used. Saturated solu- tions of heptane in (2) were used as standard solutions.	<pre>(1) not specified. (2) not specified. ESTIMATED ERROR: soly. 0.48 mg(1)/kg(2) (standard deviation from 7-9 determinations) REFERENCES:</pre>		

COMPONENTS:	EVALUATOR:
<pre>(1) 2-Methylpentane; C₆^K14; [107-83-5]</pre>	M.C. Haulait-Pirson, Department o Chemistry, University of Leuven, Belgium.
(2) Water; H ₂ O; [7732-18-5]	G.T. Hefter, School of Mathematical and Physical Sciences, Murdoch University, Perth, W.A., Australia. November 1984

CRITICAL EVALUATION:

Quantitative solubility data for the system 2-methylpentane (1) and water (2) have been reported in the publications listed in Table 1.

TABLE 1: Quantitative Solubility Studies ofthe 2-Methylpentane (1) - Water (2) System

Reference	Т/К	Solubility	Method
Connolly (ref 1)	573-628 ^a	(1) in (2)	cloud-point
McAuliffe (ref 2)	298	(1) in (2)	GLC
Leinonen and Mackay (ref 3)	298	(l) in (2)	GLC
Polak and Lu (ref 4)	273,298	mutual	GLC, Karl Fischer
Price (ref 5)	298-423	(l) in (2)	GLC
Krzyzanowska and Szeliga (ref 6)	298	(1) in (2)	GLC

^{*a*} At elevated pressures, p = 14-70 MPa

The original data in all of these publications are compiled in the data sheets immediately following this Critical Evaluation.

Connolly (ref 1) has reported solubilities of (1) in (2) at elevated pressures (Table 1) and determined an upper critical solution temperature of 625K at 31 MPa. However, as no other data are available under comparable conditions, no critical evaluation of his results can be made. The interested user is referred to the relevant Data Sheets for experimental values. For convenience, further discussion of this system will be divided into two parts.

1. SOLUBILITY OF 2-METHYLPENTANE (1) IN WATER (2)

The solubility data for 2-methylpentane in water are listed in Table 2 and plotted in Figure 1 with the exceptions noted below.

The datum of Krzyzanowska and Szeliga (ref 6) has been excluded because it does not appear to be independent of that of Price (ref 5). The data of Connolly (ref 1) have already been discussed above.

The datum of Polak and Lu (ref 4) at 298K is somewhat higher than those reported by others (ref 2, 3, 5). Also their value at 273K, as with other hydrocarbons investigated by these authors, shows an unusually large increase over the value at 298K. Their data are therefore rejected.

(continued next page)

COMPONENTS :	EVALUATOR:
<pre>(1) 2-Methylpentane; C₆H₁₄; [107-83-5] (2) Water; H₂O; [7732-18-5]</pre>	M.C. Haulait-Pirson, Department of Chemistry, University of Leuven, Belgium. G.T. Hefter, School of Mathematical and Physical Sciences, Murdoch University, Perth, W.A., Australia. November 1984
CRITICAL EVALUATION: (continued)	

CRITICAL EVALUATION: (continued)

At temperatures other than 298K only the data of Price (ref 5) are available and thus must be considered "Tentative".

	TABLE 2:	Recommended	(R) and	Tentative		
Values for	the Solub:	llity of 2-Me	ethylpent	ane (l) ir	Water	(2)

T/K	Solubility values		
	Reported values ^a 10 ³ g(1)/100g sln	"Best" values (: 10 ³ g(l)/100g sln	± σ _n) ^b 10 ⁶ x ₁
298	1.38 (ref 2), 1.42 (ref 3), 1.30 (ref 5)	1.37 ± 0.05 (R)	2.87 (R)
303	1.3* (ref 5)	1.3	2.7
313	1.4* (ref 5)	1.4	2.9
323	1.5* (ref 5)	1.5	3.1
343	1.7* (ref 5)	1.7	3.6
363	2.3* (ref 5)	2.3	4.8
383	3.6* (ref 5)	3.6	7.5
403	6.8* (ref 5)	6.8	14
423	ll.6* (ref 5)	12	25

^a Values marked with an asterisk (*) obtained by graphical interpolation of original measurements by the Evaluators.

 b "Best" values obtained by averaging where appropriate; σ_{n} has no statistical significance.

2. THE SOLUBILITY OF WATER (2) IN 2-METHYLPENTANE

The solubility of water in 2-methylpentane has been reported only by Polak and Lu (ref 4) and thus no Critical Evaluation can be made. However, it can be noted that the data of these authors are generally close to "Recommended" values in well characterized systems. The interested user is referred to the appropriate data sheet for solubility values.

(continued next page)

COMPONENTS: EVALUATOR: M.C. Haulait-Pirson, Department of (1) 2-Methylpentane; C₆H₁₄; Chemistry, University of Leuven, [107 - 83 - 5]Belgium. G.T. Hefter, School of Mathematical and Physical Sciences, Murdoch University, Perth, W.A., Australia. (2) Water; H₂O; [7732-18-5] November 1984 CRITICAL EVALUATION: (continued) REFERENCES 1. Connolly, J.F. J. Chem. Eng. Data 1966, 11, 13-6. 2. McAuliffe, C. J. Phys. Chem. 1966, 70, 1267-75. 3. Leinonen, P.K.; Mackay, D. Can. J. Chem. Eng. 1973, 51, 230-3. 4. Polak, J.; Lu, B.C-Y. Can. J. Chem. 1973, 51, 4018-23. Price, L.C. Am. Assoc. Petrol. Geol. Bull. 1976, 60, 213-44. 5. Krzyzanowska, T.; Szeliga, J. Nafta (Katowice) 1978, 34, 413-7. 6. ACKNOWLEDGEMENT The Evaluators thank Dr Brian Clare for the graphics.

COMPONENTS :				ORIGINAL MEASUREMENTS:		
(1) 2-Methylpentane; C ₆ H ₁₄ ; [107-83-5]			с _{6^н14} ;	Connolly, J.F.		
((2) Water	; H ₂ 0; [7732	-18-5]	J. Chem. Eng. Data	<u>1966</u> , <i>11</i> , 13-6.	
		-				
VA	RIABLES:			PREPARED BY:		
I	Cemperatu: Pressure:	re: 300-355° 140-700 atm	C	M.C. Haulait-Pirso	n	
EX	PERIMENTAL	VALUES:				
		Solub	ility of 2-methy	ylpentane in water		
t	≎/°C	p/atm	p/MPa (compiler)	g(l)/l00 g sln	x1 (compiler)	
	300	140	14.18	1.1	0.0023	
		475	48.12	1.3	0.0027	
	330	160	16.21	1.8	0.0038	
		185 215	18.74 21.78	2.7 3.9	0.0058 0.0084	
		245	24.82	4.0	0.0086	
ļ		410	41.53	4.1	0.0089	
	340	210	21.27	4.5	0.0097	
		235	23.80	5.4	0.0118	
		300	30.39	6.9	0.0152	
		370 485	37.48 49.13	6.4 5.3	0.0140 0.0116	
			(continued)			
			AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDURE:			:	SOURCE AND PURITY OF MA	TERIALS:	
The cloud point method was used. Measurements were carried out in			d was used. ried out in	(1) Phillips reage than 99.8%; us	nt grade; better ed as received.	
a 100 mL stainless-steel cell. The cell was loaded with 15 g (2) and			eel cell. The	(2) distilled and	deaerated.	
brought to temperature. Mixing was			e. Mixing was			
either a cloud or a small portion			small portion			
of a second phase appeared at the top of the cell. Then mercury was						
injected to change the pressure, more (1) was injected and the pro-						
•	cedure was	s repeated.	-	ESTIMATED ERROR:		
				temp. ± 0.02 K	curacy)	
				,		
ĩ				3		

37_239

COMPONENTS:

ORIGINAL MEASUREMENTS:

(1) 2-Methylpentane; C₆H₁₄; [107-83-5] Connolly, J.F.
 (2) Water, H₂O; [7732-18-5] J. Chem. Eng.

J. Chem. Eng. Data <u>1966</u>, 11, 13-6

t/°C	p/atm	p/MPa (compiler)	g(l)/l00 g sln	xl (compiler)
350	230 240 260 275 290 310 335 365 405	23.30 24.31 26.34 27.86 29.38 31.40 33.94 36.97 41.03	7.1 8.2 10.4 11.6 12.5 12.8 12.5 11.6 10.5	0.0157 0.0183 0.0237 0.0267 0.0290 0.0297 0.0290 0.0227 0.0239
355	245 245 250 385 380 380 380 380 380 380 385 385	24.82 24.82 25.32 25.32 39.00 38.49 38.49 38.49 38.49 38.49 38.49 38.49 38.49 39.00 39.00	13.0 14.9 17.4 21.0 37.4 35.1 32.8 30.2 27.4 24.3 21.0 17.3	0.0303 0.0353 0.0421 0.0526 0.1109 0.1015 0.0925 0.0829 0.0731 0.0628 0.0526 0.0419

COMMENTS AND ADDITIONAL DATA:

Upper critical solution temperature: $352^{\circ}C$ at p = 310 atm.

The uncertainty in the CST is about 2°C and that of the corresponding pressure about 10 atm.

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) 2-Methylpentane; C₆H₁₄; [107-83-5] (2) Water; H₂O; [7732-18-5]</pre>	McAuliffe, C. J. Phys. Chem. <u>1966</u> , 70, 1267-75.
VARIABLES:	PREPARED BY:
One temperature: 25°C	M.C. Haulait-Pirson
EXPERIMENTAL VALUES:	
The solubility of 2-methylpentane in be 13.8 mg (1)/kg sln (0.00138 g(1)/1 The corresponding mole fraction, x_1 , is 2.88 x 10 ⁻⁶ . The same value is also reported in re	<pre>water at 25°C was reported to .00 g sln). calculated by the compiler, efs 1 and 2.</pre>
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
In a 250 mL glass bottle, 10-20 mL of (1) was vigorously shaken for 1 hr or magnetically stirred for 1 day, with 200 mL of (2) at 25°C. In the case of shaking, the solution was allowed to stand for 2 days to permit separation of small (1) drop- lets. Absence of emulsion was checked microscopically. A 50 µL sample of the (1) saturated water was withdrawn with a Hamilton Syringe and injected into the frac- tionator of the gas chromatograph. A hydrogen-flame ionization detector was used. Many details are given in the paper.	<pre>(1) Phillips Petroleum Co.; 99+% purity; used as received. (2) distilled. (3) distilled. (3) distilled. (3) distilled. (4) distilled. (5) distilled</pre>

37 242

ORIGINAL MEASUREMENTS:
Leinonen, P.J.; Mackay, D.
Can. J. Chem. Eng. <u>1973</u> , 51, 230-3.
PREPARED BY:
M.C. Haulait-Pirson
water at 25°C was reported hsity of 1.00 g cm ⁻³ , the 2 g(1)/100 g sln and the 3.0 x 10^{-6} (compiler).
INFORMATION
SOURCE AND PURITY OF MATERIALS:
<pre>(1) Phillips Petroleum Co.; research grade; purity 99%+; used without further purification. (2) doubly distilled. (2) doubly distilled. (3) doubly distilled. (2) doubly distilled. (3) doubly distilled. (4) doubly distilled. (5) doubly distilled. (6) doubly distilled. (7) doubly distilled. (7) doubly distilled. (8) doubly di</pre>

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) 2-Methylpentane; C₆H₁₄; [107-83-5] (2) Water; H₂O; [7732-18-5]</pre>	Polak, J.; Lu, B.C-Y. Can. J. Chem. <u>1973</u> , 51, 4018-23.
VARIABLES:	PREPARED BY:
Temperature: 0-25°C	M.C. Haulait-Pirson
EXPERIMENTAL VALUES:	
Solubility of 2-methy	lpentane in water
t/°C mg(l)/kg	sln x ₁ (compiler)
0 ^a 19.45 ^c	4.06×10^{-6}
25 ^b 15.7 ^c	3.28×10^{-6}
Solubility of water i	n 2-methylpentane
t/°C mg(2)/kg	$sln x_2$ (compiler)
	<u> </u>
29 ⁻	1.39×10^{-4}
	4,51 X 10
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The solubility of (1) in (2) was determined by gas chromatography. The solubility of (2) in (1) was determined by Karl Fischer titra- tion. 50 mL of (1) together with 50 mL of (2) were placed in a 125 mL Hypovial closed with a Teflon coated rubber septum and placed in a constant-temperature water bath. The system was stirred magnetical- ly for 24 hr or was kept in the bath without stirring for at least 7 days before samples were taken for analysis. Details of the analysis are given in the paper.	<pre>(1) Phillips Petroleum Co.; pure grade reagent (99%+); shaken three times with distilled water. (2) distilled. ESTIMATED ERROR: temp. a) ± 0.02 K; b) ± 0.01 K soly. c) ± 1.7%; d) ± 4.7%; e) ± 3.1% (mean)</pre>
	REFERENCES:
ORIGINAL MEASUREMENTS: Price, L.C. Am. Assoc. Petrol. Geol. Bul <u>1976</u> , 60, 213-44. PREPARED BY:	2.
---	---
Price, L.C. Am. Assoc. Petrol. Geol. Bul <u>1976</u> , 60, 213-44. PREPARED BY:	2.
Am. Assoc. Petrol. Geol. Bul <u>1976</u> , 60, 213-44. PREPARED BY:	2.
PREPARED BY:	1
PREPARED DI:	
F. Карики	
in water at system pressure	
g(l)/100 g sln 10 ⁶ (compiler) (compi	x1 ler)
0.00130 2.	72
0.00138 2.	88
0.00157 3.	28
0.00271 5.	67
0.00449 9.	39
0.00868 18.	15
0.01130 23.	62
INFORMATION	
SOURCE AND PURITY OF MATERIALS:	i
<pre>(1) Phillips Petroleum Compa 99+%. (2) distilled. ESTIMATED ERROR: temp. ± 1 K soly. range of values given REFERENCES:</pre>	ny; above
	PREPARED BY: F. Kapuku in water at system pressure g(1)/100 g sln 10 ⁶ (compiler) (compiler) 0.00130 2. 0.00138 2. 0.00157 3. 0.00271 5. 0.00449 9. 0.00868 18. 0.01130 23. INFORMATION SOURCE AND PURITY OF MATERIALS: (1) Phillips Petroleum Compa 99+%. (2) distilled. ESTIMATED ERROR: temp. ± 1 K soly. range of values given REFERENCES:

COMPONENTS	
(1) 2-Methylpentane; C ₆ H ₁₄ ; [107-83-5] (2) Water: H ₂ O; [7732-18-5]	ORIGINAL MEASUREMENTS: Krzyzanowska, T.; Szeliga, J. Nafta (Katowice) <u>1978</u> , 12, 413-7.
VARIABLES:	PREPARED BY:
One temperature: 25°C	M.C. Haulait-Pirson
EXPERIMENTAL VALUES: The solubility of 2-methylpentane in to be 13.00 mg(1)/kg(2).	water at 25°C was reported
The corresponding mass percent and more by compiler are 0.0013 g(l)/100 g sl	ble fraction, x_1 , calculated a and 2.72 x 10^{-6} .
Editor's Note: Based on the results systems, uncertainity exists about w independent of that of Price for the	for this and other hydrocarbon-water mether the datum compiled here is same system (see previous page).
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Saturated solutions of (1) in (2) were prepared in two ways. First, 200 μ L of (1) was injected into 20 mL of (2) and thermostatted at 25°C. Second, the mixture of (1) and (2) as above was thermostatted at 70°C and then cooled to 25°C. The time required to obtain equilibrium was three weeks. The solubility of (1) in (2) was mea- sured by glc. A Perkin-Elmer model	(1) not specified.(2) not specified.
F-11 gas chromatograph equipped with a 100-150 mesh Porasil column (70°C) and a flame ionization detector was used. Saturated solu- tions of heptane in (2) were used as standard solutions.	ESTIMATED ERROR: soly. 0.4 mg(1)/kg(2) (standard deviation from 7-9 determinations)
	REFERENCES :

COMPONENTS:	EVALUATOR:
(1) 3-Methylpentane; C ₆ H ₁₄ ; [96-14-0] (2) Water; H ₂ O; [7732-18-5]	M.C. Haulait-Pirson, Department of Chemistry, University of Leuven, Belgium. G.T. Hefter, School of Mathematical and Physical Sciences, Murdoch University, Perth, W.A., Australia. November 1984

CRITICAL EVALUATION:

Quantitative solubility data for the system 3-methylpentane (1) and water (2) have been reported in the publications listed in Table 1.

TABLE 1: Quantitative Solubility Studies of the3-Methylpentane (1) - Water (2) System

			•
Reference	T/K	Solubility	Method
McAuliffe (ref l)	298	(l) in (2)	GLC
Polak and Lu (ref 2)	273,298	mutual	GLC, Karl Fischer
Price (ref 3)	298	(l) in (2)	GLC
Krzyzanowska and Szeliga (ref 4)	298	(l) in (2)	GLC
Rudakov and Lutsyk (ref 5)	298	(l) in (2)	partition coefficient

The original data in all of these publications are compiled in the data sheets immediately following this Critical Evaluation. For convenience, further discussion of this system will be divided into two parts.

1. THE SOLUBILITY OF 3-METHYLPENTANE (1) IN WATER (2)

Of the data reported for the solubility of 3-methylpentane in water (Table 1), the datum of Krzyzanowska and Szeliga (ref 4) has been excluded from consideration because it does not appear to have been obtained independently of that of Price (ref 3). The 298K datum of Polak and Lu (ref 2) is much higher (*ca*. 30% relative) than all other reported values (ref 1, 3, 5). Furthermore, the value at 273K, as with other hydrocarbons investigated by these authors, shows an unusually large increase over the value at 298K. Thus the data of Polak and Lu (ref 2) are rejected. All the remaining data (all at 298K) are listed in Table 2).

TABLE 2:Recommended (R)Value for the Solubilityof3-Methylpentane (1) in Water (2)

<i>Т/</i> К	Solubi	lity values
	Reported values 10 ³ g(1)/100g sln	"Best" values (± σ _n) ^α 10 ³ g(1)/100g sln 10 ⁵ x ₁
298	l.28 (ref l), l.3l (ref 3), l.29 (ref 5)	1.29 ± 0.01 (R) 2.70 (R)
^a "Best" va	lues obtained by averaging; σ_n]	has no statistical significance.

(continued next vace)

308

COMPONENTS:	EVALUATOR:
<pre>(1) 3-Methylpentane; C₆H₁₄; [96-14-0] (2) Water; H₂O; [7732-18-5]</pre>	M.C. Haulait-Pirson, Department of Chemistry, University of Leuven, Belgium. G.T. Hefter, School of Mathematical and Physical Sciences, Murdoch University, Perth, W.A., Australia. November 1984

CRITICAL EVALUATION: (continued)

2. THE SOLUBILITY OF WATER (2) in 3-METHYLPENTANE (1)

The solubility of water in 3-methylpentane has been reported only by Polak and Lu (ref 2) and thus no Critical Evaluation can be made. The interested user is referred to the relevant Data Sheet for solubility values. However, it can be noted that the data of Polak and Lu are generally close to "Recommended" values in well characterized systems.

REFERENCES

- 1. McAuliffe, C. J. Phys. Chem. <u>1966</u>, 70, 1267-75.
- 2. Polak, J.; Lu, B.C-Y. Can. J. Chem. <u>1973</u>, 51, 4018-23.
- 3. Price, L.C. Am. Assoc. Petrol. Geol. Bull. 1976, 60, 213-44.
- 4. Krzyzanowska, T.; Szeliga, J. Nafta (Katowice) 1978, 34, 413-7.
- 5. Rudakov, E.S.; Lutsyk, A.I. Zh. Fiz. Khim. 1979, 53, 1298-1300.

37 247

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) 3-Methylpentane; $C_{6}H_{14}$;	McAuliffe, C.
	J. Phys. Chem. <u>1966</u> , 70, 1267-75.
(2) Water; H_2^{0} ; [7732-18-5]	
VARIABLES:	PREPARED BY:
One temperature: 25°C	M.C. Haulait-Pirson
EXPERIMENTAL VALUES:	
The solubility of 3-methylpentane in	water at 25°C was reported to
be 12.8 mg (1)/kg sln (0.00128 g(1)/1	.00 g sln).
The corresponding mole fraction, x_1 ,	calculated by the compiler,
is 2.68 x 10^{-6} .	
The same value is also reported in re	ef 1.
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
In a 250 mL glass bottle, 10-20 mL	(1) Phillips Petroleum Co.; 99+8
of (1) was vigorously shaken for 1 hr or magnetically stirred for	purity; used as received.
1 day, with 200 mL of (2) at 25°C.	(2) distilled.
was allowed to stand for 2 days to	
permit separation of small (1) drop-	
checked microscopically. A 50 µL	
sample of the (1) saturated water was withdrawn with a Hamilton	
Syringe and injected into the frac-	
A hydrogen-flame ionization detector	ESTIMATED ERROR:
was used. Many details are given in	soly. 0.6 mg (1)/kg sln (standard
the paper.	deviation from mean)
	REFERENCES:
	1. McAuliffe, C. Am. Chem. Soc.
	Div. Petrol. Chem. <u>1964</u> , 9, 275.

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) 3-Methylpentane; C₆H₁₄; [96-14-0]</pre>	Polak, J.; Lu, B.C-Y.
(2) Water; H ₂ O; [7732-18-5]	Can. J. Chem. <u>1973</u> , 51, 4018-23.
VARTABLES:	PREPARED BY
Temperature: 0-25°C	M.C. Haulait-Pirson
EXPERIMENTAL VALUES:	
Solubility of 3-methy	lpentane in water
<u>t/°C</u> mg(l)/kg	sln x ₁ (compiler)
0 ^a 21.5 ^c	4.49×10^{-6}
25 ^D 17.9 ^C	3.74×10^{-6}
Solubility of water i	n 3-methylpentane
t/°C mg(2)/kg	sln x ₂ (compiler)
0 ^a 23 ^d	1.10×10^{-4}
25 ^b 94 ^e	4.50×10^{-4}
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The solubility of (1) in (2) was determined by gas chromatography. The solubility of (2) in (1) was determined by Karl Fischer titra- tion. 50 mL of (1) together with 50 mL of (2) were placed in a 125 mL Hypovial closed with a Teflon coated rubber septum and placed in a constant-temperature water bath. The system was stirred magnetical- ly for 24 hr or was kept in the bath without stirring for at least	 (1) Phillips Petroleum Co.; pure grade reagent (99%+); shaken three times with distilled water. (2) distilled.
7 days before samples were taken for analysis. Details of the analysis are given in the paper.	ESTIMATED ERROR: temp. a) ± 0.02 K; b) ± 0.01 K soly. c) ± 1.7%; d) ± 4.7%; e) ± 3.1% (mean)
	REFERENCES :

37_249	31	
<pre>37_249 COMPONENTS: (1) 3-Methylpentane; C₆H₁₄; [96-14-0] (2) Water; H₂O; [7732-18-5] VARIABLES: One temperature: 25°C</pre>	ORIGINAL MEASUREMENTS: Price, L.C. Am. Assoc. Petrol. Geol. Bull. <u>1976</u> , 60, 213-44. PREPARED BY: M.C. Haulait-Pirson	
EXPERIMENTAL VALUES:	water at 25°C and at system	
pressure was reported to be 13.1 mg(1 mass percent and mole fraction, x ₁ , c are 0.00131 g(1)/100 g sln and 2.74 x)/kg(2). The corresponding alculated by the compiler : 10 ⁻⁶ .	
AUXILIARY INFORMATION		
METHOD/APPARATUS/PROCEDURE: The solubility was determined at laboratory temperatures by use of screw-cap test tubes. The (1)	SOURCE AND PURITY OF MATERIALS: (1) Phillips Petroleum Company; Chemical Samples Company or or Aldrich Chemical Company;	

temp.	±	1 K	
soly.	±	0.4	mg(1)/kg(2)

REFERENCES:

•	57_230	
COMPONENTS:	ORIGINAL MEASUREMENTS:	
<pre>(1) 3-Methylpentane; C₆H₁₄; [96-14-0]</pre>	Krzyzanowska, T.; Szeliga, J.	
(2) Water; H ₂ O; [7732-18-5]	Nafta (Katowice) <u>1978</u> , 12, 413-7.	
VARIABLES:	PREPARED BY:	
One temperature: 25°C	M.C. Haulait-Pirson	
EXPERIMENTAL VALUES:		
The solubility of 3-methylpentane in water at 25°C was reported to be 13.10 mg(1)/kg(2). The corresponding mass percent and mole fraction, x_1 , calculated by compiler are 0.00131 g(1)/100 g sln and 2.74 x 10 ⁻⁶ .		
Editor's Note: Based on the results systems, uncertainity exists about w independent of that of Price for the	for this and other hydrocarbon-water hether the datum compiled here is same system (see previous page).	
AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
Saturated solutions of (1) in (2) were prepared in two ways. First, 200 μ L of (1) was injected into 20 mL of (2) and thermostatted at 25°C. Second, the mixture of (1) and (2) as above was thermostatted at 70°C and then cooled to 25°C. The time required to obtain equilibrium was three weeks. The solubility of (1) in (2) was mea- sured by glc. A Perkin-Elmer model	(1) not specified.(2) not specified.	
F-11 gas chromatograph equipped with a 100-150 mesh Porasil column (70°C) and a flame ionization detector was used. Saturated solu- tions of heptane in (2) were used as standard solutions.	ESTIMATED ERROR: soly. 0.4 mg(l)/kg(2) (standard deviation from 7-9 determinations) REFERENCES:	

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) 3-Methylpentane; C₆H₁₄; [96-14-0] (2) Water; H₂O; [7732-18-5]</pre>	Rudakov, E.S.; Lutsyk, A.I. Zh. Fiz. Khim. <u>1979</u> , 53, 1298-1300.
VARIABLES:	PREPARED BY:
One temperature: 25°C	M.C. Haulait-Pirson

EXPERIMENTAL VALUES:

The authors reported the partition coefficient α of 3-methylpentane between the gas and aqueous phase. $\alpha = 68 \pm 4$. $\alpha = C_g/C_s$ with C_s being the concentration of the compound in dilute aqueous solution at 25°C and C_g the concentration in the gas phase in equilibrium with the aqueous solution (both in moles per liter).

The compiler has assumed that when (1) and (2) are not very soluble in each other, C_s may be taken as the water solubility and C_g as the vapor pressure of (1). The value of p (where p is the vapor pressure in mm of Hg) is taken from ref 1. p = 189.8 mm of Hg and log $C_g = \log p - 4.269 = -1.99$ expressed in moles per liter. Therefore $C_s = 1.50 \times 10^{-4}$ moles per liter. With the assumption of a solution density of 1.00 g mL⁻¹, the corresponding mass percent is 0.0013 g(1)/100 g sln and the corresponding mole fraction, x_1 , is 2.7 x 10^{-6} .

AUXILIARY INFORMATION		
METHOD/APPARATUS/PROCEDURE: The equilibrium distribution was attained after shaking for 10 min the thermostatted reactor contain- ing (2) and the (1) vapor. After being allowed to stand for 10 min, equal calibrated volumes of samples of the gas and solution were intro- duced by a syringe into a special cell for the removal of (1) by blowing, built into the gas line	SOURCE AND PURITY OF MATERIALS: (1) not specified. (2) not specified.	
of the chromatograph and the par- tition coefficient α was determined as the ratio of the areas of the peaks of the substrate arising from the two phases.	<pre>ESTIMATED ERROR: soly. ± 10% (estimated by the compiler)</pre>	
	REFERENCES: 1. Hine, J.; Mooker, P.K. J. Org. Chem. <u>1975</u> , 4, 292.	

COMPONENTS :	EVALUATOR:
(1) Hexane; C ₆ H ₁₄ ; [110-54-3] (2) Water; H ₂ O; [7732-18-5]	G.T. Hefter, School of Mathematical and Physical Sciences, Murdoch University, Perth, W.A., Australia. October 1986.

CRITICAL EVALUATION:

Quantitative solubility data for the system hexane (1) and water (2) have been reported in the publications listed in Table 1.

TABLE 1: Solubility Studies of the Hexane (1) -Water (2) System

Reference	T/K	Solubility	Method
Herz (ref 1)	295	(1) in (2)	densimetric
Fühner (ref 3)	289	(1) in (2)	titration
Milligan (ref 4)	298	(l) in (2)	partition coefficient
Bennett and Philip (ref 5)	290	(1) in (2)	volumetric
Booth and Everson (ref 6)	298	(l) in (2)	residue volume
Gester (ref 7)	298-328	(2) in (1)	Karl Fischer
Black et al. (ref 8)	293	(2) in (1)	radiotracer
Durand (ref 9)	289	(l) in (2)	cloud point
McBain and Lissant (ref 10)	298	(1) in (2)	cloud point
McCants et al. (ref 11,12)	311	mutual	cloud point
Kudchadker and McKetta (ref 13)	311 - 411 ^{<i>a</i>}	(1) in (2)	not specified
Englin et al. (ref 14)	293-313	(2) in (1)	analytical
Zel'venskii <i>et al</i> . (ref 15)	293	(2) in (1)	radiotracer
Barone et al. (ref 16)	298	(l) in (2)	GLC
McAuliffe (ref 17)	298	(l) in (2)	GLC
Burd and Braun (ref 18)	355 - 478 ^a	(2) in (1)	GLC
Nelson and DeLigny (ref 19)	277-328	(l) in (2)	GLC
Roddy and Coleman (ref 20)	298	(2) in (1)	GLC
Benkovski et al. (ref 21)	303	(2) in (1)	Karl Fischer
Krasnoshchekova and Gubergrits (ref 22)	298	(1) in (2)	GLC
Skripka <i>et al</i> . (ref 23, 28, 30)	473,493 ^a	(2) in (1)	vap.liq. equilibrium
Leinonen and MacKay (ref 24)	298	(1) in (2)	GLC
Polak and Lu (ref 25)	273,298	(1) in (2)	GLC
Mackay et al. (ref 26)	unspecified	(l) in (2)	GLC
Budantseva <i>et al</i> . (ref 27)	293	mutual	GLC
Price (ref 29)	298-425	(l) in (2)	GLC
		(Table l con	tinued next page)

COMPONENTS :		EVALUATO	R:		
(1) Hexane; C ₆ H ₁₄ ; [110-54-	3]	G.T. Н	efte	er, S	chool of Mathematical
(2) Water; H ₂ O; [7732-18-5]		and Phy	ysic	al S	ciences, Murdoch
		Univers	sity	, Pe	rth, W.A., Australia.
		October	r 19	86.	
CRITICAL EVALUATION: (CONTINUED)				
TABLE 1 (continued)					
Reference	Т/К	Solu	ubil	ity	Method
Korenman and Aref'eva (ref 31,34)	293,298	(1)	in	(2)	titration
Sugi and Katayama (ref 32)	298	(2)	in	(1)	Karl Fischer
Charykov et al. (ref 33)	293	(2)	in	(1)	Karl Fischer
Krzyzanowska and Szeliga (ref 35)	298	(1)	in	(2)	GLC
Aquan-Yuen <i>et al</i> . (ref 36)	298	(1)	in	(2)	GLC
Jonsson et al. (ref 38)	288-308	(1)	in	(2)	GLC
De Loos et al. (ref 39)	610-675 ^a	mı	utua	1	synthetic
Tsonopoulos and Wilson (ref 40)	313 - 422 ^a	m	utua	1	GLC, Karl Fischer
Rebert and Hayworth (ref 41)	493-645 ^a	(1)	in	(2)	synthetic

a Also studied at variable pressure, see Table 4.

Apart from the following exceptions, original data in all the references listed in Table 1 are compiled in the Data Sheets immediately following this Critical Evaluation. The work of Herz (ref 1) and Milligan (ref 4) have not been compiled because they employed petroleum fractions of unspecified composition rather than pure hexane. The work of Scheffer and Roof (ref 2,42; critical point data only), Bennett and Philip (ref 5; order of magnitude solubility only) and Gester (ref 7; graphical data only) did not contain sufficient information to justify compilation. Solubility data for hexane in water may also be obtained from the calorimetric data of Gill *et al*. (ref 37).

Despite the relatively large number of studies of the hexane-water system (Table 1) little information is available on the temperature dependence of the mutual solubilities of hexane and water. Even when comparable data are available, independently obtained values often differ by an order of magnitude. This system warrants thorough re-investigation at all temperatures.

In the Tables which follow, values obtained by the Evaluator by graphical interpolation of the original measurements contained in the Data Sheets are indicated by an asterisk (*). "Best" values have been obtained by simple averaging. Uncertainty limits (σ_n) attached to these values do not have statistical significance and should be regarded only as a convenient representation of the spread of reported values rather than as error limits.

For convenience, further discussion of this system will be divided into three parts. (continued next page)

```
COMPONENTS:EVALUATOR:(1) Hexane; C6H14; [110-54-3]G.T. Hefter, School of Mathematical(2) Water; H20; [7732-18-5]and Physical Sciences, MurdochUniversity, Perth, W.A., Australia.October 1986.
```

CRITICAL EVALUATION: (continued)

1. THE SOLUBILITY OF HEXANE (1) IN WATER (2)

The various data reported for the solubility of hexane in water are in poor agreement.

The value of Mackay *et al.* (ref 26) is rejected because the temperature was not specified. The data of Krzyzanowska and Szeliga (ref 35) have been excluded from consideration as they do not appear to be independent of those of Price (ref 29).

Of the remaining data, the results of Fühner (ref 3), Booth and Everson (ref 6, order of magnitude), Durand (ref 9), McBain and Lissant (ref 10), Kudchadker and McKetta (ref 13, atmospheric pressure data only), McCants *et al.* (ref 11,12) Barone *et al.* (ref 16), Nelson and De Ligny (ref 19) and Korenman and Aref'eva (ref 31,34) are markedly higher, sometimes by an order of magnitude, than other results and are therefore rejected. All other data are included in Table 2 on the next page.

At 298K, the temperature where there is a reasonable number of independent determinations (Table 2), the various values are in reasonable agreement although the uncertainty on the average result means that it can be considered as "Tentative" only. This is almost certainly a reflection of the difficulties of accurate analysis of the very low concentrations involved even when using modern techniques (it is interesting to note that all the data at 298K were obtained by GLC methods).

At other temperatures, the results of Price (ref 29) and Tsonopoulos and Wilson (ref 40) are in quite good agreement up to 353K but begin to diverge at higher temperatures (Table 2 and Figure 1). Application of the van't Hoff equation to a combination of both data sets (ref 29,40) yields values for $\Delta H_{sln}^{\omega} = 1.87 \text{ kJ mol}^{-1}$, $\Delta C_{p,sln}^{\omega} = 296 \text{ JK}^{-1} \text{ mol}^{-1}$ which are in relatively poor agreement with the calorimetric values of $\Delta H_{sln}^{\omega} = 0.0 \pm 0.2 \text{ kJ mol}^{-1}$ and $\Delta C_{p,sln}^{\omega} = 440 \pm 45 \text{ JK}^{-1} \text{ mol}^{-1}$ reported by Gill *et al.* (ref 37). In view of the disparities at higher temperatures, the uncertainty in the 298K value, and the poor agreement with calorimetric data, none of averaged "Best" values have been Recommended.

Figure 1 plots a selection of the solubility data of hexane in water. As well as the values of Price (ref 29) and Tsonopoulos and Wilson (ref 40), referred to above, the rejected data of Nelson and De Ligny (ref 19) have also been included for comparison.

(continued next page)

COMPONENTS :	EVALUATOR:
(1) Hexane; C ₆ H ₁₄ ; [110-54-3]	G.T. Hefter, School of Mathematical
(2) Water; H ₂ O; [7732-18-5]	and Physical Sciences, Murdoch
2	University, Perth, W.A., Australia.
	October 1986.
CRITICAL EVALUATION: (continued)	
TABLE 2: Tentative Values of the	Solubility of Hexane (1) in Water (2)
T/K Solu	ubility values
Reported values	"Best" values $(\pm \sigma_n)^a$
10 ³ g(1)/100g sln	10 ³ g(1)/100g sln 10 ⁶ x ₁
273 1.65 (ref 25)	1.7 3.5
293 1.4 (ref 27), 1.03 (ref 3	B) 1.2 ± 0.2 2.5
298 0.95 (ref 17), 1.3 (ref 2)	2), 1.1 ± 0.1 2.3
1.2 (ref 24), 1.24 (ref 2 0.95 (ref 29), 1.23 (ref 1.01 (ref 38)	36)
303 0.97* (ref 29), 1.00 (ref	38) 0.99 ± 0.02 2.1
313 1.04* (ref 29), 1.15^b (ref	f 40) 1.10 ± 0.06 2.3
323 1.17* (ref 29), 1.23 ^b (re:	£ 40) 1.20 ± 0.03 2.5
333 1.34* (ref 29), 1.38 ^D (re	f 40) 1.36 ± 0.02 2.8
343 1.54* (ref 29), 1.60^{D} (res	£ 40) 1.57 ± 0.03 3.3
353 1.77* (ref 29), 1.93^{b} (res	E 40) 1.85 ± 0.08 3.9
373 2.28* (ref 29), 3.06^{b} (res	f 40) 2.7 ± 0.4 5.6
393 3.60* (ref 29), 5.36° (ref 29), 5.36° (ref 29)	f 40) 4.5 ± 0.9 9.4
413 6.5* (ref 29), 10.1" (ref	40) 8 ± 2 16
a No "Best" values Recommended because	e of uncertainties in data, see text.
b Calculated from the original authors	s' fitting equation over the range of
their experimental data.	
430	
[• • •
♀ 390 { • •	0
]
	1
	1
310 - 🥰 /	
• • / ×	
]
	د. المحافظة المحافظة ال
	5 6 7 8 9 10 11
Solubilit	y (10 ³ g(1)/100g sln)
FIGURE 1. Solubility of hexane in wat data); ref 29 (\bullet); ref 40 (o).	ter, selected data: ref 19 (x, rejected (continued next page)

COMPONENTS:	EVALUATOR:
(1) Hexane; C ₆ H ₁₄ ; [110-54-3]	G.T. Hefter, School of Mathematical
(2) Water; H ₂ O; [7732-18-5]	and Physical Sciences, Murdoch University, Perth, W.A., Australia.
	October 1986.

CRITICAL EVALUATION: (continued)

2. THE SOLUBILITY OF WATER (2) IN HEXANE (1)

Solubility data for water in hexane are listed in Table 3, apart from the values of McCants *et al*. (ref 11,12), which are an order of magnitude higher than all other studies and have therefore been rejected.

In general, agreement amongst independently obtained values is poor (Table 3). This is probably a reflection of the difficulties of accurate analysis at these low concentrations. No data have been Recommended.

TABLE 3: Tentative Values of the Solubility of Water (2) in Hexane (1)

T/K	Solubility	values	
	Reported values	"Best" values (±	σ n)
	10 ² g(1)/100g sln	10 ² g(1)/100g sln	10 ⁴ x2
273	1.01 (ref 14), 0.28 (ref 25)	0.6 ± 0.4	2.9
293	l.ll (ref 8), l.66 (ref 15) 0.77 (ref 27), 0.836 (ref 33)	1.1 ± 0.4	5.3
298	0.995 (ref 20), 0.90 (ref 25), 1.07 (ref 32)	0.98 ± 0.07	4.7
303	1.79 (ref 14), 0.51 (ref 21)	1.1 ± 0.6	5.3
313	3.17 (ref 14), 2.51 ^a (ref 40)	2.8 ± 0.3	13
323	2.65 ^{<i>a</i>} (ref 40)	2.7	13
333	3.88 ^{<i>a</i>} (ref 40)	3.9	19
343	5.60 ^{<i>a</i>} (ref 40)	5.6	27
353	7.95 ^{<i>a</i>} (ref 40)	8.0	38

a Calculated from the original authors' fitting equation over the range of their experimental values.

Figure 2 plots all the available data for the solubility of water in hexane. The smooth curve which has been fitted to the "Best" values (Table 3) has the form ε (10²g(1)/100g sln) = 86.5345 - 0.6183 T + 0.00113 T² with R² = 0.977 and σ = 0.446, 293 \leq T \leq 353 K.

Application of the van't Hoff equation to the "Best" values gives $\Delta H_{sln}^{\infty} = 28.7 \text{ kJ mol}^{-1} \text{ and } \Delta C_{p,sln}^{\infty} = 73 \text{ JK}^{-1} \text{ mol}^{-1}$ for the dissolution of water in hexane. These values are broadly similar to those reported for other hydrocarbons and suggests, despite the lack of agreement amongst the individual studies in Table 3, that the Tentative "Best" values are reasonably reliable.

(continued next page)

see text.

3. MUTUAL SOLUBILITIES OF HEXANE (1) AND WATER (2) AT ELEVATED PRESSURES

This system exhibits the phenomenon of gas-gas immiscibility of the second kind and has type III phase behaviour (ref 43,44). In order to clarify the relationship between the phases in equilibrium it is convenient to consider the pressure-temperature projection of the pressure-temperature-composition diagram. A schematic representation of this projection for water + hexane is given in Figure 3. There are two critical lines, one starting at the critical point of hexane and ending on a three phase line. It should be noted that the three phase line on a pressure-temperature projection corresponds to three lines on the pressure-temperature-composition diagram, representing the composition of gas, liquid 1 and liquid 2 in equilibrium. The second critical line starts at the critical point of water, moves to lower temperatures at high pressures, passes through a minimum in temperature and eventually goes to temperatures greater than that of the critical point of water (this behaviour is referred to as gas-gas immiscibility of the second kind).

In the region above the three phase line on the p, T projection there is no vapor phase but may be a maximum of two liquid phases. Whether there is (are) one or two liquid phases depends on the overall composition. To the (continued next page)

a Along 3-phase equilibrium line.

b Critical point.

(continued next page)

COMPONENTS :	EVALUATOR:
<pre>(1) Hexane; C₆H₁₄; [110-54-3] (2) Water; H₂O; [7732-18-5]</pre>	G.T. Hefter, School of Mathematical and Physical Sciences, Murdoch University, Perth, W.A., Australia. C.L. Young, Department of Physical Chemistry, University of Melbourne, Vic., Australia.
	October 1986.

CRITICAL EVALUATION: (continued)

As can be seen from Table 4, virtually none of the solubility data at elevated pressures have been obtained under comparable conditions, thus precluding evaluation of their reliability. However, it should be noted that the atmospheric pressure data of Kudchadker and McKetta (ref 13) disagree markedly from other studies. Also, the interpolated values of Burd and Braun (ref 18) and Skripka *et al.* (ref 28) at ~ 473K and ~ 3.2 MPa are in poor agreement (~ 3.2 and ~ 1.8 g(2)/100g sln respectively).

Roof and Scheffer have measured the temperature and pressure at the critical end point. Their values are in reasonable agreement (Table 4).

De Loos *et al*. (ref 39) have studied the two phase-one phase boundaries near but to the left of the critical line starting at the critical point of water (refer to Figure 3). Although the absence of confirmatory studies precludes Critical Evaluation the results are consistent with the phase behaviour of other alkane + water systems.

The interested user is referred to the original measurements in the data sheets for further information, bearing in mind that all values should be regarded as very tentative.

REFERENCES

- 1. Herz, W. Chem. Ber. <u>1898</u>, 51, 2669-72.
- 2. Scheffer, F.E.C. Proc. Roy. Acad. Amsterdam 1913, 16, 404-18.
- 3. Fühner, H. Chem. Ber. <u>1924</u>, 57, 510-5.
- 4. Milligan, L.H. J. Phys. Chem. 1924, 28, 494-7.
- 5. Bennett, G.M.; Philip, W.G. J. Chem. Soc. 1928, 1937-42.
- 6. Booth, H.S.; Everson, H.E. Ind. Eng. Chem. 1948, 40, 1491-3.
- 7. Gester, Jr., G.C. Chem. Eng. Progr. 1947, 43, 117-22.
- 8. Black, C.; Joris, G.G.; Taylor, H.S. J. Chem. Phys. 1948, 16, 537-43.
- 9. Durand, R. C.R. Hebd. Seances Acad. Sci. 1948, 226, 409-10.
- 10. McBain, J.W.; Lissant, K.F. J. Phys. Chem. 1951, 55, 655-62.
- 11. McCants, J.F.; Jones, J.H.; Hopson, W.H. Ind. Eng. Chem. <u>1953</u>, 45, 454.
- 12. Jones, J.H.; McCants, J.F. Ind. Eng. Chem. <u>1954</u>, 46, 1956-8.
- 13. Kudchadker, A.P.; McKetta, J.J. Petrol. Refiner 1961, 40, 231-2.

(continued next page)

COMPONENTS: EVALUATOR: (1) Hexane; $C_6 H_{14}$; [110-54-3] G.T. Hefter, School of Mathematical and Physical Sciences, Murdoch (2) Water; H₂O; [7732-18-5] University, Perth., W.A., Australia. October 1986. CRITICAL EVALUATION: (continued) REFERENCES (continued) Englin, B.A.; Plate, A.F.; Tugolukov, V.M.; Pryanishnikova, M.A. Khim. Tekhnol. Topl. Masel <u>1965</u>, 10, 42-6. 14. 15. Zel'venskii, Ya.D.; Efremov, A.A.; Larin, G.M. Khim. Tekhnol. Topl. Masel 1965, 10, 3-7. 16. Barone, G.; Crescenzi, V.; Pispisa, B.; Quadrifoglio, F. J. Macromol. Chem. 1966, 1, 761-71. 17. McAuliffe, C. J. Phys. Chem. 1966, 70, 1267-75. 18. Burd, Jr., S.D.; Braun, W.G. Proc. Div. Refining, Am. Petrol. Inst. 1968, 48, 464-76. 19. Nelson, H.D.; De Ligny, C.J. Rec. Trav. Chim. Pays-Bas 1968, 87, 528-44. 20. Roddy, J.W.; Coleman, C.F. Talanta 1968, 15, 1281-6. Benkovski, V.G.; Nauruzov, M.H.; Bogoslovaskaya, T.M. Tr. Inst. Khim. 21. Nefti Prir. Solei Akad. Nauk Kaz. SSR 1970, 2, 25-32. 22. Krasnoshchekova, P.Ya.; Gubergrits, M.Ya. Neftekhimiya 1973, 13, 885-7. Sultanov, R.G.; Skripka, V.E.; Deposited doc. VINITI 5347-72; Zh. Fiz. 23. Khim. 1973, 47, 1035. 24. Leinonen, P.J.; Mackay, D. Can. J. Chem. Eng. 1973, 51, 230-3. Polak, J.; Lu, B.C-Y. Can. J. Chem. 1973, 51, 4018-23. 25. 26. Mackay, D.; Shiu, W.Y.; Wolkoff, A.W. Water Quality Parameters, ASTM STP 573, 1975, 251-8. Budantseva, L.S.; Lesteva, T.M.; Nemstov, M.S. Deposited doc. VINITI 27. 438-76; Zh. Fiz. Khim. 1976, 50, 1343. Namiot, A.Yu.; Skripka, V.G.; Lotber, Yu.G. Deposited doc. VINITI 28. 1213-76; Zh. Fiz. Khim. 1976, 50, 2718. 29. Price, L.C. Am. Assoc. Petrol. Geol. Bull. 1976, 60, 213-44. 30. Skripka, V.G. Tr. Vses Neftegazov. Nauch Issled. Inst. 1976, 61, 139-51. Korenman, I.M.; Aref'eva, R.P. Patent USSR, 553 524, 1977, 04.05. 31. C.A. 87 : 87654. 32. Sugi, H.; Katayama, T. J. Chem. Eng. Japan 1977, 10, 400-2. 33. Charykov, A.K.; Tikhomirov, V.I.; Potapova, T.M. Zh. Obshch. Khim. 1978, 48, 1916-21. 34. Korenman, I.M.; Aref'eva, R.P. Zh. Prikl. Khim. 1978, 51, 957-8. Krzyzanowska, T.; Szeliga, J. Nafta (Katowice) 1978, 34, 413-7. 35. 36. Aquan-Yuen, M.; Mackay, D.; Shui, W.Y. J. Chem. Eng. Data 1979, 24, 30-4. (continued next page)

COMPONENTS :		EVALUATOR:	
(1) Hexane; C ₆ H	H ₁₄ ; [110-54-3]	G.T. Hefter, School of Mathematical	
(2) Water; H ₂ O;	[7732-18-5]	and Physical Sciences, Murdoch	
2		University, Perth, W.A., Australia.	
		October 1986.	
CRITICAL EVALUATIO	N: (continued)		
REFERENCES (cor	ntinued)		
37. Gill, S.J. 445-52.	Gill, S.J.; Nichols, N.F.; Wadso, I. <i>J. Chem. Thermodyn.</i> <u>1976</u> , 8, 445-52.		
38. Jonsson, 3 279-86.	Jonsson, J.A.; Vejrosta, J.; Novak, J. <i>Fluid Phase Equil</i> . <u>1982</u> , 9, 279-86.		
39. De Loos, 1 <u>1982</u> , <i>14</i> ,	. De Loos, Th.W.; Penders, W.G.; Lichtenthaler, R.N. J. Chem. Thermodyn. <u>1982</u> , 14, 83-91.		
40. Tsonopould	Tsonopoulos, C.; Wilson, G.M. A. I. Ch. E. J. <u>1983</u> , 29, 990-8.		
41. Rebert, C.	Rebert, C.J.; Hayworth, K.E. A. I. Ch. E. J. <u>1967</u> , 13, 118-21.		
42. Roof, J.G.	Roof, J.G. J. Chem. Eng. Data <u>1970</u> , 15, 301-3.		
43. Scott, R.I <i>A 298</i> , 495.	Scott, R.L.; van Konynburg, P.H. <i>Phil. Trans. Roy. Soc.</i> London <u>1980</u> , <i>A298</i> , 495.		
4. Hicks, C.P.; Young, C.L. Chem. Rev. <u>1975</u> , 75, 119.			

ACKNOWLEDGEMENTS

The Evaluator thanks Dr Brian Clare for the regression analyses and graphics and Dr Marie-Claire Haulait-Pirson for comments and a preliminary draft of the reference list. Section 3 was written jointly with C. L. Young, Department of Physical Chemistry, University of Melbourne, Australia.

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Hexane; C ₆ H ₁₄ ; [110-54-3]	Fühner, H.
(2) Water; H ₂ O; [7732-18-5]	Ber. Dtsch. Chem. Ges. <u>1924</u> , 57, 510-5.
VARIABLES :	DEEDADEN BY.
One temperature: 15.5°C	M.C. Haulait-Pirson
EXPERIMENTAL VALUES:	
The solubility of hexane in water at 0.022 mL(1)/100 mL sln or 0.014 g(1), The corresponding mole fraction, x_1 , is 2.92 x 10 ⁻⁵ .	15.5°C was reported to be /100 g sln. calculated by the compiler
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
In a stoppered measuring cylinder pipetted volumes or weighed amounts of (1) were added with shaking to 50, 100 or 1000 cm ³ of (2) until a completely clear solution was obtained at the experimental tem- perature.	<pre>(1) source not specified; commer- cial grade; used as received. (2) not specified. ESTIMATED ERROR: not specified. REFERENCES:</pre>

ORIGINAL MEASUREMENTS: COMPONENTS: (1) Hexane; C₆H₁₄; [110-54-3] Black, C.; Joris, G.G.; Taylor, H.S. (2) Water; H₂O; [7732-18-5] J. Chem. Phys. 1948, 16, 537-43. VARIABLES: PREPARED BY: One temperature: 20°C M.C. Haulait-Pirson EXPERIMENTAL VALUES: The solubility of water in hexane at 20°C and at a total saturation pressure of 1 atm was reported to be 0.0111 g(2)/100 g(1). The corresponding mass percent and mole fraction, x_2 , calculated by the compiler are 0.0111 g(2)/100 g sln and 5.3 $\times 10^{-4}$. AUXILIARY INFORMATION SOURCE AND PURITY OF MATERIALS: METHOD/APPARATUS/PROCEDURE: The method described in ref 1 in (1) Ohio State University under an which tritium oxide acts as a tracer, American Petroleum Institute was used. project; purity not specified; Air saturated with radioactive water used as received. vapor was bubbled through the (1) sample until saturation was attained. (2) not specified. Dissolved water was separated from (1) by absorption on calcium oxide. The tritium was transferred in the counter through equilibration with ethanol vapor. ESTIMATED ERROR: soly. a few percent (type of error not specified). **REFERENCES:**

 Joris, G.G.; Taylor, H.S. J. Chem. Phys. <u>1948</u>, 16, 45.

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Hexane; C_6H_{14} ; 110-54-3	Booth, H.S.; Everson, H.E.
(2) Water; H ₂ O; 7732-18-5]	Ind. Eng. Chem. <u>1948</u> , 40, 1491-3.
1	
VARIABLES:	PREPARED BY:
One temperature: 25.0°C (298.2 K)	G.T. Hefter
EXPERIMENTAL VALUES.	
The solubility of <i>n</i> -hexane in water a	t 25.0°C was reported to be
<0.04 mL (1)/100 mL (2).	
) similar manult use menomed for (1)	
A similar result was reported for (1)	in 40.0% (W/W?) aqueous sodium
xylenesulfonate.	
]	
1	
1	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
have welves of water torically	1 "Nighost grade commercial comple
A known volume of water, typically	available": no other details
Babcock tube having a neck graduated	given.
from 0 to 1.6 mL in steps of 0.02 mL.	
An excess of solute was added and the	2. Distilled.
brium in a constant temperature bath	
then centrifuged. The amount of	
solute dissolved was determined by	
subtracting the undissolved solute,	
the total added.	
	ESTIMATED ERROR:
	Not specified
	not spectred.
	REFERENCES:
1	

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Hexane; C ₆ H ₁₄ ; [110-54-3]	Durand, R.
(2) Water; H ₂ O; [7732-18-5]	С.R. Hebd. Seances Acad. Sci. <u>1948</u> , 226, 409-10.
VARIABLES:	PREPARED BY:
One temperature: 16°C	M.C. Haulait-Pirson
EXPERIMENTAL VALUES:	
The solubility of hexane in water at 0.055 cm ³ (1)/dm ³ (2). With the assumption of a solution der density value of 0.6629 g cm ⁻³ for he corresponding mass percent is 0.0036 corresponding mole fraction, x_1 , is 7	16°C was reported to be nsity of 1.00 g cm ⁻³ and a exane at 16°C (ref 2), the g(1)/100 g sln and the 7.5 x 10^{-6} (compiler).
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The thermostatic method described in ref 1 was used. Addition of pipetted volumes of (1) to (2) followed by shaking is repeated till appearance of turbidity.	(1) not specified.(2) distilled.
	ESTIMATED ERROR: soly. ± 0.005 cm ³ (1)/dm ³ (2). REFERENCES: 1. Durand, R. C.R. Hebd. Scances Acad. Sci. <u>1946</u> , 223, 898-900. 2. Timmermans, J.; Physico-chemical constants of pure organic com- pounds, Elsevier, 1950.

328

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Never et C. H. (110-54-21	MaPain I W . Liceant K I
(1) hexane; $C_{6}^{n}_{14}$; [110-54-5]	
(2) Water; H ₂ O; [7732-18-5]	J. Phys. Colloid. Chem. <u>1951</u> , 55, 655-62.
VARIABLES:	PREPARED BY:
One temperature, $25^{\circ}C$	M.C. Haulait-Pirson
one temperature. 25 C	
EXPERIMENTAL VALUES:	
The solubility of hexane in water at	25°C was reported to be
0.012 g(1)/100 mL sin.	situ of 1.00 g cm^{-3} the corresp
sponding mass percent is $0.012 \text{ g}(1)/1$	00 g sln and the corresponding
mole fraction, x_1 , is 2.5 x 10 ⁻⁵ (com	piler).
	1
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
	(1) C.D. made
vials, following which, varying	(I) C.P. grade.
amounts of (1) were added to each bottle by direct weighing. The vials	(2) distilled and boiled to remove
were shaken overnight. When two	2
and one with excess hydrocarbon and	
containing amounts differing by less than 1 mg, the two values were	
averaged and the mean taken as the amount solubilized.	
	ESTIMATED ERROR:
	not specified.
	REFERENCES:

ł	COMPONENTS:	ORIGINAL MEASUREMENTS:
	<pre>(1) Hexane; C₆H₁₄; [110-54-3] (2) Water; H₂O; [7732-18-5]</pre>	McCants, J.F.; Jones, J.H.; Hopson, W.H. Ind. Eng. Chem. <u>1953</u> , 45, 454-6.
Ī	VARIABLES:	PREPARED BY:
	One temperature: 100°F (311 K)	G.T. Hefter

EXPERIMENTAL VALUES:

The solubility of *n*-hexane in water at 100°F (311 K) was reported to be <0.1 g(1)/100 g sln. The corresponding mole fraction, x_2 , calculated by the compiler, is < 2 x 10⁻⁴.

The solubility of water in *n*-hexane at 100°F (311 K) was reported to be <0.1 g(2)/100 g sln. The corresponding mole fraction, x_2 , calculated by the compiler, is < 5 x 10⁻³.

AUXILIARY IN	FORMATION
--------------	-----------

METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:		
The method was csscntially that of ref. 1 and involved titration of the second component to the cloud point, in a constant temperature bath.	 Phillips; pure grade; used with- out further purification; n²⁰ 1.3752. Distilled. 		
	ESTIMATED ERROR:		
	Not specified.		
	REFERENCES: 1. Washburn, E.R.; Hnizda, V.; Vold, R.D. J. Am. Chem. Soc. <u>1931</u> , 53, 3232.		

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Hexane; C ₆ H ₁₄ ; [110-54-3]	Jones, J.H.; McCants, J.F.
(2) Water; H ₂ O; [7732-18-5]	Ind. Eng. Chem. <u>1954</u> , 46, 1956-8.
VARIABLES:	PREPARED BY:
One temperature: 100°F	M.C. Haulait-Pirson
EXPERIMENTAL VALUES:	
The solubility of beyane in water at	100°F (37 78°C) was reported
to be $0.4 \text{ g}(1)/100 \text{ g sln.}$ The corres	ponding mole fraction, x_{1} ,
calculated by the compiler is 8.3 x 1	o ⁻⁴ .
The solubility of water in hexane at	100°F (37.78°C) was reported
to be 0.2 g(1)/100 g sln. The corres	ponding mole fraction, x_2 ,
calculated by the compiler is 9.5 x 1	0 .
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The solubility of (2) in (1) was ob-	(1) Phillips; used as received;
tained by titrating (1), brought to 100°F. As the cloud point was	$n_D^{20} = 1.3745$
approached, (2) was added dropwise and the flask agitated in the 100°F	$d_4^{20} = 0.6607$
constant temperature bath. The	(2) distilled; $n_{\rm D}^{20} = 1.3330$
mined by titrating (2) at 100°F	U U
with (1).	
	ESTIMATED ERROR:
	temp. ± 0.2°F
	REFERENCES:

37_260					
Components :			ORIGINAL MEASUREMENTS:		
(1) Hexane; C ₆ H ₁₄ ; [110-54-3]		Kudchadker, A.P.;	McKetta, J.J.		
(2) Water; H ₂ O; [77	32-18-5]		Petrol. Refiner.	<u>1961</u> , 40, 231-2.	
-					
VARIABLES:			PREPARED BY:		
Temperature: 100-28 Pressure: 24-525 ps	0°F ia		M.C. Haulait-Pirs	son	
EXPERIMENTAL VALUES:					
	Solubility of	hex	ane in water	,	
t/°F T/K	p/psia p	/MP mpi	$\frac{10^4 x_1}{1 \text{ ler}}$	g(l)/100 g sln (compiler)	
100 310.94	24.8 41.2 74.9 101.1 133.8 220.2 308.5 422.5 513.0	0.1 0.2 0.5 0.6 0.9 1.5 2.1 2.9 3.5	71 0.2214 84 0.302 16 0.319 97 0.342 23 0.339 18 0.342 27 0.3398 13 0.3396 37 0.342	0.01060 0.01446 0.01527 0.01637 0.01623 0.01637 0.01627 0.01626 0.01637	
160 344.27	45.2 75.3 112.6 172.2 252.0 338.6 432.2 488.1	0.3 0.5 0.7 1.1 2.3 2.9 3.3	12 0.398 19 0.541 76 0.644 87 0.633 37 0.633 35 0.64 80 0.648 65 0.64	0.01905 0.02590 0.03083 0.03039 0.03030 0.03063 0.03102 0.03063 (continued)	
	AUXILIA	ARY	INFORMATION		
METHOD/APPARATUS/PROCEDURE: SOURCE AND PURITY OF MATERIALS:			MATERIALS:		
Apparatus for producing equilibrium conditions and analytical procedure are the same as described in ref 1. No more details are given in the paper.		 Phillips Petroleum Co.; certified purity of at least 99.0 mole percent; used as received. distilled; boiled to remove any dissolved gases. 			
		ESTIMATED ERROR:			
			not specified.		
		REFERENCES:			
			 Davis, J.E. M University of <u>1959</u>. 	4.S. Thesis, The Texas, Austin,	

I

(1) Hexane; C ₆ ^H 14; [110-54-3]	Kudchadker, A.P.; McKetta, J.J.
(2) Water; H ₂ O; [7732-18-5]	Petrol. Refiner. <u>1961</u> , 40, 231-2.

Solubility of hexane in water

t/°F	T/ K (compiler)	p/psia	p/MPa (compiler)	10 ⁴ x ₁	g(l)/l00 g sln (compiler)
220	377.60	80.3 116.6 174.8 233.3 282.5 355.1 444.4 524.8	0.554 0.804 1.205 1.609 1.948 2.448 3.064 3.618	0.394 0.608 0.87 1.08 1.092 1.112 1.09 1.11	0.01886 0.02910 0.04164 0.05169 0.05226 0.05322 0.05217 0.05312
280	410.94	98.2 137.5 205.0 268.8 353.9 392.2 435.0 506.5	0.677 0.948 1.413 1.853 2.440 2.704 2.999 3.492	0.272 0.475 0.826 1.155 1.478 1.588 1.685 1.772	0.01302 0.02274 0.03953 0.05527 0.07072 0.07598 0.08062 0.08478

COMPONENTS:ORIGINAL MEASUREMENTS:(1) Hexane, C6H14; [110-54-3]Englin, B.A.; Plate, A.F.; Tugolukov,
V.M.; Pryanishnikova, M.A.(2) Water; H20; [7732-18-5]Khim. Tekhnol. Topl. Masel 1965,
10, 42-6.VARIABLES:
Temperature: 20-40°CPREPARED BY:
A. Maczynski and M.C. Haulait-Pirson

EXPERIMENTAL VALUES:

Solubility	of	water	in	hexane
------------	----	-------	----	--------

t/°C	g(2)/100 g sln	$\frac{10^4 x_2}{2}$ (compiler)
20	0.0101	4.83
30	0.0179	8.56
40	0.0317	15.15

AUXILIARY INFORMATION				
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:			
Component (1) was introduced into a thermostatted flask and saturated for 5 hours with (2). Next, cal- cium hydride was added and the evolving hydrogen volume measured and hence the concentration of (2) in (1) was evaluated.	(1) not specified.(2) not specified.			
	ESTIMATED ERROR:			
	not specified.			
	REFERENCES:			

COMPONENTS .	OPTCINAL MEASUREMENTS.
(1) Hexane; C ₆ H ₁₄ ; [110-54-3] (2) Water, H ₂ O; [7732-18-5]	Zel'venskii, Ya.D; Efremov, A.A.; Larin, G.M. Khim. Tekhnol. Topl. Masel <u>1965</u> , 10, 3-7.
VARIABLES:	PREPARED BY:
One temperature: 20°C	A. Maczynski
EXPERIMENTAL VALUES:	
The solubility of water in hexane at 0.0166 g(2)/100 g sln. The corresponding mole fraction, x_2 , is 7.9 x 10^{-4} .	20°C was reported to be calculated by the compiler
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Saturated solutions of tritium labeled (2) in (1) were prepared in two ways. In the first, nitrogen was passed through the vessel with (2) and next through the vessel with (1) and frozen. In the second, about 500 mL of (1) and 1 mL (2) were stirred. The concentration of (2) in (1) was calculated from scintillation measurements.	 (1) source not specified; pure grade; shaken with conc. H₂SO₄; washed with water, dried over sodium, and distilled; purity not specified. b.p. 68.81°C, m.p95.5°C. (2) source not specified; commercial; 1 Ci/mL HTO used as received.
	ESTIMATED ERROR:
	not specified.
	REFERENCES :

COMPONENTS:	ORIGINAL MEASUREMENTS:		
(1) Hexane; C ₆ H ₁₄ ; [110-54-3] (2) Water; H ₂ O; [7732-18-5]	<pre>Barone, G.; Crescenzi, V.; Pispisa, B.; Quadrifoglio, F. J. Macromol. Chem. <u>1966</u>, 1, 761-71.</pre>		
VARIABLES:	PREPARED BY:		
One temperature: 25°C	M.C. Haulait-Pirson		
EXPERIMENTAL VALUES:			
The authors report a value of 9.6 x 10^{-4} mol(1)/dm ³ (2) for the solubility of hexane in water at 25°C. This value is the experimental one multiplied by 760/p where p is the partial pressure of (1) over			

(2). p = 149 mm Hg. The solubility at system pressure calculated by the compiler is $1.882 \times 10^{-4} \text{ mol}(1)/\text{dm}^3(2)$ and the corresponding mass percent and mole fraction, x_1 , are 0.001621 g(1)/100 g sln and 3.385×10^{-6} .

The compiler's calculation assumes a solution density of 0.6629 g/mL (the density of hexane reported in ref 1).

AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: The saturation was carried out by bubbling the vaporized (1) into the solution and letting an excess of the condensed (1) stand in contact with the aqueous phase for more than 12 hr at 25°C under gentle shaking. 0.20 mL samples of (2) saturated with (1) were taken with a calibrated syringe and injected into the chromatographic column packed with 15% of poly(propylene glycol) on chromosorb. A gas chro- matography unit having a tungsten- wire katharometer as detector was employed. More details are given in the paper.	 SOURCE AND PURITY OF MATERIALS: (1) RP product, C. Erba, Milan; chromatographically pure. (2) not specified.
	ESTIMATED ERROR:
	<pre>temp. ± 0.02 K soly. ± 4% (type of error not specified).</pre>
	REFERENCES: 1. Timmermans, J. Physico-chemical constants of pure organic com- pounds, Elsevier, 1950.

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Hexane; C ₆ H ₁₄ ; [110-54-3]	McAuliffe, C.
(2) Water; H ₂ O; [7732-18-5]	J. Phys. Chem. <u>1966</u> , 70, 1267-75.
VARIABLES :	DDEDADEN BV.
One temperature: 25°C	M.C. Haulalt-Pirson
EXPERIMENTAL VALUES:	
The solubility of hexane in water at be 9.5 mg (1)/kg sln (0.00095 g(1)/10 The corresponding mole fraction, x_1 , is 1.99 x 10 ⁻⁶ . The same value is also reported in re	25°C was reported to 0 g sln). calculated by the compiler, efs 1 and 2.
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
In a 250 mL glass bottle, 10-20 mL of (1) was vigorously shaken for 1 hr or magnetically stirred for 1 day, with 200 mL of (2) at 25°C. In the case of shaking, the solution was allowed to stand for 2 days to permit separation of small (1) drop- lets. Absence of emulsion was checked microscopically. A 50 µL sample of the (1) saturated water was withdrawn with a Hamilton Syringe and injected into the frac- tionator of the gas chromatograph. A hydrogen-flame ionization detector was used. Many details are given in the paper.	<pre>(1) Phillips Petroleum Co.; 99+% purity; used as received. (2) distilled. (2) distilled. ESTIMATED ERROR: temp. ± 1.5 K soly. 1.3 mg (1)/kg sln (standard deviation from mean) REFERENCES: 1. McAuliffe, C. Nature (London) 1963, 200, 1092. 2. McAuliffe, C. Am. Chem. Soc. Div. Petrol. Chem. 1964, 9, 275.</pre>

37_266	337			
COMPONENTS:	ORIGINAL MEASUREMENTS:			
(1) Hexane; C ₆ H ₁₄ ; [110-54-3]	Burd, S.D.; Braun, W.G.			
(2) Water; H ₂ O; [7732-18-5]	Proc. Div. Refining, Am. Petrol. Inst. <u>1968</u> , 48, 464-76.			
VARIABLES:	PREPARED BY:			
Temperature and pressure	M.C. Haulait-Pirson			
EXPERIMENTAL VALUES:				
Hydrocarbon-rich liquid phase composi	ition for the three-phase conditions.			
p/psia p/MPa t/°F T/K (compiler) (compil	$\frac{g(2)/100 \text{ gsln}}{\text{ler}} \xrightarrow{x_2} (\text{compiler})$			
30 0.207 179 354.8 60 0.414 223 379.2 100 0.689 261 400.3 150 1.034 292 417.5 200 1.379 317 431.4 250 1.724 337 442.5 300 2.068 355 452.5 350 2.413 369 460.3 400 2.758 383 468.3 42 0.290 200 366.4 87 0.600 250 394.3 165 1.138 300 422.4 286 1.972 350 449.4 470 3.241 400 477.3	32 0.14 0.0067 26 0.32 0.0151 37 0.58 0.0272 59 0.91 0.0421 48 1.26 0.0730 59 2.03 0.0902 37 2.35 0.1032 15 2.78 0.1294 48 0.21 0.0100 26 0.49 0.0230 04 1.03 0.0474 82 1.89 0.0844 59 3.30 0.1403			
AUXILIARY	INFORMATION			
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:			
The vapor and liquid phase composi- tions have been determined for the (1)-(2) system in the two-phase hydrocarbon-rich liquid region. Equilibrium points were obtained by incremental addition of water followed by stirring, settling, sampling and chromatographic analy- sis. This procedure was continued until addition of water resulted in no pressure increase, indicating	 (1) Phillips Petroleum Company; 99.5% purity. (2) laboratory distilled. 			
three-phase conditions. Many de- tails are given in the paper.	ESTIMATED ERROR:			
	<pre>soly. ± 0.004 weight fraction of the (2) present.</pre>			
	REFERENCES:			

338					37_267	
COMPONENTS :		ORIGINAL MEASUREMENTS:				
1. Hexane; C ₆ H ₁₄ ; [110-54-3]		Rebert, C. J.; Hayworth, K. E.;				
2. Water; H ₂ O; [7732-18-5]		Am. Inst. Chem. Engnrs. J.				
			<u>1967</u> , <i>13</i> , 118-121.			
VARIABLES:			PREPARED	BY:		
Pressu	re and temperatu	re along		C. L. Young		
one ph	ase-two phase bo	undary.				
EXPERIMENTA	L VALUES:	Smoothed	data			
	m / % c	D (MD-		- (1) (100 <i>-</i>	"	
T/K	T/°C	Р/мРа	p/psi	g (1)/100 g (soln.)	^{<i>x</i>} C ₆ H ₁₄	
603	330	12.90	1870 2127	2.0	0.0042	
623	350	16.65	2414			
633	360	18.83	2731			
643	370	21.46	3112			
645.0 ^a	371.8	22.23	3223			
644	371	22.17	3214			
643	370	22.02	3193			
623	350	18.72	2939			
613	340	17.43	2527			
608	335	16.96	2459			
605	332	16.78	2433			
601	328	16.67	2417			
599	326	16.69	2420			
597	324	16.76	2430			
591	318	17.71	2568			
588	315	19.24	2790		0 0067	
573	300	8.92	1294	15.4	0.0367	
593	320	12.19	1768			
					(cont.)	
AUXILIARY INFORMATION						
METHOD /APPARATUS / PROCEDURE :		SOURCE AND PURITY OF MATERIALS:				
Samples	of mixtures of k	nown compo-	1. No	details given.		
sition co	onfined over mer	cury.				
Samples heated in a vapor bath and						
the pressure-temperature phase						
boundari	es determined by	direct				
observation of appearance or dis-]				
appearance of a phase. Apparatus						
similar f	to that describe	d in ref. (1)	•			
			ESTIMATE	D ERROR:		
1			δ T/K =	±0.05;		
			δp/psi	= ±1.		
			REFERENC	ES:		
			1. Reb	ert, C. J.; Kav, W	. в.	
			Am.	Inst. Chem. Enanna	. J.	
			195	9. 5. 285.		
			1	_, , , _, _,		
I			1			

COMPONENTS:

Hexane; C₆H₁₄; [110-54-3]
 Water; H₂O; [7732-18-5]

ORIGINAL MEASUREMENTS:

Rebert, C. J.; Hayworth, K. E. Am. Inst. Chem. Engnrs. J. 1967, 13, 118-121.

EXPERIMENTAL VALUES:

Smoothed data						
т/к	T/°C	<i>P/</i> MPa	p/psi	g	(1)/100 g (soln.)	^x C ₆ H _{1 4}
598 603 608 613 618 623 628 633	325 330 335 340 345 350 355 360	13.13 14.11 14.88 16.13 17.23 18.41 19.74 21.31	1904 2046 2158 2339 2498 2670 2862 3090		15.4	0.0367
543 548 553 558 563 568 573 578 583 583 588 593 598 603 608	270 275 280 285 290 295 300 305 310 315 320 325 330 335	7.08 7.62 8.25 8.94 9.71 10.55 11.45 12.40 13.42 14.62 16.03 17.63 19.53 21.63	1026 1105 1196 1297 1408 1530 1660 1798 1946 2120 2324 2324 2556 2832 3136		50.57	0.1762
493 498 503 518 523 528 533 538 543 548 553 558	220 225 230 235 240 245 250 255 260 265 270 275 280 285	4.63 5.06 5.52 6.01 6.53 6.97 7.74 8.49 9.31 10.23 11.34 12.92 14.88 17.39	672 734 800 871 947 1011 1123 1231 1350 1484 1645 1873 2158 2522		85.34	0.5489
	^a Critical po:	int.				

	57_209			
COMPONENTS:	ORIGINAL MEASUREMENTS:			
(1) Hexane; C ₆ H ₁₄ ; [110-54-8]	Nelson, H.D.; De Ligny, C.L.			
(2) Water; H ₂ O; [7732-18-5]	Rec. Trav. Chim. Pays-Bas <u>1968</u> , 87, 528-44.			
VARIABLES:	PREPARED BY:			
Temperature: 4-55°C	M.C. Haulait-Pirson			
EXPERIMENTAL VALUES:				
Solubility of he	kane in water			
$t/^{\circ}C$ $10^{6}x$	mg(l)/kg sln (compiler)			
4.0 3.42 ±	0.34 16.4			
14.0 3.17 ±	0.52 15.2			
25.0 3.83 ±	0.47 18.3			
35.0 2.69 ±	0.26 12.9			
45.0 4.64 ±	0.72 22.2			
55.0 4.42 ±	0.26 21.2			
AUXILIARY	INFORMATION			
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:			
The saturation vessel is drawn in the original paper. (2) was satu- rated with (1) via the vapor phase: a few drops of (1) were put on the bottom of a tight-fitting flask containing a small flask filled with water. Complete saturation was reached by shaking overnight in an upright position. Samples were taken from the aqueous solution with a microsyringe through the septum and injected into the gas chromato- graph equipped with a flame ioniza-	 (1) Fluka purum. (2) tap-water was refluxed for 8 hours in the presence of KMnO₄ and KOH and distilled. The whole process was repeated once more. ESTIMATED ERROR: 			
tion detector. The gas chromato- graphic conditions are described in the paper.	soly.: error given above (90% pro- bability interval)			
	REFERENCES :			
COMPONENTS: ORIGINAL MEASUREMENTS: (1) Hexane; C₆H₁₄; [110-54-3] Roddy, J.W.; Coleman, C.F. (2) Water; H₂O; [7732-18-5] Talanta 1968, 15, 1281-6. VARIABLES: PREPARED BY: One temperature: 25°C M.C. Haulait-Pirson **EXPERIMENTAL VALUES:** The solubility of water in hexane at 25°C was reported to be 0.00362 mol(2) dm⁻³ sln corresponding to a mole fraction, x_2 , of 4.76 x 10^{-4} . The corresponding mass percent value calculated by the compiler is 0.00995 g(2)/100 g sln.The compiler's calculation assumes a solution density of 0.6629 g/mL (the density of hexane reported in ref 1). AUXILIARY INFORMATION METHOD/APPARATUS/PROCEDURE: SOURCE AND PURITY OF MATERIALS: A method of gravimetric absorption (1) Phillips Petroleum Co.; 99%; monitored by tritium tracer was purified by shaking with conused. (1) was equilibrated with centrated sulphuric acid, washed a slight excess of tritiated water with water and dried with sodium by shaking over a period of at sulphate. least 8 hr in a thermostat. The phases were allowed to separate (2) tritiated water at 5 Ci/mL; New for at least 16 hr and then were sampled for tritium analysis. Most England Nuclear Corp.; diluted to about 1 mCi/mL. of the (1) phase was weighed into a boiling flask of a closed distil-ESTIMATED ERROR: lation system and then distilled through a magnesium perchlorate weighing tube. The magnesium per-chlorate was then dissolved for soly. better than 1% (type of error not specified) measurement of its tritium content by liquid scintillation counting **REFERENCES:** with a Packard Tri-Carb Scintillation Spectrometer. 1. Timmermans, J. Physico-chemical constants of pure organic compounds, Elsevier, 1950.

(1) Hexane; C ₆ H ₁₄ ; [110-54-3] (2) Water; H ₂ O; [7732-18-5]	Benkovski, V.G.; Nauruzov, M.H.; Bogoslovaskaya, T.M. Tr. Inst. Khim. Nefti Prir. Solei Akad. Nauk Kaz. SSR <u>1970</u> , 2, 25-32.
I VADTABI FS •	DEEDADED BY.
One temperature: 303 K	A. Maczynski
EXPERIMENTAL VALUES:	
The solubility of water in hexane at 0.0051 g(2)/100 g sln. The corresponding mole fraction, x_2 , is 0.00024.	303 K was reported to be value calculated by compiler
AUXILI ARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Equal volumes of (1) and (2) were placed in a glass cylinder and periodically shaken for 6 h, then sampled and analyzed by the Karl Fischer method.	(1) source not specified; purified; purity not specified.(2) distilled.
1	ESTIMATED ERROR:
	Not specified
	REFERENCES :

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Hexane; C ₆ H ₁₄ ; [110-54-3] (2) Water; H ₂ O; [7732-18-5]	Krasnoshchekova, P.Ya.; Gubergrits, M.Ya. Neftekhimiya <u>1973</u> , 13, 885-7.
WADT ADI EC .	
VARIADLES:	PREPARED BY:
One temperature: 25°C	A. Maczynski
EXPERIMENTAL VALUES:	
The solubility of hexane in water at $x_1 = 2.8 \times 10^{-6}$. The corresponding mass percent calcul 1.3 x 10 ⁻³ g(1)/100 g sln.	25°C was reported to be
AUXILIARY	INFORMATION
A mixture of 10 mL (1) and 300 mL (2) was placed in a double-walled bottom-stoppered vessel and vigor- ously stirred magnetically for 10- 12 hr. The phases were allowed to separate; a first sample of the water phase was rejected and next 200 mL of this phase was taken, 20-mL aliguots were introduced into 40-mL hermetic bottles and (1) was allowed to equilibrate with the air, and the (1)-saturated air was analyzed by glc.	<pre>SOURCE AND PURITY OF MATERIALS: (1) source not specified; CP reagent; purity not specified. (2) distilled. ESTIMATED ERROR: not specified. REFERENCES:</pre>

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Hexane; C ₆ H ₁₄ ; [110-54-3]	Leinonen, P.J.; Mackay, D.
(2) Water; H ₂ O; [7732-18-5]	Can. J. Chem. Eng. <u>1973</u> , 51, 230-3.
VARIABLES:	PREPARED BY:
One temperature: 25°C	M.C. Haulait-Pirson
EXPERIMENTAL VALUES:	
The solubility of hexane in water at	25°C was reported to be
12.3 mg(1)dm ² sln corresponding to a	a mole fraction, x ₁ , of
The corresponding mass percent calcul	lated by the compiler is
0.00123 g(l)/100 g sln.	
The compiler's calculation assumes a	solution density of 1.00 g/mL.
	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
A mixture of (1) and (2) was equi- librated for at least 12 hrs in a 200 mL Teflon stoppered vessel with	(1) Phillips Petroleum Co.; research grade; purity 99%+; used without further purification.
gentle shaking. The solution was allowed to settle for 6 hrs and the	(2) doubly distilled.
aqueous phase was tested (Tyndall	(1) 101227 112011
by the gas chromatographic tech-	
The (1) in the aqueous phase was	
the extract analysed by GLC. The	ESTIMATED ERROR:
model equipped with a flame ioniza- tion detector.	temp. \pm 0.1 K soly. \pm 1 mg(1)dm ⁻³ sln
	REFERENCES :

37 274

COMPONENTS:	OR	RIGINAL MEASUREMENTS:	
(1) Hexane; C ₆ H ₁₄ ; [110-54-3]	xane; C ₆ H ₁₄ ; [110-54-3] Polak, J.; Lu, B.C-Y.		
(2) Water; H ₂ O; [7732-18-5]		Can. J. Chem. <u>1973</u> , 51, 4018-23.	
-			
VARIABLES:	PF	REPARED BY:	
Temperature: 0-25°C	M	M.C. Haulait-Pirson	
EXPERIMENTAL VALUES:			
Solubility of	E hexar	ne in water	
t/°C mg(1)	/kg sl	ln <u>x₁ (compiler)</u>	
0 ^a 16	5.5 ^C	3.44×10^{-6}	
25 ^b 12	2.4 ^C	2.59×10^{-6}	
	- .		
Solubility of	t water	r in hexane	
<u>t/°C</u> mg (2)	/kg sl	ln <u>x₂ (compiler)</u>	
0 ^a 2	28 ^d	1.34×10^{-4}	
25 ^b 9	90 ^e	4.30×10^{-4}	
a-e see "ESTIMATED ERROR"			
ן זדאווג	TARY IN	FORMATION	
METHOD/APPARATUS/PROCEDURE:		DURCE AND PURITY OF MATERIALS:	
The solubility of (1) in (2) was determined by gas chromatography.	. '	(1) Phillips Petroleum Co.; pure grade reagent (998+); shaken	
The solubility of (2) in (1) was determined by Karl Fischer titra-	- 1	three times with distilled	
tion. 50 mL of (1) together with		(2) distilled	
mL Hypovial closed with a Teflon			
a constant-temperature water bath	n.		
The system was stirred magnetical ly for 24 hr or was kept in the	·- _		
bath without stirring for at leas 7 days before samples were taken	st E	STIMATED ERROR:	
for analysis. Details of the analysis are given in the paper.	1	temp. a) ± 0.02 K; b) ± 0.01 K soly. c) ± 1.78 ; d) ± 4.78 ;	
		e) ± 3.1% (mean)	
	R	EFERENCES:	

COMPONENTS:	ORIGINAL MEASUREMENTS:		
(1) Hexane; C ₆ H ₁₄ ; [110-54-3]	Mackay, D.; Shiu, W.J.; Wolkoff, A.W.		
(2) Water; H ₂ O; [7732-18-5]	"Water Quality Parameters" Symp. 1973, ASTM Spec. Tech. Publ. <u>1975</u> , 573, 251-8.		
VARIABLES:	PREPARED BY:		
not specified	M.C. Haulait-Pirson		
EXPERIMENTAL VALUES:			
-33			

The authors reported the value of 16.2 mg(1)dm⁻³ sln for the solubility of hexane in water. With the assumption of a solution density of 1.00 g cm⁻³, the corresponding mass percent, calculated by the compiler, is 0.00162 g(1)/100 g sln and the corresponding mole fraction, x_1 , is 3.4 x 10⁻⁶.

AUXILIARY INFORMATION				
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:			
(1) is partially partitioned into the vapor phase by equilibration of the aqueous sample with helium in a gas syringe, the vapor then being transferred to a gas sampling valve and then to the column of a gas chromatograph equipped with a flame ionization detector. By injecting gas samples from repeated equili- brations it is possible to calculate the amount of (1) in the original sample.	<pre>(1) not specified. (2) not specified. ESTIMATED ERROR: soly. ± 10% (compiler) REFERENCES:</pre>			

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Hexane; C ₆ H ₁₄ ; [110-54-3] (2) Water; H ₂ O; [7732-18-5]	Budantseva, L.S.; Lesteva, T.M.; Nemstov, M.S. Zh. Fiz. Khim. <u>1976</u> , 50, 1344. Deposited dog. <u>1976</u> , VINITI 438-76.
VARIABLES:	PREPARED BY:
One temperature: 20°C	A. Maczynski
EXPERIMENTAL VALUES:	
The solubility of hexane in water at $x_1 = 3 \times 10^{-6}$.	20°C was reported to be
The corresponding mass percent calcul 0.0014 g(l)/100 g sln.	ated by the compiler is
The solubility of water in hexane at $x_2 = 3.7 \times 10^{-4}$.	20°C was reported to be
The corresponding mass percent calcul 0.0077 g(2)/100 g sln.	ated by the compiler is
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: The solubility of (1) in (2) was determined by glc. The solubility of (2) in (1) was determined by Karl Fischer reagent method.	 SOURCE AND PURITY OF MATERIALS: (1) source not specified; pure or analytical reagent grade; purity <99.9%. (2) not specified.
	ESTIMATED ERROR: Not specified.
	REFERENCES:

COMPONENTS :	ORIGINAL MEASUREMENTS:		
(1) Hexane; C ₆ H ₁₄ ; [110-54-3] (2) Water; H ₂ O; [7732-18-5]	Namiot, A.Yu.; Skripka, V.G.; Lotter, Yu.G. Zh. Fiz. Khim. <u>1976</u> , 50, 2718 <u>Deposited doc.</u> 1976, VINITI 1213-76.		
VARIABLES: Temperature: 200 and 220°C Pressure: 2.0-5.2 MPa	PREPARED BY: A. Maczynski		
EXPERIMENTAL VALUES: Solubility of water in hexane			

t/°C	p/kg cm ⁻²	p/MPa (compiler)	<i>x</i> ²	g(2)/100 g sln (compiler)
200	20	2.0	J.006	0.13
200	25	2.5	0.024	0.51
200	30	2.9	0.051	1.11
200	35	3.4	0.084	1.92
200	37	3.6	0.097	2.2
220	25	2.5	0.002	0.04
220	30	2.9	0.023	0.49
220	35	3.4	0.053	1.16
220	40	3.9	0.088	1.98
220	45	4.4	0.129	3.00
220	50	4.9	0.179	4.36
220	53.3	5.2	0.216	5.44

AUXILIARY INFORMATION			
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:		
The static method for vapor-liquid equilibrium described in ref l was used. No more details were reported in the paper.	 (1) source not specified; CP reagent; used as received. (2) distilled. 		
	ESTIMATED ERROR:		
	not specified.		
	REFERENCES:		
	1. Sultanov, R.G.; Skripka, V.G.; Namiot, Yu.A. Zh. Fiz. Khim. <u>1976</u> , 46, 2170.		

37 278

COMPONENTS :		ORIGINAL MEASUREMENTS:			
(1) Hexane; C ₆ H ₁₄ ; [110-54-3]		Price, L.C.			
(2) Water; H ₂ O; [7732-18-5]		Am. Assoc. Petrol. Geol. Bull. <u>1976</u> , 60, 213-44.			
VARIABLES:		PREPARED BY:			
Temperature: 25	-151.8°C	F. Kapuku			
EXPERIMENTAL VALUES:					
Solul	bility of hexane in wa	ater at system pressur	e		
t/°C mg(l)/kg(2)		g(l)/100 g sln 10 ⁶ x _l (compiler)(compiler)_			
25.0	9.47 ± 0.20	0.000947	1.98		
40.1	10.1 ± 0.3	0.00101	2.11		
55.7	13.2 ± 0.5	0.00132	2.76		
69.7	15.4 ± 1.9	0.00154	3.22		
69.7	15.2 ± 0.5	0.00152	3.18		
99.1	22.4 ± 1.0	0.00224	4.68		
114.4	29.2 ± 1.0	0.00292	6.10		
121.3	37.6 ± 1.2	0.00376	7.86		
137.3	56.9 ± 2.3	0.00569	11.89		
151.8	106.0 ± 4.0	0.0106	22.2		
	AUXILIARI	INFORMATION			
METHOD/APPARATUS/PRO	CEDURE :	SOURCE AND PURITY OF MATERIALS:			
Room-temperature solubilities were determined by use of screw-cap test tubes. The (1) phase floated on top of (2) and insured saturation (in 2 to 4 days) of the aqueous phase. High-temperature solubility work was carried out in the ovens of the gas chromatograph. The solutions were contained in 75 mL double ended stainless steel sample cylinders. Modified Micro Linear Valves sealed the bottom of the cylinder and al- lowed syringe access to the solution during sampling. The sample is then transferred to the gas chromatograph equipped with dual flame ionization detectors. Many details are given in the paper.		 (1) Phillips Petrole 99+%. (2) distilled. ESTIMATED ERROR:	eum Company;		
		temp. ± 1 K soly. range of value REFERENCES:	es given above		
Papers		1			

350					37_279
COMPONENTS :		ORIGINAL MEASUREMENTS:			
(1) Hexane; C ₆ H ₁₄ ; [110-54-3] (2) Water, H ₂ O; [7732-18-5]		<pre>Skripka, V.G. Tr. Vses. Neftegazov. Nauch. Issled. Inst. 1976, 61, 139-51. Sultanov, R.G.; Skripka, V.E.</pre>			
			Zn. Depo	sited doc. 197	73, 47, 1035. 76. VINITI 5347-72
VARIABLES:			PREPAR	RED BY:	
Temperatu Pressure:	ire: 200 and 220°C 3.6-78.5 MPa		A. Maczynski		
EXPERIMENTAL	L VALUES:				
	Solubi	lity of wat	er in	hexane	
t/°C	p/kg cm ⁻²	p/MPa (compil	er)	^{<i>x</i>} ₂	g(2)/100 g sln (compiler)
200	37 50 100 200 300 400 500 600 700 800	3.6 4.9 9.8 19.6 29.4 39.2 49.0 58.8 68.6 78.5		0.097 0.094 0.084 0.072 0.065 0.060 0.055 0.051 0.047 0.041	2.20 2.12 1.88 1.60 1.43 1.32 1.20 1.11 1.02 0.89
220	50.8 80 100 200 300 400 500 600 700 800	5.0 8.3 9.8 19.6 29.4 39.2 49.0 58.8 68.6 78.5		0.187 0.145 0.134 0.113 0.102 0.092 0.083 0.074 0.068 0.065	4.59 3.42 3.13 2.59 2.32 2.07 1.86 1.64 1.50 1.43
		AUXILIARY	INFORM	ATION	
METHOD/APPA	RATUS/PROCEDURE:		SOURC	E AND PURITY OF M	IATERIALS:
The expendence of the expendence of the expense of	rimental technique 1 in ref 1. No de in the paper.	was tails	(1)	source not spore reagent grade; specified; use distilled.	ecified, chemical ; purity not ed as received.
			ESTIM	ATED ERROR:	
			not	specified.	
			REFER	ENCES:	
			1. s N 1	ultanov, R.G. amiot, A.Yu. <u>971</u> , 4, 6.	; Skripka, V.G.; Gazov. Prom.

COMPONENTS .				
CONFORMIS.	URIGINAL MEASUREMENTS:			
(1) Hexane; C ₆ H ₁₄ ; [110-54-3]	Korenman, I.M.; Aref'eva, R.P.			
(2) Water, H ₂ O; [7732-18-5]	Patent USSR, 553 524, 1977.04.05 C.A. 87:87654			
VARIABLES:	PREPARED BY:			
One temperature: 20°C	A. Maczynski			
EXPERIMENTAL VALUES:				
The solubility of hexane in water at $0.14 \text{ m}^{-3}(2)$	20°C was reported to be			
The corresponding mass percent and mo	ble fraction, <i>x</i> ., calculated			
by the compiler are $0.014 \text{ g}(1)/100 \text{ g}$	sln and 2.9 x 10^{-5} .			
The compiler's calculation assumes a	solution density of 1.00 g/mL.			
AUXILIARY	INFORMATION			
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:			
	(1) not encodified			
a glass cylinder and 10-50 mg of	(I) not specified.			
an insoluble indicator was added	(2) not specified.			
indicator floated to form a colored				
2-3 cm above the liquid layer.				
After each drop of (1), the mixture				
min.				
	ESTIMATED ERROR:			
1	not specified.			
	BEFEDENCES			

COMPONENTS :	ORIGINAL MEASUREMENTS:					
(1) Hexane; C ₆ H ₁₄ ; [110-54-3]	Sugi, H.; Katayama, T.					
(2) Water; H ₂ O; [7732-18-5]	J. Chem. Eng. Jap. <u>1977</u> , 10, 400-2.					
VARIABLES:	PREPARED BY:					
One temperature: 25°C	M.C. Haulait-Pirson					
EXPERIMENTAL VALUES:						
The solubility of water in hexane at	25°C was reported to be in					
mole fraction, $x_2 = 5.1 \times 10$. The calculated by the compiler is 0.01066	corresponding mass percent g q (2)/100 q sln.					
AUXILIARY	INFORMATION					
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:					
The Karl Fischer method was used. The experimental apparatus and procedures are given in ref 1.	(1) Merck Uvasol spectrograde chem- ical; used without further purification.					
	(2) deionized and fractionated twice					
	in an all-glass distillation flask.					
	ESTIMATED ERROR:					
	not specified.					
	REFERENCES:					
	l. Sugi, H.; Nitta, T.; Katayama, T. J. Chem. Eng. Jap. <u>1976</u> , 9, 12.					

COMPONENTS:	ORIGINAL MEASUREMENTS:			
(1) Hexane; C ₆ H ₁₄ ; [110-54-3] (2) Water; H ₂ O; [7732-18-5]	Charykov, A.K.; Tikhomirov, V.I.; Potapova, T.M. Zh. Obshch. Khim. <u>1978</u> , 48, 1916-21.			
VARIABLES:	PREPARED BY:			
One temperature: 20°C	M.C. Haulait-Pirson			
EXPERIMENTAL VALUES:				
The solubility of water in hexane at 0.0035 mol(2) dm ⁻³ sln corresponding 0.00046. The mass percent calculated 0.0084 g(2)/100 g sln. The compiler' density of 0.663 g/mL (the density of	20°C was reported to be to a mole fraction, x_2 , of by the compiler is s calculation assumes a solution hexane reported in ref 1).			
	INFORMATION			
	SOURCE AND PURITY OF MATERIALS.			
METROD/AFFARATUS/FROCEDORE:	SOURCE AND FURITI OF PRIERIALS.			
The saturation of (1) with (2) was	(1) not specified.			
obtained by shaking definite volumes of (1) and (2) in a mecha- nical shaker for 2-3 hrs. (2) was determined in an aliquot (0.2-5 mL) of (1) by the Karl Fischer method. No more details are given.	(2) not specified.			
	ESTIMATED ERROR:			
	not specified.			
	REFERENCES:			
	 Timmermans, J. Physico-chemical constants of pure organic com- pounds, Elsevier, 1950. 			

COMPONENTS:	ORIGINAL MEASUREMENTS:			
(1) Hexane; C ₆ H ₁₄ ; [110-54-3]	Korenman, I.M.; Aref'eva, R.P.			
(2) Water; H ₂ O; [7732-18-5]	Zh. Prikl. Khim. <u>1978</u> , 51, 957-8.			
-				
VARIABLES:	PREPARED BY:			
Temperature: 25°C	A. Maczynski and Z. Maczynska			
EXPERIMENTAL VALUES:				
The solubility of hexane in water at $0.16 - (1) d^{-3}$ at	25°C was reported to be			
The corresponding mass percent and mo	le fraction, r calculated			
by the compilers are $0.016 \text{ g}(1)/100 \text{ c}$	1 sln and 3.3 x 10 ⁻⁵ .			
The compiler's calculation assume a s	olution density of 1.00 g/mL.			
AUXILIARY	INFORMATION			
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:			
About 200-500 mL(2) was placed in a	(1) not specified.			
ground-joint glass cylinder and 20-50 mg of an insoluble indicator	(2) not specified.			
(dithizon, phenolphthalein, etc.)				
until the indicator floated to form				
a colored thin layer on the cylinder wall above the liquid layer. Blanks				
were made to determine the excess of				
_/·				
	ESTIMATED ERROR:			
	(standard deviation from 6			
	determinations).			
	REFERENCES:			

COMPONENTS:	OPTOTNAL MEASUPEMENTS .				
	ORIGINAL MERSOREMENTS.				
(1) Hexane; C ₆ H ₁₄ ; [110-54-3]	Krzyzanowska, T.; Szeliga, J.				
(2) Water, H ₂ O; [7732-18-5]	Nafta (Katowice) <u>1978</u> , 12, 413-7.				
VARIABLES:	PREPARED BY:				
One temperature: 25°C	M.C. Haulait-Pirson				

EXPERIMENTAL VALUES:

The solubility of hexane in water at 25°C was reported to be 9.47 mg(l)/kg(2). The corresponding mass percent and mole fraction, x_1 , calculated by compiler are 9.47 x 10^{-4} g(l)/100 g sln and 1.98 x 10^{-6} .

Editor's Note: Based on the results for this and other hydrocarbon-water systems, uncertainity exists about whether the datum compiled here is independent of that of Price for the same system.

AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: Saturated solutions of (1) in (2) were prepared in two ways. First, 200 µL of (1) was injected into 20 mL of (2) and thermostatted at 25°C. Second, the mixture of (1) and (2) as above was thermostatted at 70°C and then cooled to 25°C. The time required to obtain equilibrium was three weeks. The solubility of (1) in (2) was mea- sured by glc. A Perkin-Elmer model F-11 gas chromatograph equipped with a 100-150 mesh Porasil column (70°C) and a flame ionization detector was used. Saturated solu- tions of heptane in (2) were used as standard solutions.	SOURCE AND PURITY OF MATERIALS: (1) not specified. (2) not specified.
	ESTIMATED ERROR: soly. 0.3 mg(1)/kg(2) (standard deviation from 7-9 determinations)
	REFERENCES:

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Hexane; C ₆ H ₁₄ ; [110-54-3]	Aquan-Yuen, M.; Mackay, D.;
(2) Water; H ₂ O; [7732-18-5]	Shiu, w.r.
-	J. Chem. Eng. Data <u>1979</u> , 24, 30-4.
VARIABLES:	PREPARED BY:
One temperature: 25°C	M.C. Haulait-Pirson
EXPERIMENTAL VALUES:	
The solubility of hexane in water at $0.0123 \text{ g(l)} \text{ dm}^{-3}$ sin	25°C was reported to be
With the assumption of a solution der	nsity of 1.00 g cm ⁻³ , the
corresponding mass percent is 0.00123	3 g(1)/100 g sln and the
corresponding mole fraction, x_1 , is 2	2.57 x 10 ⁻⁶ (compiler).
-	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Saturated solutions were prepared	(1) Fisher Scientific; pure grade
by adding an excess of (1) in (2) for 24 h, followed by settling in	(99 mol%).
the water-bath for at least 48 hrs.	(2) not specified.
helium and trapped in liquid nitro-	
gen. (1) was then injected into the GC column. The gas chromato-	
graph was a Hewlett-Packard Model	
detector. The technique is de-	
scribed in ref 1.	ESTIMATED ERROR:
	soly. ± 0.0004 g(1) dm ⁻³ sln (type of error not specified).
	REFERENCES :
	<pre>1. Mackay, D.; Shiu, W.Y. Bull. Environ. Contam. Toxicol. 1974, 15, 101.</pre>

COMPONENTS:			ORIGINAL MEASUREMENTS:					
1. Hexane; C ₆ H ₁₄ ; [110-54-3]			De Loos	;, Th. W.;	Penders, V	W. G.;		
2. Wate	er; H ₂ O;	[7732-18-5]		Lichten	thaler, H	R. N.		
				J. Chem. Thermodyn.				
				<u>1982</u> , 1	4, 83-91.			
VARIABLES	:			PREPARED E	BY :			
Temperature, pressure			C. L. Young					
<u> </u>								
EXPERIMEN	TAL VALUES	1						
<u>Valu</u>	aes of pre	essure and te	emperature	on one p	hase-two	phase bounda	ary	
т/к	<i>P/</i> MPa	Mole fraction of hexane	ợ (1)/ 100 g soln.	т/к	<i>P/</i> MPa	Mole fraction of hexane	g (1)/ 100 g soln.	
631.5 633.8 635.9 637.7	18.33 18.82 19.31 19.80	0.005	2.4	623.1 620.7 618.3 616.4	19.63 19.37 19.23 19.15	0.005	2.4	

001.0	10.00	01000	 			
633.8	18.82		620.7	19.37		
635.9	19.31		618.3	19.23		
637.7	19.80		616.4	19.15		
639.7	20.27		614.8	19.10		
641.4	20.76		613.4	19.10		
643.5	21.25		610.9	19.20		
644.8	21.74		609.5	19.20		
645.5	22.08		608.4	19.25		
645.4	22.20		607.5	19.40		
645.3	22.22		606.3	19.45		
644.2	22.23		605.1	19.66		
643.3	22.18		604.2	19.80		
642.1	22.08		603.2	20.00		
641.2	21.99		601.8	20.30		
640 0	21 89		600.4	20.63		
640 0	21 78		597.6	21.92		
639 7	21 35		596.7	22.41		
634 6	21 13		596.3	24.69		
632 4	20 73		595.9	25.25		
628 4	20.75		595.9	26.23		
625 1	10 07			20125		
023.1	19.97				(cont.)	

METHOD / APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
Static visual cell fitted with magnetic stirrer. Composition of	 Merck sample, purity at least 99.0 moles per cent. Degassed.
homogeneous phase determined from weighing cell charge at ambient temperature. Details of cell and procedure given in ref.(1). Pressure measured with a pressure balance and	 Doubly distilled. Conductivity less than 10⁻⁶ S cm⁻¹.
temperature measured with Pt	
resistance thermometer.	ESTIMATED ERROR: $\delta T/K = \pm 0.1 K;$ $\delta P/MPa = \pm 0.02 up to 40 MPa,$ $\pm 0.05 above 40 MPa;$ $\delta x = \pm 0.002.$ REFERENCES:
	 De Loos, Th. W.; Wijen, A. J. M.; Diepen, G. A. M. J. Chem. Thermodyn. <u>1980</u>, 12, 193.

COMPONENTS:		ORIGINAL MEASUREMENTS:						
1. Hexane; C ₆ H ₁₄ ; [110-54-3]			De Loos, Th. W.; Penders, W. G.;					
2. Water; H ₂ O; [7732-18-5]			Lichtenthaler, R. N.					
				J. Chem. Thermodyn.				
				1982, 14, 83-91.				
FYDEDI	MENTAL VZ	ALUES.						
<u>Va</u>	lues of p	pressure and	temperatu	re on on	e phase-tw	vo phase bour	ndary	
		Mole	g (1)/			Mole	g (1)/	
T/K	<i>P/M</i> Pa	of	100 g	T/K	<i>P/M</i> Pa	of	100 g	
		hexane	SOIN.			hexane	soin.	
<u> </u>	10.00	0.015	C 0	C 2 E 0	22.22	0.025	10.0	
632.0	18.33	0.015	0.8	635.0	23.35	0.025	10.9	
634.9	19.56			633.8	23.53			
637.7	20.29			633.2	23.62			
639.3	20.76			632.6	23.72			
642.7	21.99			630.2	24.46			
643.0	22.23			628.1	25.00			
642.4	22.47			627.1	25.40			
641.8 641.6	22.52			626.4 626.2	25.79			
641.3	22.54			626.1	26.18			
641.2	22.58			625.6	26.68			
640.8	22.60			625.1	27.17			
637.4	22.74			624.9 624.8	27.65			
633.5	22.86			624.6	29.12			
629.5	22.94			624.4	30.10			
627.9	23.01			624.5	31.09			
626.3	23.05			624.5 624 9	32.56			
620.8	24.48			625.2	35.50			
620.3	24.72			625.9	36.97			
619.5	24.97			627.2	40.21			
618.3	25.21			629.0	45.08			
616.9	29.64			638.8	64.68			
616.5	31.89			643.9	74.46			
616.6	34.54			649.4	86.68			
622.9	40.23			663.1	101.40			
633.5	74.49			669.5	135.70			
639.0	86.73			635.8	21.02	0.030	12.9	
645.1	106.32			636.2	21.18			
655.4	129.84			637.4	21.50			
629.6	18.84	0.025	10.9	637.9	22.01			
630.7	19.06			638.0	22.35			
631.6	19.31			638.0	22.74			
634.3	20.04			637.0	22.04			
635.1	20.29			636.6	23.08			
636.7	20.78			636.3	23.13			
638.0	21.19			636.0	23.20			
640.1	22.23			635.6	23.28			
639.4	22.58			635.2	23.33			
639.3	22.63			634.9	23.43			
638.9	22.72			634.3	23.53			
637.8	22.82			632.9	23.82			
637.5	22.99			632.5	23.92			
637.1	23.03			632.2	24.01			
636.8	23.08			631.9	24.12			
636.1	23.13			031.5	24.22	(cont.)	
							-	

COMPON	IENTS:			ORIGIN	AL MEASURE	MENTS:	
1 100		. [110-5/	1_21		c mb W .	Dondorg	W C .
I. nex	tane; Ceni	4; [110-54	<u>i</u> -2]	De LOO	s, m. w.;	Penders,	w. G.;
2. Wat	er; H ₂ O;	[7732-18-5	5]	Lichter	nthaler, R	. N.	
				J. Cher	m. Thermod	un.	
				1000	1 4 0 2 0 1		
				1982,	14, 03-91.		
EXPERI	MENTAL VAL	UES:					
		_					
Va	lues of pr	essure and	temperatur	e on one	phase-two	<u>phase</u> boun	dary
		Mole	a (1) (Mole	a (1) (
π/ κ	P/MPa	fraction	100 a	ጥ/к	P/MPa	fraction	100 a
- /	.,	of	soln.	-,	.,	of	soln.
		nexane				nexane ·	
631.0	24.31	0.030	12.9	632.1	20.78	0.042	17.3
630.8	24.41			633.3	21.27		
630.5	24.51			634.2	21.76		
630.0	24.60			635.0	22.25		
629.8	24.70			635.3	22.74		
629.5	24.80			634.7	23.13		
628.1	25.43			633.9	23.48		
626 5	26.68			631 9	24.01		
626.3	27.17			631.5	24.31		
626.1	27.65			631.3	24.41		
626.0	27.85			631.2	24.46		
625.8	28.24			631.1	24.51		
625.7	28.83			631.0	24.55		
625.4	30.10			630.8	24.62		
625.5	30.89			630.0	24.95		
625.0	31.30			627 8	25.82		
625.9	32.17			627.5	26.92		
626.3	33.05			627.3	27.27		
627.4	35.99			627.1	27.65		
627.9	37.22			626.8	28.15		
629.0	40.18			626.7	28.63		
637.0	57.34	0 0 2 9	15 0	626.6	29.12		
620.0	1/.14	0.038	15.9	626.0	30.10		
626.9	18.84			626.9	32.07		
630.0	19.82			627.2	33.54		
631.7	20.29			628.8	36.94		
633.8	21.02			629.2	38.31		
635.3	21.76			631.4	42.63		
636.0	22.25			633.7	47.53		
635.8	22.74			643 9	5/.23		
635.6	22.09			648.7	74 44		
634.7	23.23			655.9	88.41		
632.9	23.72			659.8	96.49		
632.3	23.82			664.4	106.30		
632.0	23.96			671.2	122.95		
631.7	24.06			616.3	16.65	0.049	19.8
630.9	24.26			618.3	17.02		
630.1	24.72			622.3	18.06		
629.1	25.21			626 6	10.35		
627 1	20.10			628.4	19.25		
626.5	28.15			629.9	20.29		
626.2	29.62			631.4	20.78		
626.3	31.57			632.0	21.02		
627.0	33.54			632.5	21.27		
628.0	37.46			633.0	21.51		
632.2	45.08			633.4	21.76		
641.1	622.22	0 040	17 0	633.8	22.01		
625.0	18.59	0.042	1/.3	621 1	22.10		
620.1	10 EC			634 0	22.99 23 No		
630.8	20 20			634.0	23.18	(cont	.)
1222.0	20.27					(00110	

COMPONENTS:			ORIGINAL MEASUREMENTS:				
1. Hexane; C ₆ H ₁₄ ; [110-54-3]			De Loos, Th. W.; Penders, W. G.;				
2. Wate	er; H ₂ O;	[7732-18-5	5]	Lichtent	thaler, R	. N.	
				J. Chem.	. Thermod	yn.	
				1982, 1	¥, 83-91.		
EXPERI	MENTAL VA	LUES:					
Va	lues of p	ressure and	temperatur	<u>e on one</u>	phase-tw	<u>o phase</u> bour	ndary
т/к	P/MPa	Mole fraction	g (1)/ 100 g	т/к	P/MPa	Mole fraction	g (1)/ 100 g
ļ ,		hexane	soln.			hexane	soln.
633.5	23.43	0.049	19.8	629.9	25.29	0.060	23.4
632.6	23.58 23.82			628.8 628.3	26.26 26.90		
632.3	23.96			628.1	27.46		
631.0	24.12			627.8	27.85		
630.5	24.79			627.7	28.83		
629.8	∠4.90 25.05			627.6	29.42 30.20		
629.8	25.15			627.7	30.89		
629.4 629.0	25.38 25.63			627.8 628.1	31.57 32.56		
628.9	25.77			628.3	33.52		
628.6 628.2	26.02 26.41			628.7 629.7	34.50 36.94		
627.5	27.22			631.5	40.18		
627.3	28.32 29.62			635.0 641.9	47.05 56.82		
627.4	30.60			647.7	68.33		
627.6 627.8	31.57 32.07			653 . 5 660.1	78.63 91.45		
628.0	32.80			663.9	98.94	.	÷ -
628.6 629.1	34.50 35.47			618.9 619.3	18.25 18.35	0.070	26.5
629.4	36.50			620.1	18.59		
629.6	36.84			621.0 622.5	18.84		
631.4	40.18			626.1	20.70		
633.0	42.38			627.3	21.34		
641.2	57.56			629.3	22.74		
643.2	60.75			629.4	23.53		
653.0	78.36			628.9	24.54		
653.8	79.35			628.6	25.00		
665.9	102.87			627.9	26.18		
618.5	17.61	0.060	23.4	627.5	27.17		
621.2	18.35			627.2	28.15		
622.9	18.84			627.3	30.10		
627.7	20.56			627.8	31.09		
628.4	20.78			628.0	33.05		
630.0	21.27 21.51			028.3 628.7	34.00 34.99		
630.6	21.76			628.6	34.50		
631.6	22.25 22.74			031.6 634.4	40.18 45.08		
631.8	22.94			643.7	59.79		
631.9	23.53 23.92			652 . 9 660.7	74.44 86.68		
631.4	24.12			616.3	17.78	0.081	29.7
631.2	24.31 24.55			617.3 619.0	18.13 18.40		
630.5	24.95			621.3	19.33	1	1
<u> </u>						(cont.	• •

COMPONENTS:			ORIGINAL MEASUREMENTS:				
1. Hexane; C ₆ H ₁₄ ; [110-54-3]			De Loos, Th. W.; Penders, W. G.;				
2. Wat	2. Water; H ₂ O; [7732-18-5]			Lichtenthaler, R. N.			
				J. Chem	n. Thermod	yn.	
				1982 <i>. 1</i>	4. 83-91.	•	
				<u></u> , _	-,		
EXPERI	MENTAL VA	LUES:					
Va	lues of p	ressure and	temperatu	ce on one	<u>phase-tw</u>	o phase bour	ndary
		Mole	g (1)/			Mole	g (1)/
T/K	<i>P/</i> MPa	fraction of	100 g soln.	T/K	<i>P/</i> MPa	fraction of	100 g
		hexane	501			hexane .	soln.
<u> </u>	10.00	0.001	00.7			0.004	
622.8	20.31	0.081	29.7	628.5 630.5	34.50	0.094	33.2
625.2	20.80			633.3	42.63		
626.1	21.29			634.8	45.08		
627.0	21.78			637.8 641 0	49.98		
628.3	23.23			644.4	59.72		
628.3	24.22			645.9	62.22		
628.2	25.19			647.1	64.68		
628.0	25.70			653.3 660 1	74.44		
627.4	27.65			667.9	101.40		
627.3	28.63			673.9	111.20		
627.4	29.62			613.4 613.8	17.98	0.102	35.2
627.9	31.57			614.5	18.03		
628.2	32.54			615.2	18.61		
628.5	33.52			616.1	18.86		
629.0	34.50			617.4	19.35		
630.1	36.94			619.8	20.31		
631.0	38.41			621.1	20.80		
632.1	40.18			622.0 623.4	21.29		
632.8	41.40		•	624.1	22.96		
633.1	41.90			624.9	23.74		
633.5	42.63			625.3	24.72		
634.3	43.12			625.9	25.94		
645.0	60.26			626.4	28.63		
647.2	64.66			626.7	30.10		
650.1	69.54 76 79			627.1 627.5	31.09		
657.9	83.02			627.9	33.05		
662.7	92.08			628.9	34.50		
665.4	98.94			630.0	36.94		
671.7	108.75			643.9	59.77		
608.9	16.65	0.094	33.2	652.9	74.44		
612.1	17.47			653.1	74.44		
615.0	18.37			654.2	76.90		
619.5	19.77			660.0	86.68		
621.1	20.31			666.6	98.94		20.2
621.5	20.55			613.1	18.08	0.119	39.3
622.8	21.29			614.2	19.84		
623.8	21.78			617.7	21.12		
624.6	22.27			618.7 620 F	21.78		
625.6	23.25			621.4	23.01		
626.1	25.70			622.1	24.48		
626.3	27.17			622.6	25.21		
626.6	29.62			623.6	26.18		
627.6	32.56			624.2	28.15		
628.1	33.54					(cont	.)

			<u></u>				
COMPONI	ents:			ORIGINAL MEASUREMENTS:			
1. Hexa	ane; C ₆ H	14; [110-54	1-3]	De Loos, Th. W.; Penders, W. G.;			
2. Wate	er; H ₂ O;	[7732-18-	5]	Lichten	thaler, R.	. N.	
				J. Chem.	. Thermody	<i>n</i> .	
				<u>1982</u> , 1	4, 83-91.		
EXPERI	EXPERIMENTAL VALUES:						
Va	lues of p	ressure and	temperatur	e on one	phase-two	phase bou	ndary
		Molo				Molo	
- /	- (fraction	g (1)/	- / ••	D (110-	fraction	g (1)/
T/K	<i>P/MPa</i>	of	IUU g soln.	T/K	Р/мРа	of	soln.
		hexane	501			hexane	001
624.6	29.12	0.119	39.3	616.8	21.31	0.135	42.7
625.1	30.10			618.4	22.27		
626.2	32.07			619.1	22.76		
627.0	33.54			620.3	23.74		
628.3	34.52			622.2	24.72		
629.4	37.43			622.9	27.17		
631.3 632 9	40.18			623.4 624 1	28.15		
635.4	46.55			624.9	30.60		
637.7	49.98			625.8	32.07		
642.5	57.32			627.3	34.52		
648.6	67.09			629.4	37.93		
652.7	74.44			631.2	40.18		
656.8 662.3	81.79 91.59			632.7	42.63		
667.2	101.40			635.9	47.53		
672.1	111.20		40.7	643.7	59.77		
608.3 609.1	17.87	0.135	42.1	647.0 653.1	64.68 74.44		
609.8	18.37			659.9	86.68		
611.3	18.86			666.5	98.94		
615.0	20.33			6/2.0	111.20		

 COMPONENTS :	ORIGINAL MEASUREMENTS:			
(1) Hexane; C ₆ H ₁₄ ; [110-54-3] (2) Water; H ₂ O; [7732-18-5]	Jonsson, J.A.; Vejrosta, J.; Novak, J. <i>Fluid Phase Equil.</i> <u>1982</u> , 9, 279-86.			
VARIABLES:	PREPARED BY:			
Temperature: 15-35°C	G.T. Hefter			
EXPERIMENTAL VALUES:				
Solubility of b	nexane in water			
t/°C mg(l)/kg sln	10 ³ g(1)/100g sln 10 ⁶ x1 (compiler) (compiler)			
15 10.72 20 10.32 25 10.09 30 10.02 35 10.10	1.072.241.032.151.012.111.002.091.012.11			
water partition coefficient (K _{AW}) by infinite dilution were valid at the	assuming K _{AW} values obtained at saturation pressure of (1).			
AUXILIARY	INFORMATION			
METHOD / APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:			
Air-water partition coefficients were measured by saturating a portion of water by a stream of nitrogen containing a known vapour concentration of (1). After equilibration, the dissolved (1) was adsorbed in a porous polymer trap and the entrapped (1) analysed by gas chromatography. The method and apparatus are described in detail in ref 1.	 (1) Fluka, > 99.7%, used as received. (2) Not specified. 			
	ESTIMATED ERROR:			
	Not specified.			
	REFERENCES: 1. Vejrosta, J.; Novak, J.; Jonsson, J.A. Fluid Phase Equil. <u>1982</u> , 8, 25-35.			

				57_207			
COMPONENTS:			ORIGINAL ME	ORIGINAL MEASUREMENTS:			
(1) Hexane; C _c H _{1,4} ; [110-54-3]			Tsonopoulo	os, C.; Wilson, G.M.			
(2) Water; H_{2} ; [7732-18-5]			A. I. Ch.	E. J. 1983, 29, 990-9.			
	. 2						
VARIA	BLES:		PREPARED BY	:			
Temp	erature: 311	L - 473 K	G.T. Hefte	er			
Pres	sure: 0.05-3	3.5 MPa					
EVDED	INENTAL VALUES	•					
EM EK.	THENTAL VALUES	The solubility	of hexane in	n water			
		<i>a</i>	4	2			
	T/K	p ^a /MPa	$10^{4} x_{1}$	10 ² g(1)/100 g sln			
				(compiler)			
		a					
	310.93	- " a	0.238	0.114			
	366.48	- " a	0.5/3	0.274			
	367.55		0.535	0.256			
	373.15	0.3482	0.621	0.297			
	422.04	_ "	2.71	1.30			
	423.15	1.2548	3.39	1.62			
	473.15	3.516	18.5	8.85			
				(continued)			
		AUXILIA	ARY INFORMATION				
METHO	D/APPARATUS/PR	OCEDURE:	SOURCE AND	PURITY OF MATERIALS:			
in a	a Appendix d	leposited in a		etalls given			
Docur	mentation Ce	entre rather than	(2) No de	(2) No details given			
bilit	he original ty of (1) in	(2) was measured					
by ga	as chromatog	raphy, whilst that					
Of (2 Fisch	2) 1n (1) wa ner titratio	is measured by Karl					
			ESTIMATED E	ERROR:			
			soly. ± !	5% relative; repeatability			
			temp. not	stated.			
			press. ±	1%; type of error not stated.			
			REFERENCES	:			

```
(1) Hexane; C<sub>6</sub>H<sub>14</sub>; [110-54-3]
(2) Water; H<sub>2</sub>O; [7732-18-5]
```

(continued)

The solubility of water in hexane

Т/К	p ^a /MPa	10 ² x ₂	g(2)/100 g sln (compiler)
313.15	0.04537	0.117,0.123	0.025
367.55	_ <i>a</i>	0.595	0.124
373.15	0.3482	0.709	0.148
423.15	1.2548	3.11	0.667
473.15	3.516	11.0	2.52

a Not specified.

b Average value.

The three phase critical point was reported to be 496.7 K, 5.295 MPa and $x_1 = 4.982 \times 10^{-4}$ (0.238 g(1)/100 g sln, compiler).

The authors also report equations fitted to their own and literature data over the range 273-497 K, viz.

 $\ln x_1 = -367.9847 + 16128.646/T + 52.820813 \ln T$ $\ln x_2 = -45.1714 - 1635.73/T + 7.53503 \ln T$

COMPONENTS:	EVALUATOR:		
(1) Hexane; C ₆ H ₁₄ ; [110-54-3] (2) Seawater	D.G. Shaw Institute of Marine Science University of Alaska Fairbanks, Alaska USA		
	December 1982		

CRITICAL EVALUATION:

The solubility of hexane (1) in seawater (2) at 298 K has been reported in two works:

Authors	Method	g salts/kg sln	g(l)/100 g sln
Krasnoshchekova and Gubergrits (ref 1)	GLC	6	7.55×10^{-3}
Aquan-Yuen et al. (ref 2)	Spectro- fluorometry	35.3	7.86×10^{-4}

These two determinations were made at somewhat different salinities and thus cannot be directly compared. Because the presence of sea salts is expected to depress the solubility value below the value for pure water (tentative value $1.3 \times 10^{-3} \text{ g}(1)/100 \text{ g sln}$) the tentative value of 7.86 $\times 10^{-4} \text{ g}(1)/100 \text{ g sln}$ is adopted for hexane in seawater at the indicated temperature and salinity. The value of Krasnoshchekova and Gubergrits is considered doubtful. Freegarde *et al.* (ref 3) also measured the solubility of hexane in seawater. However, since they did not report temperature or salinity, their work is rejected. Aquan-Yuen *et al.* have also measured solubility over a range of salinities.

	SOLUBILITY	OF HEXANE (1) IN TENTATIVE VALUE	SEAWATER	(2)	
т/к		g salts/kg sln	-	g(l)/	100 g sln
298		35.3		7.8	6×10^{-4}

REFERENCES

- Krasnoshchekova, R.Ya.; Gubergrits, M.Ya. Neftekhimiya <u>1973</u>, 13, 885-8.
- Aquan-Yuen, M.; Mackay, D; Shiu, W.Y. J. Chem. Eng. Data <u>1979</u>, 24, 30-4.
- 3. Freegarde, M.; Hatchard, C.G.; Parker, C.A. Lab. Pract. <u>1971</u>, 20, 35-40.

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Hexane; C ₆ H ₁₄ ; [110-54-3] (2) Seawater	Krasnoshchekova, R.Ya.; Gubergrits, M.Ya. Neftekhimiya <u>1973</u> , 13, 885-8.
VARIABLES :	PREPARED BY:
One temperature: 25°C Salinity: 6 g/kg sln	M. Kleinschmidt
EXPERIMENTAL VALUES:	
The solubility of hexane in seawater 7.55 x 10^{-3} g(1)/100 g sln and the c fraction, $x_1 = 1.3 \times 10^{-5}$.	was reported to be orresponding mole
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
A saturated solution was prepared by vigorously stirring hydrocarbon (1) in seawater (2) for 10-12 hrs. in a flask placed in a temperature controlled bath. A sample of solu- tion was then transferred to a closed flask with head space volume equal to solution volume. Hydro- carbon concentration in the head space was determined by gas chroma- tography and the corresponding solution concentration calculated.	<pre>(1) "chemically pure" (2) distilled water plus salt mixture. ESTIMATED ERROR: not specified. REFERENCES:</pre>

368

COMPONENTS	OPTOTNAL MEASUR	MENTS .		
(1) Hexane; C ₆ H ₁₄ ; [110-54-3]	ORIGINAL MEASUREMENTS: Aquan-Yuen, M.; Mackay, D.; Shiu, W.Y.			
<pre>(2) Sodium chloride; NaCl; [7647-14-5]</pre>	J. Chem. Eng	. Data <u>1979</u> ,	24, 30-4.	
(3) Water; H ₂ O; [7732-18-5]				
VARTABLES	DDEDADED BY.			
One temperature: 25°C	PREPARED DI:			
$\begin{array}{c} \text{calinitus} & 19-120 \text{ g}(2) \text{ /kg cln} \end{array}$	M Kleinschr	nidt and D Shar		
Salinity: 10-130 g(2)/kg sin.	M. KIEINSCH	arut and D. Sha	~	
EXPERIMENTAL VALUES:			i	
Solubility of hexane in aqueous NaCl				
$\frac{\text{mol}(2)/\text{L} \text{sln}}{\frac{g(2)}{\text{kg}} \text{sln}^{a}} m$	g(l)/L sln	10 ⁴ mass%(1) ^a	10 ⁶ x1 ^a	
0.31 17.9	10.48	10.35	2.19	
0.62 35.3	8.06	7.86	1.68	
1.00 56.2	7.54	7.25	1.58	
	4.88	4.60	0.846	
2.50 132.7	2.55	2.32	0.583	
AUXILIARY	INFORMATION			
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURI	TY OF MATERIALS:		
Saturated solutions were prepared	(1) 99% pure	e from Fisher S	cientific.	
by adding excess (1) to a pre- viously prepared salt solution. The resulting mixture was stirred for 24 hours and then allowed to settle for 48 hours. An aliquot was extracted with cyclohexane which was then analyzed spectro- fluorometrically.	(2) reagent	grade.		
	ESTIMATED ERROR	:		
		lative 9		
	SOLA I LE			
	REFERENCES:			

COMPONENTS:	EVALUATOR:
(1) Toluene; C ₇ H ₈ ; [108-88-3] (2) Water; H ₂ O; [7732-18-5]	G.T. Hefter, School of Mathematical and Physical Sciences, Murdoch University, Perth, W.A., Australia. May 1986

CRITICAL EVALUATION:

Quantitative solubility data for the system toluene (1) and water (2) have been reported in the references listed in Table 1.

TABLE 1: Quantitative Solubility Studies of theToluene (1) - Water (2) System

Reference	<i>т/</i> к	Solubility	Method
Jaeger (ref 1)	353-573	(1) in (2)	synthetic
Fühner (ref 2)	289	(l) in (2)	titration
Uspenskii (ref 3)	283,295	mutual	titration, analytical
Rosenbaum and Walton (ref 4)	283-323	(2) in (1)	analytical
Gross and Saylor (ref 5)	303	(l) in (2)	interferometric
Tarassenkow and Poloshinzewa (ref 6,7)	264-366	(2) in (1)	synthetic
Booth and Everson (ref 8)	298	(1) in (2)	residue volume
Andrews and Keefer (ref 9) (ref 9)	298	(1) in (2)	spectrophotometric
Klevens (ref 10)	298	(1) in (2)	spectrophotometric
Bohon and Claussen (ref 11)	273-318	(1) in (2)	spectrophotometric
Morrison and Billet (ref 12)	298	(1) in (2)	analytical
Wing and Johnston (ref 13)	298	(2) in (1)	radiotracer
Caddock and Davis (ref 14)	293	(2) in (1)	radiotracer
Guseva and Parnov (ref 15,16)	363-497	(1) in (2) ^{<i>a</i>}	synthetic?
Jones and Monk (ref 17)	298	(2) in (1)	radiotracer
McAuliffe (ref 18)	298	(1) in (2)	GLC
Hoegfeldt and Bolander (ref 19)	298	(2) in (1)	Karl Fischer
Englin <i>et al</i> . (ref 20)	273-323	(2) in (1)	analytical
Connolly (ref 21)	553 - 583 ⁰	(1) in (2)	cloud point
Johnson et al. (ref 22)	298	(2) in (1)	Karl Fischer
McAuliffe (ref 23)	298	(1) in (2)	GLC
Gregory et al. (ref 24)	298	(2) in (1)	Karl Fischer
Benkovski <i>et al</i> . (ref 26)	303	(2) in (1)	Karl Fischer
Glasoe and Schultz (ref 28)	288-303	(2) in (1) ^{a}	Karl Fischer
Pierotti and Liabastre (ref 29)	278-318	(1) in (2)	GLC
Bradley et al. (ref 31)	298-328 ⁰	(1) in (2)	spectrophotometric
Polak and Lu (ref 32)	273-298	mutual	GLC, Karl Fischer
		(Table 1	continued next page)

COMPONENTS: (1) Toluene; C ₇ H ₈ ; [108-88-3] (2) Water; H ₂ O; [7732-18-5]		EVALUATOR: G.T. Hefter, Scho and Physical Scie University, Perth	ol of Mathematical nces, Murdoch , W.A., Australia.
		May 1986	
CRITICAL EVALUATION: (continued)	<u></u>	<u></u>	
(Table 1 continued)			
Reference	Т/К	Solubility	Method
Brown and Wasik (ref 33)	278-293	(1) in (2)	GLC
Krasnoshchekova and Gubergrits (ref 34)	298	(l) in (2)	GLC
Mackay and Shiu (ref 35)	298	(l) in (2)	GLC
Sada <i>et al</i> . (ref 36)	298	(1) in (2)	titration
Sutton and Calder (ref 37)	298	(1) in (2)	GLC
Price (ref 39)	298	(1) in (2)	GLC
Korenman and Aref'eva (ref 40,41)	293,298	(l) in (2)	titration
Krzyzanowska and Szeliga (ref 42)	298	(1) in (2)	GLC
Banerjee <i>et al</i> . (ref 43)	298	(1) in (2)	radiotracer
Schwarz (ref 44)	297	(1) in (2)	chromatographic
Rossi and Thomas (ref 45)	298	(1) in (2)	GLC
Sanemasa <i>et al</i> . (ref 46)	288-318	(1) in (2)	spectrophotometric
Sanemasa <i>et al</i> . (ref 47)	288-318	(1) in (2)	spectrophotometric
Sanemasa <i>et al</i> . (ref 48)	298	(1) in (2)	spectrophotometric

a Data also given for D₂O *b* Pressure also varied, see Table 4

The original data in all of the publications listed in Table 1 are compiled in the Data Sheets immediately following this Critical Evaluation.

As indicated in the footnotes to Table 1, quantitative solubility data for toluene in heavy water (ref 15) and D_2O in toluene (ref 28), have been reported. However, since no other comparable data are available, no critical evaluation of the reliability of these data can be made. The interested user is referred to the relevant Data Sheets for experimental solubilities. Solubility values reported by Price (ref 30) were not available for inspection. Solubility data may also be calculated from the calorimetric data of Gill *et al.* (ref 38).

Critical point data have been reported by Alwani and Schneider (ref 25) and Roof (ref 27) and are discussed in section 3 below.

In the toluene-water system the mutual solubilities are sufficiently low to enable data reported in w/v fractions (or equivalent) to be converted to mass percent solubilities with reasonable precision by assuming solution densities to be the same as the pure solvents. These conversions are given (continued next page)

COMPONENTS :	EVALUATOR:
(1) Toluene; C ₇ H ₈ ; [108-88-3] (2) Water; H ₂ O; [7732-18-5]	G.T. Hefter, School of Mathematical and Physical Sciences, Murdoch University, Perth, W.A., Australia.
	May 1986

CRITICAL EVALUATION: (continued)

in the Data Sheets and the data are included in this Evaluation. The data of Jaeger (ref 1), Booth and Everson (ref 8), Wing and Johnston (ref 13), Jones and Monk (ref 7) and Sada *et al.* (ref 36) given in v/v fractions have not been converted and so have been excluded from this Evaluation.

In the Tables which follow, values obtained by the Evaluator by graphical interpolation or extrapolation of the original measurements given in the Data Sheets are indicated by an asterisk (*). "Best" values have been obtained by simple averaging. The uncertainty limits (σ_n) attached to these values do not have statistical significance and should be regarded only as a convenient representation of the spread of values rather than as error limits. The letter (*R*) indicates "Recommended" data. Data are "Recommended" if two or more apparently reliable studies are in reasonable agreement (± 5% relative). All other data are regarded as "Tentative". For convenience, further discussion of this system will be divided into three parts.

1. THE SOLUBILITY OF TOLUENE (1) IN WATER (2)

The solubility of toluene in water has been investigated on numerous occasions (Table 1).

The large amount of data at 298K enables a particularly critical assessment of the reported values. Data have been rejected if they deviated significantly (> 3 σ_n) from the average value. Thus, at 298K, the value of Krasnoshchekova and Gubergrits (ref 34), which is markedly lower than all other values, and Bohon and Claussen (ref 11), Pierotti and Liabastre (ref 29), Korenman and Aref'eva (ref 41), Banerjee *et al.* (ref 43) and Schwarz (ref 44, 297K), which are higher, have all been rejected. The datum of Krzyzanowska and Szeliga (ref 42) has not been included in the Critical Evaluation because it does not appear to be independent of that of Price (ref 38).

At temperatures other than 298K, the data of Fühner (ref 2) and Uspenskii (ref 3) are markedly lower than all other values and are rejected. All other data are included in Table 2 except for the high temperature data which are discussed in section 3 below.

Agreement among the studies (ref 11,29,33,46,47) which report solubilities over a range of temperatures below 323K is disappointing (see Table 2 and Figure 1). For example, although the solubility data of Pierotti and Liabastre (ref 29) are usually markedly higher than Recommended values in well-characterised systems (e.g. benzene in water) their toluene results lie (continued next page)

COMPONENTS:	EVALUATOR:
(1) Toluene, C ₇ H ₈ ; [108-88-3] (2) Water; H ₂ O; [7732-18-5]	G.T. Hefter, School of Mathematical and Physical Sciences, Murdoch University, Perth, W.A., Australia.
	May 1986

CRITICAL EVALUATION: (continued)

within the range of values reported by other workers. Even the averaged "Best" solubilities, which usually show a smoother variation with temperature than individual data sets, show a good deal of scatter (e.g. compare Figure 1 with the analogous diagram for benzene and water).

TABLE 2: Recommended (R) and Tentative Values of theSolubility of Toluene (1) in Water (2)

т/к	Solubility values (± σ _n)		
	Reported values	"Best" va	lues
	10 ² g(1)/100g sln	10 ² (1)/100g sln	10 ⁴ <i>x</i> 1
273	6.60* (ref 11), 7.24 (ref 32)	6.9 ± 0.3	1.35
278	6.42* (ref 11), 6.36 (ref 29), 6.08* (ref 33)	6.3 ± 0.1	1.23
283	6.28* (ref 11), 6.32 (ref 29), 5.82* (ref 33), 5.24 (ref 46)	5.9 ± 0.4	1.15
293	6.18* (ref 11), 6.06 (ref 29), 5.67 (ref 33), 5.7 (ref 40), 5.45 (ref 46), 5.18* (ref 47)	5.7 ± 0.3	1.11
298	5.3 (ref 9), 5.00 (ref 10), 5.36 (ref 12), 5.38 (ref 18), 5.15 (ref 23), 5.47 (ref 31), 5.73 (ref 32), 5.20 (ref 35), 5.35 (ref 37), 5.54 (ref 39), 5.07 (ref 45), 5.57 (ref 46), 5.25 (ref 47), 5.19 (ref 48)	5.3 ± 0.2 (R)	1.04 (<i>R</i>)
303	5.7 (ref 5), 6.40 (ref 11), 6.5* (ref 29), 5.7* (ref 31), 5.73* (ref 46), 5.32* (ref 47)	5.9 ± 0.4	1.15
313	6.82* (ref 11), 6.7* (ref 29), 6.6* (ref 31), 6.12* (ref 46), 5.57 (ref 47)	6.4 ± 0.5	1.25
318	7.15* (ref 11), 6.72 (ref 29), 7.22 (ref 31), 6.35 (ref 46), 5.78 (ref 47)	6.6 ± 0.5	1.29
328	8.6 (ref 31)	8.6	1.68

COMPONENTS :	EVALUATOR:
(1) Toluene; C ₇ H ₈ ; [108-88-3] (2) Water; H ₂ O; [7732-18-5]	G.T. Hefter, School of Mathematical and Physical Sciences, Murdoch University, Perth, W.A., Australia. May 1986

CRITICAL EVALUATION: (continued)

TABLE 3: Thermodynamic Functions Calculated from Solubility Data

Reference	^{∆H} sln kJ mol-1	^{AC} p,sln J K-1 mol-1
Bohon and Claussen (ref 11)	2.3	292
Guseva and Parnov (ref 15,16)	35.3	-62
Pierotti and Liabastre (ref 29)	1.5	168
Brown and Wasik (ref 33)	4.7	590
Sanemasa <i>et al</i> . (ref 46)	3.7	160
Sanemasa <i>et al</i> . (ref 47)	2.1	181
"Best" values (Table 2)	1.7	566
Gill et al. (ref 38)	1.73 ± 0.04^{a}	263 ± 13^{α}

a Calorimetric data

2. THE SOLUBILITY OF WATER (2) IN TOLUENE (1)

A reasonable amount of data is available for the solubility of water in toluene over the temperature range 273-323K.

In spite of the difficulties of accurate analysis at the relatively low concentrations involved, the results are generally in good agreement and a number of "Best" values have been "Recommended" (Table 4).

Except for the low temperature (T < 313K) values of Tarassenkow and Poloshinzewa (ref 6,7) and the datum of Benkovski *et al*. (ref 26), which are markedly lower than all other values and are therefore rejected, all the available data are listed in Table 4. Selected data are also plotted in Figure 2 (on the next page but one).

COMPONENTS :		EVALUATOR:	İ
<pre>(1) Toluene (2) Water;</pre>	; C ₇ H ₈ ; [108-88-3] H ₂ O; [7732-18-5]	G.T. Hefter, School of Mathematical and Physical Sciences, Murdoch University, Perth, W.A., Australia. May 1986	
CRITICAL EVAL	UATION: (continued)	•	
TABLE 4: Recommended (R) and Tentative Values of the Solubility of Water (2) in Toluene (1)			
Т/К	Solub	oility values	
	Reported values	"Best" values (± σ _n)
	10 ² g(2)/100g sln	10 ² g(2)/100g sln	10 ³ <i>x</i> 2
273	2.74 (ref 20), 2.28 (ref 3	32) 2.5 ± 0.2	1.3
283	4.26 (ref 3), 3.35 (ref 4) 3.16 (ref 10)	, 3.6 ± 0.5	1.8
293	5.1* (ref 3), 4.50 (ref 4) 4.6 (ref 14), 4.60 (ref 20 4.7* (ref 28)	4.7 ± 0.2 (R)	2.4 (<i>R</i>)
298	5.6* (ref 3), 5.7 (ref 4), 5.4 (ref 19), 5.3* (ref 20 5.72 (ref 22), 5.60 (ref 2 5.45 (ref 28), 5.43 (ref 2	, 5.5 ± 0.1 (R) 0), 24), 32)	2.8 (<i>R</i>)
303	6.00 (ref 4), 6.15 (ref 20 6.15 (ref 28)	0), $6.1 \pm 0.1 (R)$	3.1 (<i>R</i>)
313	7.33 (ref 4), 7.3* (ref 6, 7.50 (ref 20)	,7), 7.4 ± 0.1 (R)	3.8 (<i>R</i>)
323	9.53 (ref 4), 10.2* (ref 6 9.65 (ref 20)	5,7), 9.8 ± 0.3 (R)	5.0 (R)
333	15.0* (ref 6,7)	15	7.7
343	21.0* (ref 6,7)	21	11
353	28.7* (ref 6,7)	29	15

Despite the relatively small differences between the data of Tarassenkow and Poloshinzewa (ref 6,7) and the "Best" values of Table 4 (see Figure 2 on next page), application of the van't Hoff equation yields quite different values for ΔH_{sln} (31 and 21 kJ mol⁻¹) and $\Delta C_{p,sln}$ (-24 and +239 J K⁻¹ mol⁻¹, respectively). Comparison with similar reactions (e.g. water in benzene: $\Delta H_{sln}=24$ kJ mol⁻¹ and $\Delta C_{p,sln}=99$ J K⁻¹ mol⁻¹) suggests the "Best" values may be more reliable.

FIGURE 2. Solubility of water in toluene: ref 6,7 (Δ , broken line); Table 3 "Best" values (\odot , full line).

3. MUTUAL SOLUBILITIES OF TOLUENE (1) AND WATER (2) AT ELEVATED PRESSURES Solubilities in the toluene + water system have been studied at higher than atmospheric pressure in a few publications but the system lacks a comprehensive study. Table 5 gives the range of conditions under which the system has been studied.

As can be seen there is little overlap between the various workers and a meaningful comparison cannot be made. The interested user is referred to the relevant Data Sheets for experimental solubilities. However, it should be noted that thermodynamic functions calculated from the data of Guseva and Parnov (ref 15,16) disagree markedly with other values and are unlikely to be correct.
COMPONENTS:	EVALUATOR:
(1) Toluene, C ₇ H ₈ ; [108-88-3] (2) Water; H ₂ O; [7732-18-5]	G.T. Hefter, School of Mathematical and Physical Sciences, Murdoch University, Perth, W.A., Australia. C.L. Young, Department of Physical Chemistry, University of Melbourne, Vic., Australia.
	May 1986

CRITICAL EVALUATION: (continued)

The phase behaviour of this system is similar to that of benzene + water. here are two critical loci, one starting at the critical point of water and eventually approaching high pressure. The second starts at the critical point of toluene and ends in a critical end point on a three phase line. The topology of the pressure -temperature projection is similar to that given for benzene + water except that the temperature at which the vapor pressures of the two pure components are equal is considerably lower than in the benzene + water system.

In the region above the three phase line on the pressure - temperature projection, the pressure is greater than the vapor pressure and then a maximum of two liquid phases is possible. There may be one or two liquid phases depending on the overall composition. To the left of the critical line starting at toluene it is possible to have one or two phases present depending on the overall composition.

Roof (ref 27) has determined the temperature and pressure of the critical end point in this system to be T = 558.1K, P = 10.10MPa.

Reference	p/MPa	Т/К	Solubility
Guseva and Parnov (ref 15,16) Connolly (ref 21) Alwani and Schneider (ref 25) Roof (ref 27) Bradley <i>et al</i> . (ref 31)	_a 15-45 _b _,100	363-497 553-583 _b _b 273-303	(1) in (2) (1) in (2) _b _b (1) in (2)
a Along three phase line b Critical point data only			
REFERENCES			
1. Jaeger, A. Brennst. Chem. <u>1923</u> , 4, 259.			
2. Fühner, H. Chem. Ber. <u>1924</u> , 57, 510-5.			
3. Uspenskii, S.P. Neft. Khoz.	<u>1929</u> , <i>17</i> ,	713-7.	
4. Rosenbaum, C.K.; Walton, J.H	. J. Am. (Chem. Soc. <u>19</u>	<u>30</u> , <i>52</i> , 3568-73.
5. Gross, P.M.; Saylor, J.H. J	. Am. Chem.	Soc. <u>1931</u> ,	53, 1744-51.
		(continued	next page)

 TABLE 5: Solubility Studies of the Toluene + Water

 System at Elevated Pressures

COMPONENTS: EVALUATOR: (1) Toluene; C₇H₉; [108-88-3] G.T. Hefter, School of Mathematical and Physical Sciences, Murdoch (2) Water; H₂O; [7732-18-5] University, Perth, W.A. Australia. May 1986 CRITICAL EVALUATION: (continued) REFERENCES (continued) 6. Tarassenkov, D.N.; Polozhinzeva, E.N. Zh. Obshch. Khim. 1931, 1, 71-9. Tarassenkov, D.N.; Polozhinzeva, E.N. Chem. Ber. 1932, 65, 184-6. 7. Booth, H.S.; Everson, H.E. Ind. Eng. Chem. 1948, 40, 1491-3. 8. 9. Andrews, L.J.; Keefer, R.M. J. Am. Chem. Soc. 1949, 71, 3644-77. 10. Klevens, H.B. J. Phys. Chem. 1950, 54, 283-98. 111. Bohon, R.L.; Claussen, W.F. J. Am. Chem. Soc. 1951, 73, 1571-8. 12. Morrison, T.J.; Billett, F. J. Chem. Soc. 1952, 3819-22. 13. Wing, J.; Johnston, W.H. J. Am. Chem. Soc. 1957, 79, 864-5. 14. Caddock, B.D.; Davies, P.L. J. Inst. Petrol. 1960, 46, 391-6. 15. Guseva, A.N.; Parnov, E.I. Radiokhimiya 1960, 5, 507-9. 16. Guseva, A.N.; Parnov, E.I. Vestn. Mosk. Univ. Khim. 1963, 18, 76-9. 17. Jones, J.R.; Monk, C.B. J. Chem. Soc. 1963, 2633-5. McAuliffe, C. Nature 1963, 200, 1092-3. 18. 19. Hoegfeldt, E.; Bolander, B. Ark. Kemi 1964, 21, 161-86. 20. Englin, B.A.; Plate, A.F.; Tugolukov, V.M.; Pyranishnikova, M.A. Khim. Tekhnol. Topl. Masel 1965, 10, 42-6. 21. Conolly, J.F. J. Chem. Eng. Data 1966, 11, 13-6. Johnson, J.R.; Christian, S.C.; Affsprung, H.E. J. Chem. Soc. A 1966, 77-8. 22. 23. McAuliffe, C. J. Phys. Chem. 1966, 70, 1267-75. 1967, 24. Gregory, M.D.; Christian, S.C.; Affsprung, H.E.; J. Phys. Chem. 71, 2283-9. 25. Alwani, A.; Schneider, G.M. Ber. Bunsenges. Phys. Chem. 1969, 73, 294-301. 26. Benkovski, V.G.; Nauruzov, M.H.; Bogoslovskaya, T.M. Tr. Inst. Khim. Nefti Prir. Solei Akad. Nauk Kaz. SSR 1970, 2, 25-32. **27.** Roof, J.G. J. Chem. Eng. Data. <u>1970</u>, 15, 301-3. Glasoe, P.K.; Schultz, S.D. J. Chem. Eng. Data 1972, 17, 66-8. **28**. Pierotti, R.A.; Liabastre, A.A. U.S. Nat. Tech. Inform. Serv., PB 29. Rep., 1972, No.21163. Price, L.C. Ph.D. Dissertation, 1973, University of California, **β**0. Riverside (U.S.A.); quoted in ref 47. B1. Bradley, R.S.; Dew, M.J.; Munro, D.C. High Temp. High Press. <u>1973</u>, 5, 169-76. (continued next page)

COMPO	DNENTS:	EVALUATOR:	
(1)	Toluene; C ₇ H ₈ ; [108-88-3]	G.T. Hefter, School of Mathematical	
(2)	Water; H ₂ O; [7732-18-5]	and Physical Sciences, Murdoch	
	-	University, Perth, W.A., Australia.	
		May 1986	
CRITI	CAL EVALUATION: (continued)		
REFE	REFERENCES (continued)		
32.	32. Polak, J.; Lu, B.C-Y. Can. J. Chem. <u>1973</u> , 51, 4018-23.		
33.	Brown, R.L.; Wasik, S.P. J. Res.	Natl. Bur. Stds. A <u>1974</u> , 78, 453-60.	
34.	34. Krasnoshchekova, R.Ya.; Gubergrits, M.Ya. Vodnye. Resursy. <u>1975</u> , 2, 170-3.		
35.	5. Mackay, D.; Shiu, W.Y. Can. J. Chem. Eng. <u>1975</u> , 53, 239-41.		
36.	6. Sada, E.; Kito, S.; Ito, Y. J. Chem. Eng. Data <u>1975</u> , 20, 373-5.		
37.	Sutton, C.; Calder, J.A. J. Chem	. Eng. Data <u>1975</u> , 20, 320-2.	
38.	38. Gill, S.J.; Nichols, N.F.; Wadso, I. J. Chem. Thermodyn. <u>1976</u> , 8, 445-52.		
39.	39. Price, L.C. Am. Assoc. Petrol. Geol. Bull. <u>1976</u> , 6, 213-44.		
40.	40. Korenman, I.M.; Aref'eva, R.P. USSR Patent 553 534, 1977. 04.05; C.A. 87:87654.		
41.	Korenman, I.M.; Aref'eva, R.P. Z	h. Prikl. Khim. <u>1978</u> , 51, 957-8.	
42.	Krzyzanowska, T.; Szeliga, J. Na	fta (Katowice) <u>1978</u> , 34, 413-7.	
43.	 Banerjee, S.; Yalkowski, S.H.; Valvani, S.C. Env. Sci. Technol. <u>1980</u>, 14, 1227-9. 		
44.	Schwarz, F.P. Anal. Chem. 1980,	52, 10-15.	
45.	Rossi, S.S.; Thomas, W.H. Env. S	ci. Technol. <u>1981</u> , 15, 715-6.	
46.	6. Sanemasa, I.; Araki, M.; Deguchi, T.; Nagai, H. Chem. Lett. <u>1981</u> , 225-8.		
47.	Sanemasa, I.; Araki, M.; Deguchi, <u>1982</u> , <i>55</i> , 1054-62.	T.; Nagai, H. Bull. Chem. Soc. Jpn.	
48.	Sanemasa, I.; Arakawa, S.; Araki, Jpn. <u>1985</u> , 57, 1539-44.	M.; Deguchi, T. Bull. Chem. Soc.	
1			

379

ACKNOWLEDGEMENT

The Evaluator thanks Dr Brian Clare for the graphics and Dr Marie-Claire Haulait-Pirson for valuable comments. Section 3 was written jointly with C. L. Young, Department of Physical Chemistry, University of Melbourne, Australia.

COMPONENTS :		ORIGINAL MEASUREMENTS:
(1) Toluene; C_H_; [108-88-3]		Jaeger, A.
(2) Water; H ₂ O; [7732-18-5]		Brennst. Chem. 1923, 4, 259.
VARIABLES:		PREPARED BY:
Temperature: 100-300°C		A. Maczynski
EVERDIMENTAL MALIEC.		
EXPERIMENTAL VALUES:		
S	olubility of to	luene in water
t	/°C	mL(1)/100 mL(2)
1	50	0.2
2	00	0.7
2	50	2.8
3	00	13.0
-		
AUXILIARY INFORMATION		INFORMATION
METHOD/APPARATUS/PROCEDURE: SOURCE AND PURITY OF MATERIALS:		SOURCE AND PURITY OF MATERIALS:
The solubility of (1)	in (2) was	(1) not specified
determined in sealed	glass tubes.	(1) not specified.
		(2) not specified.
		ESTIMATED ERROR.
		not specified.
		REFERENCES:

COMPONENTS :	ORIGINAL MEASUREMENTS:	
(1) Toluene; C ₇ H ₈ ; [108-88-3] (2) Water; H ₂ O; [7732-18-5]	Fuhner, H. Ber. Dtsch. Chem. Ges. <u>1924</u> , 57, 510-5.	
VARIABLES:	PREPARED BY:	
One temperature: 16°C	A. Maczynski, Z. Maczynska and A. Szafranski	
EXPERIMENTAL VALUES: The solubility of toluene in water at	- 16°C was reported to be	
0.047 g(1)/100 g sln. The corresponding mole fraction, x_{i} , calculated by the compilers		
is 9.2×10^{-5} .		
AUXILIARY INFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
In a stoppered volumetric cylinder, pipetted volumes or weighed amounts of (1) were added with shaking to 50, 100, or 1000 cm ³ (2) until a completely clear solution was no longer obtained at the experimental temperature.	 source not specified; commercial grade; used as received, not specified. 	
	ESTIMATED ERROR:	
	Not specified.	
	NET ENERGES :	

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Toluene; C ₇ H ₈ ; [108-88-3]	Uspenskii, S.P.
(2) Water; H ₂ O; [7732-18-5]	Neft. Khoz. <u>1929</u> , 11-12, 713-7.
VARIABLES:	PREPARED BY:
Temperature: 10 and 22°C	A. Maczynski and Z. Maczynska
EXPERIMENTAL VALUES:	
Solubility of tol	uene in water
t/°C g(1)/100	g sln $10^{5}x_{1}$ (compiler)
10 0.0368 ±	0.0002 7.20
22 0.0492 ±	0.0003 9.62
Solubility of wat	er in toluene
t/°C g(2)/100	$\frac{g \ sln}{2}$ (compiler)
10 0.0426 ±	0.0011 2.18
22 0.0526 ±	0.0016 2.68
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The solubility of (1) in (2) was	(1) source not specified:
determined by titration. The solubility of (2) in (1) was deter-	b.p. 109.8°C at 752 mm Hg,
mined by Clifford's (ref 1), method.	a_4^{22} 0.8636, a_4^{10} 0.8743.
vessel with a saturated solution of	(2) not specified.
and next the adsorbed (2) was	
weighed.	
	ESTIMATED ERROR:
	soly. see experimental values
	above.
	REFERENCES:
	1. Clifford, C.W. Ind. Eng. Chem. <u>1921</u> , 13, 628.

<pre>) Toluene; C₇H₈; [108-88-3]) Water, H₂O; [7732-18-5] [ABLES: mperature: 10-50°C] RIMENTAL VALUES:</pre> Rosenbaum, C.K.; Walton, C J. Am. Chem. Soc. 1939, 4 3568-73. PREPARED BY: A. Maczynski and Z. Maczyn
) Water, H ₂ O; [7732-18-5] J. Am. Chem. Soc. <u>1939</u> , 4 3568-73. RIMENTAL VALUES: J. Am. Chem. Soc. <u>1939</u> , 4 PREPARED BY: A. Maczynski and Z. Maczyn
IABLES: PREPARED BY: mperature: 10-50°C A. Maczynski and Z. Maczyn RIMENTAL VALUES: RIMENTAL VALUES:
mperature: 10-50°C A. Maczynski and Z. Maczyn RIMENTAL VALUES:
RIMENTAL VALUES:
Solubility of water in toluene
Solubility of water in toldene
$t/^{\circ}C$ g(2)/100 g (1) $10^{3}x_{2}$ (compile
10 0.0335 1.71
20 0.0450 2.30
30 0.0600 3.06
40 0.0733 3.74
50 0.0953 4.85

 SOURCE AND PURITY OF MATERIALS: (1) source not specified; purified by keeping over mercury, refluxing with phosphorus pentoxide and fractionating; b.p. range 110.4-110.6°C (760 torr). (2) not specified.
ESTIMATED ERROR: not specified.
not specified.
1

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Toluene; C ₇ H ₈ ; [108-88-3]	Gross, P.M.; Saylor, J.H.
(2) Water; H ₂ O; [7732-18-5]	J. Am. Chem. Soc. <u>1931</u> , 53,
	1/44-51.
VARIABLES:	PREPARED BY:
One temperature: 30°C	A. Maczynski and Z. Maczynska
EXPERIMENTAL VALUES:	
The solubility of toluene in water at	: 30°C was reported to be
0.57 g(1)/kg(2) and 0.0062 mol(1)/kg	2).
The corresponding mass percent and mo	ble fraction, x_{i} , calculated
by the compilers are $0.057 \text{ g}(1)/100 \text{ c}$	solution and 1.12×10^{-4} .
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Saturated solutions were prepared by shaking in a thermostat and	<pre>(1) Baker's CP analyzed grade; distilled;</pre>
were analyzed by means of an inter-	b.p. 110.74 ± 0.02°C
was a combination liquid and gas	(2) distilled.
interferometer made by Zeiss.	
	ESTIMATED ERROR:
	soly. 2.0% (from values of duplicate determinations)
1	REFERENCES:

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Toluene; C ₇ H ₈ ; [108-88-3] (2) Water; H ₂ O; [7732-18-5]	Tarassenkow, D.N.; Poloshinzewa, E.N. Ber. Dtsch. Chem. Ges. <u>1932</u> , 65B, 184-6.
VARIABLES: Temperature: (-9)-93°C	PREPARED BY: A. Maczynski and Z. Maczynska

EXPERIMENTAL VALUES:

Solubility of water in toluene			
t/°C	g(2)/100 g sln	$10^{3}x_{2}$ (compiler)	
-9	0.002	0.1	
-3.5	0.005	0.3	
10.5	0.020	1.0	
18	0.034	1.7	
30	0.053	2.7	
38.5	0.070	3.6	
48	0.097	4.9	
60.5	0.153	7.8	
68	0.201	10.2	
76	0.254	12.9	
84	0.312	15.8	
93	0.413	20.8	

AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Alexejew's method was used (ref l). No additional details were reported in the paper.	 Kahlbaum, CP; dried over calcium chloride and distilled from sodium; purity not specified. not specified.
	ESTIMATED ERROR:
	soly. ± 0.01% (not specified).
	REFERENCES:
	1. Alexejew, W. Wied. Ann. Physik <u>1886</u> , 28, 35.

386	37_300
COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Toluene; C ₇ H ₈ ; [108-88-3]	Booth, H.S.; Everson, H.E.
(2) Water; H ₂ O; [7732-18-5]	Ind. Eng. Chem. 1948, 40, 1491-3.
VARIABLES:	PREPARED BY:
One temperature: $25.0^{\circ}C$ (298.2 K)	G T Hefter
	G.I. Meiter
EXPERIMENTAL VALUES:	
The solubility of toluene in water at	25.0°C was reported to be 0.04 mL
(1)/100 mL (2).	
The solubility of (1) in 40.0% (w/w?)	aqueous sodium xylenesulfonate
solution was also reported to be 1.20	mL (1)/100 mL sulfonate sln.
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE •	SOURCE AND PURITY OF MATERIALS.
known welves of water twright	(1) "Wighost grade compareial comple
50 mL, was placed in a stoppered	available"; no other details
Babcock tube having a neck graduated	given.
from 0 to 1.6 mL in steps of 0.02 mL. An excess of solute was added and the	(2) Distilled.
mixture allowed to come to equili-	
brium in a constant temperature bath	
solute dissolved was determined by	
subtracting the undissolved solute,	
the total added.	
	ESTIMATED ERROR:
	Not specified.
	-
	DEPENDING
	NEFERENCES:

37 301

57_501	
COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Toluene; C ₇ H ₈ ; [108-88-3]	Andrews, L.J.; Keefer, R.M.
(2) Water; H ₂ O; [7732-18-5]	J. Am. Chem. Soc. <u>1949</u> , 71, 3644-77.
VARIABLES:	PREPARED BY:
One temperature: 25°C	A. Maczynski and Z. Maczynska
EXPERIMENTAL VALUES:	
The solubility of toluene in water at 0.053 g(1)/100 g sln.	: 25°C was reported to be
The corresponding mole fraction, x_1 , is 1.04 x 10^{-4} .	calculated by the compilers
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
A mixture of (1) and (2) was rotated for twenty hours in a constant temp- erature bath at 25°C. A sample (5- 20 mL) of the aqueous phase was with drawn and extracted with a measured volume of hexane (10-50 mL) by shak- ing in a glass-stoppered Erlenmeyer flask. Next, the absorbance of the hexane phase was measured against a hexane blank on the Beckman spectrophotometer.	 (1) Eastman Kodak Co. best grade; washed successively with con- centrated sulfuric acid, water, and dilute sodium hydroxide; dried, and distilled; b.p. 110.4°C. (2) not specified.
}	ESTIMATED ERROR:
	not specified.
	REFERENCES:

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Toluene; C ₇ H ₈ ; [108-88-3]	Klevens, H.B.
(2) Water; H ₂ O; [7732-18-5]	J. Phys. Chem. <u>1950</u> , 54, 283-98.
VARIABLES:	PREPARED BY:
Temperature: 25°C	M.C. Haulait-Pirson
EXPERIMENTAL VALUES:	
The solubility of toluene in water at 25°C was reported to be 0.500 g(1) dm ⁻³ sln and 0.00543 mol(1) dm ⁻³ sln. The corresponding mass percent and mole fraction, x_1 , calculated by the compiler assuming a solution density of 1.00 g/mL are 0.05 g(1)/100 g sln and 9.80 x 10 ⁻⁵ .	
<u>}</u>	
AUXILIARY INFORMATION	
The solubility of (1) in (2) was determined by shaking small amounts of (1) in 1 liter of (2) for as long as three months. Aliquots were removed and concentrations deter- mined by spectra.	(1) not specified. (2) not specified.
	ESTIMATED ERROR:
	not specified.
	REFERENCES:

|--|

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Toluene; C ₇ H _o ; [108-88-3]	Bohon, R.L.; Claussen, W.F.
(2) Water; H ₂ O; [7732-18-5]	J. Am. Chem. Soc. 1951, 73, 1571-8.
2	
VARIABLES:	PREPARED BY:
Temperature: 0.4-45.3°C	G.T. Hefter
EXPERIMENTAL VALUES:	
Solubility of 5	Coluene in water
t/°C g(1)/10	$\log \operatorname{sln}^a$ $10^4 x_1$
(com)	piler) (compiler)
0.4 0.0	0658 1.29
	0646 1.26 1628 1.23
11.2 0.0	1.22
25.0 0.0	1.21 1.23^{b}
25.6 0.0	1.22
30.2 0.0	1.25 0642 1.25
35.2 0.0	1.28
42.8 0.0	0717 1.40
measurements. Solubilities were calculated by the compiler using the Beer-Lambert law, the stated cell path-length (1 cm) and the authors' "extinction coefficients" (absorptivities) and corrected optical densities. This gave a solubility of g(1)/L sln which was then converted to g(1)/100g sln by assuming a solution density of 1.00 kg/L.	
Given in the original paper as U.62/g(1)/L Sin.	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
A round-bottomed flask containing about 4 mL of (1) and 400 mL of (2)	(1) Phillips Petroleum Co., 99+%, used as received.
was evacuated, suspended in a thermostat, shaken for 24h and then allowed to settle for at least another 24h. Next, desired quantities of the water layer were syphoned into 6 glass-stoppered Erlenmeyer flasks. These 6 flasks had previously been tared, partially filled with a suitable amount of diluent water, and reweighed. Weighed portions of	(2) Air-free conductivity water, no further details given.
the samples were inserted into a guartz cuvette and measured in a	ESTIMATED ERROR:
Beckman DU spectrophotometer.	Soly. ±0.5% relative
Absorbances were corrected for adsorption of (1) onto the walls	
of the cuvette.	REFERENCES :

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Toluene; C ₇ H ₈ ; [108-88-3]	Morrison, T.J.; Billett, F.
(2) Water; H ₂ O; [7732-18-5]	J. Chem. Soc. <u>1952</u> , 3819-22.
VARIABLES:	PREPARED BY:
One temperature: 25°C	A. Maczynski
EXPERIMENTAL VALUES:	
The solubility of toluene in water at 25°C was reported to be 0.00582 mol(1)/1000 g(2). The corresponding mass percent and mole fraction, x_1 , calculated by compilers are 0.0536 g(1)/100 g sln and $x_1 = 1.05 \times 10^{-4}$. The compiler's calculations assume a solution density of 1.00 g/mL.	
AUXILIARY INFORMATION	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
After an excess of (1) had been shaken with about 1 dm ³ of (2) for about a week, a known volume of saturated solution was made slightly alkaline, and a stream of pure air passed through to drive off the (1). After passage through a silica tube packed with cupric oxide and heated to redness, the (2) was removed by concentrated sulfuric acid and calcium chloride and the carbon dioxide absorbed and weighed in soda-asbestos. The precautions usual in organic combustions were taken.	 (1) source not specified; purest obtainable material; distilled; purity not specified. (2) not specified. (2) not specified. (2) not specified.
	REFERENCES:

37_305	391
COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Toluene; C ₇ H ₈ ; [108-88-3]	Wing, J.; Johnston, W.H.
(2) Water; H ₂ O; [7732-18-5]	J. Am. Chem. Soc. <u>1957</u> , 79, 864-5.
VARIABLES:	PREPARED BY:
One temperature: 25°C	A. Maczynski and Z. Maczynska
EXPERIMENTAL VALUES:	
The solubility of water in toluene at 25°C was reported to be 0.0334 mL(2)/100 mL sln.	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
A small amount of (2) was equi- librated with 20 mL of (1) using a Teflon stirrer in a 100 mL flask in a Sargent constant temperature bath. At the end of two hours, the mixture was poured into a test tube immersed in the bath and the organic phase separated from water by gra- vitation. The determination of THO in the organic phase was done by isotopic dilution with a large excess of H_2O . The tritium activ- ities in the tritiated water samples were determined by the acetylene	 (1) source not specified, chemical grade; redistilled in a column of 50 theoretical plates; purity not specified. (2) Tracerlab, Inc., tritiated water with an activity of approximately 1 μCi/mL. ESTIMATED ERROR: temp. ± 0.02 K
method described in ref 1.	soly. 0.8% (st. dev. from 5 deter- minations).
	<pre>kefekences: L. Wing, J; Johnson, W.H. Science <u>1955</u>, 121, 674.</pre>

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Toluene; C ₇ H ₈ ; [108-88-3]	Caddock, B.D.; Davies, P.L.
(2) Water; H ₂ O; [7732-18-5]	J. Inst. Petrol. <u>1960</u> , 46, 391-6.
VARIABLES:	PREPARED BY:
One temperature: 20°C	A. Maczynski
EXPERIMENTAL VALUES:	
The solubility of water in toluene at 20°C was reported to be 46 mg(2)/100 g(1).	
The corresponding mass percent and mo	le fraction, x ₂ , calculated
by the compiler are 0.046 g(2)/100 g	sln and 0.0023.
AUXILIARY INFORMATION	
	CONDER AND DIDTTY OF MATERIALS.
netrod/Arrakatos/recebore:	SOURCE AND FURITI OF MATERIALS:
A sample of (1) was equilibrated	(1) not specified.
ing a known amount of water vapor	(2) not specified.
tagged with HTO. At equilibrium a sample of (1) was taken and its (2)	
content determined by liquid scin-	
tillation counting.	
	ESTIMATED ERROR:
	temp. ± 0.01 K
	REFERENCES:
1	

COMPONENTS: (1) Toluene; C7H8; [108-88-3] ORIGINAL MEASUREMENTS: (2) Water; H20; [7732-18-5] Guseva, A.N.; Parnov, E.I. Vestn. Mosk. Univ. Khim 1963, 18, 76-9. Radiokhimiya 1963, 5, 507-9. VARIABLES: Temperature: 90-224°C

EXPERIMENTAL VALUES:

Solubility of toluene in water

g(l)/100 g sln	$10^3 x_1$ (compiler)
0.42	0.83
0.823	1.619
1.640	3.248
2.387	4.737
2.790	5.579
4.113	8.314
5.072	10.336
	g(l)/100 g sln 0.42 0.823 1.640 2.387 2.790 4.113 5.072

AUXILIARY INFORMATION	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The measurements were made in sealed glass tubes. No details were reported in the paper.	(1) source not specified; n _D ²⁰ 1.4970.
	(2) doubly distilled.
	ESTIMATED ERROR:
	not specified.
	REFERENCES:

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Toluene; C ₇ H ₈ ; [108-88-3]	Jones, J.R.; Monk, C.B.
(2) Water; H ₂ O; [7732-18-5]	J. Chem. Soc. <u>1963</u> , 2633-5.
VARIABLES:	PREPARED BY:
Temperature: 25-35°C	A. Maczynski, Z. Maczynska and A. Szafranski

EXPERIMENTAL VALUES:

Solubility of w	ater in toluene
t/°C	10 ⁴ mL(2)/mL(1)
25	4.0
30	4.8
35	5.9

AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: In a thermostatted glass-stoppered flask 10-25 mL(1) was shaken for min 4 hrs with tritiated water (a few mL of HTO equivalent to ca. 2 mc/mL) and decanted. A 5-mL aliquot was reshaken for 4 hrs with 5 mL H ₂ O in a 10-mL flask, sampled and assayed with a Nuclear Enter- prises type 8301 liquid scintilla- tion counter. The two-stage process	 SOURCE AND PURITY OF MATERIALS: (1) 'AnalaR' grade; repurified by conventional methods, ref 1. (2) not specified.
eliminates quenching effects (due to solvent) on the scintillator.	ESTIMATED ERROR: soly. ± 5% to ± 1% (average deviation)
	REFERENCES: 1. Vogel 'Practical Organic Chemistry', Longmans, Green and Co., London, 1956.

COMPONENTS:	OPTOTNAL MEASUREMENTS .
(1) Toluene; C ₇ H _o ; [108-88-3]	McAuliffe, C.
(2) Water; H ₂ O; [7732-18-5]	Nature (London) <u>1963</u> , 200, 1092-3.
2	
VARIABLES:	PREPARED BY:
One temperature: 25°C	A. Maczynski and Z. Maczynska
EXPERIMENTAL VALUES:	
The solubility of toluene in water at to be 0.0538 g(1)/100 g sln. The corresponding mole fraction, x_1 , is 1.05 x 10 ⁻⁴ .	25°C was reported calculated by the compilers
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The saturated solution of (1) in (2) was prepared by either shaking vigorously on a reciprocal shaker or stirring for several days with a magnetic stirrer. A 0.05 mL or 0.10 mL sample of the hydrocarbon-saturated water was injected directly into a gas liquid chromatograph.	 (1) Phillips Petroleum Co.; 99+%; used as received. (2) distilled.
	ESTIMATED ERROR:
	soly. 0.0017 (standard deviation of mean)
	REFERENCES :

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Toluene; C ₇ H ₈ ; [108-88-3]	Hoegfeldt, E.; Bolander, B.
(2) Water; H ₂ O; [7732-18-5]	Ark. Kemi, <u>1964</u> , 21, 161-86.
-	
VARIABLES:	PREPARED BY:
One temperature: 25°C	A Maczunski and 7 Maczunska
	A. Maczyński ana z. Maczyńska
EXPERIMENTAL VALUES:	
The solubility of water in toluene water	as reported to be
$0.026 \text{ mol}(2) \text{ dm}^{-3} \text{ sln.}$	
The corresponding mass percent and mag	ol fraction, x ₂ , calculated
by the compilers are 0.054 g(2)/100 g	g sln and 2.8 x 10^{-3} .
The assumption that $1 \text{ dm}^3 \text{ sln} = 862$	g sln was used in the calculation.
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The water determination was	(1) Kebo; purity 99.0%; used as
carried out according to Johansson's modification of	received.
the Karl Fischer titration	(2) not specified.
	temp + 0.3 K
	soly. ± 0.001 mol(2) dm ⁻³ sln (type of error not specified)
	REFERENCES:
	 Hardy, C.J.; Greenfield, B.F.; Scargill, D.
	J. Chem. Soc. <u>1961</u> , 90.
	<i>Sv. Papperstidn.</i> <u>1947</u> , 11B, 124.

37 311

COMPONENTS: ORIGINAL MEASUREMENTS: (1) Toluene; C₇H₈; [108-88-3] Englin, B.A.; Plate, A.F.; Tugolukov, V.M.; Pryanishnikova, M.A. (2) Water; H₂O; [7732-18-5] Khim. Tekhnol. Topl. Masel 1965, 10, 42-6. VARIABLES: PREPARED BY: Temperature: 0-50°C A. Maczynski and Z. Maczynska **EXPERIMENTAL VALUES:** Solubility of water in toluene $10^3 x_2$ (compiler) t/°C g(2)/100 g sln 0 0.02704 1.382 10 0.0316 1.61 20 0.0460 2.35 30 0.0615 3.14 40 0.0750 3.82 4.92 50 0.0965 AUXILIARY INFORMATION SOURCE AND PURITY OF MATERIALS: METHOD/APPARATUS/PROCEDURE: Component (1) was introduced into a (1) not specified. thermostatted flask and saturated for (2) not specified. 5 hr. with (2). Next, calcium hydride was added and the evolving hydrogen volume measured and hence the concentration of (2) in (1) was evaluated. ESTIMATED ERROR: Not specified. **REFERENCES:**

				3/_312
COMPONENTS :		ORIGINAL MEASUREMENTS:		
(1) Toluene; C ₇ H ₈ ; [108-88-3]		Connolly, J.F.		
(2) Water; H ₂ O; [7732-18-5]		J. Chem. Eng. Do	ata <u>1966</u> , <i>11</i> , 13-6.	
VARIABLES:			PREPARED BY.	
Temperatur	e: 280-310°	°C	A. Maczynski and	2. Maczynska
- Pressure:	150-600 atm	n	······································	· · · · · · · · · · · · · · · · · · ·
EXPERIMENTAL	VALUES:			
	Sc	olubility of tol	uene in water	
t∕°C	p/atm	p/MPa	g(l)/100 g sln	<i>x</i> ,
		(compiler)		(compiler)
280	150	15	6.8	0.0141
	250	25.3	6.8	0.0141
	410	41.5	6.6	0.0136
	600	60.8	5.8	0.0119
300	170	17.2	14.2	0.0313
	250	25.3	14.1	0.0311
305	160	16 2	14.0	0.0308
505	180	18.2	19.0	0.0438
	200	20.3	19.5	0.0452
	250	25.3	19.0	0.0438
	285	28.9	18.0	0.0411
310	145	14.7	18.0	0.0411
	150	15.2	19.6	0.0455
	155	15.7	21.7	0.0514
	105	10.7	23.9	0.0578
	175	17.2	20.7	0.0590
	180	18.2	33.1	0.0882
	180	18.2	36.3	0.1002
	270	27.3	50.5	0.1663
	265	26.9	48.6	0.1560
				(continued)
		AUXILIARY	INFORMATION	
METHOD/APPARA	TUS/PROCEDURE:		SOURCE AND PURITY O	F MATERIALS:
Measurement	ts were carr	ied out in a	(1) Phillips rea	igent grade;
cell was lo	baded with 1	5 q (2) and	used as rece	ved.
brought to	temperature	. Mixing was		20041
started and	d (l) was in	jected until	(2) distilled an	nd deaerated.
either a cl	loud or a sm	all droplet		
of a second	d phase appe	eared at the		
top of the	cell. Then	mercury was		:
injected to	change pre	ssure, more		
(1) was in	jected and t	ne measure-		
ment was re	speareu.		FSTIMATED EPDOD.	
			tomp $\pm 0.02 V$	
			$\frac{1}{10002}$	1.
			PEESSULE I 2 dth	1.
			AEFERENCED;	

COMPONENTS:

ORIGINAL MEASUREMENTS:

(1) Toluene; C ₇ H ₈ ; [108-88-3]	Connolly, J.F.
(2) Water; H ₂ O; [7732-18-5]	J. Chem. Eng. Data <u>1966</u> , 11, 13-6.

Solubility of toluene in water

t∕°C	p/atm	p/MPa	g(l)/100 g sln	×1
		(compiler)		(compiler)
310	260 260 260 260 260	26.3 26.3 26.3 26.3 26.3	46.5 44.3 41.9 39.2 36.3	0.1452 0.1346 0.1236 0.1119 0.1002
510	275 295 325 405 455	20.3 27.9 29.9 32.9 41.0 46.1	29.6 26.7 23.8 19.5 11.0	0.0882 0.0759 0.0665 0.0575 0.0452 0.0411

COMPONENTS :	ORIGINAL MEASUREMENTS:	
(1) Toluene; C ₇ H ₈ ; [108-88-3] (3) Water; H ₂ O; [7732-18-5]	Johnson, J.R.; Christian, S.D.; Affsprung, H.E. J. Chem. Soc. A. <u>1966</u> , 77-8.	
VARIABLES:	PREPARED BY:	
One temperature: 25°C	A. Maczynski and Z. Maczynska	
EXPERIMENTAL VALUES: The solubility of water in toluene at 25°C was reported to be 0.0274 mol(2) dm ⁻³ sln. The corresponding mass percent and mole fraction, x_2 , calculated by the compilers are 0.0572 g(2)/100 g sln and 2.92 x 10 ⁻³ . The assumption that 1 dm ³ sln = 862 g sln was used in the calculation.		
AUXILIARY	INFORMATION	
	SOURCE AND PURITY OF MATERIALS.	
The apparatus described in ref 1 was used without modification. Samples were equilibrated in a constant-temperature water-bath maintained at 25 ± 0.1°C. Water solubilities were determined by using a Beckman Model KF-3 Aquameter.	 (1) source not specified; certified or reagent grade; distilled through a 30-plate Oldershaw column. (2) not specified. 	
	ESTIMATED ERROR:	
	<pre>temp. ± 0.1 K soly. ± 0.0005 mol(2) dm⁻³ sln (type of error not specified) REFERENCES: 1. Christian, S.P.; Affsprung, H.E.; Johnson, J.R.; Worley, J.D. J. Chem. Educ. <u>1963</u>, 40, 419.</pre>	

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Toluene; C ₇ H ₈ ; [108-88-3]	McAuliffe, C.
(2) Water; H ₂ O; [7732-18-5]	J. Phys. Chem. <u>1966</u> , 70, 1267-75.
VARIABLES:	PREPARED BY:
One temperature: 25°C	A. Szafranski
EXPERIMENTAL VALUES:	
The solubility of toluene in water at to be 515 $g(1)/10^6 g(2)$. The corresponding mass percent and moby the compilers are 0.0515 $g(1)/100$	25°C was reported ble fraction, x_1 , calculated g sln and 1.01 x 10 ⁻⁴ .
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
In a 250-mL bottle, 10-20 mL of (1) was vigorously shaken for 1 hr, or magnetically stirred for 1 day, with 200 mL of (2) at 25°C. The bottle was set aside for 2 days to allow droplets of undissolved (1) to separate. Absence of emulsion was checked microscopically. A sample of the hydrocarbon-saturated water was withdrawn with a Hamilton syringe and gas liquid chromato- graphed in conjunction with a flame- ionization detector.	 (1) Phillips Petroleum or Columbia Chemical; used as received. (2) distilled. ESTIMATED ERROR: temp. ± 1.5 K soly. 17 g(1)/10⁶ g(2) (standard deviation of mean) REFERENCES:

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Toluene; C ₇ H ₈ ; [108-88-3]	Gregory, M.D.; Christian, S.D.; Affsprung, H.E.
(2) Water; H ₂ O; [7732-18-5]	T Phys Cham 1967 21 2282-0
	5. Frigs. Chem. <u>1907</u> , 71, 2263-9.
VARIABLES :	PREPARED BY:
One temperature: 25°C	A. Maczynski and Z. Maczynska
EXPERIMENTAL VALUES:	
The solubility of water in toluene at 0.0268 mol(2) dm ⁻³ sln.	25°C was reported to be
The corresponding mass percent and me	le fraction m calculated
by the compilers are $0.0560 \text{ g}(2)/100$	$q sln and 2.86 \times 10^{-3}$.
The accumption that $1 dm^3 cln = 963 c$	all was used in the coloulation
The assumption that I dm $\sin = 863$ g	sin was used in the calculation.
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
A solution of (2) in (1) was ob-	(1) source not specified, reagent
tained using solute isopiestic	grade; fractionally distilled
Water concentration was determined	using a 30-plate Oldershaw,
with a Beckman KF-3 aquameter by	(2) not specified.
the kall fischel analysis.	
	ESTIMATED ERROR:
	temp. ± 0.05 K
	• • • • • •
	REFERENCES
J	1. Christian, S.D.; Affsprung,
	H.E.; Johnson, J.R.; Warley,
	40, 419.

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Toluene; C ₇ H ₈ ; [108-88-3] (2) Water; H ₂ O; [7732-18-5]	Benkovski, V.G.; Nauruzov, M.H.; Bogoslovskaya, T.M. Tr. Inst. Khim. Nefti Prir. Solei Akad. Nauk Kaz. SSR <u>1970</u> , 2, 25-32.
VARIABLES:	PREPARED BY:
One temperature: 303 K	A. Maczynski
EXPERIMENTAL VALUES:	
The solubility of water in toluene at 0.0273 g(2)/100 g sln. The corresponding mole fraction, x_2 , is 0.0739.	303 K was reported to be value calculated by compiler
AUXILIARY	INFORMATION
I METHOD /APPARATUS / PROCEDURE :	
Equal volumes of (1) and (2) were placed in a glass cylinder and periodically shaken for 6 h, then sampled and analyzed by the Karl Fischer method.	(1) source not specified; purified; purity not specified.(2) distilled.
	ESTIMATED ERROR: Not specified REFERENCES:

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Toluene: C_H_: [108-88-3]	Glasoe, P.K.: Schultz, S.D.
(2) Water: H_O: [7732-18-5]	J. Chem. Eng. Data. 1972. 17. 66-8.
(2) "accel, "20" (") of 20 0]	
VARIABLES:	PREPARED BY:
Temperature: 15-30°C	A. Maczynski and Z. Maczynska
EXPERIMENTAL VALUES:	
Solubility of w	ator in toluono
Solubility of w	(a) (a) (a) (a) (a) (a) (a) (a) (a) (a)
$t/^{2}$ m^{-3} alm	$g(2)/100 g sln = 10^{\circ} x_2$
	(compiler) (compiler)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0413 2.11 0.0545 2.78
30 0.0293 ± 0.0004	0.0615 3.14
The compilers calculations as	sume a solution density of
0.862 g/mL.	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Dried (1) was saturated with (2) by allowing it to stand in contact with	(1) source not specified;reagent grade; purified by
(2) in a closed system, protected from atmospheric moisture.	distillation and dried over
mbia tuo-phogo guator una kont in a	(2) distilled in a purey system
pyrex storage bottle which was	(2) distilled in a pyrex system.
immersed in a constant temperature water bath.	
The concentration of (2) in (1) was	ESTIMATED EDDOD.
determined by the Karl Fischer method.	ESTIMIED ERROR.
	soly. as indicated above. (type of error not specified)
	REFERENCES:

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Toluene; C ₇ H ₈ ; [108-88-3]	Pierotti, R.A.; Liabastre, A.A.
(2) Water; H ₂ O; [7732-18-5]	"Structure and properties of water solutions." U.S. Nat. Tech. Inform. Serv., PB Rep., <u>1972</u> , No. 21163, 113 p.
VARIABLES:	PREPARED BY:
Temperature: 278.16-318.46 K	M.C. Haulait-Pirson
EXPERIMENTAL VALUES:	
Solubility of tolue	ne (2) in water (1)
<u>т/к</u> g(l)/100	g sln $10^3 x_1$
278.16 0.06357 ±	0.0017 0.1243
283.06 0.06324 ±	0.0016 0.1236
293.06 0.06606 ±	0.0018 0.1292
298.16 0.06299 ±	0.0013 0.1232
308.26 0.06721 ±	0.0011 0.1314
318.46 0.06717 ±	0.0020 0.1313
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
10 mL of (2) were placed along with 4-10 drops of (1) in 10 mL serum bottles, which were then tightly capped, and placed in the rotating basket and rotated for 24 hours. The bottles were then hand shaken to remove (1) droplets from the stoppers and then replaced in the bath with the tops down for an additional 24 hours. The solute	 (1) Fisher Scientific Co., Chromatoquality; 99+mole%; used as received. (2) laboratory distilled water.
concentrations were determined by	
chromatograph. Many details about equipment, operating conditions and calculation are given in the paper.	ESTIMATED ERROR: soly.: standard deviation from at least 15 measurements are given above.
	REFERENCES :

COMPONENTS :		ORIGINAL MEASUREMENTS:			
(1) Toluene; C ₇ H ₈ ; [108-88-3]		Bradley, R.S.; Dew, M.J.; Munro, D.C.			
(2) Water; 1	H ₂ O; [7732-18	-5]	High Temp	. High Press.	<u>1973</u> , 5, 169-76.
VARIABLES:			PREPARED BY	<i>:</i>	
Temperature Pressure:	: 25-55°C 1-1200 bar		G.T. He:	fter	
EXPERIMENTAL VA	ALUES:				
	S	olubility of	toluene in	n water	
t/°C	p/bar ^b	- mol/L sln	g(1)/10	0g sln ^a	$10^4 x_1^a$
			(compi	ler)	(compiler)
25	1	0.00595	0.0	547	1.07
45	1	0.00785	0.0	722	1.41
55	1000	0.0094	0.0	86	
55	1000	0.0131	0.1	21	2.37
	1000				
^a Assuming a	solution den	sity of 1.00k	g/L at al:	l temperatu:	res and pressures.
b_1 bar = 0.	1 MPa exactly				
					D
Data at othe	er pressures	are presented	in graph	ical form.	Data are also
at various	temperatures	and pressures	n aqueous	SOTUCIONS (51 Agno_3 and 103
	comperatures	und pressures	•		
		AUXILIARY	INFORMATION	1	
METHOD/APPARATO	JS/PROCEDURE:		SOURCE AND	PURITY OF MAT	TERIALS :
The solubil room temper	ity of (1) in ature and pre	(2) at ssure was	(1) Not	specified	
determined cuvette play	in a stoppere ced in a Unic	d 1mm silica am SP500	(2) Dis	tilled, air•	-free
spectrophot	ometer and st	irred		,	
magneticall	y. Measureme	ents were			
made until	a constant co	ncentration			
was reached	. The value	was cross-			
saturated s	olution which	had been			
equilibrate	d for some mo	nths.			
			ESTIMATED	ERROR:	
Solubilitie	s at higher t	emperatures			
and pressur	es were simil	arly	Not spe	cified	
determined	in a special	cell fitted			
details of	the apparatus	are given			
in the pape	r.	ary green	REFERENCES	:	

J/ J/1	37	321
--------	----	-----

COMPONENTS					
COMPONENTS:		ORIGINAL MEASUREMENTS:	ORIGINAL MEASUREMENTS:		
(1) Toluene	; C ₇ H ₈ ; [108-88-3]	Polak, J.; Lu, B.CY.	Polak, J.; Lu, B.CY.		
(2) Water;	H ₂ O; [7732-18-5]	Can. J. Chem. <u>1973</u> , 51, 4018-23.			
1					
VARIABLES:		PREPARED BY:			
Temperature	: 0-25°C	A. Maczynski and Z. Maczynska			
EXPERIMENTAL V	ALUES:				
	Solubility of t	oluene in water			
+/°C	ma(1)/ka(2)	$(1)/(100 \text{ g s})$ 10^4 m			
		(compiler) (compiler)			
0(a)	724(c)	0.0724 1.42			
25 (b)	573(c)	0.0573 1.12			
	Solubility of w	ater in toluene			
+/*0	ma(2)/ka(1)	$(2)/100 \ g \ sln \qquad 10^3$			
		(compiler) (compiler)			
0(a)	228 (d)	0.0228 1.17			
25 (b)	543(e)	0.0543 2.77			
a-e "					
see "EST	IMATED ERROR"				
l			_		
	AUXILIAR	Y INFORMATION			
METHOD/APPARATI	JS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	Ť		
Approximate	ly 50 mL of (1) together	(1) Matheson, Coleman and Bell,			
with (2) we	re placed in a 125 mL	spectroquality grade reagent;			
Hypo-vial which was closed with a teflon coated rubber septum and		shaken three times with distilled water			
placed in a constant-temperature					
water bath. The system was stirred magnetically for 24 br and left in		(2) distilled.			
the bath for 3 days or was kept in					
the bath wi	thout stirring for 7				
for analysis.					
The solubility of water in the organic layer was determined by Karl Fischer titration and the solubility of hydrocarbon in the water layer was determined by gas		ESTIMATED ERROR:	٦		
		temp. (a) \pm 0.02 K, (b) \pm 0.01 K solv. (c) \pm 1.78. (d) \pm 4.79			
		(e) \pm 3.1% (from two or three			
chromatography.		REFERENCES:			
]					

COMPONENTS:	ORIGINAL MEASUREMENTS:	
(1) Toluene: C_7H_8 ; [108-88-3]	Brown, R.L. Wasik, S.P.	
(2) Water: H_00 : $[7732-18-5]$	BLOWN, R.L.; WASIK, S.P.	
	J. Res. Natl. Bur. Stas. <u>1974</u> , 78,	
	453-60.	
VARIABLES:	PREPARED BY:	
Temperature: 4.5-20.1°C	G.T. Hefter	
(277.7-293.3 К)		
EXPERIMENTAL VALUES:		
Solubility of toluene in water:		
t/°C g(l)/100 g sl:	n^a 10 ⁴ x_1 (compiler)	
4.5 0.0612 ± 0.00	1.20	
6.3 0.0601 ± 0.00	1.18	
7.1 0.0586 ± 0.00	1.15	
9.0 0.0587 + 0.00	1.15	
	1 1 2	
	1.13	
$20.1 0.0566 \pm 0.003$	1.11	
AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS.	
Solubilities were calculated from partition coefficient measurements for the hydrocarbon between an aqueous solution and its vapor using headspace chromatography The apparatus and the method of	 (1) 99.99 mole per cent purity; source and methods of purifi- cation not specified. (2) Distilled. 	
obtaining the partition coefficients are described in detail in the paper. Basically, the hydrocarbon was intro- duced as a vapor (to avoid emulsifi- cation) into a glass equilibration cell containing about 45 cm ³ of water		
The vapor was subsequently analysed	ESTIMATED ERROR:	
by gas chromatography using He as the	Temperature: ±0.01°C	
are discussed in detail although the	Solubility: see Table above	
source of vapor pressure data used	DEFEDENCIC.	
given.		
-		
1		

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Toluene; C ₇ H ₈ ; [108-88-3]	Krasnoshchekova, R.Ya.; Gubergrits, M.Ya.
(2) Water; H ₂ O; [7732-18-5]	Vodnye. Resursy. <u>1975</u> , 2, 170-3.
VARIABLES :	PREPARED BY:
One temperature: 25°C	A Maggungki
	A. Maczynski
EXPERIMENTAL VALUES:	
The solubility of toluene in water at	25°C was reported to be
$0.220 \text{ mg}(1) \text{ cm}^{-3} \text{ sln.}$	
The corresponding mass percent and mo	ble fraction, x_1 , calculated
by the compiler are 0.022 g(1)/100 g	sln and 4.3×10^{-5} .
The compiler's calculations assume a	solution density of 1.00 g/mL.
-	
AUXILIARY	INFORMATION
METHOD / APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
The solubility of (1) in (2) was	(1) described in ref (1).
determined by glc. A Czech-made Chrom-2 chromatograph	(2) distilled.
was used, equipped with a 5% Apiezon	(-,
L/Chromosorb G column operated at	
90-140 C.	
	ESTIMATED EKKUK:
	temp. ± 1 K
	REFERENCES :
	1. Krasnoshchekova, P.Ya.; Gubergritz, M.Ya. Neftekhimiya <u>1973</u> , 13, 885.

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Toluene; C ₇ H ₈ ; [108-88-3]	Mackay, D.; Shiu, W.Y.
(2) Water; H ₂ O; [7732-18-5]	Can. J. Chem. Eng. <u>1975</u> , 53, 239-41.
VARIABLES:	PREPARED BY:
One temperature: 25°C	M.C. Haulait-Pirson
EXPERIMENTAL VALUES:	
The solubility of toluene in water at 0.5195 g(1) dm ⁻³ . The corresponding mass percent and mo by the compiler are 0.05195 g(1)/100 The compiler's calculations assume a	25°C was reported to be the fraction, x_1 , calculated g sln and 1.015 x 10 ⁻⁴ . solution density of 1.00 g/mL.
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The solubility of (1) in (2) was determined by gas chromatography. The gas chromatograph was Hewlett- Packard Model 5750 equipped with a hydrogen flame ionization detector. Many details are given in the paper.	 Phillips Petroleum Co.; research grade; 99.9+%; used as received. not specified.
	ESTIMATED ERROR:
	temp. \pm 0.1 K soly. \pm 0.0096 g(1) dm ⁻³
	REFERENCES:

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Toluene; C ₇ H ₈ ; [108-88-3]	Sada, E.; Kito, S.; Ito, Y.
(2) Water; H ₂ O; [7732-18-5]	J. Chem. Eng. Data <u>1975</u> , 20, 373-5.
VARIABLES:	PREPARED BY.
One temperatures 25°C	h Magnungki
one temperature. 25 C	A. Maczyliski
EXPERIMENTAL VALUES:	
The solubility of toluene in water at 0.5633 mL(1)/1000 mL(2).	25°C was reported to be .
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
METHOD/APPARATUS/PROCEDURE: Sudan IV was used to dye (1). The experimental apparatus and procedure used in this work were similar to those of Sobotka and Khan (ref 1). To make the measurements more accurate, the apparatus used con- sisted of a 1-liter dissolution flask and a 2-mL microburet. The scale was calibrated in advance by use of mercury. The dissolution flask was immersed in a water bath controlled thermostatically at 25°C. To avoid condensation of (1) from the gas phase, the temperature of gas phase in the dissolution flask was kept 1°C higher than that of the liquid phase. The dissolu- tion flask and the microburet were connected tightly.	<pre>SOURCE AND PURITY OF MATERIALS: (1) source not specified; reagent grade; used as received; purity not specified. (2) pure. (2) pure. ESTIMATED ERROR: temp. ± 0.01 K soly. less than 0.008 mL(1)/1000 mL sln (type of error not specified) REFERENCES: 1. Sobotka, H.; Kahn, J. J. Am. Chem. Soc. 1948, 53, 2935.</pre>

COMPONENTS	ORTGINAL MEASUREMENTS :		
(1) Toluene; C ₇ H _o ; [108-88-3]	Sutton, C.; Calder, J.A.		
(2) Water; H ₂ O; [7732-18-5]	J. Chem. Eng. Data 1975, 20, 320-2.		
VARIABLES:	PREPARED BY:		
One temperature: 25°C	A. Maczynski and Z. Maczynska		
EXPERIMENTAL VALUES:			
The solubility of toluene in water at	t 25°C was reported to be		
534.8 mg(l)/kg(2). The corresponding	g mass percent and mole fraction,		
x_1 , calculated by the compilers are (0.05348 g(l)/100 g sln and		
1.046×10^{-4} .			
AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:		
The concentration of (1) in (2) was determined by gas chroma- tography.	(1) Aldrich Chemical Co. or Matheson Coleman and Bell 99+%.		
	(2) distilled.		
	ESTIMATED ERROR:		
	<pre>temp. ± 0.1 K soly. 4.9 mg(1)/kg(2) (the standard deviation of the for for for any for an</pre>		
	REFERENCES:		
]			
COMPONENTS:	ORIGINAL MEASUREMENTS:		
---	--	--	--
(1) Toluene; C ₇ H ₈ ; [108-88-3]	Price, L.C.		
(2) Water; H ₂ O; [7732-18-5]	Ат. Аввос. Petrol. Geol. Bull. <u>1976</u> 60, 213-44.		
VARIABLES:	PREPARED BY:		
One temperature: 25°C	M.C. Haulait-Pirson		
EXPERIMENTAL VALUES:			
The solubility of toluene in water at was reported to be 554.0 mg(l)/kg(2), and mole fraction, x_1 , calculated by 100 g sln and 1.08 x 10 ⁻⁴ .	25°C and at system pressure The corresponding mass percent the compiler are 0.0554 g(l)/		
AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:		
The solubility was determined at laboratory temperatures by use of screw-cap test tubes. The (1) phase floated on top of the water and insured saturation of the (2) phase in 2 to 4 days. Analyses were carried out by GSC using a Hewlett-Packard model 5751 gas chromatograph with dual-flame ionization detectors. Many de- tails are given in the paper.	<pre>(1) Phillips Petroleum Company; Chemical Samples Company or Aldrich Chemical Company; 99+%. (2) distilled. (2) distilled. ESTIMATED ERROR: temp. ± 1 K soly. ± 15 mg(1)/kg(2) REFERENCES:</pre>		

ORIGINAL MEASUREMENTS:	
Korenman, I.M.; Aref'eva, R.P.	
Patent USSR, 553 524, 1977.04.05 C.A. 87:87654	
PREPARED BY:	
A. Maczynski	
: 20°C was reported to be ole fraction, x_1 , calculated sln and 1.11 x 10 ⁻⁴ .	
solution density of 1.00 g/mL.	
INFORMATION	
SOURCE AND PURITY OF MATERIALS: (1) not specified. (2) not specified. ESTIMATED ERROR: not specified. REFERENCES:	

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Toluene; C ₇ H ₈ ; [108-88-3]	Korenman, I.M.; Aref'eva, R.P.
(2) Water; H ₂ O; [7732-18-5]	2h. Prikl. Khim. <u>1978</u> , 51, 957-8.
The second secon	PREPARED BY:
Temperature: 25°C	A. Maczynski and Z. Maczynska
EXPERIMENTAL VALUES:	
The solubility of toluene in water at 0.65 g(l)dm ⁻³ sln.	25°C was reported to be
The corresponding mass percent and mo	ble fraction, x_1 , calculated
by the compilers are 0.065 g(1)/100 g	$s \sin and 1.27 \times 10^{-4}$.
The compilers' calculations assume a	solution density of 1.00 g/mL.
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
About 200-500 mL(2) was placed in a	(1) not specified
ground-joint glass cylinder and	(1) not specified.
(dithizon, phenolphthalein, etc.)	(2) not specified.
was added, and (1) was microburetted until the indicator floated to form	
a colored thin layer on the cylinder wall above the liquid layer. Blanks	
were made to determine the excess of	
	ESTIMATED ERROR:
	soly. \pm 0.01 g(1)dm ⁻³ sln
	(standard deviation from 6 determinations).
	REFERENCES:

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Toluene; C ₇ H ₂ ; [108-88-3]	Krzyzanowska, T.; Szeliga, J.
(2) Water; H ₂ O; [7732-18-5]	Nafta (Katowice), 1978, 12, 413-7.
	•
VARIABLES:	PREPARED BY:
One temperature: 25°C	M.C. Haulait-Pirson
EVDEDIMENTAL VALUES.	
EXPERIMENTAL VALUES:	
The solubility of toluene in water at	25°C was reported
to be 554.0 mg(1)/kg(2).	
The corresponding mass percent and mo	ble fraction, x_1 , calculated
by compiler are $0.0554 \text{ g}(1)/100 \text{ g s}$	1^{-4}
by comprise are 0.0554 g(1//100 g 51	
Editor's Note: Based on the results	for this and other hydrocarbon-water
independent of that of Price for the	same system.
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The saturated solutions of (1) in	(1) not specified.
(2) were prepared in two ways. First, 200 µL of (1) was injected	(2) not specified.
into 20 mL of (2) and thermostatted	_
and (2) as above was thermostatted	
time required to obtain equilibrium	
was three weeks. The solubility of (1) in (2) was measured by glc. A	
Perkin-Elmer model F-11 gas chromat-	
Porasil column (70°C) and a flame	ESTIMATED ERROR:
ionization detector was used. Sat- urated solutions of heptane in (2)	soly. 11.0 mg(1)/kg(2) (standard
were used as standard solutions.	deviation from 7-9 determinations).
	REFERENCES:

37_331	417
COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Toluene; C ₇ H ₈ ; [108-88-3] (2) Water; H ₂ O; [7732-18-5]	Banerjee, S.; Yalkowsky, S.H.; Yalvani, S.C. <i>Environ. Sci. Technol.</i> <u>1980</u> , 14, 1227-9.
VARIABLES:	PREPARED BY:
One temperature: 25°C	G.T. Hefter
EXPERIMENTAL VALUES:	
The solubility of toluene in water was ln. Assuming a solution density of cent and mole fraction (x_1) solubilit 0.155 g(1)/100 g sln and 3.04 x 10 ⁻⁴	as reported to be 1.68 x 10 ⁻² mol/L 1.00 kg/L the corresponding mass per ties, calculated by the compiler, are respectively.
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Experiments were performed in sealed stainless steel centrifuge tubes. An excess of 1^{4} C labelled toluene was added to a tube containing distilled water, and the tube was sealed and allowed to equilibrate at 25 ± 0.2°C with constant or intermittent shaking. Equilibration was generally complete within 1 week. The mixture was then centrifuged at 10,000 rpm	 (1) ¹⁴C-labelled toluene: New England Nuclear, used without further purification. (2) Distilled.
brated to 25 ± 0.3°C, following	ECTIMATED EDDOD.
which aliquots of the solution were	Temperature. +0.2 V
tillation counting. The entire pro- cedure was carried out at least	Solubility: ±2,3% rel. (representing one std. dev.)
conducted in duplicate.	REFERENCES:

COMPONENTS :	ORIGINAL MEASUREMENTS:	
(1) Toluene; C ₇ H ₈ ; [108-88-3]	Schwarz, F.P.	
(2) Water; H ₂ O; [7732-18-5]	Anal. Chem. <u>1980</u> , 52, 10 - 15.	
VARIABLES:	PREPARED BY:	
One temperature: 23.5°C	M.C. Haulait-Pirson	
EXPERIMENTAL VALUES:		
Solubility of toluene	in water at 23.5°C	
g(l)/100 g sln	10 ⁴ x ₁ (compiler)	
0.0670 ± 0.0015	1.31	
0.0660 ± 0.0006	1.29	
An elution chromatography method was	(1) 99.9% purity used without	
used where (1) was the stationary phase and (2) the mobile phase. A	further purification	
transparent column was packed with an inert support (chromosorb P)	(2) distilled	
coated with a known amount of the liquid solute (1). This solute		
reservoir (connected to a water reservoir (connected to a compressed		
through the column by the pressure		
of the compressed gas (ca. 14 kPa). As the total volume of water flowing	ESTIMATED ERROR:	
through the column increased, a solute depleted zone, different in	temp. ± 1.5°C	
color from the stationary phase, developed and increased in length.	soly. 1.5% (average std. dev.)	
the amount of solute removed from	REFERENCES:	
solute depleted zone, and the volume		
Many details about preparation of		
are given in the paper.		

37_333	415
COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Toluene; C ₇ H ₈ ; [108-88-3]	Rossi, S.S.; Thomas, W.H.
(2) Water; H ₂ O; [7732-18-5]	Env. Sci. Technol. <u>1981</u> , 15, 715-6.
VARIABLES:	PREPARED BY:
EXPERIMENTAL VALUES:	
The solubility of toluene in distille 506.7 μ g/g, corresponding to a mole f corresponding mass per cent calculate 100 g sln.	d water at 25°C was reported to be raction, x_1 , of 5.5 x 10 ⁻⁶ . The d by the compiler is 0.0507 g(1)/
٢	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: 500 mL of water and an excess of (1) were equilibrated for at least 24 h in a 1 L Erlenmeyer flask placed in a constant temperature (±0.1°C) gyrotary shaker (200 rpm). After a 12 h sta- tionary equilibration period, 100 mL of saturated solution was drained through a glass-wool plug into a	<pre>SOURCE AND PURITY OF MATERIALS: (1) Burdick & Jackson; purified by triple distillation in glass. (2) Doubly distilled in all-glass apparatus; free of trace organics.</pre>
calibrated separatory funnel. Toluene was extracted (>99%) by passing known volumes through 0.6 x 6 cm columns of a superficially porous bonded C ₁₈ stationary-phase	ESTIMATED ERROR:
fluoromethane. Toluene levels in eluates were determined on a Hewlett- Packard Model 5840A gas chromatograph equipped with a flame ionisation detector and an electronic integrator	Temperature: ±0.1°C Solubility: ±6.1 µg/g (std. dev. for 6 determinations).
using a $\frac{1}{6}$ in x 8 ft stainless-steel column of 10% TCEP on 10/120 Chrom- sorb or a WCOTSP-2100 glass column (0.25 mm x 30 m). Hydrocarbon con- centrations in eluates were addi- tionally determined by UC spectro- photometry.	

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Toluene; C ₇ H ₈ ; [108-88-3] (2) Water; H ₂ O; [7732-18-5]	Sanemasa, I.; Araki, M.; Deguchi, T.; Nagai, H. <i>Chem. Lett.</i> <u>1981</u> , 225-8.
VARIABLES:	PREPARED BY:
Temperature: 15-45°C	M.C. Haulait-Pirson and G.T. Hefter
EXPERIMENTAL VALUES:	
Solubility of to	oluene in water
<i>t</i> /°C g(l) /L	$\frac{g(1)/100 \text{ g sln}^{a}}{10^{4} x_{1}^{a}}$
15 0.533 ± 0.017	0.0533 1.04
25 0.557 ± 0.007	0.0559 1.09
35 0.587 ± 0.015	0.0590 1.16
45 0.635 ± 0.019	0.0641 1.25
AUXILIARY	
METHOD/APPARATUS/PROCEDURE: The apparatus used for attaining solubility equilibrium is described in detail in the paper. Liquid (1)	SOURCE AND PURITY OF MATERIALS: (1) analytical reagent grade used as purchased.
and redistilled (2) were placed in a vessel and a thermostatted funnel respectively. The solute vapor, gen- erated by bubbling air through the liquid solute was introduced into the funnel and circulated by means of a pump. The circulation rate was 2 L/ min. Solubility equilibria were attained within 5 min. Then portions	(2) redistilled.
of 10 mL of the aqueous sln were ESTIMATED ERROR:	
mL of chloroform had been added. Experimental procedures involved in spectrophotometric measuring the	soly. : given above
chloroform extracts were not reported The solubility runs were made such that the temperature of solute reser- voir was made to vary while that of solvent phase was held constant. The solubility obeys Henry's law at con- stant solvent temperature. Solubil- ity values were calculated from	REFERENCES: 1. CRC Handbook of Chemistry and Physics, R.C. Weast, Editor, CRC Press, Florida, 63rd edn., 1982, pF-11.

37_335	42
COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Toluene; C ₇ H ₈ ; [108-88-3]	Sanemasa, I.; Araki, M.;
(2) Water; H ₂ O; [7732-18-5]	Deguchi, T.; Nagai, H.
-	Bull. Chem. Soc. Jpn. <u>1982</u> , 55, 1054-62.
VARIABLES:	PREPARED BY:
Temperature: 15-45°C	G.T. Hefter
EXPERIMENTAL VALUES:	
The solubility of	f toluene in water
$+ (10) = 10^3 = -1 (1) (1 = 3) = 1$	$(1)(100 - 10^{4})$
τ τ τ τ τ τ τ τ τ τ	$g(1)/100 g \sin 10 x_1$
15 5.58 ± 0.11	0.0514 1.01
25 5.71 ± 0.14	0.0526 1 03
35 5.88 ± 0.16	0.0545 1.07
45 6.28 ± 0.10	0.0584 1.14
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The apparatus is similar to an earlier design (ref 2) and is described in detail in the paper. 100-200 cm ³ of (2) and 10-20 cm ³ of liquid (1) were placed in separate but connected thermostatted flasks. After thermal equilibrium was estab- lished a recirculating stream of air was used to vaporize liquid (1) and to transport the vapor to the flask	 Analytical reagent grade (Wako Pure Chemical Ind. Ltd.), stated purity 99.0%, used without further purification. Redistilled; no further details given.
containing (2). Five 10 cm ³ aliquots were withdrawn into separatory	
funnels. The concentration of (1) in (2) was then determined by extraction	ESTIMATED ERROR:
into chloroform followed by UV- spectrophotometry. Standards for the spectrophotometry were prepared by weight from pure liquid solutes	<pre>soly. see table, type of error not specified. temp. ± 0.01°C.</pre>
	 Kell, G.S. J. Chem. Eng. Data <u>1975</u>, 20, 97.
	2. Sanemasa, I.; Araki, M.; Deguchi, Y.; Nagai, H. <i>Chem. Lett.</i> <u>1981</u> , 225-8.

	37_336		
COMPONENTS :	ORIGINAL MEASUREMENTS:		
(1) Toluene; C ₇ H ₈ ; [108-88-3] (2) Water; H ₂ O; [7732-18-5]	Sanemasa, I.; Arakawa, S.; Araki, M.; Deguchi, T. <i>Bull. Chem. Soc. Jpn.</i> <u>1984</u> , <i>57</i> , 1539-44.		
VARIABLES: One Temperature: 25°C	PREPARED BY: G.T. Hefter		
EXPERIMENTAL VALUES:			
The solubility of toluene in water at $mol(1)/dm^3$ sln. Assuming a solution of to a solubility of 0.0521 g(1)/100 g s the compiler.	25°C was reported to be 5.65 x 10^{-3} density of 1.00 kg/dm ³ this corresponds sln, $x_1 = 1.02 \times 10^{-4}$, calculated by		
AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:		
The apparatus used is described in detail in ref 1. The method involves the introduction of solute vapor(1) into liquid (2) by bubbling air	(1) Analytical reagent grade source and purity not stated, used without further purification.		
through liquid (1) using a recirculat- ing pump in a closed system. After solubility equilibrium was attained an aliquot of the saturated aqueous solution was withdrawn and analysed by solvent extraction - UV spectro- photometry.	(2) Deionized and redistilled; no further details given.		
	ESTIMATED ERROR:		
	Not specified.		
	REFERENCES :		
	 Sanemasa, I., Araki, M.; Deguchi, T.; Nagai, H. Bull. Chem. Soc. Jpn. <u>1982</u>, 55, 1054-62. 		

37_337

ORIGINAL MEASUREMENTS:

COMPONENTS :		ORIGINAL MEASUREMENTS:
(1) Toluene; C ₇ H _o ;	[108-88-3]	Guseva, A.N.; Parnov, E.I.
(2) Deuterium oxid	e. (Heavy water):	Radiokhimiya 1963, 5, 507-9.
D ₂ O; [7789-20-	·0]	<u> </u>
2		
VARIABLES:		PREPARED BY:
Temperature: 87-2	03°C	A. Maczynski
EXPERIMENTAL VALUES:		
s	olubility of toluer	e in Deuterium oxide
	$10^3 x_1$	g(1)/100 g sln (compiler)
<u> </u>	<u> </u>	
87 123	0.682 1.81	0.313 0.828
164.5	4.22	1.91
	,,,,,	5.57
	AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCE	DURE:	SOURCE AND PURITY OF MATERIALS:
The solubility of	(1) in (2) was	(1) not specified.
determined in seal Details were repor	ed glass tubes. ted in ref 1.	(2) distilled.
-		
		ESTIMATED ERROR:
		Not specified.
		REFERENCES:
		1. Khazanova, P.E. Tr. Gos. inst. azotn. promyshl. <u>1954</u> , 4, 5.

COMPONENTS :	ORIGINAL MEASUREMENTS:		
(1) Toluene; C ₇ H ₈ ; [108-88-3]	Glasoe, P.K.; Schultz, S.D.		
(2) Deuterium oxide, (heavy water); D ₂ O; [7789-20-0]	J. Chem. Eng. Data, <u>1972</u> , 17, 66-8.		
VARIABLES:	PREPARED BY:		
Temperature: 15-30°C	A. Maczynski and Z. Maczynska		
EXPERIMENTAL VALUES:			
Solubility of deuter	ium oxide in toluene		
$t/^{\circ}C$ mol(2) dm ⁻³ sln	g(2)/100 g sln 10 ³ x ₂ (compiler) (compiler)		
15 0.0162 25 0.0213 30 0.0240	0.0372 1.71 0.0504 2.31 0.0560 2.57		
0.862 g/mL.			
AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:		
Dried (1) was saturated with (2) by allowing it to stand in contact with (2) in a closed system, protected from atmospheric moisture.	<pre>(1) source not specified; reagent grade; purified by distillation and dried over molecular sieve,</pre>		
This two-phase system was kept in a pyrex storage bottle which was immersed in a constant temperature water bath.	(2) distilled in a pyrex system.		
The concentration of (2) in (1) was determined by the Karl Fischer method.	ESTIMATED ERROR: soly ± 0.0004 mol(2) dm ⁻³ sln (type of error not specified)		
	REFERENCES :		

37 339

COMPO	NENTS:		EVALUATOR:
(1)	Toluene; C ₇ H ₈ ;	[108-88-3]	D.G. Shaw Institute of Marine Science
(2)	(2) Seawater	University of Alaska Fairbanks, Alaska USA	
			December 1982

CRITICAL EVALUATION:

The solubility of toluene (1) in seawater (2) at 298 K has been reported as follows:

Authors	Method	Salinity g salts/kg sln	$10^2 q(1)/100 q sln$
Mackay and Shiu (ref 2)	GLC	35.0	3.79
Sada et al. (ref 3)	Cloud Point	28.72	3.48
Sutton and Calder (ref 4)	GLC	34.5	3,793
Price (ref 5)	GLC	34.47	4.02
Possi and Thomas (rof 6)	GLC	35	1 2
Rossi and Thomas (ref 6)	GLC	35	4.2

At 298 K and a salinity of 35 g salts/kg sln, the values of Mackay and Shiu, Sutton and Calder, and Price are in very good agreement. Each group of workers has also determined the solubility of toluene in pure water and obtained results within experimental error of the value recommended in this volume. Therefore, the mean of the reported values, 3.87×10^{-2} g(1)/ 100 g sln, is accepted as the recommended value at the indicated temperature and salinity. Mackay and Shiu measured solubility over a range of salinities and reported their data in terms of the Setschenow equation. Their values may be used to interpolate solubilities at other salinities up to 200 g salts/kg sln.

Brown *et al*. (ref 1) determined the solubility of toluene in seawater at a salinity of 34.42 g salts/kg sln over the temperature range 273 to 293 K. Linear extrapolation by the evaluator of these results to 298 K gives a value of 3.80×10^{-2} g(1)/100 g sln. This suggests that the results of Brown *et al*. may be consistent with the recommended value. The values reported by Sada *et al*. and by Rossi and Thomas are in poorer agreement with the remaining data.

SOLUBILITY OF TOLUENE (1) IN SEAWATER (2) RECOMMENDED VALUE

<u>T/K</u>	g_salts/kg_sln	g(l)/100 g sln
298	35	3.87×10^{-2}

REFERENCES

Brown, R.L.; Wasik, S.P. J. Res. Natl. Bur. Stds. A <u>1974</u>, 78, 453-60.
 Mackay, D.; Shiu, W.Y. Can. J. Chem. Eng. <u>1975</u>, 53, 239-42.

- Sada, E.; Kito, S.; Ito, Y. J. Chem. Eng. Data <u>1975</u>, 20, 373-5.
 Sutton, C.; Calder, J.A. J. Chem. Eng. Data 1975, 20, 320-2.
- 5. Price, L.C. Am. Assoc. Petrol. Geol. Bull. <u>1976</u>, 60, 213-44.
- 6. Rossi, S.S.; Thomas. W.H. Environ. Sci. Technol. 1981, 15, 715-6.

COMPONENTS: ORIGINAL MEASUREMENTS: (1) Toluene; C₇H₈; [108-88-3] Brown, R.L.; Wasik, S.P. (2) Artificial seawater J. Res. Natl. Bur. Stds. A. 1974, 78, 453-60. VARIABLES: PREPARED BY: Temperature: 0-20°C G.T. Hefter and D.G. Shaw Salinity: 34.42 g salts/kg sln **EXPERIMENTAL VALUES:** Solubility of toluene in artificial seawater $10^5 x_1$ (compiler) $g(1)/100 \text{ g sln}^a$ t/°C 0.19 0.0449 (0.0006) 9.0 5.32 0.0429 (0.0007) 8.60 10.05 0.0416 (0.0008) 8.34 0.0405 (0.0008) 14.96 8.12 20.04 0.0397 (0.0008) 7.96 ^a numbers in parentheses are standard deviations from 4 observations AUXILIARY INFORMATION METHOD/APPARATUS/PROCEDURE: SOURCE AND PURITY OF MATERIALS: Solubilities were calculated from 99.99 mole per cent purity; (1) partition coefficient measurements source and methods of purififor the hydrocarbon between an cation not specified. aqueous solution and its vapor using headspace chromatography. (2) Prepared according to ref. 1. Purity not specified. The apparatus and the method of ob-taining the partition coefficients are described in detail in the paper. The hydrocarbon was introduced as a vapor (to avoid emulsification) into a glass equilibration cell containing about 45 $\rm cm^3$ of water. The vap The vapor ESTIMATED ERROR: was subsequently analysed by gas chromatography using He as the car-Temperature: ±0.01 K rier. Possible sources of error are Solubility: see Table above discussed in detail although the source of vapor pressure data used to calculate solubilities are not **REFERENCES:** Sverdrup, H.U.; Johnson, M.W.; Fleming, R.H.; The Oceans, <u>1942</u>, given. Prentice-Hall, Englewood Cliffs, New Jersey pl86.

37 341

COMPONENTS:	ORIGINAL MEASUREMENTS:	
(1) Toluene; C ₇ H _o ; [108-88-3]	Mackay, D.; Shiu, W.Y.	
(2) Sodium chloride; NaCl; [7647-14-5]	Can. J. Chem. Eng. <u>1975</u> , 53, 239-42.	
(3) Water; H ₂ O; [7732-18-5]		
VARIABLES:	PREPARED BY:	
One temperature: 25°C	M. Kleinschmidt and D. Shaw	
Salinity: 0-200 g(2)/kg sln		
EXPERIMENTAL VALUES:		
The solubility of toluene in solutions of sodium chloride is reported in terms of the Setschenow equation: $\log(S_0/S) = K_S C_S$ where, S_0 is the solubility of toluene in water (mg/L) S is the solubility of toluene in solution (mg/L) K_S is the Setschenow constant (L/mol) C_S is the concentration of sodium chloride (mol/L) evaluating the equation for S over the range of C_2 0-4 mol/L, K_S = 0.2052 ± 0.0056 (standard error) with S_0 = 519.5 ± 9.6. The corresponding mass percent and mole fraction, x_1 , at salinity = 35 g(2)/kg sln calculated by the compilers are 3.79×10^{-2} g(10)/100 g sln and 7.743 x 10^{-5} assuming a density of 1.025 kg/L.		
AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
Solubility was determined by vapor phase extraction and gas chromato- graphic analysis. This method does not require the preparation of saturated solutions and thus avoids one of the major sources of error of other methods.	 (1) research grade, 99.9+%, from Phillips Petroleum Co. (2) and (3) not specified. 	
	ESTIMATED ERROR:	
	Temp. ±0.1 K Soly. 95% confidence limit is about 8%	
	REFERENCES :	

COMPONENTS	
(1) Toluene; C ₇ H ₈ ; [108-88-3]	Sada, E.; Kito, S.; Ito, Y.
<pre>(2) Sodium chloride; NaCl; [7647-14-5]</pre>	J. Chem. Eng. Data <u>1975</u> , 20 373-5.
(3) Water; H ₂ O; [7732-18-5]	
$\nabla A R I A D L D :$	M Kloingohmidt and D Shaw
Salinity: 29 - 108 g(3)/kg sln	M. Riefischmidt and D. Shaw
EXPERIMENTAL VALUES:	
Solubility of toluene in aq	ueous sodium chloride solutions
mol(2)/L g(2)/kg sln ^a L($\frac{1}{10^{3} \text{ L sln}} \qquad \frac{\text{Mass}(1)^{a}}{10^{5} x_{1}^{a}} \qquad \frac{10^{5} x_{1}^{a}}{10^{5} x_{1}^{a}}$
0.5011 28.72	0.410 0.0348 6.95
0.9991 56.14	0.298 0.0248 5.06
1.4933 82.66	0.223 0.0182 3.76
1.9933 107.9	0.169 0.0136 2.87
AUXILIARY	INFORMATION
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:
Experimental apparatus and procedure used similar to those in ref 2.	<pre>(1),(2): reagent grade, source</pre>
Toluene stained with 0.1% by weight Sudan IV was added dropwise from a microburet into aqueous salt solution retained in a 1-L dissolu- tion flask which was kept at 25.00° ± 0.01°C in a thermostatically controlled water bath. The aqueous salt solution was violently stirred by a magnetic stirring device. Before saturation was reached, the	<pre>(3): not specified. ESTIMATED ERROR: -3</pre>
Sudan IV was precipitated and floated on the surface as a solid. At satur- ation, the excess toluene appeared	Soly 0.008 x 10 ⁻³ L (1)/L sln.
suspended in the aqueous solution.	REFERENCES:
To ensure complete saturation, 24 hr was allowed for equilibration.	<pre>1. Weast, R.C. CRC Handbook of Chemistry and Physics, 59th Ed. 1978, CRC Press, pp D299 - D200</pre>
	D300. 2. Sobotka, H.; Kahn, J. J. Am. Chem. Soc. <u>1948</u> , 53, 2935.

COMPONENTS :	ORIGINAL MEASUREMENTS:		
(1) Toluene; C ₇ H ₈ ; [108-88-3]	Sutton, C.; Calder, J.A.		
(2) Artificial seawater (ref 1)	J. Chem. Eng. Data <u>1975</u> , 20, 320-2		
VARIABLES: One temperature: 25.0°C	PREPARED BY:		
One salinity: 34.5 g salts/kg sln	M. Kleinschmidt		
EXPERIMENTAL VALUES:			
mba salubilitu ef taluara in sutific	is a second of the back		
The solubility of toluene in aftiric	al seawater is reported to be		
3/9.3 mg(1)/kg sin. The correspondi	ng mass percent and mole fraction,		
x_1 calculated by the compiler are 0.	$03793 \text{ g}(1)/100 \text{ g sln and } 7.61 \times 10^{\circ}$		
assuming the artificial seawater com	position of ref 1.		
AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:		
A test tube containing (1) was placed in a flask containing (2)	(1) from either Aldrich Chemical Co. or Matheson Coleman and		
thus allowing for equilibration	Bell, 99+% pure.		
saturated solution was extracted	(2) made from doubly distilled		
chromatography.	water and saits 5578 pure.		
	ESTIMATED ERROR:		
	temp. ± 0.1 K		
	soly. 2.8 (std. dev.)		
	REFERENCES: 1. Lyman, J.; Fleming, R.H.;		
	J. Mar. Res. <u>1940</u> , 3, 135.		

(1) Toluene; C ₇ H ₈ ; [108-88-3]	Price, L.C.	
<pre>(2) Sodium chloride; NaCl; [7647-14-5]</pre>	Am. Assoc. Petrol. Geol. Bull.	
(3) Water; H ₂ O; [7732-18-5]	<u>1976</u> , 60, 213-44.	
VARIABLES:	PREPARED BY:	
One temperature: 25°C	M. Kleinschmidt and D. Shaw	
Salinity: 1-360 g(2)/kg sln		
EXPERIMENTAL VALUES:		
Solubility of Tolu	ene in Aqueous NaCl	
Salinity Mass Perce	nt Mole fraction, $10^5 x_1$	
g(2)/kg sln g(1)/100 g	sln (compilers)	
1.002 0.0526	10.3	
10.000 0.0490	9.65	
50.030 0.0359	7.26	
125.100 0.0182	3.85	
	2.34	
358.700 0.00372	0.890	
AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
Details given in source. (1) was equilibrated with NaCl solution for one month. An aliquot was analyzed directly by gas chromatography.	(1) commercial, 99 + % pure	
	ESTIMATED ERROR:	
	Temperature ± 1 K	
	Solubility ± 10 relative %	
	REFERENCES :	
	1. Lyman, J.; Fleming, R.H.; J. Mar. Res. <u>1940</u> , 3, 135.	

ORIGINAL MEASUREMENTS:

COMPONENTS:

COMPONENTS:		ORIGINAL MEASUREMENTS:	
(1) Toluene; C ₇ H ₈ ; [108-88-3]		Rossi, S.S.; Thomas, W.H.	
(2) Seawater; natural; H ₂ O		Environ. Sci. Technol. <u>1981</u> , 15, 715-6.	
VARIABLES:			
$m_{\text{omporature}} = 15 - 25^{\circ}C$		W V Shin D Magkay	
Salinity: 35 g/kg sln		w.i. Shiu, D. Mackay	
EVDEDIMENTAL VALUES.			
EXPERIMENTAL VALUES.			
Solubili	ty of tolue.	ene in seawater	
	Mass	percent Mole fraction	
t/°C μg(l)/g	sln g(l)/1	$100 \text{ g sln} $ $10^5 x_1$	
15 410	0.	.041 8.2	
20 410 25 418	5 0.	.041 8.2	
	AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE:		SOURCE AND PURITY OF MATERIALS:	
by equilibrating seawater	pared with an	toluene: from Burdick and Jackson, triple distilled in glass.	
excess of hydrocarbon for	24 hrs.	n-boundarblu distilled in slass	
shaker followed by 12 hrs.	station-	n-nexame: doubly distilled in glass.	
ary period. A 100 mL-alig	uot was	seawater: collected off Scripps	
The concentrated hexane ex	tract was	through 0.22 µm membrane and	
analyzed by a gas chromato	graph	twice extracted with n-hexane	
detector to determine the hydro-			
carbon concentration.		ESTIMATED ERROR:	
		temp. ± 0.1 K	
		soly. ± 2%	
		REFERENCES:	

COMPONENTS :	ORIGINAL MEASUREMENTS:	
<pre>(1) 2,5-Norbornadiene; C₇H₈; [121-46-0]</pre> (2) Water; H ₂ O; [7732-18-5]	Englin, B.A.; Plate, A.F.; Tugolukov, V.M.; Pryanishnikova, M.A. Khim. Tekhnol. Topl. Masel 1965	
	10, 42-6.	
VARIABLES :	PREPARED BY:	
Temperature: 20-50°C	A. Maczynski and Z. Maczynska	
EXPERIMENTAL VALUES:	1	
Solubility of water in	2,5-norbornadiene	
t/°C g(2)/100g sln	$10^3 x_2$ (compiler)	
20 0.0295 30 0.0383 50 0.0675	1.51 1.96 3.44	
AUXILIARY	INFORMATION	
METHOD /AP PARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:	
Component (1) was introduced into a thermostatted flask and saturated for	(1) not specified.	
5 hr. with (2). Next, calcium hy- dride was added and the evolving hydrogen volume measured and hence	(2) not specified.	
the concentration of (2) in (1) was evaluated.		
	ESTIMATED ERROR:	
	Not specified.	
	-	
	REFERENCES :	

COMPONENTS:	EVALUATOR:
<pre>(1) 1,3,5-Cycloheptatriene; C₇H₈; [544-25-2]</pre> (2) Water: H 0: [7732-18-5]	G.T. Hefter, School of Mathematical and Physical Sciences, Murdoch University, Perth, W.A., Australia
(2, water, ² ₂ , [,,,, <u>1</u> ,])	November 1984.

CRITICAL EVALUATION:

Quantitative solubility data for the system 1,3,5-cycloheptatriene (1) and water (2) have been reported in the publications listed in Table 1.

TABLE 1: Quantitative Solubility Studies of1,3,5-Cycloheptatriene (1) in Water (2)

Reference	T/K	Solubility	Method
Englin et al. (ref 1)	293-323	(2) in (1)	analytical
McAuliffe (ref 2)	298	(1) in (2)	GLC
Pierotti and Liabastre (ref 3)	278-318	(1) in (2)	GLC

The original data in these publications are compiled in the Data Sheets immediately following this Critical Evaluation. For convenience, further discussion of this system will be in two parts.

1. THE SOLUBILITY OF 1,3,5-CYCLOHEPTATRIENE (1) IN WATER (2)

Solubility values of (1) in (2) are listed in Table 2 and plotted in Figure 1. The data at 298 K are in reasonable agreement. However, it should be noted that the results of Pierotti and Liabastre (ref 2) are generally higher than "Recommended" values in well characterised systems (e.g. benzene in water). Their results at temperatures other than 298 K should be regarded with some caution.

TABLE 2:Tentative Values for the Solubilityof 1,3,5-Cycloheptatriene (1) in Water (2)

Т/К	Solubility values			
	Reported values ^a 10 ² g(1)/100 g sln	"Best" values $(\pm \sigma_n)^b$ 10 ² g(1)/100 g sln	10 ³ x1	
278	5.80* (ref 3)	5.8	1.1	
288	6.64* (ref 3)	6.6	1.3	
298	6.20 (ref 2), 6.69* (ref 3)	6.4 ± 0.2	1.25	
308	7.40* (ref 3)	7.4	1.4	
318	7.63* (ref 3)	7.6	1.5	

a Values marked with an asterisk (*) obtained by the Evaluator by graphical intrapolation of original data.

b "Best" values obtained by averaging where appropriate; σ_n has no statistical significance. (continued next page)

37_348	435	
COMPONENTS :	ORIGINAL MEASUREMENTS:	
<pre>(1) 1,3,5-Cycloheptatriene; C₇H₈; [544-25-2]</pre>	Englin, B.A.; Plate, A.F.; Tugolukov, V.M.; Pryanishnikova, M.A.	
(2) Water; H ₂ O; [7732-18-5]	Khim. Tekhnol. Topl. Masel <u>1965</u> , 10, 42-6.	
VARIABLES:	PREPARED BY:	
Temperature: 30-50°C	A. Maczynski and Z. Maczynska	
EXPERIMENTAL VALUES:		
Solubility of water in	1,3,5-cycloheptatriene	
<i>t/°</i> C g(2)/100 g s	$\frac{10^3 x_2 \text{ (compiler)}}{10^3 x_2 \text{ (compiler)}}$	
30 0.0630 40 0.0773 50 0.0993	3.21 3.94 5.06	
AUXILIARY	INFORMATION	
METHOD / APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:	
Component (1) was introduced into a thermostatted flask and saturated for 5 hr with (2). Next, calcium hy- dride was added and the evolving hydrogen volume measured and hence the concentration of (2) in (1) was evaluated.	(1) not specified.(2) not specified.	
	Not specified.	
	REFERENCES:	

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) 1,3,5-Cycloheptatriene; C ₇ H ₈ ; [544-25-2]	McAuliffe, C.
(2) Water; H ₂ O; [7732-18-5]	J. Phys. Chem. <u>1966</u> , 70, 1267-75.
VARIABLES:	PREPARED BY:
One temperature: 25°C	A. Maczynski, Z. Maczynska, and A. Szafranski
EXPERIMENTAL VALUES:	
The solubility of 1,3,5-cycloheptatri to be 620 g(1)/10 ⁶ g(2). The corresponding mass percent and mo by the compilers are 0.0620 g(1)/100	ene in water at 25°C was reported ole fraction, x_1 , calculated g sln and 1.21 x 10^{-4} .
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
In a 250-mL bottle, 10-20 mL of (1) was vigorously shaken for 1 hr, or magnetically stirred for 1 day, with 200 mL of (2) at 25°C. The bottle was set aside for 2 days to allow droplets of undissolved (1) to separate. Absence of emulsion was checked microscopically. A sample of the hydrocarbon-saturated water was withdrawn with a Hamilton syringe and gas liquid chromato-	 (1) Phillips Petroleum or Columbia Chemical; used as received. (2) distilled.
graphéd in conjunction with a flame- ionization detector.	ESTIMATED ERROR: temp. ± 1.5 K soly. 20 g(1)/10 ⁶ g(2) (standard deviation of mean)
	REFERENCES :

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) 1,3,5-Cycloheptatriene; C ₇ H ₈ ; [544-25-2]	Pierotti, R.A.; Liabastre, A.A.
(2) Water; H ₂ O; [7732-18-5]	"Structure and properties of water solutions." U.S. Nat. Tech. Inform. Serv., PB Rep., <u>1972</u> , No. 21163, 113 p.
VARIABLES:	PREPARED BY:
Temperature: 278.26-318.36 K	M.C. Haulait-Pirson
EXPERIMENTAL VALUES:	
Solubility of 1,3,5-cyc	loheptatriene in water
<u>Т/ К g(l)/100</u>	$\frac{10^3 x_1}{10^3 x_1}$
278.26 0.05809 ±	0.0014 0.1136
288.36 0.06645 ±	0.0017 0.1299
298.26 0.06694 ±	0.0019 0.1309
308.36 0.07418 ±	0.0019 0.1450
318.36 0.07648 ±	0.0022 0.1495
AUXILIARY	INFORMATION
METHOD/ADDADATHS/DDOCEDHDE+	SOURCE AND PURITY OF MATERIALS.
10 mL of (2) were placed along with 4-10 drops of (1) in 10 mL serum bottles, which were then tightly capped, and placed in the rotating basket and rotated for 24 hours. The bottles were then hand shaken to remove (1) droplets from the stoppers and then replaced in the bath with the tops down for an additional 24 hours. The solute concentrations were determined by	 (1) Columbia Organic Chemicals Co., Inc.; Tech 83%; used as received. (2) laboratory distilled water.
use of a flame-ionization gas	ESTIMATED ERROR:
cnromatograph. Many details about equipment, operating conditions and calculation are given in the paper.	soly.: standard deviation from at least 15 measurements are given above.
	REFERENCES:

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) 1,6-Heptadiyne; C₇H₈; [2396-63-6]</pre>	McAuliffe, C. J. Phys. Chem. <u>1966</u> , 70, 1267-75.
(2) water; H ₂ 0; [//32-18-5]	
VARIABLES:	PREPARED BY:
One temperature: 25°C	A. Maczynski, Z. Maczynska, and A. Szafranski
EXPERIMENTAL VALUES:	
The solubility of 1,6-heptadiyne in w to be 1650 g(1)/10 ⁶ g(2). The corresponding mass percent and mo by the compilers are 0.1650 g(1)/100	water at 25°C was reported the fraction, x_1 , calculated g sln and 3.23 x 10^{-4} .
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
In a 250-mL bottle, 10-20 mL of (1) was vigorously shaken for 1 hr, or magnetically stirred for 1 day, with 200 mL of (2) at 25°C. The bottle was set aside for 2 days to allow droplets of undissolved (1) to separate. Absence of emulsion was checked microscopically. A sample of the hydrocarbon-saturated water was withdrawn with a Hamilton	 (1) Phillips Petroleum or Columbia Chemical; used as received. (2) distilled.
graphed in conjunction with a flame-	ESTIMATED ERROR:
ionization detector.	<pre>temp. ± 1.5 K soly. 25 g(1)/10⁶ g(2)</pre>
	REFERENCES:

COMPONENTS:	ORIGINAL MEASUREMENTS:	
<pre>(1) 1-Methylcyclohexene; C₇H₁₂; [591-49-1]</pre>	McAuliffe, C. J. Phys. Chem. <u>1966</u> , 70, 1267-75.	
(2) Water; H ₂ O; [7732-18-5]		
VARIABLES:	PREPARED BY:	
One temperature: 25°C	A. Maczynski, Z. Maczynska, and A. Szafranski	
EXPERIMENTAL VALUES:		
The solubility of 1-methylcyclohexene in water at 25°C was reported to be 52 g(1)/10 ⁶ g(2). The corresponding mass percent and mole fraction, x_1 , calculated by the compilers are 0.0052 g(1)/100 g sln and 9.7 x 10 ⁻⁶ .		
AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
In a 250-mL bottle, 10-20 mL of (1) was vigorously shaken for 1 hr, or magnetically stirred for 1 day, with 200 mL of (2) at 25°C. The bottle was set aside for 2 days to allow droplets of undissolved (1) to separate. Absence of emulsion was checked microscopically. A sample of the hydrocarbon-saturated water was withdrawn with a Hamilton syringe and gas liquid chromato- graphed in conjunction with a flame- ionization detector.	 (1) Phillips Petroleum or Columbia Chemical; used as received. (2) distilled. ESTIMATED ERROR: temp. ± 1.5 K soly. 52 g(1)/10⁶ g(2) (standard deviation of mean) REFERENCES: 	

COMPONENTS:	ORIGINAL MEASUREMENTS:		
(1) Cycloheptene; C ₇ H ₁₂ ; [628-92-2]	McAuliffe, C.		
(2) Water; H ₂ O; [7732-18-5]	J. Phys. Chem. <u>1966</u> , 70, 1267-75.		
VARIABLES:	PREPARED BY:		
One temperature: 25°C	A. Maczynski, Z. Maczynska, and A. Szafranski		
EXPERIMENTAL VALUES:			
The solubility of cycloheptene in water at 25°C was reported to be 66 g(1)/10 ⁶ g(2). The corresponding mass percent and mole fraction, x_1 , calculated by the compilers are 0.0066 g(1)/100 g sln and 1.2 x 10 ⁻⁵ .			
AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDURE: In a 250-mL bottle, 10-20 mL of (1) was vigorously shaken for 1 hr, or magnetically stirred for 1 day, with 200 mL of (2) at 25°C. The bottle was set aside for 2 days to allow droplets of undissolved (1) to separate. Absence of emulsion was checked microscopically. A sample of the hydrocarbon-saturated water was withdrawn with a Hamilton syringe and gas liquid chromato- graphed in conjunction with a flame- ionization detector.	<pre>SOURCE AND PURITY OF MATERIALS: (1) Phillips Petroleum or Columbia Chemical; used as received. (2) distilled. ESTIMATED ERROR: temp. ± 1.5 K soly. 4 g(1)/10⁶ g(2) (standard deviation of mean) REFERENCES:</pre>		

37_354

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) 1,6-Heptadiene; C₇H₁₂; [3070-53-9] (2) Water; H₂O; [7732-18-5]</pre>	McAuliffe, C. J. Phys. Chem. <u>1966</u> , 70, 1267-75.
VARIABLES: One temperature: 25°C	PREPARED BY: A. Maczynski, Z. Maczynska, and A. Szafranski
EXPERIMENTAL VALUES: The solubility of 1,6-heptadiene in w to be 44 g(1)/10 ⁶ g(2). The corresponding mass percent and mo by the compilers are 0.0044 g(1)/100	water at 25°C was reported the fraction, x_1 , calculated g sln and 8.2 x 10^{-6} .
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: In a 250-mL bottle, 10-20 mL of (1) was vigorously shaken for 1 hr, or magnetically stirred for 1 day, with 200 mL of (2) at 25°C. The bottle was set aside for 2 days to allow droplets of undissolved (1) to separate. Absence of emulsion was checked microscopically. A sample of the hydrocarbon-saturated water was withdrawn with a Hamilton syringe and gas liquid chromato- graphed in conjunction with a flame- ionization detector.	SOURCE AND PURITY OF MATERIALS: (1) Phillips Petroleum or Columbia Chemical; used as received. (2) distilled. ESTIMATED ERROR: temp. ± 1.5 K soly. 3 g(1)/10 ⁶ g(2) (standard deviation of mean) REFERENCES:

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) 1-Heptyne; C ₂ H ₁₂ ; [628-71-7]	McAuliffe, C.
(2) Water; $H_{a}O$; [7732-18-5]	J. Phys. Chem. 1966, 70, 1267-75.
	<u> </u>
VARIABLES:	PREPARED BY:
One temperature: 25°C	A. Maczynski, Z. Maczynska, and A. Szafranski
EXPERIMENTAL VALUES:	
The solubility of 1-heptyne in water	at 25°C was reported
to be 94 g(l)/10 ⁶ g(2).	
The corresponding mass percent and mo	le fraction, x_1 , calculated
by the compilers are 0.0094 g(1)/100	g sin and 1.76 x 10 .
	INFORMATION
	SOURCE AND FURITI OF PATERIALS:
In a 250-mL bottle, 10-20 mL of (1) was vigorously shaken for 1 hr. or	(1) Phillips Petroleum or Columbia Chemical: used
magnetically stirred for 1 day,	as received.
with 200 mL of (2) at 25°C. The bottle was set aside for 2 days to	(2) distilled.
allow droplets of undissolved (1)	
was checked microscopically. A	
water was withdrawn with a Hamilton	
syringe and gas liquid chromato- graphed in conjunction with a flame-	ESTIMATED ERROR:
ionization detector.	temp. ± 1.5 K 6
	soly. 3 g(1)/10° g(2) (standard deviation of mean)
	REFERENCES :

37_356			443	
COMPONENTS:		ORIGINAL MEASUREMENTS:	- 1984	
(1) Ethylcyclopentane; C ₇ H ₁₄ ;		Guseva, A.N.; Parnov, E.I.		
(2) Water; H ₂ O	; [7732-18-5]	Vestn. Mosk. Univ. Khim. <u>1964</u> , 19, 77-8.		
VARIABLES:		PREPARED BY:		
Temperature: 7	0.5-203°C	M.C. Haulait-Pirson		
EXPERIMENTAL VALUE	ES:			
	Solubility of ethylcyc	lopentane in water		
<i>t</i> /°C	g(l)/100 g(2)	g(l)/100 g sln (compiler)	$10^4 x_1$ (compiler)	
70.5	0.0219	0.0219	0.40	
113	0.0525	0.0525	0.96	
168.5	0.224	0.224	4.10	
203	0.759	0.759	13.89	
	AUXILIARY	INFORMATION		
METHOD/APPARATUS/	PROCEDURE:	SOURCE AND PURITY OF MAT	ERIALS:	
Presumably the	measurements were	(1) not specified.		
reported in re were reported	f flass tubes, as of 1. No more details in the paper.	(2) not specified.		
		ESTIMATED ERROR:	<u> </u>	
		not specified.		

REFERENCES:

1.	Guseva	, A.N.	; Parno	ov, E.	I.
	Vestn.	Mosk.	Univ.	Khim.	1963,
	18, 76	•			

COMPONENTS:	ORIGINAL MEASUREMENTS:
<pre>(1) Ethylcyclopentane; C₇H₁₄; [1640-89-7]</pre>	Englin, B.A.; Plate, A.F.; Tugolukov, V.M.; Pryanishnikova, M.A.
(2) Water; H ₂ O; [7732-18-5]	Khim. Tekhnol. Topl. Masel <u>1965</u> , 10, 42-6.
VARIABLES:	PREPARED BY:
Temperature: 10-30°C	A. Maczynski and M.C. Haulait-Pirson

EXPERIMENTAL VALUES:

	Solubility of water in ethylcyclopentane		
t/°C	g(2)/100 g sln	10 ⁴ x ₂	(compiler)
10	0.0071	3.87	
20	0.0119	6.49	
30	0.0186	10.14	

AUXILIARY	INFORMATION

METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Component (1) was introduced into a thermostatted flask and saturated for 5 hours with (2). Next, cal- cium hydride was added and the evolving hydrogen volume measured and hence the concentration of (2) in (1) was evaluated.	(1) not specified.(2) not specified.
	ESTIMATED ERROR:
	not specified.
	REFERENCES :

HWW 2-DD

COMPONENTS :	EVALUATOR:	
<pre>(1) Methylcyclohexane; C₇H₁₄; [108-87-2]</pre>	M.C. Haulait-Pirson, Department of Chemistry, University of Leuven, Belgium.	
(2) Water; H ₂ O; [7732-18-5]	G.T. Hefter, School of Mathematical and Physical Sciences, Murdoch University, Perth, W.A., Australia. November 1984	

CRITICAL EVALUATION:

37 358

Quantitative solubility data for the system methylcyclohexane (1) and water (2) have been reported in the publications listed in Table 1.

TABLE 1: Quantitative Solubility Studies ofthe Methylcyclohexane (1) - Water (2) System

Reference	Т/К	Solubility	Method
Guseva and Parnov (ref 1)	341-488	(l) in (2)	synthetic?
Englin et al. (ref 2)	283-303	(2) in (1)	analytical
McAuliffe (ref 3)	298	(l) in (2)	GLC
Price (ref 4)	298-423	(1) in (2)	GLC
Krzyzanowska and Szeliga (ref 5)	298	(1) in (2)	GLC
Rudakov and Lutsyk (ref 6)	298	(l) in (2)	partition coefficient

The original data in these publications are compiled in the Data Sheets immediately following this Critical Evaluation. For convenience, further discussion of this system will be in two parts.

1. THE SOLUBILITY OF METHYLCYCLOHEXANE (1) IN WATER (2)

At 298K the various solubility values (ref 3, 4, 6) are in good agreement (Table 2). The datum of Krzyzanowska and Szeliga (ref 5) has been excluded from consideration because it does not appear to be independent of that of Price (ref 4).

At other temperatures the values of Guseva and Parnov (ref 1), probably obtained in sealed tubes at unspecified pressures, are almost an order of magnitude larger than those of Price (ref 4) and are thus rejected. All other data are listed in Table 2 and plotted in Figure 1.

Roof (ref 7) has reported a critical end point at 572.2K and 3.47 MPa.

COMPONENTS:	EVALUATOR:		
<pre>(1) Methylcyclohexane; C₇H₁₄; [108-87-2] (2) Water; H₂O; [7732-18-5]</pre>	M.C. Haulait-Pirson, Department of Chemistry, University of Leuven, Belgium. G.T. Hefter, School of Mathematical and Physical Sciences, Murdoch University, Perth, W.A., Australia. November 1984		
CRITICAL EVALUATION: (continued)			
2. THE SOLUBILITY OF WATER (2) IN METHYLCYCLOHEXANE (1)			
The solubility of water in methylcyclohexane has been reported only by Englin <i>et al.</i> (ref 2) and so no critical evaluation can be made. The interested user is referred to the relevant Data Sheet for solubility values. However, it should be noted that the data of Englin <i>et al.</i> are generally reliable at lower temperatures but are high when $T > 300$ K.			
REFERENCES			
1. Guseva, A.N.; Parnov, E.I. Vestn	Guseva, A.N.; Parnov, E.I. Vestn. Mosk. Univ. Khim. 1964, 19, 77-8.		
 Englin, B.A.; Plate, A.F.; Tugoli Tekhnol. Topl. Masel 1965, 10, 4 	Englin, B.A.; Plate, A.F.; Tugolikov, V.M.; Pryanishnikova, M.A. <i>Khim.</i> <i>Tekhnol. Topl. Masel</i> <u>1965</u> , <i>10</i> , 42-6.		
3. McAuliffe, C. J. Phys. Chem. 19	66, 70, 1267-75.		
4. Price, L.C. Am. Assoc. Petrol. G	eol. Bull. <u>1976</u> , 60, 213-44.		
5. Krzyzanowska, T.; Szeliga, J. Na	fta (Katowice) <u>1978</u> , 34, 413-7.		
6. Rudakov, E.S.; Lutsyk, A.I. Zh.	Fiz. Khim. <u>1979</u> , 53, 1298-1300.		
7. Roof, J.G.; J. Chem. Eng. Data	<u>1970</u> , <i>15</i> , 301-3.		
ACKNOWLEDGEMENT The Evaluators thank Dr Brian Clare for the graphics.			

	57_557		
COMPONENTS :	ORIGINAL MEASUREMENTS:		
<pre>(1) Methylcyclohexane; C₇H₁₄; [108-87-2]</pre>	Guseva, A.N.; Parnov, E.I.		
(2) Water; H ₂ O; [7732-18-5]	Vestn. Mosk. Univ. Khim. <u>1964</u> , 19, 77-8.		
VARIADLES:	PREPARED BI:		
Temperature: 68-215°C	M.C. Haulait-Pirson		
EXPERIMENTAL VALUES:			
Solubility of methylcy	clohexane in water		
t/°C g(1)/100 g(2)	$g(1)/100 g sln 10^4 x_1$ (compiler) (compiler)		
68 0.011	0.011 0.20		
120.5 0.0363	0.0363 0.67		
157.5 0.0933	0.0933 1.71		
215 0.759	0.759 13.90		
METHOD/APPAKATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:		
Presumably the measurements were made in sealed glass tubes, as	(1) not specified.		
reported in ref 1. No more details were reported in the paper.	(2) not specified.		
1	ESTIMATED ERROR:		
	not specified.		
	REFERENCES: 1. Guseva, A.N.; Parnov, E.I. Vestn. Mosk. Univ. Khim. <u>1963</u> , 18, 76.		
COMPONENTS:	ORIGINAL MEASUREMENTS:		
--	---		
<pre>(1) Methylcyclohexane; C₇H₁₄; [108-87-2]</pre>	Englin, B.A.; Plate, A.F.; Tugolukov, V.M.; Pryanishnikova, M.A.		
(2) Water; H ₂ O; [7732-18-5]	Khim. Tekhnol. Topl. Masel <u>1965</u> , 10, 42 - 6.		
VARIABLES:	PREPARED BY:		
Temperature: 10-30°C	A. Maczynski and M.C. Haulait-Pirson		
EXPERIMENTAL VALUES:			
Solubility of water in	n methylcyclohexane		
t/°C g(2)/10	$\frac{10^4 x_2}{2} \text{ (compiler)}$		
10 0.0	3.33		
20 0.0	0116 6.32		
30 0.0	9.75		
AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:		
Component (1) was introduced into	(1) not specified.		
for 5 hours with (2). Next, cal-	(2) not specified.		
clum hydride was added and the evolving hydrogen volume measured and hence the concentration of (2) in (1) was evaluated.			
ť	ESTIMATED EDDOD.		
	LUTINIED ERROR.		
	not specified.		
	REFERENCES :		
]			

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Methylcyclohexane; C₇H₁₄; [108-87-2] (2) Water; H₂O; [7732-18-5]</pre>	McAuliffe, C. J. Phyв. Chem. <u>1966</u> , 70, 1267-75.
VARIABLES:	PREPARED BY:
One temperature: 25°C	M.C. Haulait-Pirson
EXPERIMENTAL VALUES:	
The solubility of methylcyclohexane is be 14 mg (1)/kg sln (0.0014 g(1)/100 The corresponding mole fraction, x_1 , is 2.6 x 10 ⁻⁶ . The same value is also reported in re	n water at 25°C was reported to g sln). calculated by the compiler, efs 1 and 2.
AUXILIARY INFORMATION	
I INTHOD/APPARATUS/PROCEDURE:	
In a 250 mL glass bottle, $10-20$ mL of (1) was vigorously shaken for 1 hr or magnetically stirred for 1 day, with 200 mL of (2) at 25°C. In the case of shaking, the solution was allowed to stand for 2 days to permit separation of small (1) drop- lets. Absence of emulsion was checked microscopically. A 50 µL sample of the (1) saturated water was withdrawn with a Hamilton Syringe and injected into the frac- tionator of the gas chromatograph. A hydrogen-flame ionization detector was used. Many details are given in the paper.	 (1) Phillips Petroleum Co.; 99+% purity; used as received. (2) distilled. ESTIMATED ERROR: temp. t 1.5 K
	soly. 1.2 mg (1)/kg sln (standard deviation from mean)
	 REFERENCES: 1. McAuliffe, C. Nature (London) <u>1963</u>, 200, 1092. 2. McAuliffe, C. Am. Chem. Soc. Div. Petrol. Chem. <u>1964</u>, 9, 275.

COMPONENTS: ORIGINAL MEASUREMENTS: (1) Methylcyclohexane; C₇H₁₄; [108-87-2] Price, L.C. Am. Assoc. Petrol. Geol. Bull. (2) Water; H₂O; [7732-18-5] 1976, 60, 213-44. VARIABLES: PREPARED BY: Temperature: 25-149.5°C F. Kapuku EXPERIMENTAL VALUES: Solubility of methylcyclohexane in water at system pressure 10⁶x1 (compiler) t/°C mg(1)/kg(2)q(1)/100 q sln (compiler) 25.0 16.0 ± 0.2 0.00160 2.9 40.1 18.0 ± 0.6 0.00180 3.3 55.7 18.9 ± 0.5 0.00189 3.5 99.1 33.8 ± 1.0 0.00338 6.2 120.0 79.5 ± 2.2 0.00795 14.6 137.3 139.0 ± 8.0 0.01390 25.5 149.5 244.0 ± 10.0 0.02440 44.8

AUXILIARY INFORMATION			
METHOD/APPARATUS/PROCEDURE: Room-temperature solubilities were determined by use of screw-cap test tubes. The (1) phase floated on top of (2) and insured saturation (in 2 to 4 days) of the aqueous phase. High-temperature solubility work was carried out in the ovens of the gas chromatograph. The solutions were contained in 75 mL double ended stainless steel sample cylinders. Modified Micro Linear Valves sealed the bottom of the cylinder and al- lowed syringe access to the solution during sampling. The sample is then transferred to the gas chromatograph equipped with dual flame ionization detectors. Many details are given in the paper.	INFORMATION SOURCE AND FURITY OF MATERIALS: (1) Phillips Petroleum Company; 99+%. (2) distilled. ESTIMATED ERROR: temp. ± 1 K soly. range of values given above REFERENCES:		

COMPONENTS:	ORIGINAL MEASUREMENTS:	
<pre>(1) Methylcyclohexane; C₇H₁₄; [108-87-2]</pre>	Krzyzanowska, T.; Szeliga, J.	
(2) Water; H ₂ O; [7732-18-5]	Nafta (Katowice) <u>1978</u> , 12, 413-7.	
VARIABLES:	PREPARED BY:	
One temperature: 25°C	M.C. Haulait-Pirson	
EXPERIMENTAL VALUES:		
The solubility of methylcyclohexane i	n water at 25°C was reported	
to be 16.0 $mg(1)/kg(2)$.		
The corresponding mass percent and mo	ble fraction, x,, calculated	
by compiler are 0.0016 g(l)/100 g slr	and 2.93 x $10^{\frac{1}{6}}$.	
	ĺ	
Editor's Note: Based on the results	for this and other hydrocarbon-water	
systems, uncertainity exists about whether the state of t	nether the datum compiled here is	
independent of that of Price for the	same system (see previous page).	
•		
AUXILIARY INFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
Saturated solutions of (1) in (2)	(1) not specified.	
were prepared in two ways. First,		
200 µL of (1) was injected into 20 mL of (2) and thermostatted at	(2) not specified.	
25°C. Second, the mixture of (1)		
and (2) as above was thermostatted at 70°C and then cooled to 25°C.		
The time required to obtain		
equilibrium was three weeks. The solubility of (1) in (2) was mea-		
sured by glc. A Perkin-Elmer model		
F-11 gas chromatograph equipped	ESTIMATED ERROR:	
(70°C) and a flame ionization	solv $0.5 mg(1)/kg(2)$ (standard	
detector was used. Saturated solu-	deviation from 7-9 determinations)	
as standard solutions.		
	REFERENCES:	
	1	

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) Methylcyclohexane; C₇H₁₄; [108-87-2] (2) Water; H₂O; [7732-18-5]</pre>	Rudakov, E.S.; Lutsyk, A.I. Zh. Fiz. Khim. <u>1979</u> , 53, 1298-1300.
VARIABLES:	PREPARED BY:
One temperature: 25°C	M.C. Haulait-Pirson

EXPERIMENTAL VALUES:

The authors reported the partition coefficient α of methylcyclohexane between the gas and aqueous phase. $\alpha = 16 \pm 1$. $\alpha = C_g/C_s$ with C_s being the concentration of the compound in dilute aqueous solution at 25°C and C_g the concentration in the gas phase in equilibrium with the aqueous solution (both in moles per liter).

The compiler has assumed that when (1) and (2) are not very soluble in each other, C_s may be taken as the water solubility and C_g as the vapor pressure of (1). The value of p (where p is the vapor pressure in mm of Hg) is taken from ref 1. p = 46.33 mm of Hg and log $C_g = \log p - 4.269$ = -2.60 expressed in moles per liter. Therefore $C_s = 1.56 \times 10^{-4}$ moles per liter. With the assumption of a solution density of 1.00 g mL⁻¹, the corresponding mass percent is 0.0015 g(1)/100 g sln and the corresponding mole fraction, x_1 , is 2.7 x 10^{-6} .

AUXILIARY INFORMATION			
METHOD/APPARATUS/PROCEDURE: The equilibrium distribution was attained after shaking for 10 min the thermostatted reactor contain- ing (2) and the (1) vapor. After being allowed to stand for 10 min, equal calibrated volumes of samples of the gas and solution were intro- duced by a syringe into a special cell for the removal of (1) by blowing, built into the gas line of the chromatograph and the par- tition coefficient α was determined as the ratio of the areas of the peaks of the substrate arising from the two phases.	<pre>SOURCE AND PURITY OF MATERIALS: (1) not specified. (2) not specified. ESTIMATED ERROR: soly. ± 10% (estimated by the compiler) REFERENCES: 1. Hine, J.; Mooker, P.K. J. Org. Chem. 1975, 4, 292.</pre>		

27	211
41	- 166
J /	200

COMPONENTS :	EVALUATOR:
(1) l-Heptene; C ₇ H ₁₄ ; [592-76-7] (2) Water; H ₂ O; [7732-18-5]	G.T. Hefter, School of Mathematical and Physical Sciences, Murdoch University, Perth, W.A., Australia. July 1985

CRITICAL EVALUATION:

Quantitative data for the solubility of water (2) in 1-heptene (1) have been reported in the publications listed in Table 1.

<u>TABLE 1: Qua</u> <u>Water</u>	ntative Solubility St (2) in 1-Heptene (1)	udies of
Reference	<i>Т/</i> К	Method
Black <i>et al</i> . (ref l) Englin <i>et al</i> . (ref 2)	283-294 283-303	radiotracer analytical

The solubility of 1-heptene in dilute aqueous HNO₃ solutions have also been reported (ref 3). However, as no other data are available for comparison these values will not be considered in this Evaluation. The interested user is referred to the relevant Data Sheet immediately following this Critical Evaluation.

The reported values (ref 1 and 2) for the solubility of water in 1-heptene are listed in Table 2.

The data are in very poor agreement. In the absence of confirmatory studies selection of best values is difficult. However, it may be noted that in well characterized systems (e.g., water in benzene) the results of Englin *et al.* at T < 300K are generally reliable whilst those of Black *et al.* generally differ markedly from Recommended values. Thus, values of Englin *et al.* (ref 2) have been selected as the "Best" values available although, in the absence of confirmatory studies, it is not possible at this stage to reject outright the data of Black *et al.* (ref 1).

COMPONENTS :		EVALUATOR:	
(1)	1-Heptene; C ₇ H ₁₄ ; [592-76-7]	G.T. Hefter, School of Mat	hematical
(2)	Water; H ₂ 0; [7732-18-5]	and Physical Sciences, Mur	rdoch
	-	University, Perth, W.A., A	Australia
		July 1985	
CRITI	CAL EVALUATION: (continued)	1	
ł	mante 2. montativo (
	of Water (2) i	n l-Heptene (1)	
	T/K Solu	bility Values	
	Reported values	"Best" values"	- 3
	10 ⁵ g(2)/100g sln	10 [°] g(2)/100g sln	^{10⁻x} 2
ł	292 - 6.92 (mof 1) - 1.86 (mof 2)), 1 Q	1.0
	203 11.2 (ref 1), 2.49 (ref 2	$\begin{array}{c} 2 \\ 2 \\ 2 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\$	1.4
	$298 3.2^{b} \text{ (ref 2)}$	3.2	1.7
	303 3.75 (ref 2)	3.8	2.0
[·		
^b Obta REFER	ined by the Evaluator by graphica RENCES	l interpolation.	
1.	Black, C.; Joris, G.G.; Taylor, H 537-43.	.S. J. Chem. Phys. <u>1948</u> ,	16,
2.	Englin, B.A.; Plate, A.F.; Tugolu Tekhnol. Topl. Masel <u>1965</u> , 10, 4	ukov, V.M.; Pryanishnikova, M 2-6.	1.A. Khim.
3.	Natarajan, G.S.; Venkatachalam, K 328-9.	.A. J. Chem. Eng. Data. 19	<u>972</u> , 17,
ĺ			

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) 1-Heptene; C ₇ H ₁₄ ; [592-76-7]	Black, C.; Joris, G.G.; Taylor, H.S.
(2) Water; H ₂ O; [7732-18-5]	J. Chem. Phys. <u>1948</u> , 16, 537-43.
-	
VARIABLES:	PREPARED BY:
Temperature: 10 - 21.2°C	A. Maczyński and 2. Maczyńska
EXPERIMENTAL VALUES:	
Solubility of wat	ter in 1-heptene
$t/^{\circ}C$ $g(2)/100 g(1) g(2)/10$	$10 \mathrm{gsln}$ $10^3 \mathrm{g}_{\pi}$ (compiler)
(com	piler)
10.0 0.0692 0.	.0692 3.76
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.1126 6.11
21.2 0.1158 0.	.1158 6.28
(at total saturation pressure of	t I atm)
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Air saturated with radioactive	(1) Havard University;
water vapor was bubbled through	purity not specified;
Dissolved water was separated from	
(1) by absorption on calcium oxide. The tritium was transferred into	(2) not specified.
the counter by equilibration with	
described in ref (1).	
	ESTIMATED ERROR:
	specified)
	REFERENCES:
	1. Joris, G.G.; Taylor, H.S.
	J. Chem. Phys. <u>1948</u> , 16, 45.

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) 1-Heptene; C ₇ H ₁₄ ; [592-76-7] (2) Water; H ₂ O; [7732-18-5]	Englin, B.A.; Plate, A.F.; Tugolukov, V.M.; Pryanishnikova, M.A. Khim. Tekhnol. Topl. Masel <u>1965</u> , 10, 42-6.
VARIABLES:	PREPARED BY:
Temperature: 10-30°C	A. Maczynski and Z. Maczynska
EXPERIMENTAL VALUES:	
Solubility of wate	r in l-heptene
$\frac{t/^{\circ}C}{$	$\frac{10^3 x_2}{2}$ (compiler)
10 0.0186 20 0.0249 30 0.0375	1.01 1.36 2.04
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: Component (1) was introduced into a thermostatted flask and saturated for 5 hr. with (2). Next, calcium hy- dride was added and the evolving hydrogen volume measured and hence the concentration of (2) in (1) was evaluated.	SOURCE AND PURITY OF MATERIALS: (1) not specified. (2) not specified.
	Not specified.

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) 1-Heptene; C ₇ H ₁₄ ; [592-76-7]	Natarajan, G.S.; Venkatachalam, K.A.
(2) Water; H ₂ 0; [7732-18-5]	J. Chem. Eng. Data <u>1972</u> , 17, 328-9
_	
VARIABLES:	PREPARED BY:
Temperature: 20-30°C	M.C. Haulait-Pirson, G.T. Hefter
EXPERIMENTAL VALUES:	
Solubility of 1-heptene in 0.001 mol :	L ⁻¹ HNO ₃ solution
$t/^{\circ}C$ 10 ⁴ mol L ⁻¹ sln ^a 10	$3 g(1)/100 g sln^b 10^6 x_1$
	(compiler) (compiler)
$20 3.16 \pm 0.13$	3.1 5.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.8 5.1
30 2.45 ± 0.15	2.4 4.4
a Uncertainties stated to be "standa:	rd deviations from means".
<i>b</i> Assuming a solution density of 1.0	0 g mL ⁻¹ at all temperatures.
Compilants actor Ditherark the data h	
Compiler's note: Although the data ha	ave not been measured in pure water
the low concentration of the added ac	a is unlikely to cause the olerin
data and given in the paper for 0.05	and 0.1 rol 1 ⁻¹ vg/
data are given in the paper for 0.05 a	
AUXILIARI	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
15 mL of the aqueous medium was	(1) Matheson, Coleman and Bell;
equilibrated with 1 mL of (1) by	99%.
mechanical shaking in a thermostatted	(2) Not specified.
glass burette. After settling	
(judged visually), 5 mL of the	
aqueous layer was withdrawn and the	
olefin content determined by	
titration with bromine using standard	
procedures.	ESTIMATED ERROR:
	Temp, ± 0.05 K
	Soly. see table above.
	REFERENCES

COMPONENTS:		EVALUATOR:		
		G.T. Hefter		
(1) 2-Heptene; C ₇	^H 14; [592-7	7-8] School of Mat	thematical and Ph	ysical
(2) Water; H ₂ O; [7732-18-5]	Sciences, Mu	rdoch University,	
-		Perth, Austra	alia.	
		July 1985		
CRITICAL EVALUATION:				
Quantitative data	for the solu	ubility of 2-heptene	(1) in water (2)	have
been reported in t	he publicat:	ions listed in Table 3	1.	
TABL	El: Quant	titative Solubility St	tudies of	
	2-Hep	tene (1) in Water (2)		
				. a
Reference	TTK	Method	Solubility	values
			iu g(i)/iuug sin	10 x
McAuliffe (ref 1)	298	GLC	15 (<i>R</i>)	2.7 (R)
Schwarz (ref 2)	297	chromatographic	15 (<i>R</i>)	2.7 (R)
The agreement between the two studies is excellent and although the measurement temperatures differ slightly this effect should be minor. The values in Table 1 are therefore Recommended. Solubility values of 2-heptene in various salt solutions have also been reported (ref 3) but, although in broad agreement with the values given in Table 1 will not be considered in this Evaluation. No data are available for the solubility of water in 2-heptene. REFERENCES 1. McAuliffe, C. J. Phys. Chem. <u>1966</u> , 70, 1267-75. 2. Schwarz, F.P. Anal. Chem. <u>1980</u> , 52, 10-15. 3. Natarajan, G.S.; Venkatachalam, K.A. J. Chem. Eng. Data <u>1972</u> , 17, 328-9.				

37 371

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) 2-Heptene; C ₇ H ₁₄ ; [592-77-8]	McAuliffe, C.
(2) Water; H ₂ O; [7732-18-5]	J. Phys. Chem. <u>1966</u> , 70, 1267-75.
VARIABLES:	PREPARED BY:
One temperature: 25°C	A. Maczynski, Z. Maczynska, and A. Szafranski
EXPERIMENTAL VALUES:	
The solubility of 2-heptene in water	at 25°C was reported
to be 15 $g(1)/10^{\circ} g(2)$.	ale fraction a calculated
The corresponding mass percent and more by the compilers are $0.0015 \text{ g}(1)/100$	g sln and 2.7 x 10^{-6} .
I	
AUXILIARY	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
In a 250-mL bottle, 10-20 mL of (1)	(1) Phillips Petroleum or
was vigorously shaken for 1 hr, or magnetically stirred for 1 day,	Columbia Chemical; used as received.
with 200 mL of (2) at 25°C. The bottle was set aside for 2 days to	(2) distilled.
allow droplets of undissolved (1)	(-,
was checked microscopically. A	
sample of the hydrocarbon-saturated water was withdrawn with a Hamilton	
syringe and gas liquid chromato-	ESTIMATED EDBOD.
ionization detector.	temp. \pm 1.5 K
	soly. 1.4 $g(1)/10^6 g(2)$
	(standard deviation of mean)
	KEFEKENCES:

I

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) 2-Heptene; C ₇ H ₁₄ ; [592-77-8]	Schwarz, F.P.
(2) Water; H ₂ O; [7732-18-5]	Anal. Chem. <u>1980</u> , 52, 10-15.
_	
VARIABLES :	PREPARED BY:
One temperature: 23.5°C	M.C. Haulait-Pirson
EXPERIMENTAL VALUES:	
Solubility of 2-heptene in water at : 0.00150 \pm 0.00003 g(1)/100 g sln. The corresponding mole fraction, x_1 , is 2.75 x 10 ⁻⁶ .	23.5°C was reported to be calculated by the compiler
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: An elution chromatography method was used where (1) was the stationary phase and (2) the mobile phase. A transparent column was packed with an inert support (chromosorb P) coated with a known amount of the liquid solute (1). This solute column was connected to a water reservoir (connected to a compressed gas regulator). Water was forced through the column by the pressure of the compressed gas (ca. 14 kPa). As the total volume of water flowing through the column increased, a solute depleted zone, different in color from the stationary phase, developed and increased in length. The solubility is calculated from the amount of solute removed from the column, i.e. length of the solute depleted zone, and the volume of water passed through the column. Many details about preparation of the solute column and calculation are given in the paper.	<pre>SOURCE AND PURITY OF MATERIALS: (1) 99% purity used without further purification (2) distilled ESTIMATED ERROR: temp. ± 1.5°C soly. 2% (average std. dev.) REFERENCES:</pre>

COMPONENTS :	ORIGINAL MEASUREMENTS:	
<pre>(1) 2-Heptene; C₇H₁₄; [592-77-8] (2) Water; H₂0; [7732-18-5]</pre>	Natarajan, G.S.; Venkatachalam, K.A. <i>J. Chem. Eng. Data</i> <u>1972</u> , 17, 328-9	
VARIABLES:	PREPARED BY:	
One temperature: 25°C	M.C. Haulait-Pirson, G.T. Hefter	
EXPERIMENTAL VALUES: The solubility of 2-heptene in water was reported to be 2.716×10^{-4} mol L ⁻¹ at 25°C. ^a Assuming a solution density of 1.00 g mL ⁻¹ the corresponding mass percent and mole fraction (x_1) solubilities, calculated by the compilers are respectively, 0.00266 g(l/100 g sln and 4.89 x 10 ⁻⁶ . Solubility data are also presented as a function of temperature in various salt solutions. ^a It should be noted that although the authors state that the solubility refers to "water" the context in the paper is ambiguous and the data were probably obtained in 0.001 mol L ⁻¹ HNO ₃ solution.		
AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE: 15 mL of the aqueous medium was equilibrated with 1 mL of (1) by mechanical shaking in a thermostated glass burette. After settling (judged visually), 5 mL of the aqueous layer was withdrawn and the olefin content determined by titration with bromine using standard procedures.	 SOURCE AND PURITY OF MATERIALS: (1) Prepared by dehydration of 2-heptanol and then washed, dried and fractionated. Purity (no specification) was determined by chromatography. (2) Not specified 	
	ESTIMATED ERROR: Temp. ± 0.05 K Soly. not specified REFERENCES:	

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) 2,2,3-Trimethylbutane; C ₇ H ₁₆ ; [464-06-2]	Englin, B.A.; Plate, A.F.; Tugolukov, V.M.; Pryanishnikova, M.A.
(2) Water; H ₂ O; [7732-18-5]	Khim. Tekhnol. Topl. Masel <u>1965</u> , 10, 42-6.
VARIABLES:	PREPARED BY:
Temperature: 0-50°C	A. Maczynski and M.C. Haulait-Pirson

EXPERIMENTAL VALUES:

¢∕°C	g(2)/100 g sln	$10^4 x_2$ (compil
0	0.0027	1.50
10	0.0057	3.17
20	0.0106	8.90
30	0.0184	10.23
40	0.0315	17.51
50	0.0507	28.15

AUXILIANI	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Component (1) Was introduced into a thermostatted flask and saturated for 5 hours with (2). Next, cal- cium hydride was added and the evolving hydrogen volume measured and hence the concentration of (2) in (1) was evaluated.	<pre>(1) not specified. (2) not specified.</pre>
	ESTIMATED ERROR:
	not specified.
	REFERENCES:

37_375

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) 2,2-Dimethylpentane; C₇H₁₆; [590-35-2] (2) Water; H₂0; [7732-18-5]</pre>	Price, L.C. Am. Assoc. Petrol. Geol. Bull. <u>1976</u> , 60, 213-44.
VARIABLES:	PREPARED BY:
One temperature: 25°C	M.C. Haulait-Pirson
EXPERIMENTAL VALUES:	· · · ·

The solubility of 2,2-dimethylpentane in water at 25°C and at system pressure was reported to be 4.40 mg(l)/kg(2). The corresponding mass percent and mole fraction, x_1 , calculated by the compiler are 4.4 x 10^{-4} g(l)/100 g sln and 7.9 x 10^{-7} .

AUXILIARY INFORMATION		
METHOD/APPARATUS/PROCEDURE: The solubility was determined at laboratory temperatures by use of screw-cap test tubes. The (1) phase floated on top of the water and insured saturation of the (2) phase in 2 to 4 days. Analyses were carried out by GLC using a cHewlett-Packard model 5751 gas chromatograph with dual-flame ionization detectors. Many details are given in the paper.	 SOURCE AND PURITY OF MATERIALS: (1) Phillips Petroleum Company; Chemical Samples Company or or Aldrich Chemical Company; 99+%. (2) distilled. 	
	ESTIMATED ERROR: temp. ± 1 K soly. ± 0.11 mg(1)/kg(2)	
	REFERENCES :	

466	37 376	
COMPONENTS :	ORIGINAL MEASUREMENTS:	
(1) 2,2-Dimethylpentane; C ₇ H ₁₆ ; [590-35-2]	Krzyzanowska, T.; Szeliga, J.	
(2) Water; H ₂ O; [7732-18-5]	Nafta (Katowice) <u>1978</u> , 12, 413-7.	
VARIABLES:	PREPARED BY:	
One temperature: 25°C	M.C. Haulait-Pirson	
EXPERIMENTAL VALUES:		
The solubility of 2,2-dimethylpentane in water at 25°C was reported to be 4.40 mg(l)/kg(2). The corresponding mass percent and mole fraction, x_1 , calculated by compiler are 4.4 x 10 ⁻⁴ g(l)/100 g sln and 7.9 x 10 ⁻⁷ .		
Editor's Note: Based on the results for this and other hydrocarbon-water systems, uncertainity exists about whether the datum compiled here is independent of that of Price for the same system (see previous page). Consequently, this system has not been evaluated.		
AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
Saturated solutions of (1) in (2) were prepared in two ways. First, 200 μ L of (1) was injected into 20 mL of (2) and thermostatted at 25°C. Second, the mixture of (1) and (2) as above was thermostatted at 70°C and then cooled to 25°C. The time required to obtain equi- librium was three weeks. The solubility of (1) in (2) was mea- sured by glc. A Perkin-Elmer model F-11 gas chromatograph equipped with a 100-150 mesh Porasil column (70°C) and a flame ionization detector was used. Saturated solu- tions of heptane in (2) were used as standard solutions.	(1) not specified.(2) not specified.	
	ESTIMATED ERROR: soly. 0.13 mg(1)/kg(2) (standard deviation from 7-9 determinations)	
	REFERENCES:	

37_377	467
COMPONENTS:	ORIGINAL MEASUREMENTS:
 (1) 2,3-Dimethylpentane; C₇H₁₆; [565-59-3] (2) Water; H₂O; [7732-18-5] 	Price, L.C. Am. Assoc. Petrol. Geol. Bull. <u>1976</u> , 60, 213-44.
HADTADI FC.	
VARIABLES:	PREPARED BY:
One temperature: 25°C	M.C. Haulait-Pirson
EXPERIMENTAL VALUES:	
The solubility of 2,3-dimethylpentane pressure was reported to be 5.25 mg(1 mass percent and mole fraction, x_1 , c are 5.25 x 10^{-4} g(1)/100 g sln and 9.	in water at 25°C and at system)/kg(2). The corresponding alculated by the compiler 43 x 10 ⁻⁷ .
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The solubility was determined at laboratory temperatures by use of screw-cap test tubes. The (1) phase floated on top of the water and insured saturation of the (2) phase in 2 to 4 days. Analyses were carried out by GLC using a Hewlett-Packard model 5751 gas chromatograph with dual-flame ionization detectors. Many details are given in the paper.	<pre>(1) Phillips Petroleum Company; Chemical Samples Company or or Aldrich Chemical Company; 99+%. (2) distilled. ESTIMATED ERROR: temp. ± 1 K soly. ± 0.02 mg(1)/kg(2) REFERENCES:</pre>

COMPONENTS :	ORIGINAL MEASUREMENTS:	
<pre>(1) 2,3-Dimethylpentane; C₇H₁₆; [565-59-3]</pre>	Krzyzanowska, T.; Szeliga, J.	
(2) Water; H ₂ O; [7732-18-5]	Nafta (Katowice) <u>1978</u> , 12, 413-7.	
VARIABLES:	PREPARED BY:	
One temperature: 25°C	M.C. Haulait-Pirson	
EXPERIMENTAL VALUES:		
The solubility of 2,3-dimethylpentane in water at 25°C was reported to be 5.25 mg(l)/kg(2). The corresponding mass percent and mole fraction, x_1 , calculated by compiler are 5.25 x 10 ⁻⁴ g(l)/100 g sln and 9.43 x 10 ⁻⁷ .		
Editor's Note: Based on the results systems, uncertainity exists about wh independent of that of Price for the Consequently, this system has not bee	for this and other hydrocarbon-water wether the datum compiled here is same system (see previous page). en evaluated.	
AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
Saturated solutions of (1) in (2) were prepared in two ways. First, 200 μ L of (1) was injected into 20 mL of (2) and thermostatted at 25°C. Second, the mixture of (1) and (2) as above was thermostatted at 70°C and then cooled to 25°C. The time required to obtain equilibrium was three weeks. The solubility of (1) in (2) was mea- sured by glc. A Perkin-Elmer model F-11 gas chromatograph equipped	(1) not specified.(2) not specified.	
with a 100-150 mesh Porasil column (70°C) and a flame ionization detector was used. Saturated solu- tions of heptane in (2) were used as standard solutions.	estimated error: soly. 0.16 mg(l)/kg(2) (standard deviation from 7-9 determinations)	
as standard sorterons.	REFERENCES :	

37	379
•	• • •

COMPONENTS:	EVALUATOR:
<pre>(1) 2,4-Dimethylpentane; C₇H₁₆; [108-08-7]</pre>	M.C. Haulait-Pirson, Department of Chemistry, University of Leuven, Belgium
(2) Water; H ₂ O; [7732-18-5]	G.T. Hefter, School of Mathematical and Physical Sciences, Murdoch University, Perth, W.A., Australia November 1984

CRITICAL EVALUATION:

Quantitative solubility data for the system 2,4-dimethylpentane (1) and water (2) are reported in the publications listed in Table 1.

TABLE 1: Quantitative Solubility Studies for the 2,4-Dimethylpentane (1) - Water (2) System

Reference	<i>t</i> /K	Solubility	Method
McAuliffe (ref 1)	298	(1) in (2)	GLC
McAuliffe (ref 2)	298	(1) in (2)	GLC
Polak and Lu (ref 3)	273,298	mutual	GLC, Karl Fischer
Price (ref 4)	298	(1) in (2)	GLC
Krzyzanowska and Szeliga (ref 5)	298	(1) in (2)	GLC

The original data in all of these publications are compiled in the Data Sheets immediately following this Critical Evaluation. For convenience, further discussion of this system will be in two parts.

1. THE SOLUBILITY OF 2,4-DIMETHYLPENTANE (1) IN WATER (2)

Solubility data for 2,4-dimethylpentane in water (ref 2,4) are listed in Table 2 with the following exceptions. The datum of Krzyzanowska and Szeliga (ref 5) has been excluded because it does not appear to be independent of that of Price (ref 4). The earlier datum of McAuliffe (ref 1) is presumably superceded by his later determination (ref 2) and has also been excluded.

The 298K datum of Polak and Lu (ref 3) is considerably higher (ca. 25% relative) than other reported values (ref 2,4). Furthermore, the increase in solubility between 298 and 273K, as for other hydrocarbons investigated by these authors, is unusually large. The data of Polak and Lu (ref 3) are therefore rejected.

COMPONENTS:	EVALUATOR:	
<pre>(1) 2,4-Dimethylpentane; C₇H₁₆; [108-08-7]</pre> (2) Water: H ₂ O; [7732-18-5]	M.C. Haulait-Pirson, Department of Chemistry, University of Leuven, Belgium. G.T. Hefter, School of Mathematical and Physical Sciences, Murdoch	
(2) """"""""""""""""""""""""""""""""""""	University, Perth, W.A., Australia November 1984	
CRITICAL EVALUATION: (continued)		
TABLE 2: Recommended (R) of 2,4-Dimethylpent	Value of the Solubility ane (1) in Water (2)	
T/K Sol	ubility values	
Reported values 10 ⁴ g(1)/100g sln	"Best" values $(\pm \sigma_n)^a$ 10 ⁴ g(1)/100g sln 10 ⁷ x ₁	
298 4.06 (ref 2), 4.4 (ref	4) 4.2 ± 0.2 (R) 7.6 (R)	
"Best" values obtained by averaging;	$\boldsymbol{\sigma}_n$ has no statistical significance.	
2. THE SOLUBILITY OF WATER (2) IN 2,	4-DIMETHYLPENTANE (1)	
The solubility of water in 2,4-dimethy	lpentane has been reported only by	
Polak and Lu (ref 3) and thus no criti	cal evaluation can be made. The	
values. However, it can be noted that	the data of Polak and Lu are	
generally close to "Recommended" value	es in well characterized systems.	
REFERENCES		
1. McAuliffe, C. <i>Nature</i> <u>1963</u> , 200, 1092-3.		
2. McAuliffe, C. J. Phys. Chem. 19	<u>166</u> , <i>70</i> , 1267-75.	
3. Polak, J.; Lu, B.C-Y. Can. J. C	hem. <u>1973</u> , 51, 4018–23.	
4. Price, L.C. Am. Assoc. Petrol.	Geol. Bull. <u>1976</u> , 60, 213-44.	
5. Krzyzanowska, T.; Szeliga, J. N	afta (Katowice) <u>1978</u> , 34, 413-7.	

COMPONENTS: ORIGINAL MEASUREMENTS: (1) 2,4-Dimethylpentane; C₇H₁₆; [108-08-7] McAuliffe, C. Nature (London) 1963, 200, 1093-3. (2) Water; H₂O; [7732-18-5] VARIABLES: PREPARED BY: One temperature: 25°C M.C. Haulait-Pirson **EXPERIMENTAL VALUES:** The solubility of 2,4-dimethylpentane in water at 25°C was reported to be 3.62 mg (1)/kg sln (0.00362 g(1)/100 g sln). The corresponding mole fraction, x_1 , calculated by the compiler, is 6.5×10^{-7} . AUXILIARY INFORMATION METHOD/APPARATUS/PROCEDURE: SOURCE AND PURITY OF MATERIALS: 20-50 mL of (1) was added to (2) (1) Phillips Petroleum Co.; 99+% purity; used as received. and vigorously shaken or stirred several days with a magnetic stirrer. A 0.05 mL or 0.10 mL sample of the hydrocarbon-saturated (2) distilled. water was directly injected into the gas chromatograph fitted with a suitable fractionator to absorb water. A hydrogen-flame ionization detector was used. ESTIMATED ERROR: temp. ± 1.5 K soly. 0.10 mg (1)/kg sln (standard deviation from mean) **REFERENCES:**

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) 2,4-Dimethylpentane; C₇H₁₆; [108-08-7] (2) Water; H₂O; [7732-18-5]</pre>	McAuliffe, C. J. Phys. Chem. <u>1966</u> , 70, 1267-75.
VARIABLES:	PREPARED BY:
One temperature: 25°C	M.C. Haulait-Pirson
EXPERIMENTAL VALUES: The solubility of 2,4-dimethylpentane be 4.06 mg (1)/kg sln (0.00406 g(1)/1 The corresponding mole fraction, x_1 , is 7.3 x 10 ⁻⁷ . The same value is also reported in re	in water at 25°C was reported to 00 g sln). calculated by the compiler, of 1.
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: In a 250 mL glass bottle, 10-20 mL of (1) was vigorously shaken for 1 hr or magnetically stirred for 1 day, with 200 mL of (2) at 25°C. In the case of shaking, the solution was allowed to stand for 2 days to permit separation of small (1) drop- lets. Absence of emulsion was checked microscopically. A 50 µL sample of the (1) saturated water was withdrawn with a Hamilton Syringe and injected into the frac- tionator of the gas chromatograph. A hydrogen-flame ionization detector was used. Many details are given in the paper.	<pre>SOURCE AND FURITY OF MATERIALS: (1) Phillips Petroleum Co.; 99+% purity; used as received. (2) distilled. (2) distilled. ESTIMATED ERROR: temp. ± 1.5 K soly. 0.29 mg (1)/kg sln (standard deviation from mean) REFERENCES: 1. McAuliffe, C. Am. Chem. Soc. Div. Petrol. Chem. <u>1964</u>, 9, 275.</pre>

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) 2,4-Dimethylpentane; C ₇ H ₁₆ ; [108-08-7] (2) Water: H 0: [7732-18-5]	Polak, J.; Lu, B.C-Y. <i>Can. J. Chem.</i> <u>1973</u> , <i>51</i> , 4018-23.
VARIABLES:	PREPARED BY:
Temperature: 0-25°C	M.C. Haulait-Pirson
EXPERIMENTAL VALUES:	
Solubility of 2,4-dimet	hylpentane in water
t/°C mg(l)/kg	sln x ₁ (compiler)
0 ^a 6.50 ^c	1.17×10^{-6}
25 ^b 5.50 ^c	9.88 x 10^{-7}
Solubility of water in $\frac{t/^{\circ}C}{0^{a}} \qquad \frac{mg(2)/kg}{31^{d}}$	2,4-dimethylpentane $\frac{\sin x_2 \text{ (compiler)}}{1.73 \times 10^{-4}}$
25 ^b 81 ^e	4.51×10^{-4}
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: The solubility of (1) in (2) was determined by gas chromatography. The solubility of (2) in (1) was determined by Karl Fischer titra- tion. 50 mL of (1) together with 50 mL of (2) were placed in a 125 mL Hypovial closed with a Teflon coated rubber septum and placed in a constant-temperature water bath. The system was stirred magnetical- ly for 24 hr or was kept in the bath without stirring for at least 7 days before samples were taken for analysis. Details of the analysis are given in the paper.	<pre>SOURCE AND PURITY OF MATERIALS: (1) Phillips Petroleum Co.; pure grade reagent (99%+); shaken three times with distilled water. (2) distilled. (2) distilled. ESTIMATED ERROR: temp. a) ± 0.02 K; b) ± 0.01 K soly. c) ± 1.7%; d) ± 4.7%; e) ± 3.1% (mean) REFERENCES:</pre>

COMPONENTS:	ORIGINAL MEASUREMENTS:	
(1) 2,4-Dimethylpentane; C ₇ H ₁₆ ; [108-08-7]	Price, L.C.	
(2) Water; H ₂ O; [7732-18-5]	Ат. Аввос. Petrol. Geol. Bull. <u>1976</u> , 60, 213-44.	
2		
VARIABLES:	PREPARED BY:	
One temperature: 25°C	M.C. Haulait-Pirson	
EXPERIMENTAL VALUES:		
The solubility of 2,4-dimethylpentane pressure was reported to be 4.41 mg(1 mass percent and mole fraction, x_1 , c are 4.41 x 10 ⁻⁴ g(1)/100 g sln and 7.	in water at 25°C and at system)/kg(2). The corresponding calculated by the compiler 92 x 10 ⁻⁷ .	
AUXILIARY INFORMATION		
The solubility was determined at laboratory temperatures by use of screw-cap test tubes. The (1) phase floated on top of the water and insured saturation of the (2) phase in 2 to 4 days. Analyses were carried out by GLC using a Hewlett-Packard model 5751 gas chromatograph with dual-flame ionization detectors. Many details are given in the paper.	 (1) Phillips Petroleum Company; Chemical Samples Company or or Aldrich Chemical Company; 99+%. (2) distilled. 	
	ESTIMATED ERROR:	
	temp. ± 1 K soly. ± 0.05 mg(1)/kg(2)	
	REFERENCES:	

37_384	475	
COMPONENTS:	ORIGINAL MEASUREMENTS:	
(1) 2,4-Dimethylpentane, C ₇ H ₁₆ ; [108-08-7]	Krzyzanowska, T.; Szeliga, J.	
(2) Water; H ₂ O; [7732-18-5]	Nafta (Katowice) <u>1978</u> , 12, 413-7.	
VARIABLES :	PREPARED BY:	
One temperature: 25°C	M.C. Haulait-Pirson	
EXPERIMENTAL VALUES:		
The solubility of 2,4-dimethylpentane in water at 25°C was reported to be 4.41 mg(1)/kg(2). The corresponding mass percent and mole fraction, x_1 , calculated by compiler are 4.41 x 10 ⁻⁴ g(1)/100 g sln and 7.92 x 10 ⁻⁷ . Editor's Note: Based on the results for this and other hydrocarbon-water systems, uncertainity exists about whether the datum compiled here is independent of that of Price for the same system (see previous page).		
AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
Saturated solutions of (1) in (2)	(1) not specified.	
were prepared in two ways. First,	(2) not specified	
20 mL of (2) and thermostatted at 25°C. Second, the mixture of (1) and (2) as above was thermostatted at 70°C and then cooled to 25°C. The time required to obtain equilibrium was three weeks. The solubility of (1) in (2) was mea- sured by glc. A Perkin-Elmer model	(2) not specified.	
r-11 gas cnromatograph equipped with a 100-150 mesh Porasil column	ESTIMATED ERROR:	
(70°C) and a flame ionization detector was used. Saturated solu- tions of heptane in (2) were used as standard solutions.	soly. 0.14 mg(l)/kg(2) (standard deviation from 7-9 determinations)	
	REFERENCES :	

COMPONENTS :		ORIGINAL MEASUREMENTS:	1
(1) 3,3-Dimethylpentane; C ₇ H ₁₆ ; [562-49-2]		Price, L.C. Am. Assoc. Petrol. G	eol. Bull.
(2) Water; H ₂ O; [7732-18-5]		<u>1976</u> , <i>60</i> , 213-44.	
VARIABLES:		PREPARED BY:	
Temperature: 25-150.4°C		F. Kapuku	
EXPERIMENTAL VALUES:			
Solubility of	3,3-dimethylpentane	in water at system p	ressure
t/°C	mg(1)/kg(2)	g(l)/100 g sln (compiler)	$10^{6}x_{1}$ (compiler)
25.0	5.92 ± 0.06	0.000592	1.06
40.1	6.78 ± 0.20	0.000678	1.22
55.7	8.17 ± 0.46	0.000817	1.47
69.7	10.3 ± 0.7	0.00103	1.85
99.1	15.8 ± 0.7	0.00158	2.84
118.0	27.3 ± 0.4	0.00273	4.91
140.4	67.3 ± 1.7	0.00673	12.10
150.4	86.1 ± 1.8	0.00861	15.48
	AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROC	EDURE:	SOURCE AND PURITY OF MATE	RIALS:
Room-temperature determined by use tubes. The (1) p of (2) and insure to 4 days) of the High-temperature carried out in th chromatograph. To contained in 75 m stainless steel s Modified Micro L the bottom of the lowed syringe acd during sampling. transferred to th equipped with due detectors. Many in the paper.	solubilities were of screw-cap test phase floated on top ed saturation (in 2 e aqueous phase. solubility work was he ovens of the gas The solutions were mL double ended sample cylinders. inear Valves sealed e cylinder and al- cess to the solution The sample is then he gas chromatograph al flame ionization details are given	<pre>(1) Phillips Petrole 99+%. (2) distilled. ESTIMATED ERROR: temp. ± 1 K soly. range of value REFERENCES:</pre>	eum Company; es given above

```
477
37 386
COMPONENTS:
                                            ORIGINAL MEASUREMENTS:

    3,3-Dimethylpentane; C<sub>7</sub>H<sub>16</sub>;

                                             Krzyzanowska, T.; Szeliga, J.
      [562-49-2]
                                             Nafta (Katowice) 1978, 12, 413-7.
  (2) Water; H<sub>2</sub>O; [7732-18-5]
VARIABLES:
                                            PREPARED BY:
 One temperature: 25°C
                                             M.C. Haulait-Pirson
EXPERIMENTAL VALUES:
 The solubility of 3,3-dimethylpentane in water at 25°C was reported
 to be 5.94 \text{ mg}(1)/\text{kg}(2).
 The corresponding mass percent and mole fraction, x_1, calculated
 by compiler are 5.94 x 10^{-4} g(1)/100 g sln and 1.07 x 10^{-6}.
 Editor's Note: Based on the results for this and other hydrocarbon-water
 systems, uncertainity exists about whether the datum compiled here is
 independent of that of Price for the same system (see previous page).
 Consequently, this system has not been evaluated.
                                  AUXILIARY INFORMATION
METHOD/APPARATUS/PROCEDURE:
                                            SOURCE AND PURITY OF MATERIALS:
                                              (1) not specified.
 Saturated solutions of (1) in (2)
 were prepared in two ways.
                                 First,
 200 µL of (1) was injected into
                                              (2) not specified.
 20 mL of (2) and thermostatted at
 25°C.
        Second, the mixture of (1)
 and (2) as above was thermostatted
 at 70°C and then cooled to 25°C.
 The time required to obtain
 equilibrium was three weeks. The
solubility of (1) in (2) was mea-
sured by glc. A Perkin-Elmer model
 F-11 gas chromatograph equipped
                                            ESTIMATED ERROR:
 with a 100-150 mesh Porasil column
  (70°C) and a flame ionization
                                             soly. 0.18 mg(l)/kg(2) (standard
 detector was used. Saturated solu-
tions of heptane in (2) were used
                                             deviation from 7-9 determinations)
 as standard solutions.
                                            REFERENCES:
```

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) 2-Methylhexane; C ₇ H ₁₆ ; [591-76-4]	Englin, B.A.; Plate, A.F.; Tugolukov, V.M.; Pryanishnikova, M.A.
(2) Water; H ₂ O; [7732-18-5]	Khim. Tekhnol. Topl. Masel <u>1965</u> , 10, 42-6.
VARIABLES:	PREPARED BY:
Temperature: 10-30°C	A. Maczynski and M.C. Haulait-Pirson

EXPERIMENTAL VALUES:

	Solubility of water in 2-methylhexane	
t/°C	g(2)/100 g sln	$10^{4}x_{2}$ (compiler)
10	0.0056	3.12
20	0.0103	5.73
30	0.0182	10.12

AUXILIARY INFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
Component (1) was introduced into a thermostatted flask and saturated for 5 hours with (2). Next, cal- cium hydride was added and the evolving hydrogen volume measured and hence the concentration of (2) in (1) was evaluated.	(1) not specified.(2) not specified.	
	ESTIMATED ERROR:	
	not specified.	
	REFERENCES:	

37_388	479
COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) 2-Methylhexane; C₇H₁₆; [591-76-4] (2) Water; H₂O; [7732-18-5]</pre>	Price, L.C. Am. Assoc. Petrol. Geol. Bull. <u>1976</u> , 60, 213-44.
VARIABLES:	PREPARED BY:
One temperature: 25°C	M.C. Haulait-Pirson
EXPERIMENTAL VALUES:	
pressure was reported to be 2.54 mg(1) mass percent and mole fraction, x_1 , c are 2.54 x 10 ⁻⁴ g(1)/100 g sln and 4.	.)/kg(2). The corresponding calculated by the compiler 57 x 10 ⁻⁷ .
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The solubility was determined at laboratory temperatures by use of screw-cap test tubes. The (1) phase floated on top of the water and insured saturation of the (2) phase in 2 to 4 days. Analyses were carried out by GLC using a Hewlett-Packard model 5751 gas chromatograph with dual-flame ionization detectors. Many details are given in the paper.	 Phillips Petroleum Company; Chemical Samples Company or or Aldrich Chemical Company; 99+%. distilled. ESTIMATED ERROR: temp. ± 1 K
	soly. ± 0.02 mg(1)/kg(2) REFERENCES:

480	37_389
COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) 2-Methylhexane; C ₇ H ₁₆ ; [591-76-4]	Krzyzanowska, T.; Szeliga, J.
(2) Water; H ₂ O; [7732-18-5]	Nafta (Katowice) <u>1978</u> , 12, 413 - 7.
VARIABLES :	PREPARED BY:
One temperature: 25°C	M.C. Haulait-Pirson
EXPERIMENTAL VALUES:	
The solubility of 2-methylhexane in w to be 2.54 mg(l)/kg(2). The corresponding mass percent and mo by compiler are 2.54×10^{-4} g(l)/100 Editor's Note: Based on the results systems, uncertainity exists about w independent of that of Price for the Consequently, this system has not bee	rater at 25°C was reported all fraction, x_1 , calculated g sln and 4.57 x 10 ⁻⁷ . for this and other hydrocarbon-water mether the datum compiled here is same system (see previous page). en evaluated.
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Saturated solutions of (1) in (2) were prepared in two ways. First, 200 μ L of (1) was injected into 20 mL of (2) and thermostatted at 25°C. Second, the mixture of (1) and (2) as above was thermostatted at 70°C and then cooled to 25°C. The time required to obtain equilibrium was three weeks. The solubility of (1) in (2) was mea- sured by glc. A Perkin-Elmer model F-11 gas chromatograph equipped with a 100-150 mesh Porasil column (70°C) and a flame ionization detector was used. Saturated solu- tions of heptane in (2) were used as standard solutions.	<pre>(1) not specified. (2) not specified. ESTIMATED ERROR: soly. 0.09 mg(1)/kg(2) (standard deviation from 7-9 determinations)</pre>
	REFERENCES :

COMPONENTS:	EVALUATOR:
<pre>(1) 3-Methylhexane; C₇H₁₆; [589-34-4] (2) Water: H₂O; [7732-18-5]</pre>	M.C. Haulait-Pirson, Department of Chemistry, University of Leuven, Belgium.
	G.T. Hefter, School of Mathematical and Physical Sciences, Murdoch University, Perth, W.A., Australia. November 1984

CRITICAL EVALUATION:

Quantitative solubility data for the system 3-methylhexane (1) and water (2) have been reported in the publications listed in Table 1.

TABLE 1: Quantitative Solubility Studies of

the System 3-Methylhexane (1) - Water (2)

Reference	T/K	Solubility	Method
Polak and Lu (ref l)	273,298	mutual	GLC, Karl Fischer
Price (ref 2)	298	(1) in (2)	GLC
Krzyzanowska and Szeliga (ref 3)	298	(1) in (2)	GLC

The original data in these publications are compiled in the Data Sheets immediately following this Critical Evaluation. For convenience further discussion of this system will be in two parts.

1. THE SOLUBILITY OF 3-METHYLHEXANE (1) IN WATER (2)

Although the solubility of 3-methylhexane in water has been reported in three publications (ref 1,2,3) the datum of Krzyzanowska and Szeliga (ref 3) does not appear to be independent of that of Price (ref 2) and is thus excluded from consideration. The remaining 298K data, of Price (ref 2) and Polak and Lu (ref 1), are in poor agreement. In the absence of confirmatory studies the average of these two studies: $(3.8\pm0.9)\times10^{-4}g(1)/100g sln$, $x_1=6.8\times10^{-7}$, is regarded as the "Tentative" solubility of 3-methylhexane in water. However, it may be noted that Polak and Lu's values for other hydrocarbon water systems are often higher and Price's values often lower than "Recommended" values.

2. THE SOLUBILITY OF WATER (2) IN 3-METHYLHEXANE (1)

The solubility of water in 3-methylhexane has been reported only by Polak and Lu (ref 1) and so no critical evaluation can be made. The interested user is referred to the relevant Data Sheet for solubility values. However, it can be noted that the data of Polak and Lu are generally close to "Recommended" values in well characterized systems.

REFERENCES

Polak, J.; Lu, B.C-Y. Can. J. Chem. <u>1973</u>, 51, 4018-23.
 Price, L.C. Am. Assoc. Petrol. Geol. Bull. <u>1976</u>, 60, 213-44.
 Krzyzanowska, T.; Szeliga, J. Nafta (Katowice) <u>1978</u>, 34, 413-7.

ENTS:		

37_391

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) 3-Methylhexane; C₇H₁₆; [589-34-4]</pre>	Polak, J.; Lu, B.C-Y.
(2) Water; H ₂ O; [7732-18-5]	Can. J. Chem. <u>1973</u> , 51, 4018-23.
11ADTAD1 FC -	
VARIABLES:	PREPARED BY:
Temperature: 0-25°C	M.C. Haulait-Pirson
EXPERIMENTAL VALUES:	
Solubility of 3-methy	/lhexane in water
t/°C mg(l)/kg	sln x1 (compiler)
0 ^a 5.24 ^c	9.41×10^{-7}
25 ^b 4.95 ^c	8.89×10^{-7}
Solubility of water in	3-methylhexane
#/°C mg(2)/kg	$\frac{x_2}{2}$ (compiler)
0 ^a 25 ^d	1.39×10^{-4}
25 ^b 74 ^e	4.12×10^{-4}
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The solubility of (1) in (2) was	(1) Phillips Petroleum Co.; pure
determined by gas chromatography. The solubility of (2) in (1) was	grade reagent (99%+); shaken three times with distilled
determined by Karl Fischer titra- tion. 50 mL of (1) together with	water.
50 mL of (2) were placed in a 125	(2) distilled.
coated rubber septum and placed in	
a constant-temperature water bath. The system was stirred magnetical-	
ly for 24 hr or was kept in the	
7 days before samples were taken	ESTIMATED ERROR:
for analysis. Details of the analysis are given in the paper.	temp. a) ± 0.02 K; b) ± 0.01 K soly. c) ± 1.7%; d) ± 4.7%; e) ± 3.1% (mean)
	REFERENCES:

483
ORIGINAL MEASUREMENTS:
Price, L.C. Am. Assoc. Petrol. Geol. Bull. <u>1976</u> , 60, 213-44.
PREPARED BY:
M.C. Haulait-Pirson
<pre>vater at 25°C and at system .)/kg(2). The corresponding salculated by the compiler .75 x 10⁻⁷.</pre>
INFORMATION
<pre>SOURCE AND PURITY OF MATERIALS: (1) Phillips Petroleum Company; Chemical Samples Company or Aldrich Chemical Company; 99+%. (2) distilled. (2) distilled. ESTIMATED ERROR: temp. ± 1 K soly. ± 0.08 mg(1)/kg(2) REFERENCES:</pre>

COMPONENTS :	ORIGINAL MEASUREMENTS:
<pre>(1) 3-Methylhexane; C7H₁₆;</pre>	Krzyzanowska, T.; Szeliga, J.
[589-34-4]	Nafta (Katowice), <u>1978</u> , 12, 413-7.
(2) Water; H ₂ O; [7732-18-5]	
VARIABLES:	PREPARED BY:
One temperature: 25°C	M.C. Haulait-Pirson
EXPERIMENTAL VALUES:	
The solubility of 3-methylhexane in w	water at 25°C was reported
to be 2.64 mg(1)/kg(2).	
The corresponding mass percent and mo	ble fraction, x_1 , calculated
by compiler are 2.64 x 10^{-4} g(1)/100	g sln and 4.75×10^{-7} .
	1
Editor's Note: Based on the results	for this and other hydrocarbon-water
systems, uncertainity exists about w	hether the datum compiled here is
independent of that of Price for the	same system (see previous page).
	7000000 PX 000
AUXILIARY	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The saturated solutions of (1) in (2) were prepared in two ways.	(1) not specified.
First, 200 μ L of (1) was injected	(2) not specified.
at 25°C. Second, the mixture of (1)	
and (2) as above was thermostatted	
time required to obtain equilibrium	
(1) in (2) was measured by glc. A	
Perkin-Elmer model F-11 gas chromat-	
Porasil column (70°C) and a flame	ESTIMATED ERROR:
ionization detector was used. Sat- urated solutions of heptane in (2)	solv. $0.10 \text{ mg}(1)/\text{kg}(2)$ (standard
were used as standard solutions.	deviation from 7-9 determinations).
	REFERENCES:
-	
COMPONENTS :	EVALUATOR:
--	---
(1) Heptane; C ₇ H ₁₆ ; [142-82-5] (2) Water; H ₂ O; [7732-18-5]	G.T. Hefter, School of Mathematical and Physical Sciences, Murdoch University, Perth, W.A., Australia. October 1986.

CRITICAL EVALUATION:

37 394

Quantitative solubility data for the heptane (1) - water (2) system have been reported in the references listed in Table 1.

TABLE 1: Quantitative Solubility Studies of theHeptane (1) - Water (2) System

Reference	т/к	Solubility	Method
Fuhner (ref 1)	289	(1) in (2)	cloud point
Milligan (ref 2)	298	(1) in (2)	partition coefficient
Black <i>et al</i> . (ref 3)	283-298	(2) in (1)	radiotracer
Booth and Everson (ref 4)	298	(1) in (2)	residue volume
Durand (ref 5)	289	(1) in (2)	cloud point
McCants et al. (ref 6)	311	(1) in (2)	cloud point
Guseva and Parnov (ref 7)	345-460	(1) in (2) ^a	not specified
Schatzberg (ref 8)	298	(2) in (1)	Karl Fischer
Englin <i>et al</i> . (ref 9)	273-323	(2) in (1)	analytical
Zel'venskii et al. (ref 10)	296	(2) in (1)	radiotracer
Connolly (ref 11)	568-628 ^b	(1) in (2)	cloud point
McAuliffe (ref 12)	298	(1) in (2)	GLC
Nelson and DeLigny (ref 13)	277-318	(1) in (2)	GLC
Ghanem et al. (ref 14)	296	(2) in (1)	radiotracer
Krasnoshchekova and Gubergrits (ref 15)	298	(1) in (2)	GLC
Polak and Lu (ref 16)	273,298	mutual	GLC, analytical
Budantseva <i>et al</i> . (ref 17)	293-313	mutual	not specified
Price (ref 18)	298-424	(1) in (2)	GLC
Korenman and Aref'eva (ref	19) 293	(l) in (2)	titration
Krzyzanowska and Szeliga (ref 20)	298	(1) in (2)	GLC
Bittrich et al. (ref 21)	298 - 313 ⁰	mutual	GLC
Rudakov and Lutsyk (ref 22)	298	(1) in (2)	partition coefficient
Jonsson et al. (ref 23)	288-308	(1) in (2)	partition coefficient

a Solubility in D₂O also reported.

b Pressure also varied.

c Temperature not specified for solubility of (1) in (2).

The original data in all the publications listed in Table 1 are compiled in the Data Sheets immediately following this Critical Evaluation with the exception of that of Milligan (ref 2) who employed a petroleum fraction of unspecified composition. Phase studies and critical phenomena have also been reported at elevated pressures (ref 25,26) but contain insufficient data to justify compilation.

(continued next page)

COMPONENTS :	EVALUATOR:
<pre>(1) Heptane; C₇H₁₆; [142-82-5] (2) Water; H₂0; [7732-18-5]</pre>	G.T. Hefter, School of Mathematical and Physical Sciences, Murdoch University, Perth, W.A., Australia.
	October 1986.

CRITICAL EVALUATION: (continued)

As indicated in the footnotes to Table 1, quantitative solubility data for heptane in D_2O (ref 7) are available. However, as no comparable data have been reported no critical evaluation of the reliability of these data can be made. The interested user is referred to the relevant data sheets.

In the heptane-water system the mutual solubilities are sufficiently low to enable data reported in w/v fractions (or equivalent) to be converted to mass percent solubilities with reasonable precision by assuming solution densities to be the same as the pure solvents. These conversions are made on the Data Sheets and the data so obtained are included in this Evaluation. For convenience, further discussion of this system will be divided into three parts.

In the Tables which follow, values obtained by the Evaluator by graphical interpolation or extrapolation of the original measurements in the Data Sheets are indicated by an asterisk (*). "Best" values have been obtained by simple averaging. The uncertainty limits (σ_n) attached to these values do not have statistical significance and should be regarded only as a convenient representation of the spread of values rather than as error limits.

1. THE SOLUBILITY OF HEPTANE (1) IN WATER (2)

The extremely low solubility of heptane in water presents a daunting analytical problem. Nevertheless, all the modern investigations (ref 12, 13, 15, 16, 18), employing GLC, are in good agreement. The older studies, by Fuhner (ref 1), Durand (ref 5) and Guseva and Parnov (ref 7), and the more recent measurements of Budantseva *et al.* (ref 17) and Korenman and Aref'eva (ref 19), are an order of magnitude higher than the GLC results and are therefore rejected. The value of Bittrich *et al.* (ref 21) at an unspecified temperature and the order of magnitude data of Booth and Everson (ref 4) and McCants *et al.* (ref 6) are also rejected. All other data are included in Table 2 except for the value of Krzyzanowska and Szeliga (ref 20) which does not appear to be independent of that of Price (ref 18) and has therefore been excluded from consideration.

Selected data from Table 2 are also plotted in Figure 1 which emphasises the general agreement between the various independent studies. Application of the van't Hoff equation to the data in Table 2 gives $\Delta H_{sln}^{\infty} = -2.43 \text{ kJ mol}^{-1}$ and ΔC_p^{∞} , $sln = 472 \text{ JK}^{-1} \text{ mol}^{-1}$ which are similar to calorimetric values reported for closely related hydrocarbons (ref 24). (continued next page)

COMPONENTS:	EVALUATOR:
(1) Hentane: C-H: [142-82-5]	G.T. Hefter, School of Mathematical
	and Physical Sciences, Murdoch
(2) Water; H_2O ; [7732-18-5]	University, Perth, W.A. Australia.
	October 1986.
CRITICAL EVALUATION: (continued)	1
TABLE 2: Tentative Val	ues of the Solubility of
Heptane (1)	in Water (2)
T/K Sol	ubility Values
Reported values	"Best" values (± σ _n)
10 ⁴ g(1)/100g sln	10^4 g(1)/100g sln $10'x_1$
273 1.9* (ref 13), 4.39 (ref	16) 3 ± 1 5
283 2.0* (ref 13)	2.0 3.6
293 2.3* (ref 13), 2.57 (ref	23) 2.4 ± 0.2 4.3
298 2.93 (ref 12), 2.66 (ref 2.8 (ref 15), 3.37 (ref 1 2.24 (ref 18), 2.9 (ref 2 2.51 (ref 23)	13), 2.4 ± 0.2 4.3 6), 2),
303 2.2* (ref 13), 2.36* (ref 2.49 (ref 23)	18), 2.4 ± 0.1 4.1
313 2.3* (ref 13), 2.62 (ref	18) 2.5 ± 0.2 4.5
323 2.93* (ref 18)	2.9 5.2
333 3.3* (ref 18)	3.3 5.9
363 3.9* (ref 18)	3.9 7.0
373 5.8* (ref 18)	5.8 10
393 13* (ref 18)	13 23
413 31* (ref 18)	31 56
430 (X) 390 390 390 430 390 430 390 430 430 430 430 430 430 430 43	30 40 50 4 g(1)/100 g sln.)
FIGURE 1. Solubility of heptane in v ref 16 (◇); ref 18 (x), ref	water; selected data: ref 13 (°); ef 23 (•). (continued next page)

COMPONENTS :	EVALUATOR:
(1) Heptane; C ₇ H ₁₆ ; [142-82-5] (2) Water; H ₂ O; [7732-18-5]	G.T. Hefter, School of Mathematical and Physical Sciences, Murdoch University, Perth, W.A. Australia. October 1986.

CRITICAL EVALUATION: (continued)

2. THE SOLUBILITY OF WATER (2) IN HEPTANE (1) In spite of the analytical difficulty of accurate determination of the low concentrations involved, the various reported values of the solubility of water in heptane are in reasonable agreement. However, the amount of data available is much smaller than for heptane in H_2O .

The values of Black *et al.* (ref 3), the higher temperature (T > 293K) data of Englin *et al.* (ref 9) and the value of Zelvenskii *et al.* (ref 10) are higher than other studies (ref 8,14,16,17,21) and are therefore rejected. All other values are listed in Table 3.

TABLE 3:Tentative Values of the Solubilityof Water (2) in Heptane (1)

Т/К	Solubility Values			
	Reported values 10 ³ g(2)/100 g sln	"Best" values (± 10 ³ g(2)/100 g sln	σ _n) ^α 10 ⁴ x ₂	
273	2.7 (ref 9), 2.6 (ref 16)	2.7	1.5	
283	5.4 (ref 9)	5.4	3.0	
293 ^b	9.6 (ref 9), 9 (ref 17)	9	5.0	
298	9.1 (ref 8), 8.2 (ref 16), 12.1 (ref 21)	10 ± 2	5.6	
313	13 (ref 17), 15.6 (ref 21)	14	7.8	

a Because of the limited amount of data at temperatures other than 298K, σ_n values would be misleading and have therefore not been calculated.
 b A value of 5.73 x 10⁻³ g(2)/100 g sln reported at 295.7K in ref 14.

The data in Table 3 are also plotted in Figure 2. Application of the van't Hoff equation to the "Best" values of Table 3 gives $\Delta H_{sln}^{\infty} = 23 \text{ kJ mol}^{-1}$ and $\Delta C_{p,sln}^{\infty} = -1050 \text{ JK}^{-1} \text{mol}^{-1}$. Whilst the ΔH_{sln}^{∞} is reasonable by comparison with related systems (e.g. water in hexane), $\Delta C_{p,sln}^{\infty}$ values for the dissolution of water in hydrocarbons are normally *ca*. $\pm 100 \text{ JK}^{-1} \text{ mol}^{-1}$. This is evidenced by a general flattening off for the solubility-temperature curve at higher temperatures (*e.g.* water in hexane or benzene) rather than the apparent increasing gradient seen in Figure 2. That is, the reported solubilities at higher temperatures are probably too low.

488

(continued next page)

COMPON	NENTS:	EVALUATOR:		
(1) H	<pre>Meptane; C₇H₁₆; [142-83-5]</pre>	G.T. Hefter, and Physical	School of Ma Sciences, Mu	thematical rdoch
(2) W	Nater; H ₂ O; [7732-18-5]	C.L. Young, D Chemistry, Un Vic., Austral	erth, w.A., epartment of iversity of ia.	Physical Melbourne,
		October 1986.		
CRITIC	CAL EVALUATION: (continued)			
	TABLE 4. Solubility Studi	es of the Hept	ane + Water	
	bystem at hieva	lea messures		
	Reference p/	MPa	T/K	Solubility
Gusev	va and Parnov (ref 7) along 3-	phase line	345-460	(l) in (2)
Conno	olly (ref 11) 17	-55	568-628	(1) in (2)
Price	e (ref 18) along 3-	phase line	295-424	(1) in (2)
Bröll	os et al. (ref 25)	-" - ^h	_"	- ⁴ b
Roof	(ref 26) 6	.3	519.0	-
a Qua	alitative statements and graph of	phase behaviou	r only.	
b Cri	tical point of unknown compositio	on.		
REFER	ENCES			
1.	Fühner, H. Chem Ber. <u>1924</u> , 57,	510-5.		
2.	Milligan, L.H. J. Phys. Chem. <u>1</u>	<u>924</u> , 28, 494-7	•	
3.	Black, C.; Joris, G.G.; Taylor, H	.S. J. Chem.	Phys. <u>1948</u> ,	16, 537-43.
4. Booth, H.S.; Everson, H.E. Ind. Eng. Chem. <u>1948</u> , 40, 1491-3.				
5.	Durand, R. C.R. Hebd. Seances Ac	ad. Sci. <u>1948</u>	, 226, 409-1	0.
6.	McCants, J.F.; Jones, J.H.; Hopso	n, W.H. Ind. E	ng. Chem. <u>19</u>	<u>53</u> , <i>45</i> , 454-6
7.	Guseva, A.N.; Parnov, E.I. Radio	khimiya <u>1963</u> ,	5, 507-9.	
8.	Schatzberg, P. J. Phys. Chem. <u>1</u>	<u>963</u> , <i>67</i> , 776-9	•	
9.	Englin, B.A.; Plate, A.F.; Tugolu Khim. Tekhnol. Topl. Masel 1965,	kov, V.M.; Pyr 10, 42-6.	anishnikova,	M.A.
10.	Zel'venskii, Ya.D.; Efremov, A.A. <i>Masel</i> <u>1965</u> , <i>10</i> , 3-7.	; Larin, G.M.	Khim. Tekhn	ol. Topl.
11.	Connolly, J.F. J. Chem. Eng. Dat	a <u>1966</u> , <i>11</i> , 1	3-6.	
12.	McAuliffe, C. J. Phys. Chem. <u>1</u>	<u>966</u> , 70, 1267-	75.	
13.	Nelson, H.D.; De Ligny, C.L. <i>Rec</i> 528-44.	. Trav. Chim.	Раув-Вав <u>19</u>	<u>68</u> , 87,
14.	Ghanem, N.A.; Marek, M.; Exner, J 1970, 21, 239-40.	. Int. J. App	l. Radiat. I	во top.
15.	Krasnoshchekova, P.Ya.; Gubergrit 885-7.	s, M.Ya. Neft	ekhimiya <u>19</u>	<u>73</u> , 13,
16.	Polak, J.; Lu, B.C-Y. Can. J. Ch	em. <u>1973</u> , 51,	4018-23.	
17.	Budantseva, L.S.; Lesteva, T.M.; 50, 1344. Deposited doc. 1976, V	Nemtsov, M.S. INITI 437-76.	Zh. Fiz. Kh	im. <u>1976</u> ,
			(continued n	ext page)

COMPO	NENTS:	EVALUATOR:
(1)	Heptane; C ₇ H ₁₆ ; [142-82-5]	G.T. Hefter, School of Mathematical
(2)	Water; H ₂ O; [7732-18-5]	and Physical Sciences, Murdoch
	2	University, Perth, W.A., Australia.
		October 1986.
CRITI	CAL EVALUATION: (continued)	
REFE	RENCES (continued)	
18.	Price, L.C. Am. Assoc. Petrol. (Geol. Bull. <u>1976</u> , 60, 213-44.
19.	Korenman, I.M.; Aref'eva, R.P. H	Patent USSR, 553 524, <u>1977</u> , .04.05.
20.	Krzyzanowska, T.; Szeliga, J. Nafta (Katowice) <u>1978</u> , 34, 413-7.	
21.	Bittrich, H.J.; Gedan, H.; Feix, 260, 1009-13.	G. 2. Phys. Chem. Leipzig <u>1979</u> ,
22.	Rudakov, E.S.; Lutsyk, A.I. Zh.	Fiz. Khim. <u>1979</u> , 53, 1298-1300.
23.	Jonsson, J.A.; Vejrosta, J.; Nova 279-86.	ak, J. Fluid Phase Equil. <u>1982</u> , 9,
24.	Gill, S.J.; Nichols, N.F.; Wadso, 445-52.	, I. J. Chem. Thermodyn. <u>1976</u> , 8,
25.	Bröllos, K.; Peter, K.; Schneider 682-6.	c, G.M. Ber. Bunsenges. <u>1970</u> , 74,
26.	Roof, J.G. J. Chem. Eng. Data	1970, 15, 301-3.

ACKNOWLEDGEMENTS

The Evaluator thanks Dr Brian Clare for the regression analyses and graphics and Dr Marie-Claire Laulait-Pirson for comments and a preliminary draft of the reference list. Section 3 was written jointly with C. L. Young, Department of Physical Chemistry, University of Melbourne, Australia.

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Heptane; C ₇ H ₁₆ ; [142-82-5]	Fühner, H.
(2) Water; H ₂ O; [7732-18-5]	Ber. Dtsch. Chem. Ges. <u>1924</u> , 57, 510-5.
VARIABLES:	PREPARED BY:
One temperature: 15.5°C	M.C. Haulait-Pirson
EXPERIMENTAL VALUES:	
The solubility of heptane in water at 0.007 mL(1)/100 mL sln or 0.005 g(1)/ The corresponding mole fraction, x_1 , is 0.9 x 10 ⁻⁵ .	: 15.5°C was reported to be (100 g sln. calculated by the compiler
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
In a stoppered measuring cylinder pipetted volumes or weighed amounts of (1) were added with shaking to 50, 100 or 1000 cm ³ of (2) until a completely clear solution was obtained at the experimental tem- perature.	 (1) source not specified; commercial grade; used as received. (2) not specified.
	REFERENCES :

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Heptane; C ₇ H ₁₆ ; [142-82-5]	Black, C.; Joris, G.G.; Taylor, H.S.
(2) Water; H ₂ O; [7732-18-5]	J. Chem. Phys. <u>1948</u> , 16, 537-43.
VARIABLES:	PREPARED BY:
Temperature: 10-25°C	M.C. Haulait-Pirson

EXPERIMENTAL VALUES:

Solubility of water in heptane at a total saturation pressure of 1 atm

t/°C	g(2)/100 g(1)	g(2)/100 g sln (compiler)	$10^{4}x_{2}$ (compiler)
10	0.0077	0.0077	4.28
20	0.0136	0.0136	7.56
20	0.0126	0.0126	7.00
25	0.0151	0.0151	8.39

AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE: The method described in ref 1 in which tritium oxide acts as a tracer, was used. Air saturated with radioactive water vapor was bubbled through the (1) sample until saturation was attained. Dissolved water was separated from (1) by absorption on calcium oxide. The tritium was transferred in the counter through equilibration with ethanol vapor.	 SOURCE AND PURITY OF MATERIALS: (1) Ohio State University under an American Petroleum Institute project; purity not specified; used as received. (2) not specified.
	ESTIMATED ERROR: soly. a few percent (type of error not specified).
	REFERENCES: 1. Joris, G.G.; Taylor, H.S. <i>J. Chem. Phys.</i> <u>1948</u> , <i>16</i> , 45.

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Heptane; C ₇ H ₁₆ ; [142-82-5]	Booth, H.S. · Everson, H.E.
(1) Water; H ₂ O; [7732-18-5]	Ind. Eng. Chem. 1948, 40, 1941-3.
_	
VARIABLES:	PREPARED BY:
One temperature: 25.0°C (298.2 K)	G.T. Heiter
EXPERIMENTAL VALUES:	
The solubility of <i>n</i> -heptane in water a	at 25.0°C was reported to be <0.04 mL
(1)/100 mL (2). A similar request was	s reported for (1) in 40.0% (w/w?)
aqueous sodium xylenesulfonate.	
	ĺ
	1
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
A known volume of water, typically	(1) "Highest grade commercial sample
50 mL, was placed in a stoppered	available"; no other details
Babcock tube having a neck graduated	given.
from 0 to 1.6 mL in steps of 0.02 mL.	(2) Distilled.
the mixture allowed to come to	
equilibrium in a constant temperature	
bath then centrifuged. The amount of solute dissolved was determined by	
subtracting the undissolved solute,	
measured directly in the tube, from	
the total added.	ESTIMATED ERROR:
	Not specified
	Not sheetited.
	I REFERENCES:
	1

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Heptane; C ₇ H ₁₆ ; [142-82-5]	Durand, R.
(2) Water; H ₂ O; [7732-18-5]	C.R. Hebd. Seances Acad. Sci. <u>1948</u> , 226, 409-10.
VARIABLES:	PREPARED BY:
One temperature: 16°C	M.C. Haulait-Pirson
EXPERIMENTAL VALUES:	
The solubility of heptane in water at 0.015 cm ³ (1)/dm ³ (2). With the assumption of a solution dem density value of 0.6868 g cm ⁻³ for he corresponding mass percent is 0.0010 mole fraction, x_1 , is 1.8 x 10 ⁻⁶ (com	16°C was reported to be sity of 1.00 g cm ⁻³ and a optane at 16°C (ref 2), the g sln and the corresponding opiler).
AUXILIARY	INFORMATION
	SOURCE AND PURITY OF MATERIALS.
The thermostatic method described in ref 1 was used. Addition of pipetted volumes of (1) to (2) followed by shaking is repeated till appearance of turbidity.	<pre>(1) not specified. (2) distilled.</pre>
	ESTIMATED ERROR: soly. ± 0.005 cm ³ (1)/dm ³ (2). REFERENCES: 1. Durand, R. C.R. Hebd. Seances Acad. Sci. <u>1946</u> , 223, 898-900. 2. Timmermans, J. Physico-chemical constants of pune organic com-

COMPONENTS:	ORIGINAL MEASUREMENTS:		
<pre>(1) Heptane; C₇H₁₆; [142-82-5] (2) Water; H₂O; [7732-18-5]</pre>	McCants, J.F.; Jones, J.H.; Hopson, W.H. Ind. Eng. Chem. <u>1953</u> , 45, 454-6.		
VARIABLES: One temperature: 100°F (311 K)	PREPARED BY: G.T. Hefter		

EXPERIMENTAL VALUES:

The solubility of *n*-heptane in water at 100°F (311 K) was reported to be <0.1 g(1)/100 g sln. The corresponding mole fraction, x_1 , calculated by the compiler, is <2 x 10⁻⁴.

The solubility of water in *n*-heptane at 100°F (311 K) was reported to be 0.12 g(2)/100 g sln. The corresponding mole fraction, x_2 , calculated by the compiler, is 6.6 x 10⁻³.

AUXILIARY INFORMATION				
SOURCE AND PURITY OF MATERIALS:				
 Phillips; pure grade; used without further purification; n²⁰ 1.3974. Distilled. ESTIMATED ERROR: Not specified, REFERENCES: Washburn, E.K.; Hnizda, V.; Vold, R.D., J. Am. Chem. Soc. <u>1931</u>, 53, 3232. 				

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Heptane; C ₇ H ₁₆ ; [142-82-5]	Guseva, A.N.; Parnov, E.I.
(2) Water; H ₂ O; [7732-18-5]	Radiokhimiya <u>1963</u> , 5, 507-9.
VARIABLES:	PREPARED BY:
Temperature: 71.5-187°C	A. Maczynski
EXPERIMENTAL VALUES:	
Solubility	of heptane in water
±/°C 10 ⁵	a(1)/100 g sln (compiler)
	$\frac{1}{2} \qquad \frac{g(1)/100 \text{ g sin}}{2} (\text{compiler})$
71.5 1.	8 0.010
108 2.	9 0.016
181 11.	4 0.0633
187 12.	07 0.0671
AUX	SILIARY INFORMATION
METHOD /APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The solubility of (1) in (2) wa	s (1) not specified.
determined in sealed glass tube Details were reported in ref l.	(2) distilled.
	ESTIMATED ERROR:
	not specified.
	REFERENCES :
	 Khazanova, P.E. Tr. Gos. inst. azotn. promyshl. <u>1954</u>, 4, 5.

COMPONENTS :	ORIGINAL MEASUREMENTS:		
(1) Heptane; C ₇ H ₁₆ ; [142-82-5]	Schatzberg, P.		
(2) Water; H ₂ O; [7732-18-5]	J. Phys. Chem. <u>1963</u> , 67, 776-9.		
VARIABLES :	PREPARED BY:		
One temperature: 25°C	M.C. Haulait-Pirson		
EXPERIMENTAL VALUES:			
The solubility of water in heptane at	25°C was reported to be		
91 mg(2)/kg sln corresponding to a mo	ble fraction, x_2 , of 5.06 x 10 ⁻⁴		
and to a mass percent of 0.0091 g(1),	/100 g sln.		
AUXILIARY	INFORMATION		
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:		
(1) was saturated by storing over a layer of (2) in a brown glass bottle	(1) Eastman Organic Chemicals; doubly distilled; passed		
without any agitation. The bottle was sealed with serum cap and com-	repeatedly through a column of silica gel until no absorp-		
pletely submerged in the water-bath for 7 days. A 20 mL sample was	tion occurred in the 220 to 340 nm spectral range.		
withdrawn with a silicone-hydro-	(2) distilled and deionized		
bilized Karl Fischer reagent diluted			
used to titrate (2) in (1) directly	ESTIMATED ERROR:		
"dead-stop" end-point using a	temp. ± 0.02 K		
Beckman Kr3 automatic titrimeter.	soly. 0-0% (deviations from the mean)		
[REFERENCES :		

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Heptane; C ₇ H ₁₆ ; [142-82-5] (2) Water; H ₂ O; [7732-18-5]	Englin, B.A.; Plate, A.F.; Tugolukov, V.M.; Pryanishnikova, M.A. Khim. Tekhnol. Topl. Masel <u>1965</u> , 10, 42-6.
VARIABLES:	PREPARED BY:
Temperature: 0-50°C	A. Maczynski and M.C. Haulait-Pirson
EXPERIMENTAL VALUES:	

	Solubility of water in heptane	•	
t/°C	g(2)/100 g sln	$\frac{10^4 x_2}{2}$	(compiler)
0	0.0027	1.50	
10	0.0054	3.00	
20	0.0096	5.34	
30	0.0172	9.57	
40	0.0308	17.1	
50	0.0480	26.6	

AUXILIARY INFORMATION			
METHOD/APPARATUS/PROCEDURE: Component (1) was introduced into a thermostatted flask and saturated for 5 hours with (2). Next, cal- cium hydride was added and the evolving hydrogen volume measured and hence the concentration of (2) in (1) was evaluated.	SOURCE AND PURITY OF MATERIALS: (1) not specified. (2) not specified.		
	ESTIMATED ERROR: not specified.		
	REFERENCES:		

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Heptane; C ₇ H ₁₆ ; [142-82-5]	Zel'venskii, Ya.D; Efremov, A.A.; Larin, G.M.
(2) Water, H ₂ O; [7732-18-5]	Khim. Tekhnol. Topl. Masel <u>1965</u> , 10, 3 - 7.
VARIABLES:	PREPARED BY:
One temperature: 23°C	A. Maczynski
EXPERIMENTAL VALUES:	
The solubility of water in heptane at 0.0139 g(2)/100 g sln. The corresponding mole fraction, x_2 , is 7.73 x 10^{-4} .	23°C was reported to be calculated by the compiler
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Saturated solutions of tritium labeled (2) in (1) were prepared in two ways. In the first, nitrogen was passed through the vessel with (2) and next through the vessel with (1) and frozen. In the second, about 500 mL of (1) and 1 mL (2) were stirred. The concentration of (2) in (1) was calculated from scintillation measurements.	 (1) source not specified; pure grade; shaken with conc. H₂SO₄; washed with water, dried over sodium, and distilled; purity not specified. b.p. 98.43°C, m.p90.8°C. (2) source not specified; commercial; l Ci/mL HTO used as received.
	ESTIMATED ERROR:
	not specified.
	REFERENCES:

37_404

COMPONENTS :		ORIGINAL	MEASUREMENTS:		
(1) Hentan	ре: С.Н. • [142=82=5]	Connol	lv.TF		
(1) Reptane; $C_7^{n}_{16}$; [142-82-5]			Connolly, J.F.		
(2) water;	H ₂ 0; [//32-18-5]	J. Cher	n. Eng. Data <u>196</u>	<u>6</u> , <i>11</i> , 13-6	
VARIABLES:		PREPARED	BY:		
Temperatur	e: 295-355°C				
Pressure:	170-700 atm	м.с. на	aulait-Pirson		
EXPERIMENTAL	VALUES:				
	Solubility of he	ptane in	water		
t/°C	p/atm p/M	Pa	g(l)/100 g sln	хı	
	(comp	iler)		(compiler)	
295	170 17. 250 25.	22 32	1.1	0.0020	
	500 50.	65	1.1	0.0020	
	/00 /0.	91	1.1	0.0020	
330	200 20. 300 30.	26 39	3.3 3.3	0.0061 0.0061	
	500 50.	65	3.3	0.0061	
350	195 19 .	75	3.7	0.0069	
	260 26.	34	9.6	0.0187	
	280 28.	36	10.0	0.0196	
	370 37.	40 48	9.6	0.0187	
	550 55.	72	5.7	0.0107	
				(continued)	
	AUXILIARY	INFORMATI	ON		
METHOD/APPARA	TUS/PROCEDURE:	SOURCE AN	D PURITY OF MATERIAL	S:	
The cloud Measuremen	point method was used. ts were carried out in	(1) Phi tha	illips reagent gra an 99.8%; used as	ade; better received.	
a 100 mL s cell was l	tainless-steel cell. The oaded with 15 g (2) and	(2) distilled and deaerated.			
brought to started an	temperature. Mixing was d (1) was injected, until				
either a c	loud or a small portion				
top of the	cell. Then mercury was				
more (1) w	as injected and the pro-	ESTIMATE	ERROR:		
cedure was	repeated.	temp t	- 0 02 K		
		press.	± 2 atm (accuracy	y)	
		REFERENCI	ES:		

I

COMPO	COMPONENTS:		ORIGINAL MEASUREMENTS:		
(1) Heptane; C ₇ H ₁₆ ; [142-82-5]		Connolly, J.F.			
(2) Water; H ₂ O; [7732-18-5]		J. Chem. Eng. Data <u>1966</u> , 11, 13~6			
t/°(p/atm	p/MPa (compiler)	g(l)/100 g sln	(compiler)	
355	230 240 250 245 320 310 300 300 305 345 390	23.30 24.31 25.32 24.82 32.42 31.40 30.39 30.39 30.90 34.95 39.51	10.3 13.5 19.5 24.7 41.7 35.7 29.3 24.8 19.5 13.5 10.3	0.0202 0.0273 0.0417 0.0557 0.1139 0.0885 0.0693 0.0559 0.0417 0.0273 0.0202	

COMMENTS AND ADDITIONAL DATA:

Upper critical solution temperature: $353^{\circ}C$ at p = 290 atm (29.83 MPa). The uncertainty in the CST is about 2°C and that of the corresponding pressure about 10 atm.

37_406

COMPONENTS :	ORIGINAL MEASUREMENTS :
(1) Heptane; C ₇ H ₁₆ ; [142-82-5]	McAuliffe, C.
(2) Water; H ₂ O; [7732-18-5]	J. Phys. Chem. <u>1966</u> , 70, 1267-75.
VARIABLES:	PREPARED BY:
One temperature: 25°C	M.C. Haulait-Pirson
_	
EXPERIMENTAL VALUES:	
	,
The solubility of heptane in water at	25°C was reported to
be 2.93 mg (1)/kg sln (0.000293 g(1),	(100 g sln).
The corresponding mole fraction, x_1 ,	calculated by the compiler,
The same value is also reported in re	ofe 1 and 2
The same value is also reported in re	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
In a 250 mL glass bottle, 10-20 mL	(1) Phillips Petroleum Co.; 99+%
of (1) was vigorously shaken for 1 hr or magnetically stirred for	purity; used as received.
1 day, with 200 mL of (2) at 25°C.	(2) distilled.
was allowed to stand for 2 days to	
permit separation of small (1) drop-	
checked microscopically. A 50 µL	
sample of the (1) saturated water was withdrawn with a Hamilton	
Syringe and injected into the frac-	ECTIMATED EDDOD.
A hydrogen-flame ionization detector	temp. ± 1.5 K
was used. Many details are given in the paper.	soly. 0.20 mg (1)/kg sln (standard deviation from mean)
	REFERENCES:
	1. McAuliffe, C. Nature (London) <u>1963</u> , 200, 1092.
	2. McAuliffe, C. Am. Chem. Soc. Div. Petrol. Chem. <u>1964</u> , 9, 275.

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Heptane; C ₇ H ₁₆ ; [142-82-5]	Nelson, H.D.; De Ligny, C.L.
(2) Water; H ₂ O; [7732-18-5]	Rec. Trav. Chim. Pays-Bas <u>1968</u> , 87, 528-44.
VARIABLES:	PREPARED BY:
Temperature: 4.3-45°C	M.C. Haulait-Pirson
EXPERIMENTAL VALUES:	<u>.</u>
Solubility of her	ptane in water
$t/^{\circ}C$ $10^{7}x$	mg(l)/kg sln (compiler)
4.3 3.51 ± 0	1.95
13.5 3.63 ± 0	2.02
25.0 4.78 ± 0	2.66
35.0 4.07 ± 0	0.95 2.27
45.0 4.32 ± 3	2.41
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The saturation vessel is drawn in the original paper. (2) was satu-	(1) Phillips pure grade.
rated with (1) via the vapor phase:	(2) top-water was refluxed for 9
bottom of a tight-fitting flask	hours in the presence of $KMnO_A$
containing a small flask filled with	and KOH and distilled. The "whole process was repeated once
reached by shaking overnight in an	more.
taken from the aqueous solution with	
a microsyringe through the septum	
graph equipped with a flame ioniza-	FSTIMATED EDDOD.
tion detector. The gas chromato- graphic conditions are described in	solv.: error given above (90% pro-
the paper.	bability interval)
	REFERENCES :
L	

37_408	505	
COMPONENTS :	ORIGINAL MEASUREMENTS:	
(1) Heptane; C ₇ H ₁₆ ; [142-82-5] (2) Water; H ₂ O; [7732-18-5]	Ghanem, N.A.; Marek, M.; Exner, J. Int. J. Appl. Radiat. Isotop. <u>1970</u> , 21, 239-40.	
VADTABLEC.		
One temperature: 22.5°	M.C. Haulait-Pirson	
EXPERIMENTAL VALUES:		
The solubility of water in heptane at 22.5°C was reported to be $3.93 \times 10^{-3} \text{ g(2)/100 mL (1)}$ or $5.73 \times 10^{-3} \text{ g(2)/100 g (1)}$. The corresponding mass percent and mole fraction, x_2 , calculated by the compiler are $5.73 \times 10^{-3} \text{ g(2)/100 g sln}$ and 3.19×10^{-4} .		
AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
A volume of standardized radio- active water was injected in a vessel containing dry (1). The vessel was then closed and the contents were shaken and stirred. The vessel was then left for the excess water to settle to the bottom and sides and to ensure equilibrium. Portions of (1) saturated with (2) were added to a scintillation mixture and counted.	<pre>(1) source not specified; purified by shaking with a mixture of H₂SO₄ and P₂O₅, kept over KOH, then distilled and the distil- late refluxed over NaH; residual water content < 5x10⁻⁶ mol·dm⁻³ (2) not specified. ESTIMATED ERROR: temp. ± 1 K soly. ± 10% (type of error not specified)</pre>	
	REFERENCES :	

(1) Heptane; C _y H ₁₆ ; [142-82-5] Krasnoshchekova, P.Ya.; Gubergrits, M.Ya. (2) Water; H ₂ O; [7732-18-5] Reftekhimiya 1973, 13, 885-7. VARIABLES: PREPARED BY: A. Maczynski One temperature: 25°C A. Maczynski EXPERIMENTAL VALUES: PREPARED BY: A. Maczynski The solubility of heptane in water at 25°C was reported to be $r_1 = 5.0 \times 10^{-7}$. The corresponding mass percent calculated by the compiler is 2.8 × 10 ⁻⁴ g(1)/100 g sln. AUXILIARY INFORMATION METROD/APPARATUS/FROCEDURE: A mixture of 10 mL (1) and 300 mL (2) was placed in a double-walled bottom-stoppered vessel and vigor Ously stirred magnetically for 10-12 hr. The phases were allowed to separate; a first sample of the water phase was rejected and next 200 mL of this phase was taken, 00 mL of this phase was taken, 01 mu (1) -saturated air was analyzed by glc. SURCE AND FURITY OF MATERIALS: (1) source not specified; CP reagent; purity not specified. ESTIMATED ERMON: not specified. FSTIMATED ERMON: not specified.	COMPONENTS :	ORIGINAL MEASUREMENTS:
VARIABLES: PREPARED BY: One temperature: 25°C A. Maczynski EXFERIMENTAL VALUES: The solubility of heptane in water at 25°C was reported to be $x_1 = 5.0 \times 10^{-7}$. The corresponding mass percent calculated by the compiler is 2.8 × 10^{-4} g(1)/100 g sln. AUXILLARY INFORMATION METHOD/AFFARATUS/FROCEDURE: A mixture of 10 mL (1) and 300 mL (2) was placed in a double-wailed bottom-stoppered vessel and vigorously stirred magnetically for 10-12 hr. The phases were allowed to separate; a first sample of the water phase was rejected and next 200 mL of this phase was rejected into due the water place were introduced into do-mL hermetic bottles and (1) was allowed to equilibrate with the air, analyzed by glc. Source and public example. REFERENCES: ESTIMATED ERROR: not specified. REFERENCES: REFERENCES:	(1) Heptane; C ₇ H ₁₆ ; [142-82-5] (2) Water; H ₂ O; [7732-18-5]	Krasnoshchekova, P.Ya.; Gubergrits, M.Ya. Neftekhimiya <u>1973</u> , 13, 885-7.
VARIABLES: One temperature: 25°C A. Maczynski EXPERIMENTAL VALUES: A. Maczynski The solubility of heptane in water at 25°C was reported to be s _{x1} = 5.0 × 10 ⁻⁷ . The corresponding mass percent calculated by the compiler is 2.8 × 10 ⁻⁴ g(1)/100 g sln. AUXILIARY INFORMATION Matter of 10 mL (1) and 300 mL (2) was placed in a double-walled bottom-stoppered vessel and vigorously stirred magnetically for 10-12 hr. The phases was reallowed to separate; a first sample of the water phase was rejected and next 200 mL of this phase was reincoduced into 40-mL hermetic bottles and (1) was allowed to equilibrate with the air, analyzed by glc. SURCE AND PURITY OF MATERIALS: ESTIMATED ERROR: Inot specified. REFERENCES: REFERENCES:		
One temperature: 25°C A. Maczynski EXPERIMENTAL VALUES: The solubility of heptane in water at 25°C was reported to be $x_1 = 5.0 \times 10^{-7}$. The corresponding mass percent calculated by the compiler is 2.8 x 10 ⁻⁴ g(1)/100 g sin. AUXILIARY INFORMATION METHOD/APPARATUS/PROCEDURE: A mixture of 10 mL (1) and 300 mL (2) was placed in a double-walled bytom stoppered vessel and vigor-ously stirred magnetically for 10 ⁻¹² hr. The phase was taken, 200 mL of this phase was taken, allowed to equilibrate with the air, allowed to cogulibrate with the air, allowed to equilibrate with the air, allowed by glc. REFERENCES:	VARIABLES:	PREPARED BY:
EXPERIMENTAL VALUES: The solubility of heptane in water at 25°C was reported to be $x_1 = 5.0 \times 10^{-7}$. The corresponding mass percent calculated by the compiler is 2.8 x 10 ⁻⁴ g(1)/100 g sln. AUXILLARY INFORMATION METHOD/APPARATUS/PROCEDURE: A mixture of 10 mL (1) and 300 mL (2) was placed in a double-walled bottom-stoppered vessel and vigor- 00-12 hr. The phase was rejected and next 200-mL of this phase was taken, 20-mL hermetic bottles and (1) was allowed to equilibrate with the air, and the (1)-saturated air was analyzed by glc.	One temperature: 25°C	A. Maczynski
The solubility of heptane in water at 25°C was reported to be $x_1 = 5.0 \times 10^{-7}$. The corresponding mass percent calculated by the compiler is 2.8 $\times 10^{-4}$ g(1)/100 g sln. AUXILIARY INFORMATION METHOD/AFPARATUS/PROCEDURE: A mixture of 10 mL (1) and 300 mL (2) was placed in a double-walled bottom-stoppered vessel and vigorously stirred magnetically for 10-12 hr. The phases were allowed to separate; a first sample of the water phase was taken, 200 mL of this phase was taken, 200 mL of this phase was taken, 201 mL of thils phase was taken. 201 mL of thils phase was taken. 201 mL of thils phase was taken. 201 mL of thils phase was taken. 201 mL of thils phase was taken. 201 mL of thils phase was taken. 201 mL of thils phase was taken. 201 mL of thils phase was taken. 201 mL of thils phase was taken. 201 m	EXPERIMENTAL VALUES:	
AUXILIARY INFORMATION METHOD/APPARATUS/PROCEDURE: A mixture of 10 mL (1) and 300 mL (2) was placed in a double-walled bottom-stoppered vessel and vigor- ously stirred magnetically for 10-12 hr. The phases were allowed to separate; a first sample of the water phase was rejected and next 200 mL of this phase was taken, 20-mL aliquots were introduced into 40-mL hermetic bottles and (1) was allowed to equilibrate with the air, and the (1)-saturated air was analyzed by glc. REFERENCES:	The solubility of heptane in water as $x_1 = 5.0 \times 10^{-7}$. The corresponding mass percent calculates 2.8 $\times 10^{-4}$ g(1)/100 g sln.	t 25°C was reported to be lated by the compiler is
METHOD/APPARATUS/PROCEDURE: SOURCE AND PURITY OF MATERIALS: A mixture of 10 mL (1) and 300 mL (1) source not specified; (2) was placed in a double-walled CP reagent; purity not bottom-stoppered vessel and vigor- custometric ously stirred magnetically for (2) distilled. 10-12 hr. The phases were allowed (2) distilled. to separate; a first sample of the (2) distilled. water phase was rejected and next 200 mL of this phase was taken, 20-mL aliquots were introduced into 40-mL hermetic bottles and (1) was and the (1)-saturated air was ESTIMATED ERROR: analyzed by glc. not specified. REFERENCES: REFERENCES:	AUXILIARY	INFORMATION
A mixture of 10 mL (1) and 300 mL (2) was placed in a double-walled bottom-stoppered vessel and vigor- ously stirred magnetically for 10-12 hr. The phases were allowed to separate; a first sample of the water phase was rejected and next 200 mL of this phase was taken, 20-mL aliquots were introduced into 40-mL hermetic bottles and (1) was allowed to equilibrate with the air, and the (1)-saturated air was analyzed by glc.		
	METHOD/APPARATUS/PROCEDURE: A mixture of 10 mL (1) and 300 mL (2) was placed in a double-walled bottom-stoppered vessel and vigor- ously stirred magnetically for 10-12 hr. The phases were allowed to separate; a first sample of the water phase was rejected and next 200 mL of this phase was taken, 20-mL aliquots were introduced into 40-mL hermetic bottles and (1) was allowed to equilibrate with the air, and the (1)-saturated air was analyzed by glc.	SOURCE AND PURITY OF MATERIALS: (1) source not specified; CP reagent; purity not specified. (2) distilled. ESTIMATED ERROR: not specified. REFERENCES:

37_410

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Heptane; C ₇ H ₁₆ ; [142-82-5]	Polak, J.; Lu, B.C-Y.
(2) Water: H_0 ; [7732-18-5]	Can. J. Chem. 1973, 51, 4018-23.
	,,
VARIABLES:	PREPARED BY:
Temperature: 0-25°C	M.C. Haulait-Pirson
EXPERIMENTAL VALUES:	
Solubility of hept	ane in water
t/°C mg(1)/kg	sln x, (compiler)
25 ^b 3.37 ^c	7.9×10
	011 # 10
Solubility of wat	er in heptane
t/°C mg(2)/kg	sln x ₂ (compiler)
0 ^a 26 ^d	1.45×10^{-4}
25 ^b 82 ^e	4.56×10^{-4}
a-e "	
SEE "ESTIMATED ERROR"	
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The solubility of (1) in (2) was	(1) Phillips Petroleum Co.; pure
The solubility of (2) in (1) was	grade reagent (99%+); shaken three times with distilled
determined by Karl Fischer titra- tion. 50 mL of (1) together with	water.
50 mL of (2) were placed in a 125 mL Hypovial closed with a Teflon	(2) distilled.
coated rubber septum and placed in	
The system was stirred magnetical-	
bath without stirring for at least	ESTIMATED ERROR:
for analysis. Details of the	temp. a) ± 0.02 K; b) ± 0.01 K
analysis are given in the paper.	soly. c) ± 4%; d) ± 4.7%; e) ± 3.1% (mean)
	REFERENCES:

COMPONENTS :	ORIGINAL MEASUREMENTS:
(1) Heptane; C ₇ H ₁₆ ; [142-82-5] (2) Water; H ₂ O; [7732-18-5]	Budantseva, L.S.; Lesteva, T.M.; Nemtsov, M.S. Zh. Fiz. Khim. <u>1976</u> , 50, 1344. Deposited doc. <u>1976</u> , VINITI 437-76.
VARIABLES:	PREPARED BY:
Temperature: 20 and 40°C	A. Maczynski
EXPERIMENTAL VALUES:	
Solubility of hep	tane in water
$t/^{\circ}C$ 10 ⁵ x_{1}	10 ³ g(l)/100 g sln (compiler)
20 0.3 40 1	2 6
Solubility of wat	er in heptane
$t/^{\circ}C$ $10^{4}x_{\circ}$	10^3 g(2)/100 g sln (compiler)
$\frac{1}{20} \qquad \frac{1}{5}$	9
40 /	13
AUXILIARY	INFORMATION
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
Nothing specified in the paper.	(1) not specified.
	(2) not specified.
	ESTIMATED ERROR:
	Not specified.
	REFERENCES:

37_412

COMPONENTS: ORIGINAL MEASUREMENTS: (1) Heptane; C7H16; [142-82-5] Price, L.C. (2) Water; H20; [7732-18-5] Am. Assoc. Petrol. Geol. Bull. 1976, 60, 213-44. VARIABLES: Temperature: 25-150.4°C

EXPERIMENTAL VALUES:

Solubility of heptane in water at system pressure

<i>t</i> / °C	mg(l)/kg(2)	g(l)/l00 g sln (compiler)	$10^{7} x_{1}$ (compiler)
25.0	2.24 ± 0.04	0.000224	4.0
40.1	2.63 ± 0.05	0.000263	4.7
55.7	3.11 ± 0.11	0.000311	5.6
99.1	5.60 ± 0.17	0.000560	10.1
118.0	11.4 ± 0.4	0.00114	20.5
136.6	27.3 ± 0.9	0.00273	49.1
150.4	43.7 ± 1.0	0.00437	78.6

AUXILIARY INFORMATION		
METHOD/APPARATUS/PROCEDURE: Room-temperature solubilities were determined by use of screw-cap test tubes. The (1) phase floated on top of (2) and insured saturation (in 2 to 4 days) of the aqueous phase. High-temperature solubility work was carried out in the ovens of the gas chromatograph. The solutions were contained in 75 mL double ended stainless steel sample cylinders. Modified Micro Linear Valves sealed the bottom of the cylinder and al- lowed syringe access to the solution during sampling. The sample is then transferred to the gas chromatograph equipped with dual flame ionization detectors. Many details are given in the paper.	INFORMATION SOURCE AND PURITY OF MATERIALS: (1) Phillips Petroleum Company; 99+%. (2) distilled. ESTIMATED ERROR: temp. ± 1 K soly. range of values given above REFERENCES:	

COMPONENTS :	ORIGINAL MEASUREMENTS:	
(1) Heptane; C ₇ H ₁₆ ; [142-82-5]	Korenman, I.M.; Aref'eva, R.P.	
(2) Water; H ₂ O; [7732-18-5]	Patent USSR, 553 524, 1977.04.05 C.A. 87:87654.	
VARIABLES:	PREPARED BY:	
One temperature: 20°C	A. Maczynski	
-	-	
EXPERIMENTAL VALUES:		
The solubility of heptane in water at 20°C was reported to be 0.06 g(1)dm ⁻³ (2). The corresponding mass percent and mole fraction, x_1 , calculated by the compiler are 0.006 g(1)/100 g sln and 1.1 x 10 ⁻⁵ . The assumption that 1 dm ³ sln = 1 kg sln was used in the calculation.		
AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
About 100-500 mL(2) was placed in a	(1) not specified.	
glass cylinder and 10-50 mg of an	(2) not specified	
(1) was microburetted until the indicator floated to form a colored thin layer on the cylinder wall 2-3 cm above the liquid layer. After each drop of (1), the mixture was vigorously mixed for 0.5-1.5 min	(2) Not specified.	
	ESTIMATED ERROR:	
	not specified.	
	REFERENCES:	

COMPONENTS:	ORIGINAL MEASUREMENTS:	
(1) Heptane; C ₇ H ₁₆ ; [142-82-5]	Krzyzanowska, T.; Szeliga, J.	
(2) Water; H ₂ O; [7732-18-5]	Nafta (Katowice), <u>1978</u> , 12, 413-7.	
VARIABLES :	PREPARED BY:	
One temperature: 25°C	M.C. Haulait-Pirson	
EXPERIMENTAL VALUES:		
The solubility of heptane in water at	25°C was reported	
to be 2.24 mg(1)/kg(2).		
The corresponding mass percent and mo	le fraction, x_1 , calculated	
by compiler are 2.24 x 10^{-4} g(1)/100	$g \ sln \ and \ 4.03 \ x \ 10^{-7}$.	
	-	
Editor's Note: Based on the results	for this and other hydrocarbon-water	
systems, uncertainity exists about wh	ether the datum compiled here is	
	same system.	
AUXILIARY	INFORMATION	
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:	
The saturated solutions of (1) in (2) were prepared in two ways.	(1) not specified.	
First, 200 µL of (1) was injected into 20 mL of (2) and thermostatted	(2) not specified.	
at 25°C. Second, the mixture of (1)		
at 70°C and then cooled to 25°C. The		
was three weeks. The solubility of		
(1) in (2) was measured by glc. A Perkin-Elmer model E-11 gas chromat-		
ograph equipped with a 100-150 mesh	ESTIMATED EDDOD.	
ionization detector was used. Sat-		
were used as standard solutions.	soly. 0.07 mg(1)/kg(2) (standard deviation from 7-9 determinations).	
	REFERENCES :	

COMPONENTS :		ORIGINAL MEASUREMENTS:	
(1) Heptane; C ₇	eptane; C ₇ H ₁₆ ; [142-82-5] Bittrich, HJ.; Gedan, H.; F		Gedan, H.; Feix, G.
(2) Water; H ₂ O;	[7732-18-5]	Z. Phys. Chem., Leipzig <u>1979</u> , 260 1009-13.	
VARIABLES:		PREPARED BY:	1
Temperature: 25	-40°C	M.C. Haulait-Pirs	on
EXPERIMENTAL VALUES	:		
	Solubility of hep	tane in water	
t/°C	mg(1)/kg(2)	g(l)/100 g sln (compiler)	(compiler)
unspecified	3.7	0.00037	6.6 x 10 ⁻⁷
	Solubility of wat	er in heptane	
t/°C	mg(2)/kg(1)	g(2)/100 g sln (compiler)	(compiler)
25	121	0.0121	6.73×10^{-4}
40	156	0.0156	8.68×10^{-4}
l	AUXILIARY	INFORMATION	
METHOD/APPARATUS/PR	OCEDURE :	SOURCE AND PURITY OF	MATERIALS:
A mixture of (1) and (2) was shaken with no access of air at a specified temperature and then thermostatted for 48 hr. The equilibrated phases were sampled and analysed by gas chromatography using a flame- ionization detector. A 3-m-steel column of 15% nitril silicone on Porolith, 110°C and a 3-m-steel column of 1.5 g CaC ₂ and 10% SE 30 on chromaton N, 120°C were used for	 (1) source not sp distilled or purity tested tography. (2) not specified 	ecified; crystallized; by gas chroma-	
(1) and (2) res	pectively.	ESTIMATED ERROR:	
		soly. ± 9% (type specified).	of error not
		REFERENCES:	

37 416

COMPONENTS:	ORIGINAL MEASUREMENTS:
(1) Heptane; C ₇ H ₁₆ ; [142-82-5] (2) Water; H ₂ O; [7732-18-5]	Rudakov, E.S.; Lutsyk, A.I. <i>Zh. Fiz. Khim.</i> <u>1979</u> , <i>53</i> , 1298-1300.
VARIABLES:	PREPARED BY:
One temperature: 25°C	M.C. Haulait-Pirson

EXPERIMENTAL VALUES:

The authors reported the partition coefficient α of heptane , between the gas and aqueous phase. $\alpha = 84 \pm 4$. $\alpha = C_g/C_s$ with C_s being the concentration of the compound in dilute aqueous solution at 25°C and C_g the concentration in the gas phase in equilibrium with the aqueous solution (both in moles per liter).

The compiler has assumed that when (1) and (2) are not very soluble in each other, C_s may be taken as the water solubility and C_g as the vapor pressure of (1). The value of p (where p is the vapor pressure in mm of Hg) is taken from ref 1. p = 45.81 mm of Hg and log $C_g = \log p - 4.269 = -2.61$ expressed in moles per liter. Therefore $C_s = 2.9 \times 10^{-5}$ moles per liter. With the assumption of a solution density of 1.00 g mL⁻¹, the corresponding mass percent is 0.00029 g(1)/100 g sln and the corresponding mole fraction, x_1 , is 5.2 x 10^{-7} .

AUXILIARY INFORMATION	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:
The equilibrium distribution was attained after shaking for 10 min the thermostatted reactor contain- ing (2) and the (1) vapor. After being allowed to stand for 10 min, equal calibrated volumes of samples of the gas and solution were intro- duced by a syringe into a special cell for the removal of (1) by blowing, built into the gas line of the chromatograph and the par- tition coefficient α was determined as the ratio of the areas of the peaks of the substrate arising from the two phases.	(1) not specified.(2) not specified.
	ESTIMATED ERROR: soly. ± 10% (estimated by the compiler)
	REFERENCES:
	l. Hine, J.; Mooker, P.K. J. Org. Chem. <u>1975</u> , 4, 292.

COMPONENTS:	ORIGINAL MEASUREMENTS:	
(1) Heptane; C ₇ H ₁₆ ; [142-82-5] (2) Water; H ₂ O; [7732-18-5]	Jonsson, J.A.; Vejrosta, J.; Novak, J. <i>Fluid Phame Equil.</i> <u>1982</u> , 9, 279-86.	
VARIABLES:	PREPARED BY:	
Temperature: 15-35°C	G.T. Hefter	
EXPERIMENTAL VALUES:		
Solubility of beptage in water		
	$10^4 \pi (1) (100\pi \pi^2)^{-10}$	
t/°C mg(l)/kg sin	(compiler) (compiler)	
15 2.67	2.67 4.80	
20 2.57	2.57 4.62	
25 2.51	2.51 4.51	
30 2.49	2.49 4.47	
35 2.52	2.52 4.53	
	,	
AUXILIARY	INFORMATION	
METHOD /APPARATUS / PROCEDURE :	SOURCE AND PURITY OF MATERIALS:	
Air-water partition coefficients were measured by saturating a portion of water by a stream of nitrogen containing a known vapour concentration of (1). After equilibration, the dissolved (1)	 (1) Fluka, > 99.7%, used as received. (2) Not specified. 	
was adsorbed in a porous polymer trap and the entrapped (1) analysed by gas chromatography. The method and apparatus are described in detail in ref 1.		
	ESTIMATED ERROR:	
	Not specified.	
	REFERENCES :	
	 Vejrosta, J.; Novak, J.; Jonsson, J.A. Fluid Phase Equil. <u>1982</u>, 8, 25-35. 	

37_418

COMPONENTS:	ORTGINAL MEASUREMENTS :	
(1) Heptane; C ₇ H ₁₆ ; [142-82-5]	Guseva, A.N.; Parnov, E.I.	
(2) Deuterium oxide (heavy water); D ₂ 0; [7789-20-0]	Radiokhimiya <u>1963</u> , 5, 507-9.	
VARIABLES:	PREPARED BY:	
Temperature: 68-193°C	A. Maczynski	
EXPERIMENTAL VALUES:		
Solubility of heptane in deuterium oxide		
$\frac{t/^{\circ}C}{10^{5}x_{1}}$	g(l)/100 g sln (compiler)	
	0.0076	
	0.0076	
	0.0212	
	0.0312	
AUXILIARY	INFORMATION	
METHOD/APPARATUS/PROCEDURE:	SOURCE AND PURITY OF MATERIALS:	
The solubility of (1) in (2) was determined in sealed glass tubes.	(1) not specified.	
Details were reported in ref 1.	(2) distilled.	
	ESTIMATED EDDOP	
	not specified.	
	REFERENCES:	
	1. Khazanova, P.E. Tr. Gos. inst. azotn. promyshl. 1954, 4, 5.	
	1. Khazanova, P.E. Tr. Gos. inst. azotn. promyshl. <u>1954</u> , 4, 5.	
	1. Khazanova, P.E. Tr. Gos. inst. azotn. promyshl. <u>1954</u> , 4, 5.	

516	37_419	
COMPONENTS :	EVALUATOR:	
(1) Heptane; C ₇ H ₁₆ ; [142-82-5]	D.G. Shaw Institute of Marine Science	
(2) Seawater	University of Alaska Fairbanks, Alaska USA	
	December 1982	
CRITICAL EVALUATION:		
The solubility of heptane (1) in seawater (2) has been reported in two works:		
Authors Metho	Salinity od T/K g salts/kg sln g(l)/100 g sln	
Krasnoshchekova and Gubergrits (ref 1) GLC	$2 298 6 1.03 \times 10^{-3}$	
Freegarde <i>et al</i> . (ref 2) GLC	$2 ? ? 4 \times 10^{-4}$	
Because temperature and salinity are not specified, the data of Freegarde $et \ al$. are rejected. The value of Krasnoshchekova and Gubergrits is considered doubtful since it is greater than the tentative value for the solubility of heptane in pure water at 298 K.		
SOLUBILITY OF HEPTANE (1) IN SEAWATER (2) DOUBTFUL VALUE		
T/K g sa	alts/kg sln g(1)/100 g sln	
298	6 1.03×10^{-3}	
REFERENCES		
 Krasnoshchekova, R.Ya.; Gubergrits, M.Ya. Neftekhimiya <u>1973</u>, 13, 885-8. 		
 Freegarde, M., Hatchard, C.G.; Parker, C.A. Lab. Pract. <u>1971</u>, 20, 35-40. 		

37_420

ORIGINAL MEASUREMENTS:		
Krasnoshchekova, R.Ya.; Gubergrits, M.Ya.		
Neftekhimiya <u>1973</u> , 13, 885-8.		
PREPARED BY:		
M. Kleinschmidt		
EXPERIMENTAL VALUES:		
The solubility of heptane in seawater was reported to be $1.03 \times 10^{-3} \text{ g(1)/100 g sln.}$ and the corresponding mole fraction, $x_1 = 1.9 \times 10^{-6}$.		
<pre>SOURCE AND PURITY OF MATERIALS: (1) "chemically pure" (2) distilled water plus salt mixture. ESTIMATED ERROR: not specified. REFERENCES:</pre>		

SYSTEM INDEX Page numbers preceded by E refer to evaluation text whereas those not preceded by E refer to compiled tables. Benzene E63-E85, 86-183, 190-192 Benzene (aqueous) + sodium chloride 190-192 Benzene + seawater E188, 189 Benzene + water-d2 184-187 423, 424 E369-E379, 380-422, 427, 428, 430 chloride 427, 428, 430 Benzene, methyl-+ water-d2 Benzene, methyl-Benzene, methyl- (aqueous) + sodium chloride Benzene, methyl- + seawater 1,3-Butadiene, 2-methyl-E425, 426, 429, 431 E7, E8, 9, 10 E283, E284, 285-288 E289-E291, 292-295 Butane, 2,2-dimethy1-Butane, 2,3-dimethyl-Butane, 2-methyl-E31-E34, 35-41 Butane, 2,2,3-trimethyl-464 1-Butene, 2,3-dimethy1-272 2-Butene, 2-methyl-1-Butene, 3-methyl-E22, E23, 24-26 27 Cycloheptane 454 E433, E434, 435-437 1,3,5-Cycloheptatriene Cycloheptene 440 1,4-Cyclohexadiene E193, E194, 195, 196 Cyclohexane E221-E229, 230-269 270, 271 Cyclohexane + water-d2 Cyclohexane, 1-methyl-E445, E447, 448-453 E197-E199, 200-208 Cyclohexene Cyclohexene, 1-methyl-439 1,3-Cyclopentadiene E13-E15, 16-21 Cyclopentane Cyclopentane, ethyl-Cyclopentane, methyl-443, 444 E212, E213, 214-220 Cyclopentane, methyl- (aqueous) + sodium chloride 220 Cyclopentene E2, E3, 4-6 see 1-butene, 2,3-dimethy1-2,3-Dimethyl-l-butene 2,2-Dimethylbutane see butane, 2,2-dimethyl-2,3-Dimethylbutane see butane, 2,3-dimethy1see pentane, 2,2-dimethyl-see pentane, 2,3-dimethyl-see pentane, 2,4-dimethyl-see pentane, 3,3-dimethyl-see propane, 2,2-dimethyl-2,2-Dimethylpentane 2,3-Dimethylpentane 2,4-Dimethylpentane 3,3-Dimethylpentane 2,2-Dimethylpropane Ethylcyclopentane see cyclopentane, ethyl-1,6-Heptadiene 441 1,6-Heptadiyne 438 E485-E491, 492-514 Heptane Heptane + seawater E516, 517 Heptane + water-d2 515 1-Heptene E455, E456, 457-459 E460, 461-463 2-Heptene 1-Heptyne 442 1,5-Hexadiene 209, 210 E314-E323, 324-365, 368 Hexane Hexane (aqueous) + sodium chloride 368 Hexane + seawater E366, 367 Hexane, 2-methyl-Hexane, 3-methyl-478-480 E481, 482-484 1-Hexene E275, E276, 277-281 2-Hexene 282 1-Hexyne 211 see 1,3-butadiene, 2-methyl-2-Methyl-1,3-butadiene 2-Methylbutane see butane, 2-methylsee 2-butene, 2-methyl-see 1-butene, 3-methyl-2-Methyl-2-butene 3-Methyl-l-butene Methylcyclohexane see cyclohexane, methyl-1-Methylcyclohexene see cyclohexene, 1-methyl-Methylcyclopentane see cyclopentane, methylsee hexane, 2-methyl-see hexane, 3-methyl-2-Methylhexane 3-Methylhexane

```
see pentane, 2-methyl-
see pentane, 3-methyl-
2-Methylpentane
3-Methylpentane
2-Methyl-l-pentene see l-pentene, 2-methyl-
4-Methyl-l-pentene see l-pentene, 4-methyl-
                                                                                       432
2,5-Norbornadiene
1,4-Pentadiene
                                                                                        11
                                                                        E42-E46, 47-62
Pentane
Pentane (aqueous) + sodium chloride
                                                                                        62
Pentane, 2,2-dimethyl-
                                                                                465, 466
Pentane, 2,3-dimethyl-
Pentane, 2,4-dimethyl-
Pentane, 3,3-dimethyl-
Pentane, 2-methyl-
Pentane, 3-methyl-
                                                                                467, 468
                                                                 E469, E470, 471-475
                                                                                476, 477
                                                                   E296-E299, 300-306
                                                                  E307, E308, 309-313
l-Pentene
                                                                                        28
                                                                                        29
2-Pentene
l-Pentene, 2-methyl-
l-Pentene, 4-methyl-
                                                                                       273
                                                                                       274
1-Pentyne
                                                                                        12
Propane, 2,2-dimethyl-
                                                                                        30
Sodium chloride (aqueous) + benzene
Sodium chloride (aqueous) + methylcyclopentane
                                                                                  190-192
                                                                                       220
Sodium chloride (aqueous) + hexane
                                                                                       368
Sodium chloride (aqueous) + methylbenzene
                                                                       427, 428, 430
Sodium chloride (aqueous) + pentane
                                                                                        62
Toluene see benzene, methyl-
2,2,3-Trimethylbutane
                                    see butane, 2,2,3-trimethyl-
```

REGISTRY NUMBER INDEX

Page numbers preceded by E refer to evaluations texts whereas those not preceded by E refer to compilated tables.

71-43-2 E63-E85, 86-187, E188, 189-192 75-83-2 E283, E284, 285-288 E31-E34, 35-41 78-78-4 E7, E8, 9, 10 78-79-5 E289-E291, 292-295 79-29-8 E307, E308, 309-313 E212, E213, 214-220 E296-E299, 300-306 96-14-0 96-37-7 107-83-5 E469, E470, 471-475 E445-E447, 448-453 108-08-7 108-87-2 E369-E379, 380-424, E425, 426-431 108-88-3 E42-E46, 47-62 109-66-0 109-67-1 28 109-68-2 29 110-54-3 E314-E323, 324-365, E366, 367, 368 E221-E229, 230-271 E197-E199, 200-208 110-82-7 110-83-8 121-46-0 432 142-29-0 E2, E3, 4-6 142-82-5 E485-E491, 492-515, E516, 517 287-92-3 E13-E15, 16-21 291-64-5 454 463-82-1 30 464-06-2 464 E22, E23, 24 513-35-9 542-97-7 1 544-25-2 E433, E434, 435-437 476, 477 562-49-2 563-45-1 27 563-78-0 272 467, 468 E481, 482-484 565-59-3 589-34-4 590-35-2 465, 466 591-49-1 439 591-76-4 478-480 591-93-5 11 592-41-6 E275, E276, 277-281 209, 210 592-42-7 592-43-8 282 592-76-7 E455, E456, 457-459 592-77-8 E460, 461-463 627-19-0 12 628-41-1 E193, E194, 195, 196 628-71-7 442 628-92-2 440 691-37-2 274 693-02-7 211 763-29-1 273 1640-89-7 443, 444 2396-63-6 438
3070-53-9 7647-14-5 7732-18-5	441 62, 190-192, 220, 368, 427, 428, 430 1, E2, E3, 4-6, E7, E8, 9-12, E13-E15, 16-21, E22, E23, 24-30, E31-E34, 35-41, E42-E46, 47-62, E63-E85, 86-183, E188, 189-192, E193, E194, 195, 196, E197-E199, 200- 211, E212, E213, 214-220, E221-E229, 230-269, 272-274, E275, E276, 277-282, E283, E284, 285-288, E289-E291, 292-295, E296-E299, 300-306, E307, E308, 309-313, E314- E323, 324-365, 368, E369-E379, 380-422, 427, 428, 430, 432, E433, E434, 435-444, E445-E447, 448-454, E455, E456, 457-
7789-20-0	459, E460, 461-468, E469, E470, 471-480, E481, 482-484, E485-E491, 492-514 184-187, 270, 271, 433, 434, 515

AUTHOR INDEX

Pages preceded by E refer to evaluation texts whereas those not preceded by E refer to compilated tables. E64, E67, E71-E73, E83, 144, 147, 148, E221, E225, E227, E228, 240, 242, E369, E378, 400, 402 Affsprung, H. F. E64, E67, E82, 137 Aleksandrova, L. P. Alexander, D.W. E64, E67, E68, E82, 126 E64, E66, E76, E80, E83, E84, 148, E370, E377, E378 E63, E68, E81, 107, E369, E372, E378, 389 Alwani, Z. Andrews, L.J. Aquan-yuen, M. E315, E317, E322, 356, E366, 368 E65, E67, E84, 103, E370, E372, E379, 422 Arakawa, S. E65, E67, E84, 179, 180, E370-E374, E379, 420-322 E42, E43, E46, 58, E65, E67, E84, 172, E222-E224, E228, 263, 264, E315, E316, E322, 351, 354, E370-E372, E379, 414, 415, E485, E486, E491, 510 Araki, M. Aref"eva, R.P. E64, E67-E69, E82, 122, 123 Arnold, D.S. E65, E84, 187, E222, E228, 271 E65, E68, E84, 177, E370, E371, E379, 417 E63, E68, E81, 93 Backx, P. Banerjee, S. Barbaudy, J. E41, E42, E46, 50, E314, E316, E322, 335 Barone, G. Bartell, F.E. E63, E68, E72, E82, 114 E197-E199, 201 Bayne, A.H. E66, E85 E42, E46, 49 Belousov, A.I. Bender, S.Ya. E64, E65, E70, E83, 156, 186 Ben-Naim, A. E314, E318, E322, 342, E369, E374, E378, 403 Benkovski, V.G. E221, E227, E314, E315, E321 Bennett, G.M. E63, E71, E72, E81, 101, E221, E225, E227, 231 E63, E68, 116, E369, E372, E378, 390 E65, E68, E71, E72, E84, 176, E485, E486, E488, Berkengeim, T.I. Billett, F. Bittrich, H.J. E489, E491, 512 E31, E33, E34, 35, E42, E45, E46, 48, E63, E71, E81, 104, 209, E221, E225, E227, 232, E314, E318 E321, 325, E455, E456, 457, E485, E486, E490, 494 E314, E318, E322, 342, E369, E374, E378, 403 Black, C. Bogoslovaskaya, T.T. E63, E67, E68, E82, 111, E369, E371-E374, E378, Bohon, R.L. 389 E64, E72, E82, 138, E369, E378, 396 E63, E66, E81, 105, 108, E314, E316, E321, Bolander, B. Booth, H.S. 326, E369, E371, E378, 386, E485, E486, E490, 494 E64, E76, E83, 157, E369, E371, E372, E378, 406 Bradley, R.S. E64, E68, E82, 124 Brady, A.P. Braun, W.G. E64, E76, E83, 152, E221, E226, E228, 246, E314 E320-E322, 337 E65, E83, 184, 185, E221, E226-E228, 247-249, E485, Brollos, K. E490, E491 E65, E67, E68, E83, 162, E188, 189, E370-E374, Brown, R.L. E378, 408, E425, 426 E65, E67, E71, E84, 167, E197-E199, 207, E221, E223-E225, E228, 258, E275, E276, 281, E314, E317, E318, E322, 347, E485, E486, E488-E490, 508 Budantseva, L.S. E64, E76, E83, 152, E221, E226, E228, 246, E314, Burd, S.D. E320-E322, 337 Caddock, B.D. E64, E72, E82, 178, E369, E375, E378, 392 E370, E372, E379, 412, E425, 429 Calder, J.A. Cave, G.C.B. E65, E71-E73, E84, 168, E221, E225, E228, 259 E315, E318, E322, 353 Charykov, A.K. E63, E67, E71, E81, 109 E64, E67, E71-E73, E83, 144, 147, 149, E221, E225, E227, E228, 240, 242, E369, E378, 400, 402 Chew, J.-N. Christian, S.D. E63, E67, E68, E82, 111, E369, E371-E374, E378, Claussen, W.F. 389

 389

 E63, E71, E81, 88

 E64, E67, E71-E73, E83, 153, E221, E225, E228, 250

 E314, E318, E322, 341

 E42, E46, 51, 52, E64, E76, E77, E83, 142, 143,

 E296, E299, 300, 301, E369, E377, E378, 398, 399

 E485, E490, 501, 502

 E64, E68, E83, 154

 E41, E42, E46, E46, E70, E314, E316, E332, 335

Clifford, C.W. Coleman, C.F. Connolly, J.F. Corby, T.C. E41, E42, E46, 50, E314, E316, E322, 335 Crescenzi, V. E64, E74, E82, 128, E369, E375, E378, 392 Davies, P.L.

E65, E67, E84, 179, 180, E370-E374, E379, 420-422 E42-E44, E46, 54, E314, E316, E317, E322, 340, Deguchi, T. De Lingy, C.L. E485-E487, E490, 504 E315, E320, E321, E323, 357-362 E64, E76, E83, 157, E369, E371, E372, E378, 406 E63, E68, E72, E82, 114 E197-E199, 201 E63, E66, E81, 106, E221, E223, E224, E227, 233, De Loos, Th.W. Dew, M.J. Donahue, D.J. Duque-Estrada, E. Durand, R. E314, E318, E321, 327, E485, E486, E490, 495 E221, E226, E228, 251 E221, E225, E227, 239, E314, E318, E332, 334, E485, Efremova, G.D. Efremov, A.A. E488, E490, 500 E64, E68, E83, 154 Elworthy, P.H. E13-E15, 17, E22, E23, 24, E31, E33, E34, 36, E64 E71, E72, E82, 141, E197, E199, 202, E212, E213, 215, E221, E224, E225, E227, 238, 272, E275, E276, 277, E289-E291, 292, E314, E318, E319, E322, 333, Englin, B.A. E369, E375, E378, 397, 432, E433, E434, 435, 444, E445, E447, 449, E455, E456, 458, 464, 478, E485, E488-E490, 499 E64, E67-E69, E82, 122, 123 E63, E66, E81, 105, 108, E314, E316, E321, 326, Erickson, E.E. Everson, H.E. E369, E371, E378, 386, E485, E486, E490, 494 E485, E488, E490, 505 Exner, J. E197-E199, 203 Farkas, E.J. E65, E68, E71, E72, E84, 176, E485, E486, E488, Feix, G. E489, E491, 512 E64, E76, E83, 158 E70, E84 E64, E67, E76, E77, E82, 132 Filyas, Yu.I. Frank, H.S. Franks, F. E366, E516 Freegarde, M. E65, E68, E84, 174, E188, 192 Freeman, D.H. E42, E43, E46, 47, E314, E316, E321, 324, E369, E371, E377, 381, E485, E486, E490, 492 Fuhner, H. Gedan,H. E65, E68, E71, E72, E84, 176, E485, E486, E488, E489, E491, 512 Gendrano, M.C. E64, E71-E73, E83, 145 E64, E68, E82, 132 Gent, M. Gester, G.C.Jr. Ghanem, N.A. E314, E315, E321 E485, E488, E490, 505 E14, E15, E42, E43, E46, E65, E70, E84, E222, E229, Gill, S.J. E315, E316, E323, E370, E371, E374, E379, E486, E491 E65, E71-E73, E84, 163, 187, E221, E222, E224, Goldman, S. E225, E228, 255, 271 E66, E85 Gorbachev, S.V. Green, W.J. E70, E84 E64, E71-E73, E83, 249, E221, E225, E228, 242, E378 Gregory, M.D. 402 E64, E67, E73, E83, 147 E63, E67, E71, E81, 109 Grigsby, R.D. Griswold, J. Groschuff, E. E63, E71-E73, E81, 87 E63, E68, E81, 96, 100, E369, E372, E377, 384 E65, E67, E84, 164, E314, E317, E322, 343, E366, Gross, P.M. Gubergrits, M.Ya. 367, E370, E371, E379, 409, E485-E487, E490, 506 E516, 517 E13-E15, 16, E64, E76, E78, E79, E82, 133, E212, Guseva, A. N. E213, 214, E221-E224, E226, E227, 237, 270, E369, E370, E374, E376-E378, 393, 423, 443, E445, E447, 448, E485, E486, E489, E490, 497, 515 E63, E67, E81, 103 Harkins, W. D. Hatchard, C. G. E366, E516 Hayano, I. E64, E76, E79, E81, 119, 120, E188 E63, E67, E68, E82, 118 E221, E224, E226-E228, 243-245, E315, E320, E323, 338, 339 E63, E66, E81, E85, E314, E315, E321 Hayashi, M. Hayworth, K. E. Herz, W. E73, E85, E222, E229, E319, E323 Hicks, C. P. E63, E67, E71-E73, E81, 89, 90 Hill, A. E. E64, E72, E82, 138, E369, E378, 396 E66, E81 Hoegfeldt, E. Horiba, S.

E64, E68, E82, 124 Huff, H. E63, E71, E82, 117, E314, E316, E318, E321, 329, E485, E486, E490, E496 Hopson, W. H. E65, E66, E84, 166, E370, E371, E379, 411, E425, Ito, Y. 428 E63, E66, E81, 91, E369, E371, E377, 380 Jaeger, A. E63, E71-E73, E81, 102 Jeffes, J. H. E E64, E68, 87, 132 E64, E67, E71-E73, E83, 144, 147, E221, E225, E227, 240, E369, E378, 400 Johnson, H. H. Johnson, J. R. E64, E71, E82, 121, E369, E371, E378, 391 E63, E71-E74, E82, 113 Johnston, W. H. Johns, R. G. S. E63, E71, E82, 117, E314, E316, E318, E321, 329, 330, E485, E486, E490, 496 Jones, J. H. E64, E66, E82, 134, E369, E378, 394 Jones, J. R. E42-E44, E46, 61, E315, E317, E323, 363, E485, Jonsson, J. A. E487, E491, 514 E31, E33, E34, 35, E42, E45, E46, 48, E63, E71, E81, 104, 209, E221, E225, E227, 232, E314, E318, E321, 325, E455, E456, 457, E485, E488, E490, 493 Joris, G. G. E64, E71-E73, E83, 159 E315, E318, E322, 352 Karlsson, R. Katayama, T. Kay, W. B. E64, E76, E80, E82, 127 E63, E68, E81, 107, E369, E372, E378, 387 Keefer, R. M. Kirchnerova, J. E65, E71-E73, E84, 168, E221, E225, E228, 259 E65, E66, E84, 166, E370, E371, E379, 411, E425, Kito, S. 428 Klecka, M. E. E63, E67, E71, E81, 109 E63, E68, E82, 110, E369, E372, E375, E378, 388 Klevens, H. B. Kofman, L. S. E7, E8, 10, E22, E23, 25, E31-E34, 38 Kondratev, V. P. E66, E85 van Konynenburg, P. H. E73, E85, E222, E229, E319, E323 Kopylov, V. V. E66, E85 Korenman, I. M. E42, E43, E46, 58, E65, E67, E84, 172, E222-E224, E228, 263, 264, E315, E316, E322, 351, 354, E370-E372, E379, 414, 415, E485, E486, E491, 510 E65, E67, E84, 164, E314, E317, E323, 343, E366, 367, E370, E371, E379, 409, E485, E486, E487, Krasnoshchekova, R. Ya. E490, 506, E516, 517 Krzyzanowska, T. E13, E15, 21, E31-E34, 41, E42, E43, E46, 59, E65, E68, E84, 173, E212, E213, 218, E222, E228, 265, E283, E288, E289-E291, 295, E296, E299, 306, 312, E315, E316, E322, 355, E370, E371, E379, 416, E445, E447, 451, 466, 468, E469, E470, 475, 480, E481, 484, E485, E486, E491, 511 E64, E67, E76, E77, 129-131, E221, E223, E224, E226, E227, 235, 236, E314, E316, E320, E321, 331, Kudchadker, A. P. 332 E221, E225, E227, 239, E314, E318, E322, 334, E485, Larin, G. M. E488, E490, 500 Leinonen, P. J. E64, E68, E83, 160, E221, E223, E224, E228, 254, E275, E276, 280, E296-E299, 303, E314, E322, 344 E65, E67, E71, E84, 167, E197-E199, 207, E221, Lesteva, T. M. E223-E225, E228, 258, E275, E276, 281, E314, E317, E318, E322, 347, E485, E486, E488-E490, 508 E2, E3, 6, E13-E15, 19, E42, E43, E46, 55, E64, E67 E83, 155, E193, E194, 196, E197-E199, 206, E221, Liabastre, A. A. E223, E224, E228, 253, E369, E371-E374, E378, 405, E433, E434, 437 E315, E320, E321, E323, 357-362 E63, E67, E82, 112, E197-E199, 200, E221, E227, Lichtenthaler, R. N. Lissant, K. J. 234, E314, E316, E321, 328 E63, E82, 115 Long, F. A. Lotter, Yu. G. E314, E320-E322, 348 Lutsyk, A. I. E42, E43, E46, 60, E212, E213, 219, E222, E223, E228, 266, E307, E308, 313, E445-E447, 453, E485, E487, E491, 513

Lu, B. C. Y.	E31-E34, 39, E42-E46, 56, E65, E67, E68, E71-E73, E83, 161, E283, E284, 286, E289-E291, 293, E296- E299, 304, E307, E308, 310, E314, E317-E319, E322, 345, E369, E372, E373, E375, E379, 407, 469, E470, 473, E481, 482, E485-E490, 507
Mackay, D.	E64, E65, E68, E83, E84, 160, 165, E188, 190, E221, E223, E224, E228, 254, 256, 257, E275, E276, 280, E296-E299, 303, E314-E317, E322, 344, 346, 356, E366, 368, E370, E314-E317, E322, 344, 346, 356,
McAuliffe, C.	E306, 537, E376, E377, E375, 416, E425, 427 E2, E3, 4, E7, E8, 9, 11, 12, E13-E15, 18, 27-30, E31, E32, E34, 37, E42, E43, E46, 53, E64, E68, E82, E83, 135, E193, E194, 195, E197-E199, 204, 210, 211, E212, E213, 216, E221, E223, E224, E227, 241, 273, 274, E275, E276, 278, E283, E284, 285, E296-E299, 302, E307, E308, 309, E314, E322, 336, E369, E372, E378, 395, 401, E433, E434, 436, 438-442, E445-E447, 450, 454, E460, 461, E469, E470, 471, 472, E485-E487, E490, 503
McCants, J. F. McDevit, W. F. McKetta, J. J.	E63, E71, E82, 117, E314, E316, E318, E321, 329, 330, E485, E486, E490, 496 E62, E82, 115 E64, E67, E76, E77, 129-131, E221, E223, E224,
Manakan, D. A. Masterton, W. L.	E226, E227, 235, 236, E314, E316, E320, E321, 331, 332 E197-E199, 201 E64, E71-E73, E83, 145
May, W. E. Milligan, L. H. Monk, C. B. Monro, D. C. Moore, B. C Morrison, T. J. Moule, D. C.	E65, E68, E84, 174, E188, 192 E63, E66, E81, 92, E314, E315, E321, E485, 490 E64, E66, E82, 134, E369, E378, 394 E64, E76, E83, 157, E369, E371, E372, E378, 406 E63, E71-E74, E82, 113 E63, E68, E82, 116, E369, E372, E378, 390 E64, E71, E72, E83, 146
Nagai, H. Natarajan, G. S.	E65, E67, E84, 179, 180, E370-E374, E379, 420, 421 E2, E3, 5, E22, E23, 26, E197-E199, 205, E275,
Namiot, A. Yu. Nebenzahl, L. L. Nagai, H. Nelson, H. D. Nemstov, M. S. Nichols, N. F. Niini, A. Novak, J.	E276, 279, 282, E455, E456, 459, E460, 463 E41, E46, 49 1 E65, E67, E84, 179, 180 E42-E44, E46, 54 E65, E67, E71, E84, 167, E197-E199, 207 E14, E15, E42, E43, E46, E65, E70, E84 E63, E67, E72, E81, 99 E42-E44, E46, 61
Oppenheimer, H. O"Grady, T. M.	E63, E67, E81, 103 E64, E76, E83, 150
Parnov, E. I.	E13-E15, 16, E64, E76-E78, E79, E82, 133, E212, E213, 214
Pavlova, S. P. Pavia, R. A. Pavlov, S. Yu. Peter, K. Pierotti, R. A.	E7, E8, 10, E22, E23, 25, E31-E34, 38 E64, E72, E73, E82, 125 E7, E8, 10, E22, E23, 25, E31-E34, 38 E65, E83, 184, 185 E2, E3, 6, E13-E15, 19, E42, E43, E46, 55, E64, E67, E83, 155, E193, E194, 196,
Pike, F. P. Pispisa, B. Plank, C. A. Plate, A. F.	E197-E199, 206 E64, E67-E69, E82, 122, 123 E41, E42, E46, 50 E64, E67-E69, E82, 122, 123 E13-E15, 17, E22, E23, 24, E31, E33, 36, E64, E71, E72, E82, 141, E197-E199, 202, F212, F213, 215
Polak, J.	E31-E34, 39, E42-E46, 56, E65, E67, E68, E71-E73, E83, 161
Poloshinzewa, E. N. Price, L. C.	E63, E71-E73, E81, 97 E13-E15, 20, E31-E34, 40, E42-E44, E46, 57, 62, E65, E68, E84, 169, E188, 191, E212, E213, 217, 220

E13, E15, 17, E22, E23, 24, E31, E33, E34, Pryanishnikova, M. A. 36, E64, E71, ,E72, E82, 141, E197, E199, 202, E212, E213, 215 Quadrafoglio, F. E41, E42, E46, 50 Rebert, C. J. E64, E76, E80, E82, 127 E63, E71, E81, 98 E64, E67, E71-E73, E83, 153 E42, E46, E66, E80, E83 E63, E71, E72, E81, 95 E42, E43, E46, 60, E212, E213, 219 Robertson, J. B. Roddy, J W. Roof, J. G. Rosenbaum, C. J. Rudakov, E. S. Sada, E. E65, E66, E84, 166 E65, E71-E73, E84, 175 Sah, R. Sasaki, T. E63, E67, E68, E82, 118 E65, E67, E84, 179, 180 E63, E68, E81, 96, 100 E64, E72, E82, 136 Sanemasa, I. Saylor, J. H. Schatzberg, P. E42, E46, E66, E80, E85 Scheffer, F. E. C. E64-E66, E76, E80, E83, E84, 148, 184, 185 Schneider, G. M. E73, E85 E65, E67, E84, 178, E197-E199, 208 Scott, R. L. Schwarz, F. P. E7, E8, 10, E22, E23, 25, E31-E34, 38 Serafimov, L. A. E65, E68, E84, 165, E188, 190 Shiu, W. Y. Simon, E. E63, E67, E81, 103 E65, E71-E73, 84, 175 E65, E76, E77, E83, E84, 170, 171 Singh, R. P. Skripka, V. G. Snyder, J. R. E64, E76, E77, E82, 139, 140 E63, E71-E74, E81, E82, 102, 113 Staveley, L. A. K. Stearns, R. S. E63, E67, E81, 103 Streitweiser, A. 1 E63, E68, E81, 100 E65, E76, E77, E83 Stuckley, J. M. Sultanov, R. G. E13-E15, 21, E31-E34, 41, E42, E43, E46, 59, E65, E68, E84, 173, E212, E213, 218 Szeliga, J. Tama, A. A. E64, E67, E73, E83, 147 E63, E71-E73, E81, 97 Tarassenkaw, D. N. E31, E33, E34, 35, E42, E45, E46, 48, E63, Taylor, H. S. E71, E81, 104, E209 E65, E68, E72, E73, E76, E78, E79, E84, 181, 182 Tsonopoulos, C. E64, E66, E76-E79, E82, 139, 140 Thompson, W. H. E64, E71, E72, E83, 146 Thurston, W. M. E13, E15, 17, E22, E23, 24, E31, E33, E34, 36, E64, E71, E72, E82, 141, E197-E199, 202, E212, E213, 215 Tugolukov, V. M. E64, E67, E82, 137 E64, E76, E79, E82, 119, 120, E188 Udovenko, V. V. Umano, S. E63, E67, E72, E81, 94 Uspenskii, S. P. E65, E68, E84, 177 Valvani, S. C. E42-E44, E46, 61 5, E22, E23, 26, E197-E199, 205 Vejrosta, J. Venkatachalam, K. A. Vermillion, H. E. E63, E66, E81 Wadso, I. E14, E15, E42, E43, E46, E65, E70, E84 E63, E71, E72, E81, 95 E65, E67, E68, E83, E84, 162, 174, E188, 189, 192 Walton, J. H. Wasik, s. Ρ. E64, E65, E70, E83, 156, 186 Wilf, J. E65, E68, E72, E73, E76, E78, E79, E84, Wilson, G. M. 181, 182 E64, E71, E82, 121 E42, E46 Wing, J. Wishnia, A. E64, E83, 151 Worley, J. D. E64, E65, E70, E83, 156, 186 E65, E68, E84, 177 E73, E85 Yaacobi, M. Yalkowsky, S. H. Young, C. L.

SOLUBILITY DATA SERIES

Volume 1	H. L. Clever, Helium and Neon
Volume 2	H. L. Clever, Krypton, Xenon and Radon
Volume 3	M. Salomon, Silver Azide, Cyanide, Cyanamides, Cyanate, Selenocyanate and Thiocyanate
Volume 4	H. L. Clever, Argon
Volume 5/6	C. L. Young, Hydrogen and Deuterium
Volume 7	R. Battino, Oxygen and Ozone
Volume 8	C. L. Young, Oxides of Nitrogen
Volume 9	W. Hayduk, Ethane
Volume 10	R. Battino, Nitrogen and Air
Volume 11	B. Scrosati and C. A. Vincent, <i>Alkali Metal, Alkaline Earth Metal and Ammonium Halides. Amide Solvents</i>
Volume 12	C. L. Young, Sulfur Dioxide, Chlorine, Fluorine and Chlorine Oxides
Volume 13	S. Siekierski, T. Mioduski and M. Salomon, <i>Scandium, Yttrium, Lanthanum and Lanthanide Nitrates</i>
Volume 14	H. Miyamoto, M. Salomon and H. L. Clever, Alkaline Earth Metal Halates
Volume 15	A. F. M. Barton, Alcohols with Water
Volume 16/17	E. Tomlinson and A. Regosz, Antibiotics: I. β-Lactam Antibiotics
Volume 18	O. Popovych, Tetraphenylborates
Volume 19	C. L. Young, Cumulative Index: Volumes 1–18
Volume 20	A. L. Horvath and F. W. Getzen, Halogenated Benzenes, Toluenes and Phenols with Water
Volume 21	C. L. Young and P. G. T. Fogg, Ammonia, Amines, Phosphine, Arsine, Stibine, Silane, Germane and Stannane in Organic Solvents
Volume 22	T. Mioduski and M. Salomon, <i>Scandium, Yttrium, Lanthanum and Lanthanide Halides in Nonaqueous Solvents</i>
Volume 23	T. P. Dirkse, Copper, Silver, Gold, and Zinc, Cadmium, Mercury Oxides and Hydroxides
Volume 24	W. Hayduk, Propane, Butane and 2-Methylpropane
Volume 25	C. Hirayama, Z. Galus and C. Guminski, Metals in Mercury
Volume 26	M. R. Masson, H. D. Lutz and B. Engelen, Sulfites, Selenites and Tellurites
Volume 27/28	H. L. Clever and C. L. Young, Methane
Volume 29	H. L. Clever, Mercury in Liquids, Compressed Gases, Molten Salts and Other Elements
Volume 30	H. Miyamoto and M. Salomon, Alkali Metal Halates, Ammonium lodate and lodic Acid
Volume 31	J. Eysseltová and T. P. Dirkse, Alkali Metal Orthophosphates
Volume 32	P. G. T. Fogg and C. L. Young, Hydrogen Sulfide, Deuterium Sulfide and Hydrogen Selenide
Volume 33	P. Franzosini, Molten Alkali Metal Alkanoates
Volume 34	A. N. Paruta and R. Piekos, 4-Aminobenzenesulfonamides. Part I: Non-cyclic Substituents
Volume 35	A. N. Puruta and R. Piekos, 4-Aminobenzenesulfonamides. Part II: 5-Membered Heterocyclic Substituents
Volume 36	A. N. Puruta and R. Piekos, 4-Aminobenzenesulfonamides. Part III: 6-Membered Heterocyclic Substituents and Miscellaneous Systems
Volume 37	D. G. Shaw, Hydrocarbons with Water and Seawater. Part I: Hydrocarbons C_5 to C_7
Volume 38	D. G. Shaw, Hydrocarbons with Water and Seawater. Part II: Hydrocarbons C_{θ} to C_{36}